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Planar N = 4 super Yang-Mills appears to be integrable. While this allows to find this theory’s
exact spectrum, integrability has hitherto been of no direct use for scattering amplitudes. To
remedy this, we deform all scattering amplitudes by a spectral parameter. The deformed tree-level
four-point function turns out to be essentially the one-loop R-matrix of the integrable N = 4 spin
chain satisfying the Yang-Baxter equation. Deformed on-shell three-point functions yield novel
three-leg R-matrices satisfying bootstrap equations. Finally, we supply initial evidence that the
spectral parameter might find its use as a novel symmetry-respecting regulator replacing dimensional
regularization. Its physical meaning is a local deformation of particle helicity, a fact which might
be useful for a much larger class of non-integrable four-dimensional field theories.

I. INTRODUCTION

Amazing features have been discovered in the last
years in studying the structure of planar maximally su-
persymmetric Yang-Mills theory (N = 4 SYM). The
discovery of a hidden dual superconformal symmetry
[1], after combining with the conventional superconfor-
mal symmetry into a Yangian structure [2], points to an
underlying integrability. This structure is deeply con-
nected to the Graßmannian formulation of scattering
amplitudes [3, 4]. Here the tree-level n-point Nk−2MHV
amplitudes can be written as

Atree
n,k =

∮

∏k

a=1

∏n

i=k+1 dcai

M1M2 . . .Mn

δ4|4
(

C(k,n) · Z
)

, (1)

where ZA
i are the super-twistor variables (µ̃α

i , λ̃
α̇
i , η

A
i )

with µ̃α
i the Fourier conjugate to λα

i , and A is a fun-
damental index of gl(4|4). Recall that the momenta of

scattering amplitudes are expressed as pαα̇i = λα
i λ̃

α̇
i , and

ηAi are Graßmann variables. Moreover, C(k,n) stands for
a (k×n) matrix of the complex parameters cai, and the
first k columns have been fixed to a unit matrix using
the GL(k) symmetry of the integral. By Mi we denote
the (k×k) minors of the C(k,n) matrix. In a remarkable,
very recent construction [5] all amplitudes are argued to
be constructible to arbitrary loop order in terms of basic
on-shell building blocks through BCFW recursion rela-
tions [6]. More precisely, any amplitude at arbitrary but
fixed loop order is expressible as a sum over suitable on-
shell diagrams obtained by appropriately linking MHV
and MHV three-point amplitudes and subsequently in-
tegrating out all on-shell super-twistor variables on in-
ternal links.

In a seemingly unrelated recent development, a con-
nection between tree-level amplitudes and the complete
one-loop dilatation operator was pointed out in [7]. In
particular the Hamiltonian of the N = 4 spin chain was
shown to be related to the tree-level four-point ampli-
tude. Being integrable, this nearest-neighbor Hamilto-

nian is generated by an R-matrix satisfying the cele-
brated Yang-Baxter equation [8]. After defining mon-
odromy matrices, R-matrices serve as an alternative,
and from the perspective of scattering processes more
natural, way to define the Yangian algebra. The crucial
feature of R-matrices is their dependence on a com-
plex parameter called spectral parameter. So far, the
fundamental question on how to insert the spectral pa-
rameter into the scattering amplitude problem had not
yet been asked, let alone answered. In this letter we
fill this gap by first unifying and generalizing the men-
tioned developments. We then proceed to the investi-
gation of radiative corrections to scattering amplitudes.
Excitingly, we find preliminary one-loop evidence that
the introduction of appropriate spectral parameters al-
lows to regulate all infrared divergences while staying
in strictly four dimensions, and more generally locally
respecting all symmetries.

The structure is as follows. In II. we start from the
Yang-Baxter equation and find its solution in terms of a
spectral-parameter dependent deformation of the four-
point tree-level scattering amplitude. In III. we then
construct the deformed three-point building blocks of
this R-matrix and relate the spectral parameter to the
central charge of particles involved in the scattering pro-
cess, which in turn leads to a physical interpretation
of the deformation as a relaxation of the helicity con-
straints on particles. In IV. we present our proposal for
the spectral regularization of loop amplitudes. Section
V. provides conclusions and an outlook.

II. GRASSMANNIAN R-MATRIX

As the first step in our construction we find a spec-
tral parameter dependent deformation of the tree-level
MHV four-point amplitude. It is given by an R-
matrix which can be found from the Yang-Baxter equa-
tion written in the tensor product of two super-twistor
spaces, labeled 1 and 2, and the fundamental space,
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labeled 3

R12(z3)R13(z2)R23(z1) = R23(z1)R13(z2)R12(z3) ,

where z1, z2, and z3 = z2 − z1 are spectral parame-
ters. The well-known R-matrices acting on the tensor
product of the fundamental and super-twistor spaces
are given by

R
A
i3,B(z) = z δAB + (−1)BJA

iB ,

where JA
iB = ZA

i
∂

∂ZB
i

are the generators of a twistor rep

of gl(4|4) and (−1)A encodes grading. Then the Yang-
Baxter equation is a linear equation for the R-matrix
R12(z) intertwining two super-twistor representations.

Let us call R(z) the integral kernel of R12(z). We
look for a solution of the Yang-Baxter equation in Graß-
mannian form, namely

R(z) =

∮

dc13dc14dc23dc24

c13c24(c13c24 − c14c23)
F (C; z)δ4|4(C(2,4)·Z) ,

where we introduced the function F (C; z). This func-
tion is uniquely determined by the Yang-Baxter equa-
tion together with the requirement that all particles
have physical helicities. One finds

F (C; z) =

(

c13c24

c13c24 − c14c23

)z

.

Hereafter, we will refer to R(z) as the four-point har-
monic R-matrix. After specifying the integration over
the c-variables, this is essentially the kernel of the one-
loop R-matrix of the N = 4 spin chain of [8]! Excitingly,
for z 6= 0, R(z) can also be interpreted as a deformation
of the n = 4 and k = 2 expression in (1). Similar but
more complicated deformations exist for any n and k as
we will discuss in the following.

In this letter we focus on the superamplitudes of N =
4 SYM but a similar calculation can be done for any
representation of gl(n|m) that can be written in terms
of one family of oscillators – the so-called generalized
one-row reps (see e.g. [9]). The result applies to more
general integrable chains and is related to the harmonic
action of their Hamiltonians described in [10]. We defer
the construction to a separate paper [11].

III. THREE-POINT R-MATRICES

In very recent work it is demonstrated that the per-
turbative integrand of scattering amplitudes at arbi-
trary loop order naturally decomposes into basic cubic
building blocks [5]. Encouragingly, this remains true
under our deformation. In particular, one can find de-
formed three-point vertices which may subsequently be
recombined into the R-matrix we found in the previous
section. As in the undeformed case [5], there are two
distinguished objects R•(z1, z2) and R◦(z1, z2), which
give deformations of the MHV and MHV three-point
amplitudes, respectively. They satisfy the following
bootstrap equations depicted in Fig. 1, similar to but

different from the Yang-Baxter equation of the previous
section

R•(z1, z2)R13(0)R23(z1) = z1R13(0)R•(z1, z2) ,

R23(z1)R13(0)R◦(z1, z2) = z1R◦(z1, z2)R13(0) . (2)

An additional set of equations is obtained by replac-
ing space 1 with space 2, leading to a second spectral
parameter z2.
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FIG. 1: Bootstrap equations for the three-point R-matrices.

Once the integral kernels R•(z1, z2) and R◦(z1, z2)
are defined one finds the following solutions to (2) in
the Graßmannian form

R•(z1, z2) =

∮

dc1dc2

c1c2

1

cz11 cz22
δ4|4(C(2,3) · Z) ,

R◦(z1, z2) =

∮

dc1dc2

c1c2

1

cz11 cz22
δ4|4(C(1,3) · Z) .

After integration, the three-point R-matrices take, un-
der the constraint z1+z2+z3 = 0, a Z3-symmetric form
strikingly similar to conformal field theory correlators

R•(z1, z2) =
δ4(pαα̇)δ8(qαA)

〈1 2〉1+z3〈2 3〉1+z1〈3 1〉1+z2
,

R◦(z1, z2) =
δ4(pαα̇)δ4(q̃A)

[1 2]1+z3[2 3]1+z1 [3 1]1+z2
, (3)

where we use the standard helicity spinor representa-
tions of momentum and super-charges (see e.g. [12]).

Again in generalization of an important insight of [5],
one has to now glue four three-point R-matrices with
appropriate spectral parameters (see Fig. 2) in order to
reproduce the result for the four-point R-matrix of the
last section. Exactly as in the undeformed case in [5],
it is important to stress that the R-matrix depicted in
Fig. 2 is tree-level as opposed to one-loop.

3

4 1

2

z

FIG. 2: Four-point R-matrix from three-point R-matrices.

It may be confusing that in our construction the
three-point R-matrices depend on two spectral param-
eters as opposed to the one parameter of the four-point
R-matrix. The reason is that for the latter we addition-
ally assumed that all external particles have physical
helicities. It is easy to check that when one makes this
further assumption, solutions to (2) cease to exist. In
order to obtain a non-trivial result one has to relax this
condition. It is then possible to find an interpretation
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of the spectral parameters by acting with the central
charges Ci = 1

2

∑

A ZA
i

∂

∂ZA
i

C1R◦(z1, z2) = 1
2z1 R◦(z1, z2) ,

C2R◦(z1, z2) = 1
2z2 R◦(z1, z2) ,

R◦(z1, z2) C3 = 1
2 (z1 + z2)R◦(z1, z2) ,

and analogously for R•. We see that the spectral
parameters have the interpretation of central charge
eigenvalues of the three particles, and that furthermore
the vertices conserve the total central charge. Since
the spectral parameter can be any complex number it
means that the particles carry non-zero central charges,
and accordingly unphysical helicities not restricted to
integers or half-integers, as the (super-)helicity genera-
tor of the ith particle is hi = 1 − Ci.

There exists a simple way to produce higher-point
harmonic R-matrices by gluing only three-point R-
matrices. Taking inspiration from Postnikov [13], one
finds that for a given number of particles n and given
helicity k one should take the lattice in Fig. 3

k

. . .

2
1

n n-1 k+1. . .

FIG. 3: Lattice encoding Rn,k

and translate it with the use of the dictionary of Fig. 4

↔
❝

↔ ↔

FIG. 4: Dictionary for plabic diagrams.

into trivalent “plabic” diagrams, which in this case are
planar diagrams with only three-point white and black
vertices. Then one identifies all black vertices with R•

and all white vertices with R◦. The formula for the tree-
level harmonic R-matrix Rn,k is obtained by multiply-
ing all three-point R-matrices appearing in the plabic
diagram and integrating over internal, on-shell propa-
gators, which reduces to solving a set of linear equa-
tions. In generalization of our previous analysis we also
assign a non-vanishing central charge to external parti-
cles. After a systematic study of this gluing procedure
one realizes that the final formula for Rn,k depends on
k (n − k) spectral parameters which can be identified
with the number of faces in the lattice in Fig. 3. To be
more specific, the spectral-parameter dependence ap-
pears in the form

∏

i f
−1+zi
i in the integrand, where

fi are the face variables of the plabic diagram, zi are
any complex numbers, and the product is taken over all
faces. In our interpretation the spectral parameters zi
correspond to the “unquantized” helicities of the parti-
cles circling the loops of the plabic diagrams.

IV. LOOP AMPLITUDES AND SPECTRAL

REGULARIZATION

In the following preliminary study we restrict our-
selves to the simplest case of the one-loop four-point
amplitude. Without deformation, the computation for
N = 4 SYM results in the factorization of the tree-level
amplitude times the scalar box integral

A1-loop

4,2 = Atree

4,2

∫

d4q
(p1 + p2)2(p1 + p4)2

q2(q + p1)2(q + p1 + p2)2(q − p4)2
.

(4)
The integration over the loop momentum leads to in-
frared divergences and thus requires regularization. The
most common procedure is dimensional regularization
see however [16]. We will avoid it here.

Let us first suppress the z-dependence and reproduce
the unregulated result in (4) as proposed in [5]. We
choose the following parametrization of on-shell mo-
menta

pαα̇ = λαλ̃α̇ = t

(

1
x

)

· (1 y) =

(

t t y
t x t x y

)

. (5)

The one-loop four-point MHV amplitude may be ob-
tained from a large number of equivalent plabic dia-
grams [5]. We found the diagram in Fig. 5 particularly
useful for our purposes. The procedure to obtain the

3 4

2 1

0

−2ǭ

−3ǭ 0−4ǭ 3ǭ 4ǭ

0

−2ǭ

FIG. 5: Plabic diagram for the one-loop four-point MHV
case. A regulating assignment of spectral parameters is
added. Note that the spectral parameters of the external
and internal lines are the difference of the numbers assigned
to the faces. For instance, the parameter associated to the
line connecting particles 1 and 4 is z = 4ǭ − 3ǭ = ǭ, with
the sign being determined by the choice of helicity flowing
upward.

box integral is clear from the previous sections: one has
to glue three-point MHV and MHV amplitudes as in
Fig. 5. Counting the number of delta functions and in-
tegrations, one easily sees that four variables are left
unintegrated. Further, these are exactly the four inte-
grations which reconstruct the off-shell momentum of
the loop integration [5]

∫

d4q

q2
=

∫

d2λd2λ̃

GL(1)

dτ

τ
=

∫

t dt dx dy
dτ

τ
,

with the off-shell momentum written in terms of pαα̇,
parametrized as in (5), and reference spinors λα

1 and λ̃α̇
4
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associated to, respectively, external particles 1 and 4

qαα̇ = pαα̇ + τλα
4 λ̃

α̇
1 .

Up to a trivial numerical factor, this procedure yields
the IR-divergent one-loop four-point amplitude (4).

We now introduce spectral parameter dependence
into the above calculation, replacing the three-point
amplitudes by the three-point harmonic R-matrices
R•(z1, z2) and R◦(z1, z2), cf (3). A particular, suit-
able choice of spectral parameters is shown in Fig. 5,
resulting in the following multiplicative regulating mod-
ification of the integrand of the box integral in (4)

(〈34〉[21])−4ǭ

q−2ǭ(q + p1)−2ǭ(q + p1 + p2)−2ǭ(q − p4)−2ǭ
.

It is reminiscent of analytic regularization, see [14] and
references therein. We then see that the spectral param-
eter can be used in our one-loop example as a regula-
tor, while staying in exactly four dimensions! It should
be noted, however, that this choice is not unique and
other choices can have a non-regulating effect. We sus-
pect this embarrassment of riches to be solved via first
principles.

V. CONCLUSIONS AND OUTLOOK

In this letter we propose a new way of looking at the
interplay between scattering amplitudes and integrabil-
ity. By solving Yang-Baxter as well as bootstrap equa-
tions in the Graßmannian language, we have been able
to introduce the notion of spectral parameter into the
scattering problem of N = 4 SYM. These parameters
have the mathematical interpretation of particle cen-
tral charges, and the physical interpretation of unquan-
tized, complex helicities. We have presented initial evi-
dence that the deforming parameters may be used to re-
place dimensional regularization by spectral regulariza-

tion. Considering the IR-divergent one-loop scalar-box
integral, we have shown that a suitable z-deformation
indeed regulates the integral. It is important to stress
that the regulator is not ad hoc, but naturally emerges
from integrability.

In conjunction with the crucial insights of [5], our
results call for a large number of exciting follow-up in-
vestigations. The most urgent issue is to establish that
IR spectral regularization works to arbitrary loop or-
der, and that it is consistent: E.g. it needs to be es-
tablished that the regulator properly exponentiates at
higher loop order. This might significantly reduce the
deformation freedom, i.e. might put strong constraints
on the set of spectral parameters. In [5] it is stressed
that the general N = 4 loop integrand is a differential
form with structure

∏

i d log fi, where fi are the face
variables mentioned in section III. Roughly speaking,
this should turn into

∏

i d( 1
zi
fzi
i ) under spectral regu-

larization. If true, this should open the way for a com-
pletely new, symmetry respecting technical approach
to loop calculations, replacing dim reg. More generally,
we suspect that spectral regularization might also be a
natural UV regulator, wherever needed (Wilson loops,
correlation functions, form factors, etc.). However, the
most exciting perspective is to get a handle on all-loop,
i.e. (planar) non-perturbative calculations by applying
the powerful techniques of the two-dimensional quan-
tum inverse scattering method to our four-dimensional
system. Recall that in the N = 4 spectral problem the
one-loop spectral parameter is “split” into two param-
eters x± by the coupling constant [15]. Can we further
deform our R-matrices to include the coupling in a non-
perturbative fashion? Finally, we find it exciting to in-
vestigate whether locally “unquantizing” the helicities
of massless particles could lead to new ways to regulate
IR and UV infinities in more general, non-integrable
quantum field theories.
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