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Abstract

We give an explicit formula for the quaternionic Kéhler metrics obtained by the
HK/QK correspondence. As an application, we give a new proof of the fact that
the Ferrara-Sabharwal metric as well as its one-loop deformation is quaternionic
Kéhler. A similar explicit formula is given for the analogous (K/K) correspondence
between K&hler manifolds endowed with a Hamiltonian Killing vector field. As an
example, we apply this formula in the case of an arbitrary conical Kahler manifold.
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Introduction

Extending results by Haydys [Hal, it was proven in [ACM] that any pseudo-hyper-Kéahler
manifold (M, g, Ji, J2, J3) of dimension 4n endowed with a space-like or time-like ws-
Hamiltonian Killing vector field Z which acts as a rotation in the plane spanned by .J,
and J3 gives rise to a one-parameter family of conical®' pseudo-hyper-Kéhler manifolds of
dimension 4n + 4 and finally to a one-parameter family of possibly indefinite quaternionic
Kéhler manifolds of dimension 4n. Here w, := gJ, := go Jy := g(Jo+,*), a = 1,2,3,
are the three symplectic forms associated with the pseudo-hyper-Kahler structure and
the parameter in the above one-parameter families is related to the choice of a Hamilto-
nian function for Z. Under the assumptions on the Hamiltonian specified in [ACM], the

resulting quaternionic Kahler metrics are positive definite.

Following [APP, Hi2] (but allowing indefinite metrics) we will call the above rela-

tion between hyper-Kahler and quaternionic Kéahler manifolds of the same dimension the

1See Definition 1.



HK/QK correspondence. The analogous construction relating (possibly indefinite) Kéhler
manifolds of the same dimension, which follows from the Kéhler conification in [ACM],

will be called the K/K correspondence.

It was also proven in [ACM] that the cotangent bundle of any conical special Kahler
manifold admits a canonical vector field Z which satisfies the above assumptions with
respect to the pseudo-hyper-Kéhler structure (g, Ji, J2, J3) provided by the (rigid) c-map
[CFG] (see Section 4.2). Using techniques from supergravity and twistor theory, Alexan-
drov, Persson and Pioline [APP] show that the Ferrara-Sabharwal metric [FS] (also known
as the supergravity c-map metric, see Section 4.3) and its one-loop deformation are re-
lated to the c-map pseudo-hyper-Kéhler metric ¢ under the HK/QK correspondence. It
was shown in [ACM] that the above vector field Z has a canonical Hamiltonian function
conjecturing that the quaternionic Kahler metric associated with this particular choice
of the parameter is precisely the Ferrara-Sabharwal metric. It was checked that the sign
of the scalar curvature is negative and thus consistent with the latter conjecture. Fi-
nally, the precise relation between the parameter in the choice of the Hamiltonian and
the one-loop quantum deformation parameter occurring in [RSV, APP] was left for future

investigation.

In this paper we verify the above conjecture and determine the precise relation be-
tween the Hamiltonian parameter and the one-loop parameter. In fact, we apply the
HK/QK correspondence to the pseudo-hyper-Kéhler manifolds obtained from the rigid
c-map starting with a conical affine special Kahler manifold. The final result is the for-
mula (4.11) for the quaternionic Kéhler metric, see Theorem 5. This is precisely the
one-loop deformed Ferrara-Sabharwal metric as described in [RSV, APP]. As a corollary

this implies:

Corollary 1 The Ferrara-Sabharwal metric and its one-loop deformation (4.11) are

quaternionic Kahler.

Notice that this generalizes the result that the Ferrara-Sabharwal metric is quaternionic
Kahler [FS, Hil].

Our proof is based on a new explicit formula for the quaternionic Kéahler metric in
the HK/QK correspondence, see Theorem 2. A similar result is obtained in the Kéhler
case, that is for the K/K correspondence, see Theorem 3. To obtain the explicit formula
for the quaternionic Kéhler metric we start by reviewing the Swann bundle construction
and the moment map of a tri-holomorphic Killing vector field on the Swann bundle in
Section 1. Our approach allows to control the signature of the resulting metrics. In

particular, we specify for any given value of the one-loop parameter ¢ the maximal domain



on which the deformed Ferrara-Sabharwal metric is positive definite. For ¢ > 0, this
domain coincides with the manifold on which the Ferrara-Sabharwal metric is defined.
These results generalize those of Antoniadis, Minasian, Theisen and Vanhove [AMTV] in

four dimensions (for the universal hypermultiplet).

We have included appendix A, in which we discuss the simplest case of the HK/QK
correspondence in which the initial hyper-Kéhler manifold is (flat) four-dimensional, for
the reader’s convenience. The resulting quaternionic Kéhler manifold is the complex

hyperbolic plane (universal hypermultiplet).

For the K/K correspondence we apply our formula for the resulting metric in the case
when the initial pseudo-Kéahler manifold is conical, see Theorem 4. In particular, for a
conical affine special Kéhler manifold (M, J, g, V,&) we obtain (up to a cyclic covering)
the product CH' x M of the projective special Kahler manifold M underlying M and
the complex hyperbolic line, see Remark 5. Notice that this is a maximal totally geodesic
Kihler submanifold CH! x M C N of the Ferrara-Sabharwal manifold /N, which is related
to M by the supergravity c-map.
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1 The Swann bundle revisited

In this section we derive explicit formulas relating the metric of a quaternionic Kahler
manifold to the pseudo-hyper-Kéhler metric of its Swann bundle [S]. This will be used in
Section 2 to obtain an explicit formula for the quaternionic Kahler metric in the HK/QK

correspondence from the conical pseudo-hyper-Kéahler metric constructed in [ACM].

1.1 The pseudo-hyper-Kahler structure

Let (M, g,Q) be a (possibly indefinite) quaternionic Kéhler manifold of nonzero scalar
curvature, where Q C so(T'M) denotes its quaternionic structure. Let us denote by
7w : S — M the principal SO(3)-bundle of frames (Ji, J3, J3) in @ such that J3 = J;.J5



and J? = —Id, o = 1,2, 3. The principal action of an element A € SO(3) is given by
S = (Jl, Jg, Jg) — T(A, S) = (Jl, JQ, Jg)Ae,

where € = 1 if we consider S as a right-principal bundle and € = —1 if we prefer a left-
principal bundle. Let us denote by Z, the fundamental vector fields associated with some

basis (e,) of s0(3):
_2
0t

We may choose the basis corresponding to the standard basis of sp(1) = ImH = R? under

Za(8) T(exp(tey), s).

the canonical isomorphism sp(1) = ad(sp(1)) = s0(3). Then
lea, 5] = 2ey, [Za, Zs] = 2€¢Z.,, (1.1)

for every cyclic permutation (o, 5,7) of (1,2,3). In the following, (o, 3,v) will be always

a cyclic permutation, whenever the three letters appear in an expression.

The Levi-Civita connection V of (M, g) induces a principal connection
0=> faeq: TS — s50(3)
on S. Its curvature is defined by
1
Q:=df+ 65[9/\9],

where

1
SN Y) = [6(X).0(Y)], X.YeT.s seb.
Writing Q = >~ Q,e, and using (1.1) we have

Qn = db,, + 2€e05 N G, (1.2)

From the definition of the connection and curvature forms we get the following lemma.

Lemma 1

Lzaea = LZaQa = 0, Lzaeg = 2¢6 LZaQB = 2697.

¥

Given a local section o = (Jq, Jo, J3) € T'(U, S), defined over some open subset U C M,

we can also define a vector-valued 1-form

1=3 Ouca
on U by
VJQ = —26(9_5 X ']’Y — éﬁ/ X Jg)

5



The coefficient is chosen such that

V(J1, Ja, J3) = (J1, Ja, J3)e€l).
Notice that then
VB=dB+¢€» 0, [Jo B, (1.3)
for every section B = > b,J, of @, where d = d,, is defined by dB := > db, ® J,. The
vector-valued 1-forms 8 on U C M and 6§ on S are related by
0 =o*0.
In the local trivialization 7=1(U) = U x SO(3) of S given by o we can write
9 =10+ o,

where ¢ = > pae, is the Maurer-Cartan form on SO(3) defined by ¢n(Z3) = dup. From
(1.3) we compute the curvature R? € T(A?T*M ®Q), Q = ad(Q) C End Q, of the vector
bundle @), which is

R =Y Quda, Qo= edfo+205A0,.
It is a well-known result by Alekseevsky [A] that

14

Qa = _§wo¢a
where w, = gJ, and
scal
=———— (dimM =14
v 1 9) (dim n)

is the reduced scalar curvature. Since the curvature form of a principal connection is
horizontal, this implies that

€Q, ‘ _

U(U):w*Qa‘ (1'4)

Lr*w

sy 27 “Yelewy

We endow the manifold S with the pseudo-Riemannian metric
v *
gs =) 0+ g

Now we consider the cone M = S x R>? over S with the Euler vector field §:=Zy =10,

and the following exact 2-forms

~ ~ r

Wo = dby, Oy = ——0,.

For later use we state the following lemma, which follows from Lemma 1 and the fact that

Zy = & preserves 6.



Lemma 2 The Lie algebra span{Z;|i = 0,...,3} = co(3) acts on span{f,|a = 1,2,3}
by the standard representation:

~

L2000 = 200, L7035 =260,
Using the above data we recover Swann’s hyper-Kahler structure on M:

Theorem 1  The cone metric § = dr* + r?gs is a pseudo-hyper-Kdihler metric on M
with the Kdahler forms &,. The signature of g is (4 + 4k,4l) if v > 0 and (4 + 41, 4k) if
v < 0, where (4k,4l) is the signature of the quaternionic Kdihler metric g on M.

Proof: Let us denote by T"M C TM the vertical distribution with respect to the pro-
jection T := 7o prg : M = M, prg : M =S8xR>® > S and by T"M the horizontal
distribution defined by its g-orthogonal complement. Let J,, be the uniquely determined

3 almost complex structures on M which preserve the horizontal distribution and satisfy
jaZO = _EZom jaZa = EZOa jaZB = Z’y> jocZ'y = _Zﬁa Ty O ja|(s,r) =Jy0 ﬁ-*a

where s = (J1, Jo, J3). We see that these structures satisfy jljg = jg and pairwise anti-
commute. Then, using (1.2) and (1.4), one can easily check §.J, = @&,. This proves
that the 2-forms w, are not only closed but also non-degenerate and that J, = —djﬁ_ldj,y
are three anti-commuting skew-symmetric almost complex structures on (M, g). By the
Hitchin Lemma [Hi0, Lemma 6.8], this shows that (g, Ji, Jo, jg) is a pseudo-hyper-Kéhler

structure on M . O

1.2 The moment map of an infinitesimal automorphism

Let M be the Swann bundle over a (possibly indefinite) quaternionic Kéhler manifold
(M, g,Q). We will follow the conventions in Section 1.1 with e = —1. We endow M with

the hyper-Kéahler structure (gy, := 0§, (Ja)), where 0 = £1. The corresponding Kéhler

forms are o, = d(00,).
Let X be a tri-holomorphic space-like or time-like Killing vector field on M, which

commutes with the Euler vector field £ = r0, = Z,.

Proposition 1  The vector field X is tri-Hamiltonian with moment map —u, where

K M — Rs? xz = (Ml(x>7/~l’2(x)71u3(x>>v Ha -= éa(X>

In fact, the functions p. satisfy
Alle = —1LxWq. (1.5)



Proof: Notice first that, since X is tri-holomorphic, it commutes not only with £ but also
with Z, = Aag . This implies already that the Killing field X preserves the horizontal
distribution T"M = (T"M)* and hence the three one-forms 6,. Furthermore, £ x(r?) =
Lxgy (&€ =0, since X is Killing and commutes with . This implies that

~ 7’2
Using this equation, we have

At = dixOs = Lxby — txdby = —1x@a.

O

We will now explain how to recover the quaternionic Kéahler metric on M from the

geometric data on the level set of the moment map u
P={m =1, ug = p3 =0} C M.

Since the group R”? x SO(3) generated by &, Zy, Z», Z3 acts as the standard conformal
linear group CO(3) on the three-dimensional vector space spanned by the functions i,
ie.

Lzotba = 240, Lz pp = =241,

we see that
M\{p=0t= |J aPr
a€R>0xS0(3)
In particular, P is nonempty. Then (1.5) shows that P C M is a smooth submanifold of

codimension 3. On P we have the following data:

gp = gylp = 0glp € T(Sym*T"P)
0F = 00.|p € QY(P) (a=1,2,3)

2

f o= a% e C™(P)

P
o = —%dfte(P)
Xp = oX|peX(P)
7Y = Zi|p € X(P).

The fact that Z; is tangent to P follows from

diaZy = tz,dpta = Lz, fla = —202q 13 + 2034 f12,

since gy = g3 = 0 on P.



With these definitions, the formula
G=dr’+r* <292+ 7rg> (1.6)
implies:

Proposition 2 The quaternionic Kahler metric g on M s related as follows to the

geometric data on the level set P C M of the moment map:
3
2 2
v glp = ? <9P ?Z 9P ) (1.7)

Proof: Solving Eq. (1.6) for vr*g yields:
vrtg = 4 59— dr? 292 Ug—adr 07‘2293).
Restricting to P we ﬁrst obtain:
(gp — adr®[p — 2 > 02]p). (1.8)

The above definitions imply 0,|p = f7'67. Therefore, f02|p = f~'(#L)?. Similarly,
odr®|p =2f71(6F)% This shows that (1.8) implies (1.7).

v glp =

| o

O

Corollary 2  The tensor field on the right-hand side of (1.7) is invariant under ZE and

has one-dimensional kernel RZY .

Proof: The ZF-invariance follows from the Z;-invariance of 7*g. The statement about
the kernel follows from
T°MNTP =RZ, (1.9)

which is a consequence of

dpa = Lepia = 2pta
dppaZn = Lzyla = 20103 — 2034411
dpaZs = Lzila = =201 + 2020 /11
In fact, we have already shown that the vertical vector field Z; is tangent to P and
these equations show now that the three vector fields &, Zs, Z3 are mapped to (constant)

linearly independent vectors under the vector-valued one-form du = (du,) : TM — R3.
This implies (1.9), since T'P = ker d. O

In the next section we apply the above results to the case when M is obtained by

conification of a hyper-Kéahler manifold, in the sense of [ACM].
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2 Explicit formula for the HK/QK correspondence

Let (M, g, J1, Jo, J3) be a possibly indefinite hyper-Kéhler manifold with the Kahler forms
Wo = gJo, @ =1,2,3, and a time-like or space-like wi-Hamiltonian Killing vector field Z
such that £zJo = —2J3. According to [ACM], with any choice of function f € C*(M)
such that df = —w1Z and such that f; = f — @ is not zero, one can, at least locally,
associate a quaternionic Kéhler metric ¢’ on a manifold M’ of dimension dim M. (One
has to assume, in particular, that the functions f and f; are nowhere zero, which may

require to restrict the manifold M)

Following [ACM], let P — M be an S'-principal bundle with a principal connection

7 with the curvature dn = w; — %ng . We endow P with the pseudo-Riemannian metric

2
gpi=—n" +7g (2.1)
fi
and with the vector field
Z{D = Z + lep, (22)

where Z denotes the horizontal lift of Z and Xp the fundamental vector field of the

principal action. Furthermore, we endow P with the following one-forms:

P f— —_—
o5 = —5df
1
1
95 = 5(&132
1
0F = —§w2Z. (2.3)
Theorem 2  The tensor field
5 3
gr = gp — 7 > (65 (2.4)
a=0

on P is invariant under Z¥ and has one-dimensional kernel RZE. Let M' be a codimen-
sion 1 submanifold of P which is transversal to the vector field ZE. Then
¢ ==3 |
= sradelm
2|f]

is a possibly indefinite quaternionic Kdahler metric on M'.

10



Proof: Analysing the constructions of [Ha, ACM], we see that the data gp, 0L | f,
Xp, ZF are obtained by restriction from data og, o0, or? /2, X and Z; on the conical

pseudo-hyper-Kahler manifold M, as in Section 1.2. Therefore, the theorem follows from

oV

4
(M, g) denotes the underlying quaternionic Kihler manifold, when M is represented lo-

cally as a Swann bundle 7 : M — M. (Recall that o = sgnf.) O

Proposition 2 and Corollary 2 . The tensor field ﬁgp corresponds to ZXm*g|p, where

The metric ¢’ is the quaternionic Kéhler metric which corresponds under the HK/QK
correspondence to the hyper-Kéhler manifold (M, g, (J,)) with the data (Z, f). Notice
that the principal projection 7w : (.5, gM‘ ¢ = 09s) — (M, g) is a pseudo-Riemannian
submersion if and only if %¢ = 1. This is why we normalized the metric g’ such that its

reduced scalar curvature is v/ = 4o.

Remark 1 If ZF generates a free and proper action of a one-dimensional Lie group A
(=2 St or R) and if M’ is a global section for the A-action, then we can identify M’ with
the orbit space P/A, which inherits the quaternionic Kéhler metric ¢'.

In the next section we present a similar result for the K/K correspondence.

3 Explicit formula for the K/K correspondence

Let (M, g,J) be a possibly indefinite Kéhler manifold endowed with a time-like or space-
like Killing vector field Z, which is Hamiltonian with respect to the Kahler form w = gJ.
According to [ACM], with any choice of function f € C*°(M) such that df = —wZ and
such that f; = f — @ is not zero, one can, at least locally, associate a conical pseudo-
Kéhler manifold M of (real) dimension dim M + 2 and, hence, a pseudo-Kéhler manifold
M’ of dimension dim M. In fact, M is a metric cone over a pseudo-Sasaki manifold
S which has a pseudo-Kahler structure transversal to the Reeb foliation. Therefore, any
codimension 1 submanifold of S transversal to the Reeb foliation inherits a pseudo-Kahler
structure (J', ¢'). Now we give an explicit formula for the metric ¢’ in terms of the initial

data.

Following [ACM], let 7 : P — M be an S'-principal bundle with a principal connection

n with the curvature dn = w — %ng . We endow P with the pseudo-Riemannian metric

2 2_'_ *
p = — s
g fln g

and with the vector field
ZP = Z + lep,

11



where Z denotes the horizontal lift of Z and Xp the fundamental vector field of the

principal action. Furthermore, we endow P with the following one-forms:

1
or = —=d
1

Then M =R x P is endowed with a conical pseudo-Kahler structure described explicitly

in terms of the above data on P, see [ACM]. In particular, the Euler vector field is given

by & = 0;, where t is the coordinate on the R-factor. It is related to the radial variable
7.2

r > 0 of the metric cone over the pseudo-Sasaki manifold S by e* = STk This implies

that S = {p € M|r(p) =1} is a circle bundle over M diffeomorphic to P.

Theorem 3  The tensor field

on P is invariant under Z¥ and has one-dimensional kernel RZY. Let M’ be a codimen-
sion 1 submanifold of P which is transversal to the vector field Z¥. Then

U
9 ‘= 57 9P| M
2[f

is a possibly indefinite Kdhler metric on M'.

Proof: The proof is similar to that of Theorem 2. It relies on the representation of the
pseudo-Kéahler manifold (M ,gx;) as a metric cone over a pseudo-Sasaki manifold S. M =
R>%x S is equipped with the metric gy, = 0§ = o(dr® +1r%gs), where o = sgnf € {—1,1}.
One can (locally) assume that S = I x M C R x M is contained in a trivial principal
bundle with structure group R over a pseudo-Kihler manifold (M, g), where I C R is
an interval. Let us denote by @ the Kihler form of (M, g). The pseudo-Sasaki metric
takes the form gg = 02 + g, where 6 is a principal connection with curvature given by 2.
Analysing the construction of [ACM], we see that the tensor field 5] f‘gp corresponds to
on*g|p, where 7 : M — M is the composition of the two projections M — Sand S — M
Here P = {t = 0} x P C M = R x P is the level set {y = 1} of the moment map p = e

associated with the holomorphic Killing vector field X on M which canonically extends
the vector field Xp on P. O

12



3.1 K/K correspondence for conical Kihler manifolds

As an example, we apply the K/K correspondence to an arbitrary conical pseudo-Kéahler
manifold (M, J, g,¢&) endowed with the holomorphic Killing field Z := 2J¢. Recall the

following definition:

Definition 1 A pseudo-Riemannian manifold (M, g) is called conical if it is endowed
with a space-like or time-like vector field £ (called the Euler vector field ) such that D =

where D is the Levi-Civita connection.

Geometrically this means that M is locally isometric to a (space-like or time-like, respec-
tively) metric cone C(S) = (R”? x S, +dr? + r?gs) over a pseudo-Riemannian manifold
(S, gs). Notice that in this local representation the Euler vector field £ is given by rd,.
If g happens to be a pseudo-Kahler metric for some complex structure J on M, then
(M, J,g,&) is called a conical pseudo-Kahler manifold. In this case M is locally isometric
to a pseudo-Kahler cone, that is a metric cone C(.S) over a pseudo-Sasaki manifold (.5, gs)
with Reeb vector field J¢|g, see e.g. [BC, MSY].

From now on we assume that (M, J, g,€) is a conical pseudo-Kéhler manifold. Using

=1g(&,&)|, A :=sgng(&, &), n:= %zg(Jf, -), we can write the metric as

(9(6,)* | (9(JE,))°
9(&,€) 9(&,€)
This equation defines the tensor g on M, which has kerg = span{¢{, J¢} and fulfills
Leg = Lyeg = 0. Assume that S := {r = 1} C M is non-empty and let M C S be
a codimension 1 submanifold that is transversal to the Reeb vector field J¢|g € T'(T'5).
Then M inherits a complex structure J from J such that (M J, d|57) is pseudo-Kéhler.

g= +19(&, 61§ = Mdr® + (7 + Ag)). (3.1)

For simplicity (and without restriction of generality), we assume in the following theorem
that M = R>? x S is globally a cone.

Theorem 4 The K/K correspondence assigns to any pseudo-Kdhler cone
(M = R>% x S, J,9,&) endowed with the holomorphic Killing field Z = 2J¢ the mani-
folds MY, = I. x S* x M,

I (max{0, —2c},00) forA=1 I (—c, max{0,—2c})  for A=1
T (min{=2¢,0}, —¢)  for A= — " | (—oo,min{—2¢,0})  for A= —

endowed with the metric

, 1
2ol

1p+2cd 1 p+ec
4p p+c 4 4pp+2

J = { (0 + )i - (43 — 2¢i] )? (3.2)

13



for each ¢ € R. Here, ¢ is a local coordinate on the S*-factor S* = {e_i¢§|ag eER}, pely
and X = sgng(&,€). The signature of (M., g") is (2k,2l + 2) and that of (M',g') is
(2k + 2,21), where (2k,2l) is the signature of §.

For c =0, we get

(M, 2¢") = (£R™® x S x M, Fgem + §) = (R”® x S* x M, Tgem + ),
where £ corresponds to A\ = £1, respectively, and gcyr = ﬁ(dﬁ + dqz;Q).
Proof: f = \r? — ¢ fulfills w(Z,-) = —2g(¢,+) = —2\rdr = —df, where r* = [g(£,&)].

The Kéhler form of (M, J, g) is given by w = Ardr A 7] + r?®, where @ := §(J-,-). One
can check that @ = %Adﬁ. Using this, one finds df = 4w, where 3 := g(Z,-) = 2\r%3.

We endow the trivial S'-principal bundle P := M x S' — M with the principal

connection
ds L b =ds A2
= — =0 = — =T
n 1 5 n,
which has curvature dn = w — %dﬁ = —w. Here, s is the natural coordinate on S' =

{e"*|s € R}. The metric and one-forms on P are given by
— 2 2 +
gp 7 nTg
1
95 = —§df = —Ardr

1 A oo
‘9{):7]+§B:d8+§7”27],

where f1 = f — 19(Z,Z) = -\ — c.

We compute the degenerate tensor field gp:

2 2 2
e = g = 00+ (61)) = s+ P50 4 g = 207+ (ds + L)
Eh (2 2 € \2 _2_7"2 "2 128
= <f1 f)(ds+277) + (A f)d + 1779
4 f+e c.o 1 f+2c , .
——?f+20(ds+§n) —Eercdf +A(f+0)g.

Since R*0x M < R>%x .S = M is transversal to JE € D(TM), M’ := R>"x M xS' c P
is transversal to Z° := Z+ f10, = Z — (n(Z) — f1)0s = 2J€ — O, € T(TP). Replacing the
coordinates r and s by p := f and qg := —4s, we obtain the Kéhler metric ¢’ = ﬁgpm

obtained from the K/K correspondence (Theorem 3) as given in Eq. (3.2). Here,

Mo (—C,OO)XSIXM for \=1
o (—o0, —c) x St x M for A\ = —1
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is obtained from M’ via the coordinate change r — p = Ar? — c. For the metric ¢’ to be
defined, we need to restrict to {f =p #0, —fi=p+2c#0} C M".

The signature of g is given by (2k + 2,20) if A = 1 and (2k, 2l + 2) if A = —1, where
(2k,21) is the signature of g. The signature of ¢ is related to the one of g by

(+2,—2) +signg for f1 >0, f <0
signg’ = sign g for ffi >0
(—2,+2) +signg for fi <0, f>0.

Using f = p, fi = —(p + 2¢) and taking into account r* = A(p + ¢) > 0, one finds that
on the subsets My = {p € I.} C M’ given in the Theorem, ¢’ has signature (2k, 2l + 2),
(2k + 2, 21) respectively.

For the last statement, one just has to notice that for ¢ = 0, sgnp = . O

4 HK/QK correspondence for the c-map

In this section, we use the explicit formula given in Theorem 2 to show that the pseudo-
hyper-Kahler structure on the cotangent bundle of a conical affine special Kahler manifold
given by the rigid c-map is related to the quaternionic Kahler metric obtained from the su-
pergravity c-map via the HK/QK correspondence. In fact, we get a one-parameter family
of positive definite quaternionic Kahler metrics, which corresponds to one-loop corrections
of the hypermultiplet moduli space in string theory compactifications on Calabi-Yau 3-
folds (if the corresponding model is realized in string theory). As a corollary, this proves
that the Ferrara-Sabharwal metric and its one-loop deformation are indeed quaternionic
Kahler.

4.1 Conical affine and projective special Kahler geometry

First, we recall the definitions of conical affine and projective special Kahler manifolds
[ACD, CM]:

Definition 2 A conical affine special Kahler manifold (M, J, gur, V, €) is a pseudo-Kdhler
manifold (M, J, grr) endowed with a flat torsionfree connection V and a vector field & such
that

i) Vwy =0, where wyy == gy (J-,-) is the Kdhler form,

i) (VxJ)Y = (VyJ)X for all X,Y € T(TM),
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i11) VE = D& = 1d, where D 1is the Levi-Clivita connection,
) gu is positive definite on D = span{&, JE} and negative definite on DL.

Let (M, J, gnr, V, &) be a conical affine special Kéhler manifold of complex dimension
n + 1. Then £ and J¢ are commuting holomorphic vector fields that are homothetic and
Killing respectively [CM]. We assume that the holomorphic Killing vector field J¢ induces
a free S'-action and that the holomorphic homothety ¢ induces a free R>%-action on M.
Then (M, gps) is a metric cone over (S, gs), where S := {p € M|gu(&(p),&(p)) = 1},
gs = guls; and —gg induces a Riemannian metric g; on M := S/8S%e. (M, —gy) is
obtained from (M, J, g) via a Kéhler reduction with respect to J¢ and, hence, g;; is a
Kéhler metric (see e.g. [CHM]). The corresponding Kéhler form wy; is obtained from wy,

by symplectic reduction. This determines the complex structure J;;.

Definition 3 The Kdhler manifold (M, Jy,gy) is called a projective special Kahler

manifold.

More precisely, S is a (Lorentzian) Sasakian manifold and introducing the radial co-
ordinate 1 := \/g(&, €), we can write the metric on M as [BC, MSY]

gnm :d’l"z“"rzﬂ-*gSa gS:gM|S :ﬁ®ﬁ|5_ﬁ*gﬂ> (41)
where )
7= —gu(JE, ) = dlogr = i(0 — 0) logr (4.2)

is the contact one-form form when restricted to S and 7 : M — S = M/R?O, TS =
M=S/ S}g are the canonical projection maps. From now on, we will drop 7* and 7* and
identify, e.g., gy; with a (0, 2) tensor field on M that has the distribution D = span{¢, J¢}

as its kernel.

Locally, there exist so-called conical special holomorphic coordinates z = (z!) =
(2%,...,2") : U 5 U c €™ such that the geometric data on the domain U C M is en-
coded in a holomorphic function F : U — C that is homogeneous of degree 2 [ACD, CM].
Namely, we have [CM]

0*F(z)

gumlv = Z Npydz'dz’, Nij(z,2) = 2Im Fy (2) := 2Im 021027

1,J

(I,J=0,...,n)

and |y = 218%1 —I—ZI%. The Kahler potential for gy |y is given by 72|y = g (€, 6)|v =
ZZIN[JEJ.

The C*-invariant functions X* := z—ﬁ, i =1,...,n, define a local holomorphic coor-
dinate system on M. The Kahler potential for gy is K := —log >_7 ;o X Ny, (X)X,

where X := (X0, ..., X") with X?:= 1.
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4.2 The rigid c-map

Now, we introduce the rigid c-map, which assigns to each affine special (pseudo-)Ké&hler
manifold (M, J, gy, V) and in particular to any conical affine special Kahler manifold
(M, J, gar, V, €) of real dimension 2n+2 a (pseudo-)hyper-Kéhler manifold (N = T*M, gy,
Ji, Ja, J3) of dimension 4n + 4 [CFG, ACD].

From now on, we assume for simplicity that (M C C"™, J = Joan, gar, V, €) is a conical
affine special Kéhler manifold that is globally described by a homogeneous holomorphic
function F' of degree 2 defined on a C*-invariant domain M in standard holomorphic
coordinates z = (2!) = (2°,...,2") induced from C"*1. Here, J..,, denotes the standard

complex structure induced from C"+!.

The real coordinates (¢*)a=1...2n+2 := (1, ys)1.5=0...n := (Re 2!, Re F;(2) := Re agz(f))
on M are V-affine and fulfill wy, = —2> da! A dy;, where wy, = g(J-,-) is the Kihler
form on M [CM]. We consider the cotangent bundle 7y : N := T*M — M and introduce

real functions (p,) := ({;,¢”) on N such that together with (7%¢®), they form a system

of canonical coordinates.

Proposition 3  In the above coordinates (z!,p,), the hyper-Kdihler structure on N =

T*M obtained from the rigid c-map is given by

gN = Z dZINIJdEJ + Z A[NIJAJ, (43)
1 ) _

(.Ul:§ZN]JdZIAd2J+§ZNIJAI/\AJ, (44)

Wy = —% Sz A A - d A Ay, (4.5)
1 _

Wy = §Z(dzl/\A1+d21/\A1), (4.6)

where Ap :=dl; + 3, Frs(2)d¢? (I =0,...,n) are complez-valued one-forms on N and
Wa = gn(Jar, ). (Here and in the following, we identify functions and one-forms on M
with their pullbacks to N.)

Proof: One can check by a direct calculation that the metric and Kéhler forms, (4.3)—
(4.6) agree with the geometric data for the rigid c-map given in Section 3 of [ACD] (see
also Section 3 of [ACM]), up to a conventional sign in the definition of the Kéhler forms

Wa = gn(Jary ) = —gn (-, Jo-) in [ACD]. For instance, we can write w; and ws as

1 -
wi=—2) da’' Ny + 52% AdCT, (4.7)
ws =Y de' Ad(+ Y dys Ad¢T =" dg® Adp,.
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Remark 2 It follows from the intrinsic geometric description in [ACD] that the pseudo-
hyper-Kahler structure is independent of the particular description of the special Kéahler

structure in terms of a holomorphic function F'.

Remark 3  We introduce holomorphic functions w;, I = 0,...,n, on (N,J;) that
together with the holomorphic coordinates z = (z!) on (M, J) form a system of canonical
holomorphic coordinates on (N = T*M, .J;). Then (w;) and ({;,¢”) are related by

Zwldz + wrdz’ —ngx + (Mdy;

_ZCId + dz’ ZFH Vd2? + Fry(2)dz"),
which is equivalent to
% J
= i(CI"‘;FIJ(Z)C ) (I=0,...,n). (4.8)

With the identification (4.8), (4.3)—(4.6) also agree, up to conventional factors, with the
rigid c-map as given in Appendix B of [CFG] and throughout the physics literature.

4.3 The supergravity c-map

Let (M, gy;) be a projective special Kihler manifold of complex dimension n which is glob-
ally defined by a single holomorphic function F. The supergravity c-map [FS] associates
with (M, gy;) a quaternionic Kihler manifold (N, gy) of dimension 4n + 4. Following the
conventions of [CHM], we have N = M x R>% x R?"*3 and

gN = gM+gG7
9e = dp+ d¢+2<d<} Q) +—ZJU )d¢'d¢”

+ ZJ” )(dlr + Ry (m)d¢™) (dly + Ry (m)dCh),

where (p,®,(;,¢T), I = 0,1,...,n, are standard coordinates on R>? x R?"3. The real-
valued matrices J(m) := (J;;(m)) and R(m) := (R;;(m)) depend only on m € M and
J(m) is invertible with the inverse J=*(m) =: (J//(m)). More precisely,

N N,
ZK iKZN%LZJJLZ s NIJ = 2ImF[J, (49)
1j4v1J

where F' is the holomorphic prepotential with respect to some system of special holomor-

Ny =R +idr:=Fry+i

phic coordinates 2’ on the underlying conical special Kahler manifold M — M. Notice
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that the expressions are homogeneous of degree zero and, hence, well defined functions
on M. It is shown in [CHM, Cor. 5] that the matrix J(m) is positive definite and hence
invertible and that the metric gy does not depend on the choice of special coordinates
[CHM, Thm. 9]. It is also shown that (N, gy) is complete if and only if (M, gy;) is
complete [CHM, Thm. 5].

. = - g1 IR
USlIlg (pa)azl ..... n42 = (CDCJ)IJZO ..... n and (Hab) = (ij_l j—l—ij_IR)’ we cal

combine the last two terms of g into 2—1p > dpaI:I ®dpy, i.e. the quaternionic Kahler metric

is given by

grs = gx = g + 500" + 5 d¢+2 ¢d¢r — rdc"))” deaﬂabdpb (4.10)

42

4.4 HK/QK correspondence for the c-map

Again, we assume that (M C C"™, J = Juun, gar, V, €) is a conical affine special Kihler
manifold that is globally described by a homogeneous holomorphic function F' of de-
gree 2 in standard holomorphic coordinates z = (2f) = (2°,...,2") induced from C"*L.
We want to apply the HK/QK correspondence to the hyper-Kéhler manifold (N =
T*M, gn, J1, Ja, J3) of signature (4, 4n) obtained from the rigid c-map (see Section 4.2). In
[ACM], it was shown that the vector field Z := 2(J&)" = 2.J,£" on N fulfills the assump-
tions of the HK/QK correspondence, i.e. it is a space-like wi-Hamiltonian Killing vector
field with £,.J, = —2J5. Here, X" € T'(T'N) is defined for any vector field X € I'(TM)
by XMmiq?) = 74 X (¢*) and X"(p,) =0 for alla =1,...,2n+ 2. (X" is the horizontal
lift with respect to the flat connection V.)

Theorem 5 Applying the HK/QK correspondence to (N, gn, J1, J2, J3) endowed with the
wy-Hamiltonian Killing vector field Z gives (up to a constant conventional factor) the one-
parameter family ¢5%¢ (4.11) of quaternionic pseudo-Kdhler metrics, which includes the
Ferrara-Sabharwal metric grg (4.10). The metric g% is positive definite and of negative
scalar curvature on the domain {p > —2c} C N (which coincides with N if ¢ > 0, see
Section 4.3). If ¢ < 0 the metric g%g is of signature (4n,4) on the domain {—c < p <
—2c} C N. Furthermore, if ¢ > 0 the metric g% is of signature (4,4n) on the domain
M x {—c<p<0}x R¥3 C M xR x R23,

Proof: We start from the hyper-Kéahler structure on N = T*M given in Egs. (4.3)—
(4.6). As in Section 4.2, we identify functions and differential forms on M with their
pullbacks to mx : N — M. We first compute the geometric data involved in the HK/QK
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correspondence, cf. Section 2. The moment map for —w; w.r.t. Z = 2(J&)" is given by

fi=1%—c, where 7 := |[¢]|,, = VD 2IN1; 27 and ¢ € R:
wl(Z’ ) = _gM(2§a ) = - Z(ZIN[JCZEJ + N[JEJdZI) = —d(fr’2) = —df’

since » ; L1OEE) — ) With gn(Z,7) = 4gun(€,€) = 4r?, we get

0z K
1 2
fi=f- §QN(Z, Z)=—-r"—c

For the functions f and f; nowhere to vanish, we have to restrict N to {r? # |c[} C N.

Using the contact one form 77 := 5ga(JE, ) on M (see (4.2)), we get

Bi=gn(Z,-) = 29m(JE, ) = 2r*.
We consider the trivial S'-principal bundle
P:=N xS S'=/{e*seR},
with the connection form
n=ds+nn,

where ny is the following one-form on N:

1, +c
nn ‘= _§T27] +7]can = f12

i I - .
N+ Nean,  Nean ‘= Z Z(Cldcl - Cldgl)
Then 1 ]

d7] - an = _idﬁ + dncan =W — §dﬁu

where we used that w; can be written as

(g) * } e I __ l
Wy = TyWpm + 9 ngf A dC - 4dﬁ + dncmw

since mhywy = 3 dde(r?) and wid°(r?) = 7x (2r?d°log ) 12 7 (2r?1) = 3, see Section

4.1.

Now we compute the one-forms HjP, j=0,1,2,3 on P, introduced in (2.3):

1
o) = —§df = —rdr,

1 1, +C
Gf=?7+§5=d8+§7’277+77m=d8+fT77+nm,

1 i -
0 = §w3(Z, N = -3 Z(ZIAI — A = —ImZzIAI,

1 1 T
Oy = —jwa(Z.) = 5 D (A + 21 A) =Re) Ay
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For the calculation of 0 and 64, we used Z = 2i > (2% — 2/-2)" and (4.5)-(4.6).

We compute the pseudo-Riemannian metric

2
gp = 7

and the degenerate tensor field

4.3) B _
—n +7rgN(= —(ds + n+nam+ n)2+gM+ZA1N”AJ

S

5 3
gp =9p — 3 Z(ﬁf)2
f
= gp % ( 2dr® + (ds + 2n+nmn+ ‘gn) + (ZzIAI)(ZZJAJ)>
= <— - —) ds + %77 + Nean)” + <% - g) i — ;rzdr2 + 9m

£ AN, =230 AN A,

see (2. 1) and (2.4). As always, pullbacks from M and N to P are 1mphed where necessary.

C 2c (41)
USlng J1 —% — _7:2 — —(f—l—C), f_21 _% — }1;—:—2& % — 7’2 + =) and au =
dr? +7“(17 — gir), we get
- ) f+20 2 4 f-'-C C _ 9 2¢c I e
= — 7 dr® — — ds + =10+ Negn )" — ——— E A E A
gp " 9m f r ff+20(s 277 7 ) f(f+c>( < I)( < J)

P ANTA - 2 AN A,

We claim that the last two terms can be combined into —=z Z dpaH ®dpy,, which appeared
in the Ferrara-Sabharwal metric (4.10). This will be proven in the lemma below, see
(4.12).

We use the local coordinates

_ 2t
r =/ E AN 77, ¢ = arg 2°, Xt =—
z

on the conical affine special Kéahler base M and choose the submanifold N = {¢ = 0} C

P = N x S*', which is transversal to
Z{ =(Z —n(2)Xp) + [1iXp = Z + (r* + f1)Xp = 20, — c0,,
where Xp = 0, is the fundamental vector field on P, cf. (2.2).

In these coordinates, we have

‘z0|2 o 7,2€J<
and, hence,
1 1 1 iN77(X) o] v
= —d°l = —d%log |2’ —=d*K = d ——dCiK d (XTdX7 - X7dX"
5 ogr’ 5 og|z"|"— 5 ¢ o+ ZthNX )
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and

SUETAN Y (F A = P (XTAN DX Ay) = %K) Y (G + Fi(X)d¢)P,

where X = —log X!NX, X!NX := > XIN;;X7, is the Kéhler potential for the projec-
tive special Kahler metric g;;. Replacing the coordinates r and s by p := f and qg = —4s
and recalling that o = sgn f, we obtain the quaternionic Kéahler metric ¢’ = ﬁgﬂ N

from the HK/QK correspondence (Theorem 2) such that g%¢ := —20¢’ is given by

p+tc 1 p+2c,, 1 p+c
v d d¢r — ¢rd d“X
Girs = pg+4p p+cp+4p (do+ > _(¢"dd; <1<>+c )?

+ 5 Z dp, H*dpy, + ‘Z (XTd¢; + Fr(X)d¢! ) (4.11)

For ¢ = 0, g%¢ reduces to the Ferrara-Sabharwal metric (4.10).

Notice that the above metric ¢%¢ obtained from the HK/QK correspondence is defined
on a subset of M x R* x S' x R>"*2_ where the R*-factor corresponds to the coordinate p
(which may now take negative values) and the S!'-factor is parametrized by the coordinate
¢ = —4s considered modulo 87Z. Replacing the above subset by its universal covering
(that is replacing S by R) we obtain a subset of M x R* x R?"3. In particular, grg = g%g
is defined on N as well as on the cyclic quotient N/Z = M x R>" x St x R?"+2,

The pseudo-hyper-Kéhler metric gy has signature (4,4n) and Z is space-like. Hence,
g is negative definite if f > 0 and f; < 0, it has signature (4,4n) if f;f > 0 and it has
signature (8,4(n — 1)) if f < 0 and f; > 0 (see Corollary 1 in [ACM]). Using f = p and
fi=—p—2c, we get

(0,4n +4) for p > max{0, —2c}
., ) (4,4n) for0 < p<—2¢c, c<0
Peng = (4,4n) for —2c<p<0,¢c>0

(8,4(n—1)) for p < min{0, —2c}.

Taking into account that by definition r? = g5;(£,£) > 0, i.e. p > —c, we get

Gion o — (0,4n +4) for p > max{0, —2c} (& r? > |c|)
sy = (4,4n) for —c¢ < p < max{0,—2c} (& 0 <r? <|c|).

It remains to prove
Lemma 3

> dp Hbdpy = -2 AN A, + Z LANDFAy), (4.12)

-1 -1
where, as in the last section, (pa) = (Cr,¢7) and (H™) = (ilgﬂ 1 J_gjzjjiljz)
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Proof: Recall that Ay = d(; + >, Fryd¢?, I =0,...,n. We write A = (A;) = d{ + Fd,
where d¢ = (d(;), d¢ = (d¢7) are form-valued column vectors and F := (Fy)).

First, we show that Y>> A;NT7A; =" dp,H®dp, with

(H?) = <£]:[1_1 i(Na{VJ;}\Jf;{—lR)) ’
where R := 2ReF:
> ANYA; = (dC" + d¢'F)N (G + Fd()
= (d¢* + dct§(1~z +iN))N~'(dC + %(R —iN)d()
= dC'NTYdC + dft%N‘lR d¢ + dC%RN‘ldf + dC%(N + RN7R)dC.
Now, we show that (3" 27A;) (X A,27) = 3 dp, H%dp, with

() = 1 (22t +2z 22F+2F
" 9 \Fzz! +Fzz! FzZ'F + Fz2'F

O AN 2 A)) = (dl'z + d¢'Fz)(2'd( + 2'FdQ)
( zztdC + d(’tz 'Fd¢ + dCthz d( + dC'F2Z'Fd(

= dété(z? +22")d¢ + dcti(zitf + 22'F)d¢
1 _ . 1 _
+ dCtg(int +Fz2')d( + d§t§(intF + Fz2'F)dC.

Hence, the right side of equation (4.12) is given by > dp,(—2H® + 7%l‘vf‘lb)dpb.

To rewrite the left side of (4.12), we need to invert J = ImN = —1N + Jgf;z];z: + g;i:g

It is easy to check that the inverse of J is given by [MV]

~l=—2N"! Z' + z2°).
J +thZ(ZZ +z2")
Using R = ReN = 1R + 22 — V22N we obtain
2 _
-1 o 1 . -t . _ —1 St =t
J'R=-N" R+thz( Z(R—iN) + z2'(R+iN)) = —N R+§(zzF+zzF)

and hence 5
R = (T7'R) = —RN ! —l— S (Fz2' 4+ F22").

For the lower right block in (H®), we calculate

RITIR = — RN 'R+ —— ! (Fzz'(R+iN) + Fzz"(R — iN))

2tNZ
P S WU\ SRy
thz 2 ZENzZ* 2

Nzz!N  NzzZtN
22t Nz 2Z2tNz

:——RN 1R—|— (FzzF—l—FzzF)
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and hence ) 5
J+RITR = _i(N + RN™'R) + ﬁ(Fzth + F2Z'F).

This shows that (H®) = —2(H®) + %(ﬁ“b) and thus proves Eq. (4.12). O

This proves Theorem 5. O

Remark 4 Note that the quaternionic Kahler metric g% given in (4.11) agrees with
the one-loop deformed Ferrara-Sabhwarwal metric first obtained in [RSV] (see also [APP],
Eq. (2.93)).

Remark 5 One can check that the restriction of the metric g' = —§g%g given in (4.11)
to M’ := {¢ = { = 0} € N’ is the metric that one obtains when applying the K/K
correspondence to the original conical affine special Kéhler manifold (M, J, gar, V, ) with
respect to the holomorphic Killing field Z = 2J¢. This is a special case of Theorem 4.

For ¢ = 0, we have
(M,agFS|M’) = (R>O X Sl X MagCHl +g]\7[)a

where (M, .Jy;,gx5) is the underlying projective special Kéhler manifold and (R>% x
St gcm) is a Z-quotient of the complex hyperbolic line. The hyperbolic metric gey =

ﬁ(alp2 + d¢?) is normalized such that its scalar curvature is —8.

A A simple example of the HK/QK correspondence

Here we consider
M = {(z,w) € C?|z # 0} Cc C?

with its standard flat hyper-Kihler structure? (g, Ji, Jo, J3). This manifold is in the image
of the rigid c-map and therefore admits a vector field Z verifying the above assumptions,
see [ACM], Proposition 2. The canonical choice of function f which leads to a definite
quaternionic Kéhler metric ¢ is f = i 9(Z,7), see [ACM], Corollary 4. The metric ¢’ is

in fact negative definite if we take g positive definite and vice versa.

Let us first compute all the relevant geometric data on M in terms of the standard

Ji-holomorphic coordinates (z,w) of C?, which satisfy J;dw = dz. The metric and Kéhler

2The flat hyper-Kihler manifold C? is also considered in [Hi2] but the corresponding quaternionic
Kahler metric is not computed there.

24



forms are given by:

g = 2(|dz* + |dw]*),

wy = i(dzANdzZ+ dw A dw),
we = i(dz ANdw—dzZ A dw),
wy = dzANdw+dz N dw.

The vector field Z is given by

0 0
7 = 2iz— —1zZ—
(Zzﬁz 2282)’
9(2,2) = 8z,
with the canonical choice of Hamiltonian given by
f=2l2
such that df = —w;Z and
AVA
fi=f 12D pp

Notice that the functions f and f; are nowhere vanishing on M. Then we consider the

trivial S'-principal bundle
P=MxS' S'={c"secR}.

with the connection form

n=ds+ nu,

where s is the natural coordinate on S = {e%|s € R} and 7, is the following one-form
on M
1

I = %(zdz — 2z + wdd — wdw) - SgZ.

Computing
97 = 2i(zdz — zZdz), (A1)
we get

v = %(—zdi + zdz + wdw — wdw).

Remark 6 Notice that, in the trivialization of P, Xp = 8,5, Z = Z — v (Z)0s and
Zy=Z+ (—nu(Z) + f1)0s. The above formula for 1, implies that ny,(2) = —2]z|*> = f;

and, thus, Z; = Z, in the given trivialization.
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We define M’ as the submanifold of P = M x S! defined by Imz = 0. We will use
w, r = v/2|z| and s as local coordinates on M’. M’ intersects each orbit of the S'-action
S%l generated by Z; in exactly one point such that we can identify M’ with the orbit
space P/Sél. Now we compute the one-forms ¢gZ and 6,, a = 0,1,2,3, on M’. Writing
z = J5e'™8% from (A.1) we get
gZ = 2r*darg 2,

which shows that ¢gZ vanishes on M’ and that
1 o 1, - -
nM|M’ = §(wdw - wdw) = Z(Cdg - CdC) = Tean,

if we write w = %(f+z§) and define 7.y, = i(g:d(’ — (dg:). Using that gZ|y = 0, we have:

Oolpr = —(2dZ + Zdz)|pr = —rdr,
‘91|M’ = TI\M',
i
Os|pr = —=r(dw — dw),
1
‘93|M’ = —r(dw + du_)),

V2
which implies
> (05 = (nla)? + r2(dr? + 2|dw?).

a

So
o= (3 B 2) 7 |ar(dr*+2|dwl®) —2(dr*+ 2l dw]”) = (3 - g) 0y (42| dw]?).
fi f T
Now
2 2 2f-f)_9Z2Z) 4
hof fh fh 72
and

7]|M’ =ds+ Nean -

Therefore, we can rewrite

4
gpla = —T—z(ds + 17am)2 — (alr2 + 2|dw|2)

and | 4 a2 |dwl?
B _ B 9 r w
_29/ = _?gP|M’ = ﬁ(ds + ncan) + 7 + 2 r2
Putting p = 7% and qg = —4s, we can rewrite this as
1 - - dp?  d¢? + d¢?
—2¢' = —(d d¢ — Cd¢)? + 5 + =——.
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The Riemannian metric —2¢’ is precisely the Ferrara-Sabharwal metric (cf. [F'S, CHM)),

which in the present case coincides with the complex hyperbolic metric.

Remark 7 The manifold M’ is a cyclic quotient of the complex hyperbolic plane. The
complex hyperbolic plane is parametrized by the global coordinates (w,r > 0,s) and M’

is obtained as the quotient by 277Z acting by translations in s.

Remark 8 Carrying out the above calculation with the Hamiltonian function f replaced
by f — ¢, one obtains the deformed Ferrara-Sabharwal metric (4.11) for the special case
where the underlying projective special Kahler manifold is a point (i.e. for holomorphic
prepotential F' = 1(2°)?):

1(Zfﬁﬁ+%53%+&%—@waw+wm%ﬂuawo.

Jum = 4p2

This is known to physicists as the one-loop corrected universal hypermultiplet metric
and was derived in [AMTV]. As was already noticed in [AMTV], this metric admits
an isometric action of the three-dimensional Heisenberg group generated by the Killing
vector fields

90 wd 0 o

99 G dp 9" 99
and hence falls under the classification of 4-dimensional self-dual Einstein metrics with
non-zero scalar curvature admitting two commuting Killing vector fields by Calderbank

and Pedersen® [CP].

For ¢ > 0, gf;y is positive definite and of negative scalar curvature on the domains
{—c < p <0} and {p > 0} in R For ¢ < 0, gfp is positive definite and of negative
scalar curvature on {p > —2c} C R* and —g§; is positive definite and of positive scalar

curvature on {—c < p < —2¢} C R, cf. Theorem 5.

Notice that the complex hyperbolic metric gf 5 is symmetric and hence complete. Using
this, one can show that gf;; is complete on the domain {p > 0} for ¢ > 0. In fact,
9oy > % g% . On the other domains mentioned above, however, the positive or negative
definite metric gf is incomplete, as stated in the proposition below. This is in agreement
with the result of A. Haydys, who studied —g§;; on {—c < p < —2¢} C R* for the special

case ¢ = —1 (see [Hal, Example 9 (resp. 3.2 in the arXiv version)).

3Calderbank and Pedersen express such a metric in terms of an eigenfunction F(r, ) of the Laplacian
on the hyperbolic plane {(r,n) € R>? x R}. In their formalism, the metric —2g§,,; corresponds to the

function F = Tf/*;c and their coordinates (1,7, ¢,%) are related to our coordinates by p = 72 — ¢, q~5 =

20+ ¢n. Go = 50, ¢° = V2.
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Proposition 4

(i) For ¢ > 0 the quaternionic Kdhler metric gy of negative scalar curvature is com-

plete on the domain {p > 0} and incomplete on {—c < p < 0}.

(ii) For ¢ <0 the quaternionic Kdihler metric g5y is incomplete and of negative scalar

curvature on {p > —2c}.

(i11) For ¢ < 0 the quaternionic Kdhler metric —gf;y is incomplete and of positive scalar

curvature on {—c < p < —2c}.

Proof: Tt remains to prove the incompleteness in the corresponding cases. In cases (i)

and (iii) we consider the curve

p=t—c, ¢=0C=¢=0, 0<t<|2£|,

which approaches the boundary of the respective domain for ¢ — 0. Its length is given by

e Ic]

1 2 1 t 2 dt
—/2 ! +C‘dt20/2—<oo,
2 Jo |t—¢ t 0o 2Vt

\/ |ttt

[t—c|

where C' > 0 is a lower bound for the continuous function on the compact interval

0, %] In case (ii) we consider instead the curve
p=t—2¢, ¢=0C=C"=0, 0<t<l,

which approaches the boundary for ¢ — 0. Its length is the integral of the continuous
function m, /7= on the compact interval [0, 1] and, hence, finite. O

Remark 9 Notice that the above proof for the incompleteness in case (ii) is still valid
in higher dimensions for the positive definite quaternionic Kahler metric gfg, ¢ < 0, on
the domain {p > —2c}, see Theorem 5 for a description of the domain of positivity of the
one-loop deformed Ferrara-Sabharwal metric (4.11) depending on the sign of ¢. On the
contrary, the proof of the completeness in case (i), given in Remark 8, does not extend in

a straightforward way to higher dimensions.*

4Note added in proof: In the meantime it has been proven that the one-loop deformed Ferrara-
Sabharwal metric g%¢ for ¢ > 0 on the domain p > 0 is complete for every complete projective special
Kahler manifold in the image of the supergravity r-map, see M. Dyckmanns, PhD dissertation, University
of Hamburg, to appear in 2015.
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