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Abstract

We give an explicit formula for the quaternionic Kähler metrics obtained by the
HK/QK correspondence. As an application, we give a new proof of the fact that
the Ferrara-Sabharwal metric as well as its one-loop deformation is quaternionic
Kähler. A similar explicit formula is given for the analogous (K/K) correspondence
between Kähler manifolds endowed with a Hamiltonian Killing vector field. As an
example, we apply this formula in the case of an arbitrary conical Kähler manifold.
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Introduction

Extending results by Haydys [Ha], it was proven in [ACM] that any pseudo-hyper-Kähler

manifold (M, g, J1, J2, J3) of dimension 4n endowed with a space-like or time-like ω1-

Hamiltonian Killing vector field Z which acts as a rotation in the plane spanned by J2

and J3 gives rise to a one-parameter family of conical1 pseudo-hyper-Kähler manifolds of

dimension 4n+4 and finally to a one-parameter family of possibly indefinite quaternionic

Kähler manifolds of dimension 4n. Here ωα := gJα := g ◦ Jα := g(Jα·, ·), α = 1, 2, 3,

are the three symplectic forms associated with the pseudo-hyper-Kähler structure and

the parameter in the above one-parameter families is related to the choice of a Hamilto-

nian function for Z. Under the assumptions on the Hamiltonian specified in [ACM], the

resulting quaternionic Kähler metrics are positive definite.

Following [APP, Hi2] (but allowing indefinite metrics) we will call the above rela-

tion between hyper-Kähler and quaternionic Kähler manifolds of the same dimension the

1See Definition 1.
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HK/QK correspondence. The analogous construction relating (possibly indefinite) Kähler

manifolds of the same dimension, which follows from the Kähler conification in [ACM],

will be called the K/K correspondence.

It was also proven in [ACM] that the cotangent bundle of any conical special Kähler

manifold admits a canonical vector field Z which satisfies the above assumptions with

respect to the pseudo-hyper-Kähler structure (g, J1, J2, J3) provided by the (rigid) c-map

[CFG] (see Section 4.2). Using techniques from supergravity and twistor theory, Alexan-

drov, Persson and Pioline [APP] show that the Ferrara-Sabharwal metric [FS] (also known

as the supergravity c-map metric, see Section 4.3) and its one-loop deformation are re-

lated to the c-map pseudo-hyper-Kähler metric g under the HK/QK correspondence. It

was shown in [ACM] that the above vector field Z has a canonical Hamiltonian function

conjecturing that the quaternionic Kähler metric associated with this particular choice

of the parameter is precisely the Ferrara-Sabharwal metric. It was checked that the sign

of the scalar curvature is negative and thus consistent with the latter conjecture. Fi-

nally, the precise relation between the parameter in the choice of the Hamiltonian and

the one-loop quantum deformation parameter occurring in [RSV, APP] was left for future

investigation.

In this paper we verify the above conjecture and determine the precise relation be-

tween the Hamiltonian parameter and the one-loop parameter. In fact, we apply the

HK/QK correspondence to the pseudo-hyper-Kähler manifolds obtained from the rigid

c-map starting with a conical affine special Kähler manifold. The final result is the for-

mula (4.11) for the quaternionic Kähler metric, see Theorem 5. This is precisely the

one-loop deformed Ferrara-Sabharwal metric as described in [RSV, APP]. As a corollary

this implies:

Corollary 1 The Ferrara-Sabharwal metric and its one-loop deformation (4.11) are

quaternionic Kähler.

Notice that this generalizes the result that the Ferrara-Sabharwal metric is quaternionic

Kähler [FS, Hi1].

Our proof is based on a new explicit formula for the quaternionic Kähler metric in

the HK/QK correspondence, see Theorem 2. A similar result is obtained in the Kähler

case, that is for the K/K correspondence, see Theorem 3. To obtain the explicit formula

for the quaternionic Kähler metric we start by reviewing the Swann bundle construction

and the moment map of a tri-holomorphic Killing vector field on the Swann bundle in

Section 1. Our approach allows to control the signature of the resulting metrics. In

particular, we specify for any given value of the one-loop parameter c the maximal domain
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on which the deformed Ferrara-Sabharwal metric is positive definite. For c ≥ 0, this

domain coincides with the manifold on which the Ferrara-Sabharwal metric is defined.

These results generalize those of Antoniadis, Minasian, Theisen and Vanhove [AMTV] in

four dimensions (for the universal hypermultiplet).

We have included appendix A, in which we discuss the simplest case of the HK/QK

correspondence in which the initial hyper-Kähler manifold is (flat) four-dimensional, for

the reader’s convenience. The resulting quaternionic Kähler manifold is the complex

hyperbolic plane (universal hypermultiplet).

For the K/K correspondence we apply our formula for the resulting metric in the case

when the initial pseudo-Kähler manifold is conical, see Theorem 4. In particular, for a

conical affine special Kähler manifold (M,J, g,∇, ξ) we obtain (up to a cyclic covering)

the product CH1 × M̄ of the projective special Kähler manifold M̄ underlying M and

the complex hyperbolic line, see Remark 5. Notice that this is a maximal totally geodesic

Kähler submanifold CH1×M̄ ⊂ N̄ of the Ferrara-Sabharwal manifold N̄ , which is related

to M̄ by the supergravity c-map.
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1 The Swann bundle revisited

In this section we derive explicit formulas relating the metric of a quaternionic Kähler

manifold to the pseudo-hyper-Kähler metric of its Swann bundle [S]. This will be used in

Section 2 to obtain an explicit formula for the quaternionic Kähler metric in the HK/QK

correspondence from the conical pseudo-hyper-Kähler metric constructed in [ACM].

1.1 The pseudo-hyper-Kähler structure

Let (M, g,Q) be a (possibly indefinite) quaternionic Kähler manifold of nonzero scalar

curvature, where Q ⊂ so(TM) denotes its quaternionic structure. Let us denote by

π : S → M the principal SO(3)-bundle of frames (J1, J2, J3) in Q such that J3 = J1J2

4



and J2
α = −Id, α = 1, 2, 3. The principal action of an element A ∈ SO(3) is given by

s = (J1, J2, J3) 7→ τ(A, s) := (J1, J2, J3)A
ǫ,

where ǫ = 1 if we consider S as a right-principal bundle and ǫ = −1 if we prefer a left-

principal bundle. Let us denote by Zα the fundamental vector fields associated with some

basis (eα) of so(3):

Zα(s) =
∂

∂t

∣

∣

∣

∣

t=0

τ(exp(teα), s).

We may choose the basis corresponding to the standard basis of sp(1) = ImH ∼= R3 under

the canonical isomorphism sp(1) ∼= ad(sp(1)) = so(3). Then

[eα, eβ] = 2eγ , [Zα, Zβ] = 2ǫZγ, (1.1)

for every cyclic permutation (α, β, γ) of (1, 2, 3). In the following, (α, β, γ) will be always

a cyclic permutation, whenever the three letters appear in an expression.

The Levi-Civita connection ∇ of (M, g) induces a principal connection

θ =
∑

θαeα : TS → so(3)

on S. Its curvature is defined by

Ω := dθ + ǫ
1

2
[θ ∧ θ],

where
1

2
[θ ∧ θ](X, Y ) := [θ(X), θ(Y )], X, Y ∈ TsS, s ∈ S.

Writing Ω =
∑

Ωαeα and using (1.1) we have

Ωα = dθα + 2ǫθβ ∧ θγ . (1.2)

From the definition of the connection and curvature forms we get the following lemma.

Lemma 1

LZα
θα = LZα

Ωα = 0, LZα
θβ = 2ǫθγ , LZα

Ωβ = 2ǫΩγ .

Given a local section σ = (J1, J2, J3) ∈ Γ(U, S), defined over some open subset U ⊂ M ,

we can also define a vector-valued 1-form

θ̄ =
∑

θ̄αeα

on U by

∇Jα = −2ǫ(θ̄β ⊗ Jγ − θ̄γ ⊗ Jβ).

5



The coefficient is chosen such that

∇(J1, J2, J3) = (J1, J2, J3)ǫθ̄.

Notice that then

∇B = dB + ǫ
∑

θ̄α ⊗ [Jα, B], (1.3)

for every section B =
∑

bαJα of Q, where d = dσ is defined by dB :=
∑

dbα ⊗ Jα. The

vector-valued 1-forms θ̄ on U ⊂ M and θ on S are related by

θ̄ = σ
∗θ.

In the local trivialization π−1(U) ∼= U × SO(3) of S given by σ we can write

θ = π∗θ̄ + ϕ,

where ϕ =
∑

ϕαeα is the Maurer-Cartan form on SO(3) defined by ϕα(Zβ) = δαβ . From

(1.3) we compute the curvature RQ ∈ Γ(∧2T ∗M⊗Q), Q ∼= ad(Q) ⊂ End Q, of the vector

bundle Q, which is

RQ =
∑

Ω̄αJα, Ω̄α = ǫdθ̄α + 2θ̄β ∧ θ̄γ .

It is a well-known result by Alekseevsky [A] that

Ω̄α = −ν

2
ωα,

where ωα = gJα and

ν :=
scal

4n(n + 2)
(dimM = 4n)

is the reduced scalar curvature. Since the curvature form of a principal connection is

horizontal, this implies that

ǫΩα

∣

∣

σ(U)=π∗Ω̄α

∣

∣

σ(U)
=− ν

2
π∗ωα

∣

∣

σ(U)
.

(1.4)

We endow the manifold S with the pseudo-Riemannian metric

gS =
∑

θ2α +
ν

4
π∗g.

Now we consider the cone M̂ = S×R>0 over S with the Euler vector field ξ := Z0 := r∂r

and the following exact 2-forms

ω̂α := dθ̂α, θ̂α := −ǫ
r2

2
θα.

For later use we state the following lemma, which follows from Lemma 1 and the fact that

Z0 = ξ preserves θα.
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Lemma 2 The Lie algebra span{Zi|i = 0, . . . , 3} ∼= co(3) acts on span{θ̂α|α = 1, 2, 3}
by the standard representation:

LZ0 θ̂α = 2θ̂α, LZα
θ̂β = 2ǫθ̂γ .

Using the above data we recover Swann’s hyper-Kähler structure on M̂ :

Theorem 1 The cone metric ĝ = dr2 + r2gS is a pseudo-hyper-Kähler metric on M̂

with the Kähler forms ω̂α. The signature of ĝ is (4 + 4k, 4l) if ν > 0 and (4 + 4l, 4k) if

ν < 0, where (4k, 4l) is the signature of the quaternionic Kähler metric g on M .

Proof: Let us denote by T vM̂ ⊂ TM̂ the vertical distribution with respect to the pro-

jection π̂ := π ◦ prS : M̂ → M , prS : M̂ = S × R>0 → S, and by T hM̂ the horizontal

distribution defined by its ĝ-orthogonal complement. Let Ĵα be the uniquely determined

3 almost complex structures on M̂ which preserve the horizontal distribution and satisfy

ĴαZ0 = −ǫZα, ĴαZα = ǫZ0, ĴαZβ = Zγ, ĴαZγ = −Zβ , π̂∗ ◦ Ĵα|(s,r) = Jα ◦ π̂∗,

where s = (J1, J2, J3). We see that these structures satisfy Ĵ1Ĵ2 = Ĵ3 and pairwise anti-

commute. Then, using (1.2) and (1.4), one can easily check ĝĴα = ω̂α. This proves

that the 2-forms ω̂α are not only closed but also non-degenerate and that Ĵα = −ω̂−1
β ω̂γ

are three anti-commuting skew-symmetric almost complex structures on (M̂, ĝ). By the

Hitchin Lemma [Hi0, Lemma 6.8], this shows that (ĝ, Ĵ1, Ĵ2, Ĵ3) is a pseudo-hyper-Kähler

structure on M̂ .

1.2 The moment map of an infinitesimal automorphism

Let M̂ be the Swann bundle over a (possibly indefinite) quaternionic Kähler manifold

(M, g,Q). We will follow the conventions in Section 1.1 with ǫ = −1. We endow M̂ with

the hyper-Kähler structure (gM̂ := σĝ, (Ĵα)), where σ = ±1. The corresponding Kähler

forms are σω̂α = d(σθ̂α).

Let X be a tri-holomorphic space-like or time-like Killing vector field on M̂ , which

commutes with the Euler vector field ξ = r∂r = Z0.

Proposition 1 The vector field X is tri-Hamiltonian with moment map −µ, where

µ : M̂ → R
3, x 7→ (µ1(x), µ2(x), µ3(x)), µα := θ̂α(X).

In fact, the functions µα satisfy

dµα = −ιX ω̂α. (1.5)
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Proof: Notice first that, since X is tri-holomorphic, it commutes not only with ξ but also

with Zα = Ĵαξ. This implies already that the Killing field X preserves the horizontal

distribution T hM̂ = (T vM̂)⊥ and hence the three one-forms θα. Furthermore, LX(r
2) =

LXgM̂(ξ, ξ) = 0, since X is Killing and commutes with ξ. This implies that

LX θ̂α = LX

(

r2

2
θα

)

= 0.

Using this equation, we have

dµα = dιX θ̂α = LX θ̂α − ιXdθ̂α = −ιX ω̂α.

We will now explain how to recover the quaternionic Kähler metric on M from the

geometric data on the level set of the moment map µ

P = {µ1 = 1, µ2 = µ3 = 0} ⊂ M̂.

Since the group R>0 × SO(3) generated by ξ, Z1, Z2, Z3 acts as the standard conformal

linear group CO(3) on the three-dimensional vector space spanned by the functions µα,

i.e.

LZ0µα = 2µα, LZα
µβ = −2µγ,

we see that

M̂ \ {µ = 0} =
⋃

a∈R>0×SO(3)

aP.

In particular, P is nonempty. Then (1.5) shows that P ⊂ M̂ is a smooth submanifold of

codimension 3. On P we have the following data:

gP := gM̂ |P = σĝ|P ∈ Γ(Sym2T ∗P )

θPα := σθ̂α|P ∈ Ω1(P ) (α = 1, 2, 3)

f := σ
r2

2

∣

∣

∣

∣

P

∈ C∞(P )

θP0 := −1

2
df ∈ Ω1(P )

XP := σX|P ∈ X(P )

ZP
1 := Z1|P ∈ X(P ).

The fact that Z1 is tangent to P follows from

dµαZ1 = ιZ1dµα = LZ1µα = −2δ2αµ3 + 2δ3αµ2,

since µ2 = µ3 = 0 on P .

8



With these definitions, the formula

ĝ = dr2 + r2

(

3
∑

α=1

θ2α +
ν

4
π∗g

)

(1.6)

implies:

Proposition 2 The quaternionic Kähler metric g on M is related as follows to the

geometric data on the level set P ⊂ M̂ of the moment map:

νπ∗g|P =
2

f

(

gP − 2

f

3
∑

a=0

(θPa )
2

)

. (1.7)

Proof: Solving Eq. (1.6) for νπ∗g yields:

νπ∗g =
4

r2
(ĝ − dr2 − r2

∑

θ2α) =
4

σr2
(σĝ − σdr2 − σr2

∑

θ2α).

Restricting to P we first obtain:

νπ∗g|P =
2

f
(gP − σdr2|P − 2f

∑

θ2α|P ). (1.8)

The above definitions imply θα|P = f−1θPα . Therefore, fθ2α|P = f−1(θPα )
2. Similarly,

σdr2|P = 2f−1(θP0 )
2. This shows that (1.8) implies (1.7).

Corollary 2 The tensor field on the right-hand side of (1.7) is invariant under ZP
1 and

has one-dimensional kernel RZP
1 .

Proof: The ZP
1 -invariance follows from the Z1-invariance of π∗g. The statement about

the kernel follows from

T vM̂ ∩ TP = RZ1, (1.9)

which is a consequence of

dµαξ = Lξµα = 2µα

dµαZ2 = LZ2µα = 2δ1αµ3 − 2δ3αµ1

dµαZ3 = LZ3µα = −2δ1αµ2 + 2δ2αµ1.

In fact, we have already shown that the vertical vector field Z1 is tangent to P and

these equations show now that the three vector fields ξ, Z2, Z3 are mapped to (constant)

linearly independent vectors under the vector-valued one-form dµ = (dµα) : TM̂ → R3.

This implies (1.9), since TP = ker dµ.

In the next section we apply the above results to the case when M̂ is obtained by

conification of a hyper-Kähler manifold, in the sense of [ACM].

9



2 Explicit formula for the HK/QK correspondence

Let (M, g, J1, J2, J3) be a possibly indefinite hyper-Kähler manifold with the Kähler forms

ωα = gJα, α = 1, 2, 3, and a time-like or space-like ω1-Hamiltonian Killing vector field Z

such that LZJ2 = −2J3. According to [ACM], with any choice of function f ∈ C∞(M)

such that df = −ω1Z and such that f1 = f − g(Z,Z)
2

is not zero, one can, at least locally,

associate a quaternionic Kähler metric g′ on a manifold M ′ of dimension dimM . (One

has to assume, in particular, that the functions f and f1 are nowhere zero, which may

require to restrict the manifold M .)

Following [ACM], let P → M be an S1-principal bundle with a principal connection

η with the curvature dη = ω1 − 1
2
dgZ. We endow P with the pseudo-Riemannian metric

gP :=
2

f1
η2 + π∗g (2.1)

and with the vector field

ZP
1 := Z̃ + f1XP , (2.2)

where Z̃ denotes the horizontal lift of Z and XP the fundamental vector field of the

principal action. Furthermore, we endow P with the following one-forms:

θP0 := −1

2
df

θP1 := η +
1

2
gZ

θP2 :=
1

2
ω3Z

θP3 := −1

2
ω2Z. (2.3)

Theorem 2 The tensor field

g̃P := gP − 2

f

3
∑

a=0

(θPa )
2 (2.4)

on P is invariant under ZP
1 and has one-dimensional kernel RZP

1 . Let M
′ be a codimen-

sion 1 submanifold of P which is transversal to the vector field ZP
1 . Then

g′ :=
1

2|f | g̃P |M ′

is a possibly indefinite quaternionic Kähler metric on M ′.

10



Proof: Analysing the constructions of [Ha, ACM], we see that the data gP , θPα , f ,

XP , Z
P
1 are obtained by restriction from data σĝ, σθ̂α, σr

2/2, X and Z1 on the conical

pseudo-hyper-Kähler manifold M̂ , as in Section 1.2. Therefore, the theorem follows from

Proposition 2 and Corollary 2 . The tensor field 1
2|f | g̃P corresponds to σν

4
π∗ḡ|P , where

(M̄, ḡ) denotes the underlying quaternionic Kähler manifold, when M̂ is represented lo-

cally as a Swann bundle π̂ : M̂ → M̄ . (Recall that σ = sgnf .)

The metric g′ is the quaternionic Kähler metric which corresponds under the HK/QK

correspondence to the hyper-Kähler manifold (M, g, (Jα)) with the data (Z, f). Notice

that the principal projection π : (S, gM̂
∣

∣

S
= σgS) → (M̄, ḡ) is a pseudo-Riemannian

submersion if and only if σν
4

= 1. This is why we normalized the metric g′ such that its

reduced scalar curvature is ν ′ = 4σ.

Remark 1 If ZP
1 generates a free and proper action of a one-dimensional Lie group A

(∼= S1 or R) and if M ′ is a global section for the A-action, then we can identify M ′ with

the orbit space P/A, which inherits the quaternionic Kähler metric g′.

In the next section we present a similar result for the K/K correspondence.

3 Explicit formula for the K/K correspondence

Let (M, g, J) be a possibly indefinite Kähler manifold endowed with a time-like or space-

like Killing vector field Z, which is Hamiltonian with respect to the Kähler form ω = gJ .

According to [ACM], with any choice of function f ∈ C∞(M) such that df = −ωZ and

such that f1 = f − g(Z,Z)
2

is not zero, one can, at least locally, associate a conical pseudo-

Kähler manifold M̂ of (real) dimension dimM + 2 and, hence, a pseudo-Kähler manifold

M ′ of dimension dimM . In fact, M̂ is a metric cone over a pseudo-Sasaki manifold

S which has a pseudo-Kähler structure transversal to the Reeb foliation. Therefore, any

codimension 1 submanifold of S transversal to the Reeb foliation inherits a pseudo-Kähler

structure (J ′, g′). Now we give an explicit formula for the metric g′ in terms of the initial

data.

Following [ACM], let π : P → M be an S1-principal bundle with a principal connection

η with the curvature dη = ω − 1
2
dgZ. We endow P with the pseudo-Riemannian metric

gP :=
2

f1
η2 + π∗g

and with the vector field

ZP := Z̃ + f1XP ,

11



where Z̃ denotes the horizontal lift of Z and XP the fundamental vector field of the

principal action. Furthermore, we endow P with the following one-forms:

θP0 := −1

2
df

θP1 := η +
1

2
gZ.

Then M̂ = R× P is endowed with a conical pseudo-Kähler structure described explicitly

in terms of the above data on P , see [ACM]. In particular, the Euler vector field is given

by ξ = ∂t, where t is the coordinate on the R-factor. It is related to the radial variable

r > 0 of the metric cone over the pseudo-Sasaki manifold S by e2t = r2

2|f | . This implies

that S = {p ∈ M̂ |r(p) = 1} is a circle bundle over M diffeomorphic to P .

Theorem 3 The tensor field

g̃P := gP − 2

f

1
∑

a=0

(θPa )
2

on P is invariant under ZP and has one-dimensional kernel RZP . Let M ′ be a codimen-

sion 1 submanifold of P which is transversal to the vector field ZP . Then

g′ :=
1

2|f | g̃P |M ′

is a possibly indefinite Kähler metric on M ′.

Proof: The proof is similar to that of Theorem 2. It relies on the representation of the

pseudo-Kähler manifold (M̂, gM̂) as a metric cone over a pseudo-Sasaki manifold S. M̂ =

R>0×S is equipped with the metric gM̂ = σĝ = σ(dr2+r2gS), where σ = sgnf ∈ {−1, 1}.
One can (locally) assume that S = I × M̄ ⊂ R × M̄ is contained in a trivial principal

bundle with structure group R over a pseudo-Kähler manifold (M̄, ḡ), where I ⊂ R is

an interval. Let us denote by ω̄ the Kähler form of (M̄, ḡ). The pseudo-Sasaki metric

takes the form gS = θ2 + ḡ, where θ is a principal connection with curvature given by 2ω̄.

Analysing the construction of [ACM], we see that the tensor field 1
2|f | g̃P corresponds to

σπ∗ḡ|P , where π : M̂ → M̄ is the composition of the two projections M̂ → S and S → M̄ .

Here P = {t = 0} ×P ⊂ M̂ = R× P is the level set {µ = 1} of the moment map µ = e2t

associated with the holomorphic Killing vector field X on M̂ which canonically extends

the vector field XP on P .
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3.1 K/K correspondence for conical Kähler manifolds

As an example, we apply the K/K correspondence to an arbitrary conical pseudo-Kähler

manifold (M,J, g, ξ) endowed with the holomorphic Killing field Z := 2Jξ. Recall the

following definition:

Definition 1 A pseudo-Riemannian manifold (M, g) is called conical if it is endowed

with a space-like or time-like vector field ξ (called the Euler vector field) such that Dξ = Id,

where D is the Levi-Civita connection.

Geometrically this means that M is locally isometric to a (space-like or time-like, respec-

tively) metric cone C±(S) = (R>0 × S,±dr2 + r2gS) over a pseudo-Riemannian manifold

(S, gS). Notice that in this local representation the Euler vector field ξ is given by r∂r.

If g happens to be a pseudo-Kähler metric for some complex structure J on M , then

(M,J, g, ξ) is called a conical pseudo-Kähler manifold. In this case M is locally isometric

to a pseudo-Kähler cone, that is a metric cone C±(S) over a pseudo-Sasaki manifold (S, gS)

with Reeb vector field Jξ|S, see e.g. [BC, MSY].

From now on we assume that (M,J, g, ξ) is a conical pseudo-Kähler manifold. Using

r2 := |g(ξ, ξ)|, λ := sgn g(ξ, ξ), η̃ := λ
r2
g(Jξ, ·), we can write the metric as

g =
(g(ξ, ·))2
g(ξ, ξ)

+
(g(Jξ, ·))2
g(ξ, ξ)

+ |g(ξ, ξ)| ğ = λ(dr2 + r2(η̃2 + λğ)). (3.1)

This equation defines the tensor ğ on M , which has ker ğ = span{ξ, Jξ} and fulfills

Lξğ = LJξğ = 0. Assume that S := {r = 1} ⊂ M is non-empty and let M̆ ⊂ S be

a codimension 1 submanifold that is transversal to the Reeb vector field Jξ|S ∈ Γ(TS).

Then M̆ inherits a complex structure J̆ from J such that (M̆, J̆ , ğ|M̆) is pseudo-Kähler.

For simplicity (and without restriction of generality), we assume in the following theorem

that M = R>0 × S is globally a cone.

Theorem 4 The K/K correspondence assigns to any pseudo-Kähler cone

(M = R>0 × S, J, g, ξ) endowed with the holomorphic Killing field Z = 2Jξ the mani-

folds M ′
± := I± × S1 × M̆ ,

I+ :=

{

(max{0,−2c},∞) for λ = 1

(min{−2c, 0},−c) for λ = −1,
I− :=

{

(−c,max{0,−2c}) for λ = 1

(−∞,min{−2c, 0}) for λ = −1;

endowed with the metric

g′ =
1

2|ρ|

[

λ(ρ+ c)ğ − 1

4ρ

ρ+ 2c

ρ+ c
dρ2 − 1

4ρ

ρ+ c

ρ+ 2c
(dφ̃− 2cη̃|M̆)2

]

(3.2)
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for each c ∈ R. Here, φ̃ is a local coordinate on the S1-factor S1 = {e− i
4
φ̃|φ̃ ∈ R}, ρ ∈ I±

and λ = sgn g(ξ, ξ). The signature of (M ′
+, g

′) is (2k, 2l + 2) and that of (M ′
−, g

′) is

(2k + 2, 2l), where (2k, 2l) is the signature of ğ.

For c = 0, we get

(M ′
±, 2g

′) = (±R
>0 × S1 × M̆,∓gCH1 + ğ) ∼= (R>0 × S1 × M̆,∓gCH1 + ğ),

where ± corresponds to λ = ±1, respectively, and gCH1 := 1
4ρ2

(dρ2 + dφ̃2).

Proof: f := λr2 − c fulfills ω(Z, ·) = −2g(ξ, ·) = −2λr dr = −df , where r2 = |g(ξ, ξ)|.
The Kähler form of (M,J, g) is given by ω = λrdr ∧ η̃ + r2ω̆, where ω̆ := ğ(J ·, ·). One

can check that ω̆ = 1
2
λdη̃. Using this, one finds dβ = 4ω, where β := g(Z, ·) = 2λr2η̃.

We endow the trivial S1-principal bundle P := M × S1 → M with the principal

connection

η := ds− 1

4
β = ds− λ

2
r2η̃,

which has curvature dη = ω − 1
2
dβ = −ω. Here, s is the natural coordinate on S1 =

{eis|s ∈ R}. The metric and one-forms on P are given by

gP =
2

f1
η2 + g

θP0 = −1

2
df = −λr dr

θP1 = η +
1

2
β = ds+

λ

2
r2η̃,

where f1 = f − 1
2
g(Z,Z) = −λr2 − c.

We compute the degenerate tensor field g̃P :

g̃P = gP − 2

f
((θP0 )

2 + (θP1 )
2) =

2

f1
(ds+

f1 + c

2
η̃)2 + g − 2

f
(r2 dr2 + (ds+

f + c

2
η̃)2)

(3.1)
=

(

2

f1
− 2

f

)

(ds+
c

2
η̃)2 + (λ− 2r2

f
)dr2 + r2ğ

= −4

f

f + c

f + 2c
(ds+

c

2
η̃)2 − 1

4f

f + 2c

f + c
df 2 + λ(f + c)ğ.

Since R>0×M̆ ⊂ R>0×S = M is transversal to Jξ ∈ Γ(TM), M̃ ′ := R>0×M̆×S1 ⊂ P

is transversal to ZP := Z̃+f1∂s = Z− (η(Z)−f1)∂s = 2Jξ−c∂s ∈ Γ(TP ). Replacing the

coordinates r and s by ρ := f and φ̃ := −4s, we obtain the Kähler metric g′ = 1
2|ρ| g̃P |M ′

obtained from the K/K correspondence (Theorem 3) as given in Eq. (3.2). Here,

M ′ :=

{

(−c,∞)× S1 × M̆ for λ = 1

(−∞,−c)× S1 × M̆ for λ = −1

14



is obtained from M̃ ′ via the coordinate change r 7→ ρ = λr2 − c. For the metric g′ to be

defined, we need to restrict to {f = ρ 6= 0, − f1 = ρ+ 2c 6= 0} ⊂ M ′.

The signature of g is given by (2k + 2, 2l) if λ = 1 and (2k, 2l + 2) if λ = −1, where

(2k, 2l) is the signature of ğ. The signature of g′ is related to the one of g by

sign g′ =











(+2,−2) + sign g for f1 > 0, f < 0

sign g for ff1 > 0

(−2,+2) + sign g for f1 < 0, f > 0.

Using f = ρ, f1 = −(ρ + 2c) and taking into account r2 = λ(ρ + c) > 0, one finds that

on the subsets M± = {ρ ∈ I±} ⊂ M ′ given in the Theorem, g′ has signature (2k, 2l + 2),

(2k + 2, 2l) respectively.

For the last statement, one just has to notice that for c = 0, sgn ρ = λ.

4 HK/QK correspondence for the c-map

In this section, we use the explicit formula given in Theorem 2 to show that the pseudo-

hyper-Kähler structure on the cotangent bundle of a conical affine special Kähler manifold

given by the rigid c-map is related to the quaternionic Kähler metric obtained from the su-

pergravity c-map via the HK/QK correspondence. In fact, we get a one-parameter family

of positive definite quaternionic Kähler metrics, which corresponds to one-loop corrections

of the hypermultiplet moduli space in string theory compactifications on Calabi-Yau 3-

folds (if the corresponding model is realized in string theory). As a corollary, this proves

that the Ferrara-Sabharwal metric and its one-loop deformation are indeed quaternionic

Kähler.

4.1 Conical affine and projective special Kähler geometry

First, we recall the definitions of conical affine and projective special Kähler manifolds

[ACD, CM]:

Definition 2 A conical affine special Kähler manifold (M,J, gM ,∇, ξ) is a pseudo-Kähler

manifold (M,J, gM) endowed with a flat torsionfree connection ∇ and a vector field ξ such

that

i) ∇ωM = 0, where ωM := gM(J ·, ·) is the Kähler form,

ii) (∇XJ)Y = (∇Y J)X for all X, Y ∈ Γ(TM),
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iii) ∇ξ = Dξ = Id, where D is the Levi-Civita connection,

iv) gM is positive definite on D = span{ξ, Jξ} and negative definite on D
⊥.

Let (M,J, gM ,∇, ξ) be a conical affine special Kähler manifold of complex dimension

n + 1. Then ξ and Jξ are commuting holomorphic vector fields that are homothetic and

Killing respectively [CM]. We assume that the holomorphic Killing vector field Jξ induces

a free S1-action and that the holomorphic homothety ξ induces a free R>0-action on M .

Then (M, gM) is a metric cone over (S, gS), where S := {p ∈ M |gM(ξ(p), ξ(p)) = 1},
gS := gM |S; and −gS induces a Riemannian metric gM̄ on M̄ := S/S1

Jξ. (M̄,−gM̄) is

obtained from (M,J, g) via a Kähler reduction with respect to Jξ and, hence, gM̄ is a

Kähler metric (see e.g. [CHM]). The corresponding Kähler form ωM̄ is obtained from ωM

by symplectic reduction. This determines the complex structure JM̄ .

Definition 3 The Kähler manifold (M̄, JM̄ , gM̄) is called a projective special Kähler

manifold.

More precisely, S is a (Lorentzian) Sasakian manifold and introducing the radial co-

ordinate r :=
√

g(ξ, ξ), we can write the metric on M as [BC, MSY]

gM = dr2 + r2π∗gS, gS = gM |S = η̃ ⊗ η̃|S − π̄∗gM̄ , (4.1)

where

η̃ :=
1

r2
gM(Jξ, ·) = dc log r = i(∂ − ∂) log r (4.2)

is the contact one-form form when restricted to S and π : M → S = M/R>0
ξ , π̄ : S →

M̄ = S/S1
Jξ are the canonical projection maps. From now on, we will drop π∗ and π̄∗ and

identify, e.g., gM̄ with a (0, 2) tensor field on M that has the distribution D = span{ξ, Jξ}
as its kernel.

Locally, there exist so-called conical special holomorphic coordinates z = (zI) =

(z0, . . . , zn) : U
∼→ Ũ ⊂ Cn+1 such that the geometric data on the domain U ⊂ M is en-

coded in a holomorphic function F : Ũ → C that is homogeneous of degree 2 [ACD, CM].

Namely, we have [CM]

gM |U =
∑

I,J

NIJdz
Idz̄J , NIJ(z, z̄) := 2ImFIJ(z) := 2Im

∂2F (z)

∂zI∂zJ
(I, J = 0, . . . , n)

and ξ|U =
∑

zI ∂
∂zI

+ z̄I ∂
∂z̄I

. The Kähler potential for gM |U is given by r2|U = gM(ξ, ξ)|U =
∑

zINIJ z̄
J .

The C∗-invariant functions Xµ := zµ

z0
, µ = 1, . . . , n, define a local holomorphic coor-

dinate system on M̄ . The Kähler potential for gM̄ is K := − log
∑n

I,J=0X
INIJ(X)X̄J ,

where X := (X0, . . . , Xn) with X0 := 1.
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4.2 The rigid c-map

Now, we introduce the rigid c-map, which assigns to each affine special (pseudo-)Kähler

manifold (M,J, gM ,∇) and in particular to any conical affine special Kähler manifold

(M,J, gM ,∇, ξ) of real dimension 2n+2 a (pseudo-)hyper-Kähler manifold (N = T ∗M, gN ,

J1, J2, J3) of dimension 4n+ 4 [CFG, ACD].

From now on, we assume for simplicity that (M ⊂ C
n+1, J = Jcan, gM ,∇, ξ) is a conical

affine special Kähler manifold that is globally described by a homogeneous holomorphic

function F of degree 2 defined on a C
∗-invariant domain M in standard holomorphic

coordinates z = (zI) = (z0, . . . , zn) induced from Cn+1. Here, Jcan denotes the standard

complex structure induced from Cn+1.

The real coordinates (qa)a=1,...,2n+2 := (xI , yJ)I,J=0,...,n := (Re zI , ReFJ(z) := Re ∂F (z)
∂zJ

)

on M are ∇-affine and fulfill ωM = −2
∑

dxI ∧ dyI , where ωM = g(J ·, ·) is the Kähler

form on M [CM]. We consider the cotangent bundle πN : N := T ∗M → M and introduce

real functions (pa) := (ζ̃I , ζ
J) on N such that together with (π∗

Nq
a), they form a system

of canonical coordinates.

Proposition 3 In the above coordinates (zI , pa), the hyper-Kähler structure on N =

T ∗M obtained from the rigid c-map is given by

gN =
∑

dzINIJdz̄
J +

∑

AIN
IJĀJ , (4.3)

ω1 =
i

2

∑

NIJdz
I ∧ dz̄J +

i

2

∑

N IJAI ∧ ĀJ , (4.4)

ω2 = − i

2

∑

(dz̄I ∧ ĀI − dzI ∧AI), (4.5)

ω3 =
1

2

∑

(dzI ∧ AI + dz̄I ∧ ĀI), (4.6)

where AI := dζ̃I +
∑

J FIJ(z)dζ
J (I = 0, . . . , n) are complex-valued one-forms on N and

ωα = gN(Jα·, ·). (Here and in the following, we identify functions and one-forms on M

with their pullbacks to N .)

Proof: One can check by a direct calculation that the metric and Kähler forms, (4.3)–

(4.6) agree with the geometric data for the rigid c-map given in Section 3 of [ACD] (see

also Section 3 of [ACM]), up to a conventional sign in the definition of the Kähler forms

ωα = gN(Jα·, ·) = −gN(·, Jα·) in [ACD]. For instance, we can write ω1 and ω3 as

ω1 = −2
∑

dxI ∧ dyI +
1

2

∑

dζ̃I ∧ dζI , (4.7)

ω3 =
∑

dxI ∧ dζ̃I +
∑

dyI ∧ dζI =
∑

dqa ∧ dpa.
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Remark 2 It follows from the intrinsic geometric description in [ACD] that the pseudo-

hyper-Kähler structure is independent of the particular description of the special Kähler

structure in terms of a holomorphic function F .

Remark 3 We introduce holomorphic functions wI , I = 0, . . . , n, on (N, J1) that

together with the holomorphic coordinates z = (zI) on (M,J) form a system of canonical

holomorphic coordinates on (N = T ∗M,J1). Then (wI) and (ζ̃I , ζ
J) are related by

∑

I

wIdz
I + w̄Idz̄

I !
=
∑

I

ζ̃Idx
I + ζIdyI

=
∑

I

ζ̃I
2
(dzI + dz̄I) +

ζI

2
(
∑

J

FIJ(z)dz
J + FIJ(z)dz̄

J),

which is equivalent to

wI =
1

2
(ζ̃I +

∑

J

FIJ(z)ζ
J) (I = 0, . . . , n). (4.8)

With the identification (4.8), (4.3)–(4.6) also agree, up to conventional factors, with the

rigid c-map as given in Appendix B of [CFG] and throughout the physics literature.

4.3 The supergravity c-map

Let (M̄, gM̄) be a projective special Kähler manifold of complex dimension n which is glob-

ally defined by a single holomorphic function F . The supergravity c-map [FS] associates

with (M̄, gM̄) a quaternionic Kähler manifold (N̄, gN̄) of dimension 4n+4. Following the

conventions of [CHM], we have N̄ = M̄ × R>0 × R2n+3 and

gN̄ = gM̄ + gG,

gG =
1

4ρ2
dρ2 +

1

4ρ2
(dφ̃+

∑

(ζIdζ̃I − ζ̃Idζ
I))2 +

1

2ρ

∑

IIJ(m)dζIdζJ

+
1

2ρ

∑

I
IJ(m)(dζ̃I + RIK(m)dζK)(dζ̃J + RJL(m)dζL),

where (ρ, φ̃, ζ̃I , ζ
I), I = 0, 1, . . . , n, are standard coordinates on R>0 × R2n+3. The real-

valued matrices I(m) := (IIJ(m)) and R(m) := (RIJ(m)) depend only on m ∈ M̄ and

I(m) is invertible with the inverse I−1(m) =: (IIJ(m)). More precisely,

NIJ := RIJ + iIIJ := F̄IJ + i

∑

K NIKz
K
∑

L NJLz
L

∑

IJ NIJzIzJ
, NIJ := 2ImFIJ , (4.9)

where F is the holomorphic prepotential with respect to some system of special holomor-

phic coordinates zI on the underlying conical special Kähler manifold M → M̄ . Notice
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that the expressions are homogeneous of degree zero and, hence, well defined functions

on M̄ . It is shown in [CHM, Cor. 5] that the matrix I(m) is positive definite and hence

invertible and that the metric gN̄ does not depend on the choice of special coordinates

[CHM, Thm. 9]. It is also shown that (N̄ , gN̄) is complete if and only if (M̄, gM̄) is

complete [CHM, Thm. 5].

Using (pa)a=1,...,2n+2 := (ζ̃I , ζ
J)IJ=0,...,n and (Ĥab) :=

(

I
−1

I
−1
R

RI−1 I+ RI−1R

)

, we can

combine the last two terms of gG into 1
2ρ

∑

dpaĤ
abdpb, i.e. the quaternionic Kähler metric

is given by

gFS := gN̄ = gM̄ +
1

4ρ2
dρ2 +

1

4ρ2
(dφ̃+

∑

(ζIdζ̃I − ζ̃Idζ
I))2 +

1

2ρ

∑

dpaĤ
abdpb. (4.10)

4.4 HK/QK correspondence for the c-map

Again, we assume that (M ⊂ C
n+1, J = Jcan, gM ,∇, ξ) is a conical affine special Kähler

manifold that is globally described by a homogeneous holomorphic function F of de-

gree 2 in standard holomorphic coordinates z = (zI) = (z0, . . . , zn) induced from Cn+1.

We want to apply the HK/QK correspondence to the hyper-Kähler manifold (N =

T ∗M, gN , J1, J2, J3) of signature (4, 4n) obtained from the rigid c-map (see Section 4.2). In

[ACM], it was shown that the vector field Z := 2(Jξ)h = 2J1ξ
h on N fulfills the assump-

tions of the HK/QK correspondence, i.e. it is a space-like ω1-Hamiltonian Killing vector

field with LZJ2 = −2J3. Here, Xh ∈ Γ(TN) is defined for any vector field X ∈ Γ(TM)

by Xh(π∗
Nq

a) = π∗
NX(qa) and Xh(pa) = 0 for all a = 1, . . . , 2n+ 2. (Xh is the horizontal

lift with respect to the flat connection ∇.)

Theorem 5 Applying the HK/QK correspondence to (N, gN , J1, J2, J3) endowed with the

ω1-Hamiltonian Killing vector field Z gives (up to a constant conventional factor) the one-

parameter family gcFS (4.11) of quaternionic pseudo-Kähler metrics, which includes the

Ferrara-Sabharwal metric gFS (4.10). The metric gcFS is positive definite and of negative

scalar curvature on the domain {ρ > −2c} ⊂ N̄ (which coincides with N̄ if c ≥ 0, see

Section 4.3). If c < 0 the metric gcFS is of signature (4n, 4) on the domain {−c < ρ <

−2c} ⊂ N̄ . Furthermore, if c > 0 the metric gcFS is of signature (4, 4n) on the domain

M̄ × {−c < ρ < 0} × R2n+3 ⊂ M̄ × R<0 × R2n+3.

Proof: We start from the hyper-Kähler structure on N = T ∗M given in Eqs. (4.3)–

(4.6). As in Section 4.2, we identify functions and differential forms on M with their

pullbacks to πN : N → M . We first compute the geometric data involved in the HK/QK
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correspondence, cf. Section 2. The moment map for −ω1 w.r.t. Z = 2(Jξ)h is given by

f := r2 − c, where r := ||ξ||gM =
√

∑

zINIJ z̄J and c ∈ R:

ω1(Z, ·) = −gM(2ξ, ·) = −
∑

(zINIJdz̄
J +NIJ z̄

JdzI) = −d(r2) = −df,

since
∑

I z
I ∂FIJ (z)

∂zK
= 0. With gN(Z,Z) = 4gM(ξ, ξ) = 4r2, we get

f1 := f − 1

2
gN(Z,Z) = −r2 − c.

For the functions f and f1 nowhere to vanish, we have to restrict N to {r2 6= |c|} ⊂ N .

Using the contact one form η̃ := 1
r2
gM(Jξ, ·) on M (see (4.2)), we get

β := gN(Z, ·) = 2gM(Jξ, ·) = 2r2η̃.

We consider the trivial S1-principal bundle

P := N × S1, S1 = {eis|s ∈ R},

with the connection form

η = ds+ ηN ,

where ηN is the following one-form on N :

ηN := −1

2
r2η̃ + ηcan =

f1 + c

2
η̃ + ηcan, ηcan :=

1

4

∑

(ζ̃Idζ
I − ζIdζ̃I).

Then

dη = dηN = −1

4
dβ + dηcan = ω1 −

1

2
dβ,

where we used that ω1 can be written as

ω1
(4.7)
= π∗

NωM +
1

2

∑

dζ̃I ∧ dζI =
1

4
dβ + dηcan,

since π∗
NωM = 1

4
π∗
Ndd

c(r2) and π∗
Nd

c(r2) = π∗
N (2r

2dc log r)
(4.2)
= π∗

N(2r
2η̃) = β, see Section

4.1.

Now we compute the one-forms θPj , j = 0, 1, 2, 3 on P , introduced in (2.3):

θP0 = −1

2
df = −rdr,

θP1 = η +
1

2
β = ds+

1

2
r2η̃ + ηcan = ds+

f + c

2
η̃ + ηcan,

θP2 =
1

2
ω3(Z, ·) = − i

2

∑

(z̄IĀI − zIAI) = −Im
∑

zIAI ,

θP3 = −1

2
ω2(Z, ·) =

1

2

∑

(zIAI + z̄IĀI) = Re
∑

zIAI .
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For the calculation of θP2 and θP3 , we used Z = 2i
∑

(zI ∂
∂zI

− z̄I ∂
∂z̄I

)h and (4.5)-(4.6).

We compute the pseudo-Riemannian metric

gP =
2

f1
η2 + π∗gN

(4.3)
=

2

f1
(ds+

c

2
η̃ + ηcan +

f1
2
η̃)2 + gM +

∑

AIN
IJĀJ

and the degenerate tensor field

g̃P = gP − 2

f

3
∑

j=0

(θPj )
2

= gP − 2

f

(

r2dr2 + (ds+
c

2
η̃ + ηcan +

f

2
η̃)2 + (

∑

zIAI)(
∑

z̄J ĀJ)

)

=

(

2

f1
− 2

f

)

(ds+
c

2
η̃ + ηcan)

2 +

(

f1
2

− f

2

)

η̃2 − 2

f
r2dr2 + gM

+
∑

AIN
IJĀJ − 2

f
(
∑

zIAI)(
∑

z̄J ĀJ),

see (2.1) and (2.4). As always, pullbacks from M and N to P are implied where necessary.

Using f1
2
− f

2
= −r2 = −(f + c), 2

f1
− 2

f
= − 4

f

f+c

f+2c
, 2

f
= 2

r2
+ 2c

f(f+c)
and gM

(4.1)
=

dr2 + r2(η̃2 − gM̄), we get

g̃P = −r2gM̄ − f + 2c

f
dr2 − 4

f

f + c

f + 2c
(ds+

c

2
η̃ + ηcan)

2 − 2c

f(f + c)
(
∑

zIAI)(
∑

z̄JĀJ)

+
∑

AIN
IJĀJ − 2

r2
(
∑

zIAI)(
∑

z̄J ĀJ).

We claim that the last two terms can be combined into −1
2

∑

dpaĤ
abdpb, which appeared

in the Ferrara-Sabharwal metric (4.10). This will be proven in the lemma below, see

(4.12).

We use the local coordinates

r =
√

∑

zINIJ z̄J , φ := arg z0, Xµ =
zµ

z0

on the conical affine special Kähler base M and choose the submanifold N ′ = {φ = 0} ⊂
P = N × S1, which is transversal to

ZP
1 = (Z − η(Z)XP ) + f1XP = Z + (r2 + f1)XP = 2∂φ − c∂s,

where XP = ∂s is the fundamental vector field on P , cf. (2.2).

In these coordinates, we have

|z0|2 = r2eK

and, hence,

η̃ =
1

2
dc log r2 =

1

2
dc log |z0|2− 1

2
dcK = dφ− 1

2
dcK = dφ+

∑ iNIJ(X)

2X tNX̄
(XIdX̄J−X̄JdXI)
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and

∑

(zIAI)
∑

(z̄J ĀJ) = |z0|2
∑

(XIAI)
∑

(X̄JĀJ) = r2eK|
∑

(XIdζ̃I + FI(X)dζI)|2,

where K = − logX tNX̄ , X tNX̄ :=
∑

XINIJX̄
J , is the Kähler potential for the projec-

tive special Kähler metric gM̄ . Replacing the coordinates r and s by ρ := f and φ̃ := −4s

and recalling that σ = sgn f , we obtain the quaternionic Kähler metric g′ = 1
2|f | g̃P |N ′

from the HK/QK correspondence (Theorem 2) such that gcFS := −2σg′ is given by

gcFS =
ρ+ c

ρ
gM̄ +

1

4ρ2
ρ+ 2c

ρ+ c
dρ2 +

1

4ρ2
ρ+ c

ρ+ 2c
(dφ̃+

∑

(ζIdζ̃I − ζ̃Idζ
I) + cdcK)2

+
1

2ρ

∑

dpaĤ
abdpb +

2c

ρ2
eK
∣

∣

∣

∑

(XIdζ̃I + FI(X)dζI)
∣

∣

∣

2

. (4.11)

For c = 0, gcFS reduces to the Ferrara-Sabharwal metric (4.10).

Notice that the above metric gcFS obtained from the HK/QK correspondence is defined

on a subset of M̄ ×R∗ ×S1×R2n+2, where the R∗-factor corresponds to the coordinate ρ

(which may now take negative values) and the S1-factor is parametrized by the coordinate

φ̃ = −4s considered modulo 8πZ. Replacing the above subset by its universal covering

(that is replacing S1 by R) we obtain a subset of M̄×R∗×R2n+3. In particular, gFS = g0FS

is defined on N̄ as well as on the cyclic quotient N̄/Z = M̄ × R>0 × S1 × R2n+2.

The pseudo-hyper-Kähler metric gN has signature (4, 4n) and Z is space-like. Hence,

g′ is negative definite if f > 0 and f1 < 0, it has signature (4, 4n) if f1f > 0 and it has

signature (8, 4(n− 1)) if f < 0 and f1 > 0 (see Corollary 1 in [ACM]). Using f = ρ and

f1 = −ρ− 2c, we get

sign g′ =



















(0, 4n+ 4) for ρ > max{0,−2c}
(4, 4n) for 0 < ρ < −2c, c < 0

(4, 4n) for − 2c < ρ < 0, c > 0

(8, 4(n− 1)) for ρ < min{0,−2c}.

Taking into account that by definition r2 = gM(ξ, ξ) > 0, i.e. ρ > −c, we get

sign g′ =

{

(0, 4n+ 4) for ρ > max{0,−2c} (⇔ r2 > |c|)
(4, 4n) for − c < ρ < max{0,−2c} (⇔ 0 < r2 < |c|).

It remains to prove

Lemma 3

∑

dpaĤ
abdpb = −2

∑

AIN
IJĀJ +

4

r2
(
∑

zIAI)(
∑

z̄J ĀJ), (4.12)

where, as in the last section, (pa) = (ζ̃I , ζ
J) and (Ĥab) =

(

I
−1

I
−1
R

RI−1 I+ RI−1R

)

.
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Proof: Recall that AI = dζ̃I +
∑

J FIJdζ
J , I = 0, . . . , n. We write A = (AI) = dζ̃ + Fdζ ,

where dζ̃ = (dζ̃I), dζ = (dζI) are form-valued column vectors and F := (FIJ).

First, we show that
∑

AIN
IJĀJ =

∑

dpaH
abdpb with

(Hab) :=

(

N−1 1
2
N−1R

1
2
RN−1 1

4
(N +RN−1R)

)

,

where R := 2Re F:
∑

AIN
IJĀJ = (dζ̃ t + dζ tF)N−1(dζ̃ + Fdζ)

= (dζ̃ t + dζ t
1

2
(R + iN))N−1(dζ̃ +

1

2
(R− iN)dζ)

= dζ̃ tN−1dζ + dζ̃ t
1

2
N−1Rdζ + dζ t

1

2
RN−1dζ̃ + dζ t

1

4
(N +RN−1R)dζ.

Now, we show that (
∑

zIAI)(
∑

ĀJ z̄
J ) =

∑

dpaH̆
abdpb with

(H̆ab) :=
1

2

(

zz̄t + z̄zt zz̄tF+ z̄ztF
Fz̄zt + Fzz̄t Fzz̄tF+ Fz̄ztF

)

:

(
∑

zIAI)(
∑

z̄J ĀJ) = (dζ̃ tz + dζ t Fz)(z̄tdζ̃ + z̄tFdζ)

= dζ̃ tzz̄tdζ̃ + dζ̃ tzz̄tFdζ + dζ tFzz̄tdζ̃ + dζ tFzz̄tFdζ

= dζ̃ t
1

2
(zz̄t + z̄zt)dζ̃ + dζ̃ t

1

2
(zz̄tF+ z̄ztF)dζ

+ dζ t
1

2
(Fzz̄t + Fz̄zt)dζ̃ + dζ t

1

2
(Fzz̄tF+ Fz̄ztF)dζ.

Hence, the right side of equation (4.12) is given by
∑

dpa(−2Hab + 4
r2
H̆ab)dpb.

To rewrite the left side of (4.12), we need to invert I = ImN = −1
2
N + NzztN

2ztNz
+ Nz̄z̄tN

2z̄tNz̄
.

It is easy to check that the inverse of I is given by [MV]

I
−1 = −2N−1 +

2

ztNz̄
(zz̄t + z̄zt).

Using R = ReN = 1
2
R + iNzztN

2ztNz
− iNz̄z̄tN

2z̄tNz̄
, we obtain

I
−1
R = −N−1R +

1

ztNz̄
(zz̄t(R− iN) + z̄zt(R + iN)) = −N−1R +

2

r2
(zz̄tF + z̄ztF)

and hence

RI
−1 = (I−1

R)t = −RN−1 +
2

r2
(Fz̄zt + Fzz̄t).

For the lower right block in (Ĥab), we calculate

RI
−1
R = −1

2
RN−1R +

1

ztNz̄
(Fz̄zt(R + iN) + Fzz̄t(R− iN))

+
i

ztNz
(−1

2
R + F )zztN − i

z̄tNz̄
(−1

2
R + F)z̄z̄tN

= −1

2
RN−1R +

2

r2
(Fz̄ztF+ Fzz̄tF)− NzztN

2ztNz
− Nz̄z̄tN

2z̄tNz̄
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and hence

I+ RI
−1
R = −1

2
(N +RN−1R) +

2

r2
(Fz̄ztF+ Fzz̄tF).

This shows that (Ĥab) = −2(Hab) + 4
r2
(H̆ab) and thus proves Eq. (4.12).

This proves Theorem 5.

Remark 4 Note that the quaternionic Kähler metric gcFS given in (4.11) agrees with

the one-loop deformed Ferrara-Sabhwarwal metric first obtained in [RSV] (see also [APP],

Eq. (2.93)).

Remark 5 One can check that the restriction of the metric g′ = −σ
2
gcFS given in (4.11)

to M ′ := {ζ = ζ̃ = 0} ⊂ N ′ is the metric that one obtains when applying the K/K

correspondence to the original conical affine special Kähler manifold (M,J, gM ,∇, ξ) with

respect to the holomorphic Killing field Z = 2Jξ. This is a special case of Theorem 4.

For c = 0, we have

(M ′, gFS|M ′) = (R>0 × S1 × M̄, gCH1 + gM̄),

where (M̄, JM̄ , gM̄) is the underlying projective special Kähler manifold and (R>0 ×
S1, gCH1) is a Z-quotient of the complex hyperbolic line. The hyperbolic metric gCH1 =
1

4ρ2
(dρ2 + dφ̃2) is normalized such that its scalar curvature is −8.

A A simple example of the HK/QK correspondence

Here we consider

M = {(z, w) ∈ C
2|z 6= 0} ⊂ C

2

with its standard flat hyper-Kähler structure2 (g, J1, J2, J3). This manifold is in the image

of the rigid c-map and therefore admits a vector field Z verifying the above assumptions,

see [ACM], Proposition 2. The canonical choice of function f which leads to a definite

quaternionic Kähler metric g′ is f = 1
4
g(Z,Z), see [ACM], Corollary 4. The metric g′ is

in fact negative definite if we take g positive definite and vice versa.

Let us first compute all the relevant geometric data on M in terms of the standard

J1-holomorphic coordinates (z, w) of C2, which satisfy J∗
3dw = dz̄. The metric and Kähler

2The flat hyper-Kähler manifold C2 is also considered in [Hi2] but the corresponding quaternionic
Kähler metric is not computed there.
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forms are given by:

g = 2(|dz|2 + |dw|2),
ω1 = i(dz ∧ dz̄ + dw ∧ dw̄),

ω2 = i(dz ∧ dw − dz̄ ∧ dw̄),

ω3 = dz ∧ dw + dz̄ ∧ dw̄.

The vector field Z is given by

Z = 2(iz
∂

∂z
− iz̄

∂

∂z̄
),

g(Z,Z) = 8|z|2,

with the canonical choice of Hamiltonian given by

f = 2|z|2,

such that df = −ω1Z and

f1 = f − g(Z,Z)

2
= −2|z|2.

Notice that the functions f and f1 are nowhere vanishing on M . Then we consider the

trivial S1-principal bundle

P = M × S1, S1 = {eis|s ∈ R}.

with the connection form

η = ds+ ηM ,

where s is the natural coordinate on S1 = {eis|s ∈ R} and ηM is the following one-form

on M

ηM =
i

2
(zdz̄ − z̄dz + wdw̄ − w̄dw)− 1

2
gZ.

Computing

gZ = 2i(zdz̄ − z̄dz), (A.1)

we get

ηM =
i

2
(−zdz̄ + z̄dz + wdw̄ − w̄dw).

Remark 6 Notice that, in the trivialization of P , XP = ∂s, Z̃ = Z − ηM(Z)∂s and

Z1 = Z + (−ηM (Z) + f1)∂s. The above formula for ηM implies that ηM(Z) = −2|z|2 = f1

and, thus, Z1 = Z, in the given trivialization.
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We define M ′ as the submanifold of P = M × S1 defined by Im z = 0. We will use

w, r =
√
2|z| and s as local coordinates on M ′. M ′ intersects each orbit of the S1-action

S1
Z1

generated by Z1 in exactly one point such that we can identify M ′ with the orbit

space P/S1
Z1
. Now we compute the one-forms gZ and θa, a = 0, 1, 2, 3, on M ′. Writing

z = r√
2
ei arg z, from (A.1) we get

gZ = 2r2d arg z,

which shows that gZ vanishes on M ′ and that

ηM |M ′ =
i

2
(wdw̄ − w̄dw) =

1

4
(ζ̃dζ − ζdζ̃) = ηcan,

if we write w = 1
2
(ζ̃ + iζ) and define ηcan = 1

4
(ζ̃dζ − ζdζ̃). Using that gZ|M ′ = 0, we have:

θ0|M ′ = −(zdz̄ + z̄dz)|M ′ = −rdr,

θ1|M ′ = η|M ′,

θ2|M ′ =
i√
2
r(dw − dw̄),

θ3|M ′ =
1√
2
r(dw + dw̄),

which implies
∑

a

(θPa )
2 = (η|M ′)2 + r2(dr2 + 2|dw|2).

So

g̃P |M ′ =

(

2

f1
− 2

f

)

η2|M ′+(dr2+2|dw|2)−2(dr2+2|dw|2) =
(

2

f1
− 2

f

)

η2|M ′−(dr2+2|dw|2).

Now
2

f1
− 2

f
=

2(f − f1)

ff1
=

g(Z,Z)

ff1
= − 4

r2

and

η|M ′ = ds+ ηcan.

Therefore, we can rewrite

g̃P |M ′ = − 4

r2
(ds+ ηcan)

2 − (dr2 + 2|dw|2)

and

−2g′ = −1

f
g̃P |M ′ =

4

r4
(ds+ ηcan)

2 +
dr2

r2
+ 2

|dw|2
r2

.

Putting ρ = r2 and φ̃ = −4s, we can rewrite this as

−2g′ =
1

4ρ2
(dφ̃+ ζdζ̃ − ζ̃dζ)2 +

dρ2

4ρ2
+

dζ̃2 + dζ2

2ρ
.
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The Riemannian metric −2g′ is precisely the Ferrara-Sabharwal metric (cf. [FS, CHM]),

which in the present case coincides with the complex hyperbolic metric.

Remark 7 The manifold M ′ is a cyclic quotient of the complex hyperbolic plane. The

complex hyperbolic plane is parametrized by the global coordinates (w, r > 0, s) and M ′

is obtained as the quotient by 2πZ acting by translations in s.

Remark 8 Carrying out the above calculation with the Hamiltonian function f replaced

by f − c, one obtains the deformed Ferrara-Sabharwal metric (4.11) for the special case

where the underlying projective special Kähler manifold is a point (i.e. for holomorphic

prepotential F = i
2
(z0)2):

gcUH :=
1

4ρ2

(

ρ+ 2c

ρ+ c
dρ2 +

ρ+ c

ρ+ 2c
(dφ̃+ ζ0dζ̃0 − ζ̃0dζ

0)2 + 2(ρ+ 2c)((dζ̃0)
2 + (dζ0)2)

)

.

This is known to physicists as the one-loop corrected universal hypermultiplet metric

and was derived in [AMTV]. As was already noticed in [AMTV], this metric admits

an isometric action of the three-dimensional Heisenberg group generated by the Killing

vector fields
∂

∂φ̃
,

∂

∂ζ̃0
+ ζ0

∂

∂φ̃
,

∂

∂ζ0
− ζ̃0

∂

∂φ̃
;

and hence falls under the classification of 4-dimensional self-dual Einstein metrics with

non-zero scalar curvature admitting two commuting Killing vector fields by Calderbank

and Pedersen3 [CP].

For c > 0, gcUH is positive definite and of negative scalar curvature on the domains

{−c < ρ < 0} and {ρ > 0} in R4. For c < 0, gcUH is positive definite and of negative

scalar curvature on {ρ > −2c} ⊂ R4 and −gcUH is positive definite and of positive scalar

curvature on {−c < ρ < −2c} ⊂ R4, cf. Theorem 5.

Notice that the complex hyperbolic metric g0UH is symmetric and hence complete. Using

this, one can show that gcUH is complete on the domain {ρ > 0} for c > 0. In fact,

gcUH > 1
2
g0UH . On the other domains mentioned above, however, the positive or negative

definite metric gcUH is incomplete, as stated in the proposition below. This is in agreement

with the result of A. Haydys, who studied −gcUH on {−c < ρ < −2c} ⊂ R4 for the special

case c = −1 (see [Ha], Example 9 (resp. 3.2 in the arXiv version)).

3Calderbank and Pedersen express such a metric in terms of an eigenfunction F(r, η) of the Laplacian
on the hyperbolic plane {(r, η) ∈ R>0 × R}. In their formalism, the metric −2gc

UH
corresponds to the

function F = r
2
−c

√

r
and their coordinates (r, η, φ, ψ) are related to our coordinates by ρ = r2 − c, φ̃ =

2ψ + φη, ζ̃0 = 1
√

2
φ, ζ0 =

√
2η.
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Proposition 4

(i) For c > 0 the quaternionic Kähler metric gcUH of negative scalar curvature is com-

plete on the domain {ρ > 0} and incomplete on {−c < ρ < 0}.

(ii) For c < 0 the quaternionic Kähler metric gcUH is incomplete and of negative scalar

curvature on {ρ > −2c}.

(iii) For c < 0 the quaternionic Kähler metric −gcUH is incomplete and of positive scalar

curvature on {−c < ρ < −2c}.

Proof: It remains to prove the incompleteness in the corresponding cases. In cases (i)

and (iii) we consider the curve

ρ = t− c, φ̃ = ζ̃0 = ζ0 = 0, 0 < t <
|c|
2
,

which approaches the boundary of the respective domain for t → 0. Its length is given by

1

2

∫
|c|
2

0

1

|t− c|

√

|t+ c|
t

dt ≥ C

∫
|c|
2

0

dt

2
√
t
< ∞,

where C > 0 is a lower bound for the continuous function

√
|t+c|

|t−c| on the compact interval

[0, |c|
2
]. In case (ii) we consider instead the curve

ρ = t− 2c, φ̃ = ζ̃0 = ζ0 = 0, 0 < t < 1,

which approaches the boundary for t → 0. Its length is the integral of the continuous

function 1
2|t−2c|

√

t
t−c

on the compact interval [0, 1] and, hence, finite.

Remark 9 Notice that the above proof for the incompleteness in case (ii) is still valid

in higher dimensions for the positive definite quaternionic Kähler metric gcFS, c < 0, on

the domain {ρ > −2c}, see Theorem 5 for a description of the domain of positivity of the

one-loop deformed Ferrara-Sabharwal metric (4.11) depending on the sign of c. On the

contrary, the proof of the completeness in case (i), given in Remark 8, does not extend in

a straightforward way to higher dimensions.4

4Note added in proof: In the meantime it has been proven that the one-loop deformed Ferrara-
Sabharwal metric gc

FS
for c > 0 on the domain ρ > 0 is complete for every complete projective special

Kähler manifold in the image of the supergravity r-map, see M. Dyckmanns, PhD dissertation, University
of Hamburg, to appear in 2015.
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