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Abstract

In this paper we analyse the topological group cohomology of finite-dimensional Lie groups. We intro-
duce a technique for computing it (as abelian groups) for torus coefficients by the naturally associated long
exact sequence. The upshot in there is that certain morphisms in this long exact coefficient sequence can
be accessed (at least for semi-simple Lie groups) very conveniently by the Chern-Weil homomorphism of
the naturally associated compact dual symmetric space. Since the latter is very well-known, this gives the
possibility to compute the topological group cohomology of the classical simple Lie groups. In addition,
we establish a relation to characteristic classes of flat bundles.
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Introduction

Topological group cohomology is the cohomology theory for topological groups that incorporates both, the
algebraic and the topological structure of a topological group G with coefficients in some topological G-module
A. There are two obvious guesses for this, which already capture parts of the theory in special cases.

The first one is the (singular) cohomology of the classifying space BG of G. This leads to well-defined
cohomology groups Hn

π1(BG)(BG;A) for discrete coefficient groups A (where Hn
π1(BG) denotes the cohomology

of the corresponding local coefficient system on BG). However, if A is non-discrete, then Hn
π1(BG)(BG;A) is

not even well-defined, since BG is only defined up to homotopy equivalence. Moreover, BG is trivial if G is
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contractible, so no homotopy invariant construction on BG could capture for instance the Heisenberg group
as a central extension of R× R by U(1).

The second obvious guess would be the cohomology of the cochain complex of continuos A-valued functions
(see Section 1). We call this the van Est cohomology Hn

vE(G;A) of G, since it has first been exhaustively anal-
ysed (in the case of Lie groups) by van Est in the 50’s and 60’s. However, this has a reasonable interpretation
as a relative derived functor only in the case that A is a topological vector space [HM62], and captures in this
respect the case that is contrary to the case of discrete coefficients.

The topological group cohomology interpolates between these two extreme case. It has first been defined
by Segal and Mitchison in [Seg70] (see also [Del74, Moo76, Cat77, Bry00, Fla08]) and recently been put
into a unifying framework in [WW13]. We denote the corresponding cohomology groups by Hn(G;A) with no
additional subscript. If A = a/Γ for some contractible G-module a and some submodule Γ, then the topological
group cohomology interpolates between the classifying space cohomology and the van Est cohomology in the
sense that there is a long exact sequence

· · · → Hn−1(G;A) → Hn
π1(BG)(BG; Γ) → Hn

vE(G; a) → Hn(G;A) → Hn+1
π1(BG)(BG; Γ) → · · · (1)

(see Section 2).
The bulk of this paper is devoted to analyse this exact sequence in the case that G is a Lie groups and

that the coefficients are smooth. In particular, we establish a connection to Lie algebra cohomology that we
then exploit in the sequel to calculate certain important morphisms of the above sequence in explicit terms.
This then permits to calculate Hn(G;U(1)) for some (in principle all) semi-simple Lie groups in terms of the
(well-known) Chern-Weil homomorphism of compact symmetric spaces. Moreover, we establish a connection
to characteristic classes of flat bundles.

We now shortly list the results of the individual sections. Section 1 recalls the basic facts about topological
group cohomology. In Section 2 we introduce the long exact sequence (1) and reinterpret it in terms of relative
group cohomology. In particular, we will motivate why it is natural to think of the morphisms

εn : Hn
π1(BG)(BG; Γ) → Hn

vE(G; a) (2)

as connecting morphisms (instead of Hn−1(G;A) → Hn
π1(BG)(BG; Γ)). Since these morphisms play a distin-

guished rôle for the whole theory we call them characteristic morphisms1. Note that both sides of (2) are
well-known in many cases, so the question arises whether εn also has a known interpretation.

In Section 3 we establish the relation to Lie algebra cohomology. Those cohomology classes which have
trivial Lie algebra cohomology classes have a natural interpretation as flat bundles (or higher bundles, such
as bundle gerbes). This gives in particular rise to the interpretation of the image of εn as flat characteristic
classes.

Section 4 then treats the case in which all characteristic morphisms vanish. This condition can be checked
very conveniently for semi-simple Lie groups, since there it can be read off the associated compact dual Gu/K
of the non-compact symmetric space G/K naturally associated to G (where K ≤ G is a maximal compact
subgroup). In the case that all characteristic morphisms vanish the cohomology groups Hn(G;U(1)) may be
computed as

Hn(G; a/Γ) ∼= Hn
Lie((g,K), a)⊕Hn+1

π1(BG)(BG; Γ).

In Section 5 we then show that the characteristic homomorphisms εn can be computed in terms of the
compact dual Gu/K. More precisely, let f : Gu/K → BK be a classifying map for the principal K-bundle
Gu → Gu/K and let j : Γ → a denote the inclusion. The main result of Section 5 is then the following

Theorem. Suppose G is a semi-simple Lie group that acts trivially on a and suppose Γ ≤ a is discrete. Then

1See Remark 3.10 for the interpretation in terms of flat characteristic classes and the relation to the characteristic morphisms
Hn

Lie((g, K);R) → Hn
gp(G,R) from [Mor01].
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there exist isomorphisms Hn(G; Γ)
∼=

−−→ Hn
top(BK; Γ) and Hn(G; a)

∼=
−−→ Hn

top(Gu/K; a) such that the diagram

Hn(G; Γ)
εn //

∼=

��

Hn(G; a)

∼=

��

Hn
top(BK; Γ)

j∗
// Hn

top(BK; a)
f∗

// Hn
top(Gu/K; a)

commutes.

Since j∗ and f∗ can be computed explicitly by the Chern-Weil homomorphism of Gu → Gu/K, the preceding
theorem gives a very good control on the long exact sequence (1). In particular, it gives a good control on
which classes in Hn(G; a) are flat.

In Section 6 we then treat some examples. One of the perhaps most interesting consequences is that ε2q

does not vanish on the Euler class Eq ∈ H2q(SL2q(R);Z) ∼= H2q
top(B SO2q;Z), and thus ε2q(Eq) yields a flat

characteristic class.

This brings us to an analysis of the results obtained in this paper. At first, the computational results
obtained in Section 6 and the connection to the Chern-Weil homomorphism of compact symmetric spaces is
new. The flatness of the Euler class is of course not new (cf. [Mil58, Dup78]), but what is new is the perspective
on this phenomena that topological group cohomology yields. Moreover, the perspective to the Chern-Weil
homomorphism as a push-forward in coefficients within the same theory seems to be new. In particular, this
gives a conceptual interpretation of many seemingly ad-hoc relations between the cohomology of classifying
spaces and the van Est cohomology (see [BIMW08, Kar04, Dup79, Dup76]).

Since the aforementioned flatness of the Euler class and the relation between the cohomology of classifying
spaces and the van Est cohomology all occur naturally in the context of bounded continuous cohomology (see
also [Mon06, Mon01]), this suggest that there is a close relation between topological group cohomology and
bounded continuous cohomology. We expect that a further analysis of the techniques presented in this paper
might also lead to new applications and insights there.
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1 A recap of topological group cohomology

The purpose of this section is to fix notation and to introduce concepts. More detailed expositions can be
found in [WW13, Gui80, Seg70, HM62]. Throughout this section, G is an arbitrary topological group2 and A
a topological G-module. By a topological G-module we mean a locally contractible topological abelian group
A that is a G-module such that the action map G×A→ A is continuous. A short exact sequence A→ B → C
of topological G-modules is defined to be a sequence of topological G-modules such that B is a principal

A-bundle over C. The sequence A → B
q

−−→ C is said to be topologically trivial if the principal bundle is
trivial, i.e., if there exists σ : C → B continuous such that q ◦ σ = idC . Moreover, let G act continuously from
the left on a space X (in case X = G we will always consider the action by left multiplication). Then we en-
dow Map(X,A) (arbitrary set maps for the moment) with the left action ofG given by (g.f)(x) := g.(f(g−1.x)).

2With this we mean a group object in the category of compactly generated Hausdorff spaces, i.e., we endow products with the
compactly generated product topology.
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Now there are several cohomology groups associated to this setting:

a) The van Est cohomology

Hn
vE(X ;A) := Hn(C0

vE(X,A)
G d
−−→ C1

vE(X,A)
G d
−−→ · · · )

with

CnvE(X,A) := C(Xn+1, A) and df(g0, ..., gn+1) :=

n+1∑

i=0

(−1)if(g0, ..., ĝi, ..., gn+1). (3)

If X = G, then we obtain the van Est cohomologyHn
vE(G;A) (which is called Hn

glob,c(G;A) in [WW13]3).
If, moreover, G is a Lie group, A is a smooth G-module, X is a manifold and the action is smooth, then
we also have the corresponding smooth version

Hn
vE,s(X ;A) := Hn(C0

vE,s(X ;A)G
d

−−→ C1
vE,s(X,A))

G d
−−→ · · · )

with CnvE,s(X,A) := C∞(Xn+1, A)4. Note that if G is a finite-dimensional Lie group and A = a is
a smooth and quasi-complete locally convex G-module, then by [HM62, Theorem 5.1] the inclusion
CnvE,s(G, a) →֒ CnvE(G, a) induces an isomorphism Hn

vE,s(G; a)
∼= Hn

vE(G; a).

b) The Segal-Mitchison cohomology (for simplicity we only consider the case X = G)

Hn
SM(G;A) := Hn(C(G,EA)G

d
−−→ C(G,BGA)

G d
−−→ · · · ),

where BGA := C(G,EA)/A and EA is a chosen model for the universal bundle of the topological
abelian group A such that EA → BA admits a local section [Seg70, Appendix A]. If A is contractible,
then we may assume that EA = A and thus one sees that Hn

SM(G;A) ∼= Hn
vE(G;A) in this case [Seg70,

Proposition 3.1]. On the other hand, if A = Aδ is discrete, then [Seg70, Proposition 3.3] shows that
Hn

SM(G;A) ∼= Hn
π1(BG)(BG;A) (where BG := |BG•| is the classifying space of G and Hn

π1(BG) denotes

the sheaf cohomology of the local system of the π1(BG) ∼= π0(G)-action on the discrete group A).

c) The locally continuous cohomology

Hn
loc(X ;A) := Hn(C0

loc(X,A)
G d
−−→ C1

loc(X,A)
G d
−−→ · · · ),

where

Cnloc(X,A) := {f : Xn+1 → A | f is continuous on some neighbourhood of the diagonal ∆n+1X}.

By abuse of notation we sometimes refer to the elements of Cnloc(X,A) as locally continuous maps or
cochains. Again, if G = X , then we obtain the locally continuous cohomology Hn

loc(G;A). We have a
natural morphism Hn

vE(X ;A) → Hn
loc(X ;A) induced from the inclusion CnvE(X,A) →֒ Cnloc(X,A). Note

that this is an isomorphism if either X is contractible [Fuc11, Theorem 5.16] or if X = G is metrisable
and A is contractible by group homomorphisms [FW12, Proposition 3.6].

If, moreover, G is a Lie group, A is a smooth G-module, X is a manifold and the action is smooth, then
we also have the corresponding smooth version

Hn
loc,s(X ;A) := Hn(C0

loc,s(X,A)
G d
−−→ C1

loc,s(X,A)
G d
−−→ · · · ),

3To match up with [WW13] one has to pass from the homogeneous cochain complex to the inhomogeneous one, i.e., identify
Map(Gn+1, A)G with Map(Gn, A) via f 7→ F with F (g1, ..., gn) := F (1, g1, g1g2, ..., g1 · · · gn) (see [Bro94, Section I.5], [Gui80, no

I.3.1] or [Nee04, Appendix B]).
4In the smooth category we endow products with the usual product smooth structure
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where

Cnloc,s(X,A) := {f : Xn+1 → A | f is smooth on some neighbourhood of the diagonal ∆n+1X}.

By abuse of notation we sometimes refer to the elements of Cnloc,s(X,A) as locally smooth maps or
cochains. Again, if G = X , then we obtain locally smooth cohomology Hn

loc,s(G;A) of G considered
in [WW13]. If we assume, furthermore, that G is finite-dimensional and a is quasi-complete, then the
inclusion Cnloc,s(G,A) →֒ Cnloc(G,A) is a quasi-isomorphism, i.e., induces an isomorphism in cohomology
Hn

loc,s(G;A)
∼= Hn

loc(G;A) [WW13, Proposition I.7]. We will often identify Hn
loc,s(G;A) with H

n
loc(G;A)

via this identification.

If A→ B → C is a short exact sequence of topological G-modules, then we have long exact sequences

· · · → Hn−1
SM (G;C)

δn−1

−−−→ Hn
SM(G;A) → Hn

SM(G;B) → Hn
SM(G;C)

δn
−→ Hn

SM(G;A) → · · ·

and

· · · → Hn−1
loc (G;C)

δn−1

−−−→ Hn
loc(G;A) → Hn

loc(G;B) → Hn
loc(G;C)

δn
−→ Hn

loc(G;A) → · · ·

(cf. [Seg70, Proposition 2.3] and [WW13, Remark I.2]). These long exact sequences are natural with respect
to morphisms of short exact sequences (cf. [WW13, Section VI]). Since Hn

SM(G;A) and Hn
loc(G;A) coincide

for (loop) contractible A with Hn
vE(G;A) (cf. [Seg70, Proposition 3.1] and [FW12]), this implies that we have

isomorphisms of δ-functors (cf. [WW13, Section VI])

Hn
SM(G;A) ∼= Hn

loc(G;A) (4)

(under the additional assumption that the product topology on Gn is compactly generated, see [WW13,
Corollary IV.8]). The same argument shows that the Segal-Mitchison and the locally continuous cohomol-
ogy coincides (under some mild additional assumptions) with many other cohomology theories for topological
groups, as for instance the simplicial group cohomology from [Del74, Bry00] (see [WW13, Corollary IV.7]), the
measurable group cohomology from [Moo76] (see [WW13, Remark IV.13]) and the cohomology groups from
[Fla08] (see [WW13, Remark IV.12]). We believe that this is the “correct” notion of a cohomology theory for
topological groups and thus call it the topological group cohomology. In case that we do not refer to a specific
cocycle model we will just denote it by Hn(G;A).

Note that the argument leading to the isomorphism Hn
SM(G;A) ∼= Hn

loc(G;A) does not show that the
topological group cohomology is isomorphic to the van Est cohomology, since for the van Est cohomology we
only have a long exact sequence

· · · → Hn−1
vE (G;C)

δn−1

−−−→ Hn
vE(G;A) → Hn

vE(G;B) → Hn
vE(G;C)

δn
−→ Hn

vE(G;A) → · · ·

if the short exact sequence A→ B → C is topologically trivial.

Remark 1.1. The functors Hn
vE, H

n
SM and Hn

loc are also natural in the first argument in the sense that a
continuous morphism ϕ : H → G induces morphisms ϕ∗ : Hn(G;A) → Hn(H ;ϕ∗A), where ϕ∗A denotes the
pull-back module. Indeed, ϕ induces morphisms of cochain complexes

ϕ∗ : C(Gn+1, A)G → C(Hn+1, ϕ∗A)H and ϕ∗ : Cnloc(G,A)
G → C(H,ϕ∗A)H , f 7→ f ◦ ϕ,

which induce morphisms ϕ∗ : Hn
vE(G;A) → Hn

vE(H ;ϕ∗A) and ϕ∗ : Hn
loc(G;A) → Hn

loc(H ;ϕ∗A) in cohomology.
The morphisms for Hn

SM are induced as follows. Recall from [Seg70, Appendix A] that the module structure
on EA is induced from the action of the simplicial topological group G• (i.e., Gn := G) on the abelian simplicial
topological group EA• (i.e., EAn := An+1) via the diagonal action of G on An+1. In the geometric realisation
we thus obtain a map

G× EA = |G•| × |EA•| ∼= |G• × EA•| → |EA•| = EA
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defining the module structure. From this one sees that we have ϕ∗EA = Eϕ∗A. We now observe that a
morphism ψ : ϕ∗A→ C induces a morphism

Eϕ,ψ : ϕ
∗C(G,EA) → C(H,EC), f 7→ E(ψ) ◦ f ◦ ϕ.

Since Eϕ,ψ preserves the constant maps it induces a morphism

Bϕ,ψ : ϕ
∗BGA→ BHC

Inductively we obtain morphisms Bnϕ,ψ : ϕ
∗BnGA→ BnHC and thus morphisms

Eϕ,Bn
ϕ,ψ

: ϕ∗C(G,EBnGA) → C(H,EBnHC), f 7→ E(Bnϕ,ψ) ◦ f ◦ ϕ.

In particular, if we set C = ϕ∗A, then we have morphisms of cochain complexes

· · · // C(G,EBnGA)
G //

��

C(G,EBn+1
G A)G //

��

· · ·

· · · // C(H,EBnHϕ
∗A)H // C(H,EBn+1

H ϕ∗A)H // · · ·

that induce morphisms ϕ∗ : Hn
SM(G;A) → Hn

SM(H ;ϕ∗A) in cohomology.
Obviously, if α : A→ D is a morphism of topologicalG-modules, then we get a morphism ϕ∗α : ϕ∗A→ ϕ∗D

and the diagram

Hn(G;A)
α∗ //

ϕ∗

��

Hn(G;D)

ϕ∗

��

Hn(H ;ϕ∗A)
α∗ // Hn(H ;ϕ∗D)

commutes.

Proposition 1.2. The isomorphisms Hn
SM(G;A) ∼= Hn

loc(G;A) from (4) are natural with respect to ϕ∗, i.e.,
if ϕ : H → G is a morphisms of topological groups, then the diagram

Hn
SM(G;A)

∼= //

ϕ∗

��

Hn
loc(G;A)

ϕ∗

��

Hn
SM(H ;ϕ∗A)

∼= // Hn
loc(H ;ϕ∗A)

(5)

commutes for each n ∈ N0.

Proof. We have the following δ-functors (cf. [WW13, Section VI])

G-Mod → Ab, A 7→ Hn
SM(G;A), A 7→ Hn

SM(H ;ϕ∗A), A 7→ Hn
loc(G;A), A 7→ Hn

loc(H ;ϕ∗A).

Observe that ϕ∗ constitute morphisms of δ-functors. Since

Hn
SM(G;EGB

n
GA) = Hn

loc(G;EGB
n
GA) = 0

it suffices by [WW13, Theorem VI.2] to observe that (5) commutes for n = 0. The latter is trivial.

Remark 1.3. One relation that we obtain from the above is in the case that the G-action is also continuous
for the discrete topology Aδ on A (this happens for instance if G is locally contractible and G0 acts trivially).
Then we have isomorphisms

ζn : Hn
π1(BG)(BG;A

δ)
∼=

−−→ Hn
SM (G;Aδ)



The long exact sequence and the characteristic morphisms 7

(cf. Remark in §3 of [Seg70]). If we identify Hn
SM (G;Aδ) with Hn

loc(G;A
δ), then the morphism Aδ → A induces

a morphism
♭n : Hn

π1(BG)(BG;A) → Hn
loc(G;A),

which is of course an isomorphism if A already is discrete. On the other hand, if G is discrete, then ♭n is the
well-known isomorphism Hn

gp(G;A)
∼= Hn

π1(BG)(BG;A) [Bro94]. Here Hn
gp(G;A) is the group cohomology of

the abstract group G with coefficients in A, which coincides (literally at the cochain level) with Hn
loc(G

δ;Aδ).
From the explicit description of ζn it follows that ζn and ♭n are natural with respect to morphisms of groups
and of coefficients, i.e., if ϕ : H → G is a morphism of topological groups and α : A → D is a morphism of
topological G-modules, then the diagrams

Hn
π1(BG)(BG;A)

α∗

��

♭n // Hn
loc(G;A)

α∗

��

Hn
π1(BG)(BG;D)

♭n // Hn
loc(G;D)

and

Hn
π1(BG)(BG;A)

ϕ∗

��

♭n // Hn
loc(G;A)

ϕ∗

��

Hn
π1(BH)(BH ;ϕ∗A)

♭n // Hn
loc(H ;A)

commute (and likewise for ζn). If G is a finite-dimensional Lie group and A = a/Γ for a locally convex
and quasi-complete, then we may interpret ♭n as a natural morphism to Hn

loc,s(G;A) via the identification
Hn

loc(G;A)
∼= Hn

loc,s(G;A).

We will follow the convention that we denote morphism in cohomology that are induced by morphisms of
groups, spaces or coefficient modules by upper and lower stars. Morphisms that are induced by manipulations
of cochains will be denoted by the corresponding cohomology index. If we use the upper star as the index
of cohomology groups when referring to the whole cohomology algebra, instead to a single abelian group in
one specific degree (and a plus there refers to the cohomology in positive degree). For the convenience of the
reader, we collect here the definitions of the cohomology groups and some of their chain complexes that we
will use throughout (in the order in which they appear in the text):

Hn
vE(X,A) CnvE(X,A)

G C(Xn+1, A)G

Hn
vE,s(X,A) CnvE,s(X,A)

G C∞(Xn+1, A)G

Hn
SM(G,A) see b) above

Hn
π1(BG)(BG;A) see b) above

Hn
loc(X,A) Cnloc(X,A)

G {f : Xn+1 → A | f is cont. on some neighbh. of ∆n+1X}G

Hn
loc,s(X,A) Cnloc,s(X,A)

G {f : Xn+1 → A | f is smooth on some neighbh. of ∆n+1X}G

Hn(G;A) any of Hn
SM(G;A), Hn

loc(G;A) (or H
n
loc,s(G;A))

Hn
top(X ;A) cohomology of the (underlying) topological space X with coeff.

in the (abstract) abelian group A

Hn
Lie((g, k); a) CnCE((g, k), a) Hom(Λng/k, a)k

Hn
Lie((g,K); a) CnCE((g,K), a) Hom(Λng/k, a)K

Hn
loc,s(G;A) C̃nloc,s(G,A) {f : Gn → A | f is smooth on some id. neighbh.}

Hn
loc,s(G;A) C̃0,n

loc,s(G,A) {f ∈ C̃nloc,s(G,A) | f(g1, ..., gn) = 0 if gi = 1 for some i}

Hn
loc,s((G,K);A) C̃loc,s((G,K), A) {f ∈ Cnloc,s(G,A) | f(g1, ..., gn) = k0.f(k

−1
0 g1k1, ..., k

−1
n−1gnkn)

for all g1, ..., gn ∈ G, k0, ..., kn ∈ K}

2 The long exact sequence and the characteristic morphisms

In this section we analyse the long exact sequence in topological group cohomology for torus (or more generally
K(Γ, 1)) coefficients. We will try to motivate why it is a good idea to look at this sequence. The general
assumptions in this section are as in the previous one. We only assume, in addition, that the coefficient
module is A = a/Γ for some contractible G-module a and a discrete submodule Γ ≤ a. Recall that Hn(G;A)
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always refers to the topological group cohomology of G with coefficients in A, which can be realised by the
models Hn

SM(G;A) or Hn
loc(G;A).

Remark 2.1. The exact coefficient sequence Γ → a → A induces a long exact sequence

· · · → Hn−1(G;A) → Hn(G; Γ) → Hn(G; a) → Hn(G;A) → Hn+1(G; Γ) → · · · . (6)

As described in the previous section we have isomorphisms

Hn(G; a) ∼= Hn
vE(G; a) and Hn(G; Γ) ∼= Hn

π1(BG)(BG; Γ).

This leads to a long exact sequence

· · · → Hn−1(G;A) → Hn
π1(BG)(BG; Γ) → Hn

vE(G; a) → Hn(G;A) → Hn+1
π1(BG)(BG; Γ) → · · · . (7)

From the long exact sequence above, certain morphisms will turn out to be particularly important. We
give them a distinguished name.

Definition 2.2. The morphisms εn : Hn(G; Γ) → Hn(G; a), induced by the inclusion Γ →֒ a will be called
characteristic morphisms in the sequel.

Note that in the theory of flat characteristic classes there is also the notion of characteristic morphism
(see [Mor01, Section 2.3]). Our characteristic morphism is a refinement of the one occurring there that is
more sensitive to the underlying topological information (see Remark 3.10). In particular, the characteristic
morphisms in [Mor01, Section 2.3] are likely to be injective [Mor01, Theorem 2.22]. In contrast to this we
note that from the vanishing of Hn

vE(G; a)
∼= Hn(G; a) for compact Lie groups and quasi-complete a [HM62]

and the contractibility of BG for contractible G we have the following vanishing result for the characteristic
morphism in the topologically trivial situations:

Lemma 2.3. The characteristic morphisms vanish if either G is contractible or if G is a compact Lie group
and a is quasi-complete and locally convex.

This suggest that the characteristic morphisms are likely to vanish. We will show in the sequel that this is
often the case and, if not, is the source of interesting geometric structure in terms of flat characteristic classes
(cf. Remark 3.10 and Section 6). What we will show in the remainder of this section is that it is appropriate
to think of the characteristic morphisms as some kind of connecting morphisms.

Proposition 2.4. Suppose G is 1-connected. If q : a → A = a/Γ denotes the quotient morphism, then

q∗ : H
n
vE(G; a) → Hn

vE(G;A) (8)

is an isomorphism for n ≥ 1.

Proof. We first show surjectivity. Let f : Gn → A be continuous and satisfy df = 0. By the dual Dold-Kan
correspondence we may assume without loss of generality that f(1, ..., 1) = 0. Since G is 1-connected, there

exists a unique continuous f̃ : Gn → a such that f̃(1, ..., 1) = 0 and q ◦ f̃ = f . Thus q ◦ df̃ = d(q ◦ f̃) = df = 0

and since df̃ is uniquely determined by q ◦ df̃ = 0 and df̃(1, ..., 1) = 0 is follows that df̃ = 0. Thus (8) is
surjective.

Injectivity is argued similarly. If q ◦ f̃ = db for some continuous b : Gn−1 → A, then we can lift b to some
continuous b̃ : Gn−1 → a. Making the appropriate assumptions on the values in (1, ..., 1), one can adjust things

so that db̃ = f̃ and conclude that (8) is injective.

Corollary 2.5. If G is 1-connected, then the natural morphism Hn
vE(G;A) → Hn

loc(G;A) fits into the long
exact sequence

· · · → Hn−1
loc (G;A) → Hn

π1(BG)(BG; Γ) → Hn
vE(G;A) → Hn

loc(G;A) → Hn+1
π1(BG)(BG; Γ) → · · · .

In particular, Hn
vE(G;A)

∼= Hn
loc(G;A) if G is contractible (the latter is a specialisation of [Fuc11, Theorem

5.16]).
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We now work towards an interpretation of the long exact sequence for finite-dimensional Lie groups.

Remark 2.6. Suppose that K ≤ G is a closed subgroup. Then the inclusion i : K → G induces a restriction
morphism

i∗ : Hn(G;A) → Hn(K;A)

(given on Hn
loc by restricting cochains to K, whence the name). On the other hand, G acts on the quotient

G/K by left multiplication and we set

Hn
vE((G,K);A) := Hn

vE(G/K,A) and Hn
loc((G,K);A) := Hn

loc(G/K;A).

Note that Hn
vE((G,K);A) and Hn

loc((G,K);A) are the relative versions of the van Est and the locally con-
tinuous cohomology (compare to the relative Lie algebra cohomology in Section 3). Since the quotient map
p : G→ G/K is G-equivariant it induces morphisms in cohomology

p∗ : Hn
loc((G,K);A) → Hn

loc(G;A),

given on the cochain level by f 7→ f ◦ (p× · · · × p).

Proposition 2.7. Suppose K ≤ G is a closed subgroup such that G/K is 1-connected. If q : a → A = a/Γ
denotes the quotient morphism, then

q∗ : H
n
vE((G,K); a) → Hn

vE((G,K);A)

is an isomorphism for n ≥ 1.

Proof. Replacing G by G/K, the prof of Proposition 2.4 carries over verbatim.

Proposition 2.8. Suppose that G is a finite-dimensional Lie group with finitely many components, that K ≤
G is a maximal compact subgroup and that a is a quasi-complete locally convex space. Then Hn

loc(G; a)
∼=

Hn
loc((G,K);A) for n ≥ 1.

Proof. We consider the following diagram of morphisms of cochain complexes, in which the maps are pre-
compositions with p : G → G/K, post-compositions with q : a → A and inclusions of locally continuous maps
into continuous ones:

CnvE(G, a)
G

α2

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

CnvE(G/K, a)
G

α1

66♠♠♠♠♠♠♠♠♠♠♠♠
α3 //

α4

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
Cnloc(G/K, a)

G β1
// Cnloc(G, a)

G

CnvE(G/K,A)
G α5 // Cnloc(G/K,A)

G

.

Now α1 is a quasi-isomorphism, i.e., it induces an isomorphism in cohomology, by [Gui80, Corollaire III.2.2].
Moreover, α2 is a quasi-isomorphism by [FW12, Proposition III.6]. The contractibility of G/K also implies
that α3 and α5 are quasi-isomorphisms by [Fuc11, Theorem 3.16]. Consequently, β1 is a quasi-isomorphism.
In addition, α4 induces an isomorphism in cohomology if n ≥ 1 by Proposition 2.7 since G/K is contractible.
This induces the desired isomorphisms Hn

loc(G; a)
∼= Hn

loc((G,K);A) for n ≥ 1.

Remark 2.9. We will denote the isomorphism from the preceding proposition by

ψn : Hn
loc(G; a)

∼=
−−→ Hn

loc((G,K);A).
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The same argument also shows that there is an isomorphism in the locally smooth cohomology, which we also
denote by

ψn : Hn
loc,s(G; a)

∼=
−→ Hn

loc,s((G,K);A).

Note that ψn is not implemented by a canonical morphism on the cochain level. However, we have the morphism
β1 = p∗ : Cnloc(G/K, a)

G → Cnloc(G, a)
G. The preceding proof shows that this also induces an isomorphism

p∗ : Hn
loc(G; a)

∼=
−→ Hn

loc((G,K); a)

in cohomology for all n ∈ N0.
If i : K → G denotes the inclusion, then this is a homotopy equivalence, and same is true for the induced

map of classifying spaces Bi : BK → BG. Thus the induced map in cohomology Bi∗ is an isomorphism and
the commuting diagram

Hn+1
loc (G; Γ)

i∗

��

∼= // Hn+1
π1(BG)(BG; Γ)

Bi∗

��

Hn+1
loc (K; Γ)

∼= // Hn+1
π1(BK)(BK; Γ)

shows hat i∗ : Hn
loc(G; Γ) → Hn

loc(K,Γ) is an isomorphism.
With respect to these identifications, the characteristic morphisms εn : Hn

loc(G; Γ) → Hn
loc(G; a) induce

morphisms ε̃n : Hn
loc(K;A) → Hn+1

loc ((G,K);A) that make

Hn
loc(K;A)

ε̃n //

δn

��

Hn+1
loc ((G,K);A)

Hn+1
loc (K; Γ)

(i∗)−1

// Hn+1
loc (G; Γ)

εn+1
// Hn+1

loc (G; a)

ψn+1

OO

commute. We shall call the morphisms ε̃n also characteristic morphisms.

The following proposition illustrates that one should think of the characteristic morphism as some kind of
connecting homomorphism.

Proposition 2.10. Suppose that G is a finite-dimensional Lie group with finitely many components, that
K ≤ G is a maximal compact subgroup, that a is a quasi-complete locally convex G-module and that Γ ≤ a is
a discrete submodule. Then the sequence

H1
loc((G,K);A)

p∗

−→ · · ·
ε̃n−1

−−−→ Hn
loc((G,K);A)

p∗

−→ Hn
loc(G;A)

i∗

−→ Hn
loc(K;A)

ε̃n

−→ Hn+1
loc ((G,K);A) → · · · (9)

is exact.

Proof. We first observe that

Hn
loc(G; a)

// Hn
loc(G;A)

i∗

��

δn // Hn+1
loc (G; Γ)

i∗

��

// Hn+1
loc (G; a)

Hn
loc(K; a) // Hn

loc(K;A)
δn // Hn+1

loc (K; Γ) // Hn+1
loc (K; a)

commutes and has exact rows. If n ≥ 1, then we have Hn
loc(K; a) ∼= Hn

vE(K; a) = 0 by [FW12, Corollary II.8]
and [BW00, Lemma IX.1.10] and thus δn : Hn

loc(K;A) → Hn+1
loc (K; Γ) is an isomorphism.Thus the exactness

of (9) follows from the definition of ε̃n.
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3 The relation to relative Lie algebra cohomology

We now discuss the relation of topological group cohomology (in the guise of locally smooth group cohomol-
ogy) to Lie algebra cohomology. Whilst the previous sections are results on the topological group cohomology
that were derived more or less from their definitions, the perspective of Lie algebra cohomology will really
bring new facets into the game. To this end, we will have to use the locally smooth model Hn

loc,s(G;A) quite
intensively.

Unless mentioned otherwise, G will throughout this section be a finite-dimensional Lie group with finitely
many components and K will be a maximal compact subgroup. The coefficient module is always of the form
A = a/Γ, where a is a smooth, locally convex and quasi-complete G-module and Γ is a discrete submodule. We
will denote the corresponding quotient morphisms by p : G→ G/K and q : a → A and injections by i : K → G
and j : Γ → a. Moreover, g denotes the Lie algebra of G and k the Lie algebra of K. Note that A is then also
a module for K and that a is also a module for g and for k.

We first recall some basic notions. Let h ≤ g be an arbitrary subalgebra. The relative Lie algebra
cohomology Hn

Lie((g, h); a) is the cohomology of the based and invariant cochains in the Chevalley-Eilenberg
complex CnCE(g, a) := HomR(Λ

ng, a), i.e.,

CnCE((g, h), a) := HomR(Λ
n(g/h), a)h ∼= {ω : Λng → a | iy(ω) = 0 and θy(ω) = 0 for all y ∈ h},

where iy(ω)(x1, ..., xn−1) := ω(y, x1, ..., xn−1) and

θy(ω)(x1, ..., xn) :=

n∑

i=1

ω(x1, ..., [xi, y], ..., xn) + y.ω(x1, ..., xn)

with respect to the Chevalley-Eilenberg differential

dCEω(x0, ..., xn) :=
∑

1≤i≤n

(−1)ixi.ω(x0, ..., x̂i, ..., xn) +
∑

1≤i<j≤n

(−1)i+jω([xi, xj ], x0, ..., x̂i, ..., x̂j , ..., xn).

(cf. [BW00, Section I.1], [Gui80, no II.3] or [GHV76, Chapter X]). If i : h → g denotes the inclusion, then we
have a sequence of cochain complexes

CnCE((g, h), a) →֒ CnCE(g, a)
i∗
−→ CnCE(h, a).

This gives rise to a sequence in cohomology

Hn
Lie((g, h); a)

κn
−−→ Hn

Lie(g; a)
i∗
−→ Hn

Lie(h; a) (10)

which is of order two, but which is in general far from being exact. For instance, Hn
Lie((g, h); a) → Hn

Lie(g; a)
vanishes frequently (see Section (4)). The sequence (10) is much more a part of the spectral sequence

Ep,q2 = Hp
Lie(h;R)⊗Hq

Lie((g, h); a) ⇒ Hp+q
Lie (g; a)

[Kos50, Chapitre VI], where the morphisms from (10) occur as edge homomorphisms.
In case that h = k and K is not connected there is a subcomplex

CnCE((g,K), a) := Hom(Λng/k, a)K

of CnCE((g, k), a), whose cohomology we denote by Hn
Lie((g,K); a). We clearly have an induced sequence in

cohomology

Hn
Lie((g,K); a)

κn
−−→ Hn

Lie(g; a)
i∗
−→ Hn

Lie(k; a)

and CnCE((g,K), a) = CnCE((g, k), a) if K is connected.

We now introduce the differentiation homomorphism from locally smooth to Lie algebra cohomology.
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Remark 3.1. (cf. [Nee06, Section V.2], [Gui80, no III.7.3]) We want to differentiate in the identity, so we first
identify Cnloc,s(G,A)

G via f 7→ F with F (g1, ..., gn) := F (1, g1, g1g2, ..., g1 · · · gn) with

C̃nloc,s(G,A) := {f : Gn → A | f is smooth on some identity neighbourhood}.

(cf. [Nee04, Appendix B]). It will be convenient to work with normalised cochains, so we set

C̃0,n
loc,s(G,A) := {f ∈ C̃nloc,s(G,A) | f(g1, ..., gn) = 0 if gi = 1 for some i}.

and observe that the inclusion C̃0,n
loc,s(G,A) →֒ C̃nloc,s(G,A) is a quasi-isomorphism by the dual Dold-Kan

correspondence.
Now suppose that M is a manifold and that f : Mn → A is smooth. For vn ∈ TmnMn we then set

∂n(vn)f(mn) : M
n−1 → a, (m1, ...,mn−1) 7→ δ(f)(0m1 , ..., 0mn−1, vk),

where δ(f) := f∗(ωMC) is the left logarithmic derivative of f (equivalently the pull-back of the Maurer-Cartan
form ωMC of A). With this we now set

Dn : C̃nloc,s(G,A) → CnCE(g, a), Dn(f)(v1, ..., vn) :=
∑

σ∈Sn

sgn(σ)∂1(vσ(1)) · · · ∂n(vσ(n))f(1, ..., 1),

where M = U for U ⊆ G an identity neighbourhood such that f |U×···U is smooth and v1, ..., vn ∈ g = T1U .
This induces for n ≥ 1 (and if A = a also for n = 0) a morphism in cohomology

Dn : Hn
loc,s(G;A) → Hn

Lie(g; a)

(see [Nee06, Theorem V.2.6], [Nee04, Appendix B], [Gui80, no III.7.3] or [EK64, Appendix I]). The kernel of

Dn are precisely those cohomology classes which possess representatives by cochains in C̃nloc,s(G,A) that are
constant on some identity neighbourhood. These are the flat classes in the locally smooth cohomology. They
comprise precisely the image of the morphism

(Aδ → A)∗ : H
n
loc,s(G;A

δ) → Hn
loc,s(G;A)

[WW13, Remark V.14]. We thus obtain an exact sequence

Hn
top(BG;A

δ)
♭n // Hn

loc,s(G;A)
Dn // Hn

Lie(g; a).

Lemma 3.2. If we set

C̃loc,s((G,K), A) := {f ∈ C̃nloc,s(G,A) | f(g1, ..., gn) = k0.f(k
−1
0 g1k1, ..., k

−1
n−1gnkn)

for all g1, ..., gn ∈ G, k0, ..., kn ∈ K},

then α : Cnloc,s(G/K,A)
G → C̃nloc,s((G,K), A), f 7→ F with F (g1, ..., gn) := f(p(1), p(g1), p(g1g2), ..., p(g1 · · · gn))

is an isomorphism of cochain complexes. Moreover, Dn maps the subcomplex

C̃0,n
loc,s((G,K), A) := C̃nloc,s((G,K), A) ∩ C̃0,n

loc,s(G,A)

to CnCE((g,K); a) and induces a morphism

Dn : Hn
loc,s((G,K);A) → Hn

Lie((g,K); a)

in cohomology.
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Proof. Noting that we have a K-equivariant diffeomorphism G ∼= G/K ×K it is clear that

Map((G/K)n+1, A) → {f ∈ Map(Gn+1, A) | f(g0, ..., gn) = f(g0k0, ..., gnkn)

for all g0, ..., gn ∈ G, k0, ..., kn ∈ K}, f 7→ f ◦ (p× · · · × p)

is an isomorphism. A straight-forward calculation then shows that the composition with the isomorphism
f 7→ F is α and that im(αn) = C̃nloc,s((G,K), A).

To verify Dn(C̃0,n
loc,s((G,K);A)) ⊆ CnCE((g,K), a) we observe that

f(kg1k
−1, ..., kgnk

−1) = k.f(g1, ..., gn) for all k ∈ K, g1, ..., gn ∈ G

implies k.(Dnf) = Dnf for all k ∈ K. Moreover,

f(k, g1, ..., gn−1) = k−1.f(1, g1, ..., gn−1) = 0 for all k ∈ K, g1, ..., gn−1 ∈ G

implies that Dnf(y, x1, ..., xn−1) vanishes if y ∈ k, x1, ..., xn−1 ∈ g. To finish the proof we notice that the

inclusion C̃0,n
loc,s((G,K);A) →֒ C̃nloc,s((G,K);A) induces an isomorphism in cohomology, so Dn is uniquely

determined by its values on the subcomplex C̃0,n
loc,s((G,K);A).

The following isomorphism is sometimes also called the van Est isomorphism. Note that Hn
Lie((g,K); a) =

Hn
Lie((g, k); a) if K is connected.

Theorem 3.3. Under the hypothesis from the beginning of this section the morphism

Dn : Hn
loc,s((G,K);A) → Hn

Lie((g,K); a)

is an isomorphism.

Proof. Consider the diagram of morphisms of cochain complexes

CnvE,s(G/K, a)
G

(f 7→q◦f)
//

Dn

**❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

CnvE,s(G/K,A)
G ֒

Dn

��

// Cnloc,s((G,K), A)G

Dn
uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

CnCE((g,K), a)

which obviously commutes. Now Dn : Hn
vE,s(G/K; a) → Hn

Lie((g, k); a) is an isomorphism by [Gui80, Corollaire
III.7.2 and no III.7.3] and the morphisms in the top row are quasi-isomorphisms by Proposition 2.7 and [Fuc11,
Section 7]. This shows the claim.

It is this isomorphism that will enable us to access the cohomology groups Hn(G;A) (mostly in the model
Hn

loc,s(G;A)). This is mostly because it connects to the well-understood algebraic picture by the following,
obvious fact.

Proposition 3.4. The diagram

Hn
loc,s((G,K);A)

p∗
//

Dn

��

Hn
loc,s(G;A)

i∗ //

Dn

��

Hn
loc,s(K;A)

Dn

��

Hn
Lie((g,K); a)

κn // Hn
Lie(g; a)

i∗ // Hn
Lie(k; a)
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commutes. In particular, the composed morphisms

Hn
loc,s(G;A)

Dn

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

Hn−1
loc,s(K;A)

ε̃n // Hn
loc,s((G,K);A)

p∗
66♠♠♠♠♠♠♠♠♠♠♠♠♠

Dn

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

Hn
Lie(g; a)

Hn
Lie((g,K); a)

κn
77♦♦♦♦♦♦♦♦♦♦♦♦

vanish.

Corollary 3.5. If κn is injective, then the characteristic morphisms εn and ε̃n vanish.

Remark 3.6. The fact that Dn ◦ p∗ ◦ ε̃n vanishes can also be understood by considering the commuting
diagram

Hn
loc,s(G; Γ)

j∗=ε
n

// Hn
loc,s(G; a)

q∗
//

Dn

��

Hn
loc,s(G;A)

Dn

��

Hn
Lie(g; a) Hn

Lie(g; a)

.

The identifications from Remark 2.9 turn Dn ◦ p∗ ◦ ε̃n into Dn ◦ εn = Dn ◦ j∗. But the image of j∗ consists,
on the cochain level, of maps that vanish on an identity neighbourhood, so that all derivatives of these maps
vanish in the identity. Consequently, Dn ◦ j∗ vanishes. However, the fact that Dn ◦ p∗ ◦ ε̃n vanishes is not that
important (let alone obvious), it is the conjunction with the fact that it factors as κn ◦Dn ◦ ε̃n that will be
important.

We end this section with the following very convenient relation between the locally smooth Lie group
cohomology, the abstract group cohomology and the Lie algebra cohomology.

Theorem 3.7. Suppose G is a Lie group with finitely many components and a is a quasi-complete G-module
on which G0 acts trivially. Let ξn : Hn

loc,s(G; a) → Hn
loc,s(G

δ; aδ) = Hn
gp(G; a) be induced by mapping locally

smooth cochains to abstract cochains in the bar complex. Then the diagram

Hn
top(BG; a)

ζn
//

(Gδ→G)∗

��

Hn
loc,s(G; a

δ)

(Gδ→G)∗

��

(aδ→a)∗

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

Hn
loc,s((G,K); a)

Dn

��

p∗

vv♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

Hn
loc,s(G; a)

ξn

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

Dn

((P
PP

PP
PP

PP
PP

P

Hn
Lie((g,K); a)

κn

��

Hn
top(BG

δ; a)
ζn

// Hn
loc,s(G

δ; aδ) Hn
Lie(g; a)

(11)

commutes and the sequence

Hn
loc,s(G; a

δ)
(aδ→a)∗
−−−−−→ Hn

loc,s(G; a)
Dn
−−→ Hn

Lie(g; a) (12)

is exact. In particular, Dn : Hn
loc,s(G; a) → Hn

Lie(g; a) factors through κn : Hn
Lie((g,K); a) → Hn

Lie(g; a) and
isomorphisms.

Proof. The left rectangle commutes by Proposition 1.2 and the triangles by the definition of the morphisms
on the cochain level. As already observed, the sequence (12) is exact by [WW13, Remark V.14].
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Corollary 3.8. Suppose the hypothesis of Theorem 3.7 hold. If, in addition, κn : Hn
Lie((g,K); a) → Hn

Lie(g; a)
is injective, then Hn

top(BG; a) → Hn
top(BG

δ ; a) vanishes.

Corollary 3.9. Suppose the hypothesis of Theorem 3.7 hold. If, in addition, G admits a cocompact lattice,
then

im
(
Hn

top(BG; a) → Hn
top(BG

δ; a)
)
∼= ker(Hn

Lie((g,K); a) → Hn
Lie(g; a)).

This happens for instance if G is semi-simple.

Proof. If G admits a cocompact lattice, then the ξn is injective by [Bla85, 16o Théorème] (if we use the
isomorphism Hn

vE,s(G; a) → Hn
loc,s(G; a) induced by CnvE,s(G, a) →֒ Cnloc,s(G, a) to pull back ξn to Hn

vE(G; a)).

Thus ξn maps ker(Dn) = im((aδ → a)∗) isomorphically onto im(ξn ◦ (aδ → a)∗) = im((Gδ → G)∗). That
semi-simple Lie groups admit cocompact lattices is [Bor63, Theorem C].

Remark 3.10. We now interpret diagram (11) of Theorem 3.7 in terms of flat characteristic classes. Recall
that a flat characteristic class is an element in Hn

top(BG
δ;R) (or also Hn

top(BG
δ;Z)) [Dup78, Chapter 9].

Note also that ξn is called characteristic morphism in the theory of flat characteristic classes (if one identifies
Hn

loc,s(G,R) with H
n
Lie((g,K);R) via the van Est isomorphism) [Mor01, Section 2.3].

Then the image of ♭n : Hn
top(BG;R

δ) → Hn
loc,s(G;R) consists of those cohomology classes that are repre-

sented by locally smooth cochains that vanish on some identity neighbourhood. These are precisely the flat
cohomology classes in Hn

loc,s(G;R) in the sense that the associated Lie algebra cohomology class vanishes (if

n = 2, then the flat classes in H2
loc,s(G;R) are precisely those classes that are represented by a flat principal

bundle R → Ĝ → G [Nee02]). From (11) it thus follows that the flat classes in Hn
loc,s(G;R) map under ξn to

flat characteristic classes.
The relation to our characteristic morphism εn is given by the diagram

Hn
top(BG;Z)

♭n

∼=
''P

PP
PP

PP
PP

PP
P

j∗
//

(Gδ→G)∗

��

Hn
top(BG;R)

♭n

ww♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

(Gδ→G)∗

��

Hn
loc,s(G;Z)

(Gδ→G)∗

��

j∗=ε
n

// Hn
loc,s(G;R)

(Gδ→G)∗

��

Hn
loc,s(G

δ;Z)
j∗

// Hn
loc,s(G

δ;R)

Hn
top(BG

δ;Z)

♭n

∼=

77♥♥♥♥♥♥♥♥♥♥♥
j∗

// Hn
top(BG

δ;R)

♭n

∼=

ggPPPPPPPPPPP

,

which commutes by the naturality of the involved morphisms. Note that

(Gδ → G)∗ : Hn
loc,s(G;Z)

∼= Hn
top(BG;Z) → Hn

loc,s(G
δ;Z) ∼= Hn

top(BG
δ ;Z)

is injective by [Mil83, Corollary 1]. If we assume, moreover, that G is semi-simple, then

(Gδ → G)∗ : Hn
loc,s(G,R)

∼= Hn
vE(G,R) → Hn

loc,s(G
δ,R) = Hn

gp(G;R)

is also injective (cf. Corollary 3.9). Thus our characteristic morphism coincides (on the image of (Gδ → G)∗)
with

j∗ : Hn(BGδ;Z) → Hn(BGδ;R).
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4 Subalgebras non-cohomologous to zero

In this section we will analyse under which conditions all characteristic morphisms vanish. The setting is the
same as in Section 3.

Definition 4.1. (cf. [GHV76, Section X.5]) Let h ≤ g be a subalgebra. We say that h ≤ g is non-cohomologous
to zero (shortly n.c.z.) for a if

κn : Hn
Lie((g, h); a) → Hn

Lie(g; a)

is injective for all n ∈ N0. If h ≤ g is n.c.z. for a = R, then we simply say that h ≤ g is n.c.z. More generally,
we say that the maximal compact subgroup K ≤ G s n.c.z. for a if

κn : Hn
Lie((g,K); a) → Hn

Lie(g; a)

is injective for all n ∈ N0 and shortly that K ≤ G is n.c.z. if it is so for a = R.

Note that for G connected we have that k ≤ g is n.c.z. for a if and only if K ≤ G is n.c.z.

Proposition 4.2. If K ≤ G is n.c.z., then all characteristic morphisms ε̃n vanish and the long exact sequence
from Proposition 2.10 splits for each n ≥ 1 into short exact sequences

0 → Hn
loc((G,K);A)

p∗

−→ Hn
loc(G;A)

i∗
−→ Hn

loc(K;A) → 0 (13)

In particular, i∗ : Hn
loc(G;A) → Hn

loc(K;A) is then surjective and p∗ : Hn
loc((G,K);A) → Hn

loc(G;A) is then
injective for each n ≥ 1. Moreover, we have in this case

Hn(G,A) ∼= Hn
Lie((g,K), a)⊕Hn+1

π1(BG)(BG; Γ) (14)

as abelian groups.

Proof. From Corollary 3.5 we immediately deduce the splitting of the long exact sequence. By Theorem 3.3
we have Hn

loc((G,K);A) ∼= Hn
Lie((g,K), a) and as in Remark 2.9 we see that Hn

loc(K;A) ∼= Hn+1
π1(BG)(BG; Γ).

Since Hn
Lie((g,K), a) is a divisible abelian group the short exact sequence splits.

Determining whether k ≤ g is n.c.z. is particularly convenient for semi-simple g by the Cartan decomposi-
tion.

Remark 4.3. Suppose g is semi-simple and g = k⊕ p is a Cartan decomposition of g. Then we have [k, k] ⊆ k,
[k, p] ⊆ p and [p, p] ⊆ k, and we denote by gu := k ⊕ ip the Lie algebra with the same underlying vector space
and bracket defined for x, y ∈ k and v, w ∈ p by

[x, y]u := [x, y], [x, v]u := [x, v], [v, w]u := −[v, w].

Then gu is a compact real form of the complexification gC and k is a subalgebra of gu. More precisely, gu
is isomorphic to the subalgebra which is the direct sum of k and ip as subspaces of gC (see [HN12, Section
13.1+2] or [Hel78, Section III.7] for details). Moreover, we have the identity g = gu as k-modules. If a is the
trivial g-module (also considered as tirival gu-module), then this identity induces an isomorphism of k-modules

{ω : Λng → a | iy(ω) = 0 for all y ∈ k} = {ω : Λngu → a | iy(ω) = 0 for all y ∈ k} (15)

and thus an isomorphism µn : Hn
Lie((g, k); a)

∼=
−→ Hn

Lie((gu, k); a).

Lemma 4.4. Suppose g is real semi-simple, g = k ⊕ p is a Cartan decomposition of g and set gu :=
k ⊕ ip. If a is the trivial g- and gu-module, then κn : Hn

Lie((g, k); a) → Hn
Lie(g; a) is injective if and only if

κn : Hn
Lie((gu, k); a) → Hn

Lie(g; a) is injective. In particular, k ≤ g is n.c.z. for a if and only if k ≤ gu is n.c.z.
for a.
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Proof. The diagram

Hn
Lie((g, k); a)

κn //

∼=

��

Hn
Lie(g; a) ֒

// Hn
Lie(g; a)⊗ C

∼= // Hn
Lie(gC, aC)

∼=

��

Hn
Lie((gu, k); a)

κn // Hn
Lie(gu; a) ֒

// Hn
Lie(gu; a)⊗ C

µ

∼=
// Hn

Lie((gu)C, aC)

commutes. This shows the claim.

Remark 4.5. The big advantage of Hn
Lie((gu, k); a) over H

n
Lie((g, k); a) is that gu is a compact Lie algebra, and

thus Hn
Lie((gu, k); a) can be accessed as the de Rham cohomology of a compact symmetric space. Let G̃u be the

simply connected Lie group with Lie algebra gu. Then the embedding k →֒ gu induces an embedding K̃ →֒ G̃u.
In particular, π1(K) embeds into G̃u and we set Gu := G̃u/π1(K). From this it is clear that K = K̃/π1(K)
embeds into Gu and we will identify K via this embedding with a subgroup of Gu. We call the pair (Gu,K)
the dual pair of (G,K). Note that the property that K embeds into Gu determines uniquely the quotient of

G̃u that we have to take. If G is linear, then another method for obtaining Gu is to take a maximal compact
subgroup of the complexification GC that contains K. However, the complexification exists in the semi-simple
case if and only if G is linear (cf. [HN12, Proposition 16.1.3]).

Now there is the canonical morphism ν : Hn
Lie((gu, k); a) → Hn

dR(Gu/K; a) ∼= Hn
top(Gu/K; a) that maps ω

to the left invariant differential form on Gu/K with value ω in Te(Gu/K) ∼= gu/k. This is an isomorphism, for
instance by [GHV76, Proposition XI.1.I] or [FOT08, Theorem 1.28].

Example 4.6. a) If G is compact, then k ≤ g is clearly n.c.z. for each a.

b) Suppose G is complex simple, considered as a simple real Lie group and a is the trivial module. Then k

is a compact real form of g and k ⊕ ik is a Cartan decomposition of g. Consequently, gu = k1 ⊕ k2 with
ki := k (we introduced the indices to distinguish the different copies of k). Then k embeds as k1 into gu
and we have

Hn
Lie((k1 ⊕ k2, k1); a) ∼= Hn(Hom(Λ•k2, a)

k1) ∼= Hn(Hom(Λ•k2, a)) ∼= Hn
Lie(k2, a),

which embeds into Hn
Lie(k1 ⊕ k2, a) by the Künneth Theorem.

c) If a is the trivial g-module, then h ≤ g is n.c.z. for a if and only if H∗
Lie((g, h); a) is generated by

1 and elements of odd degree [GHV76, Theorem X.10.19]. Moreover, this is the case if and only if
H∗

Lie((gu, h); a) is n.c.z., which in turn is equivalent to Hn
top(Gu/K; a) being generated by 1 and elements

of odd degree [GHV76, Theorem 11.5.VI].

Example 4.7 (G = SL2q+1). Let G = SLp with p = 2q + 1 ≥ 3 odd. Then K = SOp and Gu = SUp. Then
we have by [MT91, Theorem III.6.7] that H∗

top(SUp / SOp;R) is generated by 1 and elements of odd degree.
Thus k ≤ g is n.c.z. by Example 4.6 c) and we have the description of Hn(SL2q+1(R);U(1)) from (14).

From Corollary 3.8 we also obtain immediately

Corollary 4.8. Suppose a is the trivial g-module. If k ≤ g is n.c.z. for a, then Hn
top(BG; a

δ) → Hn
top(BG

δ; aδ)
vanishes.

Note that Corollary 4.8, together with Example 4.6 a) and b) give the well-known vanishing ofHn
top(BG; a

δ) → Hn
top(BG

δ;
in case that G is either compact or G is complex and semi-simple with finitely many components. The latter
is usually proved directly via Chern-Weil theory, cf. [Knu01, Section 5.1] or [Mil83] and the relation of the
Chern-Weil homomorphism to the van Est cohomology [Bot73]. This is also implicit in here, as the next
section shows.
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5 Semi-simple Lie groups

In this section we will compute the characteristic homomorphism in terms of the Chern-Weil homomorphism
of the compact dual of the symmetric space naturally associated to the non-compact symmetric space G/K.
In particular, this will enable us to analyse cases in which not all characteristic homomorphisms vanish.

The Setting is the same as in Section 3, except that we assume, in addition, that g is semi-simple and the
induced g module structure on a is trivial5. Moreover, we choose and fix a Cartan decomposition g = k⊕ p of
g. We will use the notation from Remark 4.3 and Remark 4.5.

Theorem 5.1. Suppose G is a connected finite-dimensional Lie group, that g = L(G) is semi-simple and that
G acts trivially on the quasi-complete locally convex space a. If f : Gu/K → BK is a classifying map for the
principal K-bundle Gu → Gu/K, then the diagram

Hn
loc,s(G; Γ)

j∗=ε
n

��

(♭n)−1

// Hn
top(BG; Γ)

Bi∗ // Hn
top(BK; Γ)

j∗

��

Hn
top(BK; a)

f∗

��

Hn
loc,s(G; a)

(p∗)−1

// Hn
loc,s((G,K); a)

Dn // Hn
Lie((g, k); a)

µn
// Hn

Lie((gu, k); a)
νn // Hn

top(Gu/K; a)

(16)
commutes and all horizontal morphisms are in fact isomorphisms.

Note that the cohomology of Gu/K and the morphisms f∗ : Hn
top(BK; a) → Hn

top(Gu/K; a) are well un-
derstood, for instance for a = R and simple G (see for instance [GHV76, Mim95, FOT08]). We will list some
examples and applications of the theorem in the next section.

Proof. That all horizontal morphisms are isomorphisms has been argued in the previous sections. We will
deduce the commutativity of the diagram by establishing a sequence of commuting diagrams that will give
(16) in the end. We first consider

Hn
top(BK; Γ)

j∗

��

(Bi∗)−1

// Hn
top(BG; Γ)

♭n //

j∗

��

Hn
loc,s(G; Γ)

j∗

��

Hn
top(BK; a)

(Bi∗)−1

// Hn
top(BG; a)

♭n // Hn
loc,s(G; a)

, (17)

which commutes by the naturality of Bi∗ and ♭n. From this it follows that j∗ : H
n
loc,s(G; Γ) → Hn

loc,s(G; a) fac-
tors throughHn

top(BG, a) and thus vanishes (by Hopf’s Theorem) if n is odd. Since j∗ : H
n
top(BK,Γ) → Hn

top(BK, a)
vanishes for n odd for the same reason it suffices to show the commutativity of (16) if n = 2m is even.

We now consider the algebraic Chern-Weil homomorphism

CWm
(g,k) : HomR(S

mk; a)k → H2m
Lie ((g, k); a),

which is defined as follows (cf. [GHV76]). Let g = k⊕ p be the Cartan decomposition of g and let πp : g → p

and πk : g → k be the corresponding projections. Note that both are morphisms of k-modules. Then we set

CW1
(g,k) :=

1

2
π∗
p ◦ dCE ◦ π∗

k , i.e., CW1
(g,k)(λ)(x, y) :=

1

2
λ([πp(x), πp(y)])

5It would be desirable to have the results of this and the preceding section also for non-trivial coefficients. However, the
techniques presented in this paper do not simply generalise to non-trivial coefficients for the following reasons: Aδ might not be
a G-module any more; a is not a gu-module in a natural way; the Weil homomorphism is not well-defined, since the identity
W 1

(g,v)
= dCE ◦ π∗

v − π∗

v ◦ dCE does not hold any more.
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Then CW1
(g,k)(λ) is k-invariant and clearly satisfies iy(CW

1
(g,k)(λ)) = 0 for all y ∈ k. Thus we have

dCE ◦ CW1
(g,k) = π∗

p ◦ dCE ◦ CW1
(g,k) = π∗

p ◦ dCE ◦ (dCE ◦ π∗
k − π∗

k ◦ dCE) = −π∗
p ◦ dCE ◦ π∗

k ◦ dCE = 0 (18)

where CW1
(g,k) = dCE ◦ π∗

k − π∗
k ◦ dCE follows from

λ(πk([πp(x), πp(y)])) = λ(πk([x− πk(x), y − πk(y)])) = λ(πk([x, y])) − λ([πk(x), πk(y)])

and the last identity in (18) follows from the fact that dCE preserves im(π∗
k ). Thus CW1

(g,k)(λ) is closed and

hence represents a class in H2
Lie((g, k); a). Since Heven

Lie ((g, k); a) is commutative the case m = 1 determines a
unique morphism of algebras CW∗

(g,k) : HomR(S
∗k, a)k → H2∗

Lie((g, k); a).

The algebraic Chern-Weil homomorphism, together with the universal Chern-Weil isomorphism

C̃W
m
: Hom(Smk; a)k

∼=
−→ H2m

top(BK; a)

now give rise to a diagram

H2m
top(BK; a)

(Bi∗)−1

// H2m
top(BG; a)

♭2m // H2m
loc,s(G, a) H2m

loc,s((G,K); a)
p∗

oo

HomR(S
mk, a)k

CWm
(g,k)

//

C̃W
m

OO

H2m
Lie ((g, k); a)

(D2m)−1

OO

. (19)

We claim that this diagram commutes as well. To this end, let

I2m : H2m
Lie ((g, k); a) → H2m

vE,s(G/K; a)

be the inverse of the van Est isomorphism, as described explicitly in [Gui80, no III.7.3] or in [Dup76, Proposition
1.5]. This has the property that

H2m
Lie ((g, k); a)

I2m // H2m
vE,s(G/K; a)

∼= // H2m
loc,s((G,K); a)

D2m
jj

(20)

commutes, where the unlabelled isomorphism is induced by the inclusion CnvE,s(G/K, a) →֒ Cnloc,s((G,K), a) of
chain complexes (cf. [Fuc11, Section 7]). Now let D ≤ G be a cocompact lattice in G (which exists by [Bor63,
Theorem C]) and let ι : D → G denote the inclusion. Then the restriction Bι∗ : Hn

vE,s(G; a) → Hn
vE(D; a) =

Hn
gp(D, a) is injective by [Bla85, 15o Théorème]. Thus we have the commuting diagram

H2m
top(BK; a)

(Bi∗)−1

// H2m
top(BG; a)

♭2m //

Bι∗

��

H2m
loc,s(G, a)

Bι∗

��

H2m
loc,s((G,K); a)

p∗
oo

H2m
top(BD; a)

♭2m // H2m
gp (D; a) H2m

vE,s(G; a)
Bι∗oo H2m

vE,s(G/K; a)
p∗

oo

∼=

OO

HomR(S
mk, a)k

CWm
(g,k)

//

C̃W
m

OO

H2m
Lie ((g, k); a)

I2m

OO

.

Since ♭2m : H2m
top(BD; a) → H2m

gp (D; a) is just the isomorphism between the cohomology of the classifying space
and the bar resolution for the discrete group D, the inner diagram commutes by [Dup76, Corollary 1.3, Propo-
sition 1.5 and Lemma 4.6]6. Since Bι∗ : H2m

loc,s(G; a) → H2m
gp (D; a) is injective we thus conclude that the outer

6One can also argue without using a cocompact lattice by [Dup78, Theorem 9.12], but then one needs to assume that ξn is
injective, which follows in [Bla85, 16o Théorème] from the existence of a cocompact lattice.
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diagram, and thus diagram (19), commutes.

We now consider the algebraic Chern-Weil homomorphism CWm
(gu,k) for gu with respect to the decompo-

sition gu = k⊕ ip. Note that the underlying vector spaces of g and gu are the same, as well as the subspaces
p and ip. Since the cochains representing CWm

(g,k)(λ) and CWm
(gu,k)(λ) only depend on the projections onto k

and ip (respectively k and p) we conclude that the diagram

HomR(S
nk; a)k

CWn
(g,k)

// H2n
Lie((g, k); a)

µ∼=

��

HomR(S
nk, a)k

CWn
(gu,k) // H2n

Lie((gu, k); a)

. (21)

commutes.
Since the Chern-Weil homomorphism CWπ for the bundle π : Gu → Gu/K factors through the universal

Chern-Weil isomorphism and f∗ we obtain by [GHV76, Section 8.26] the commuting diagram

HomR(S
nk, a)k

CWn
(gu,k) //

C̃W
n∼=

��

CWn
π

++❱❱
❱❱

❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱

H2n
Lie((gu, k); a)

ν∼=

��

H2n
top(BK; a)

f∗

// H2n
top(Gu/K; a)

. (22)

If we paste the above diagrams (17), (19), (21) and (22), then the outer diagram yields precisely (16). This
finishes the proof.

Remark 5.2. Note that j∗ : H
n
top(BK; Γ) → Hn

top(BK; a) is very well-behaved in this particular case. If
Hodd(BK; Γ) is finitely generated and torsion free, then we get

Hn
top(BK; Γ)

∼= //

��

Hom(Hn(BK); Γ)

��

Hn
top(BK; a)

∼= // Hom(Hn(BK); a)

from the Universal Coefficient Theorem. Thus j∗ is injective in this case. If, moreover, a is separable and Γ is
countable, then it is free [Nee02, Remark 9.5 (c)], and thus Hom(Hn(BK); Γ) injects into Hom(Hn(BK); a).
If a = Rn and Γ is a lattice in Rn, then so is Hom(Hn(BK); Γ) in Hom(Hn(BK);Rn) and a basis for Γ then
gives a basis for Hom(Hn(BK); Γ). All the above assumptions are in particular satisfied for a = R, Γ = Z and
K = Uq, SUq, Spq, SOq (see [Spa66, Theorem 5.5.10], [Swi75, Theorem 16.17], [MT91, Corollary III.3.11] and
[Bro82]).

6 Examples

We will stick in this section to examples of simple linear Lie groups and the trivial coefficient modules Z, R
and U(1) = R/Z. We will calculate the characteristic homomorphisms εn : Hn

loc(G;Z) → Hn
loc(G;R) via the

commuting diagram

Hn
loc(G;Z)

εn=j∗
//

∼=

��

Hn
loc(G;R)

∼=

��

Hn
top(BK;Z)

j∗
// Hn

top(BK;R)
f∗

// Hn
top(Gu/K;R)

from Theorem 5.1 (and identify εn with f∗ ◦ j∗ by this). This will then give complete information on
Hn

loc(G;U(1)) (as abelian group) via the long exact sequence from Section 2.
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To this end we first recall the following facts from [GHV76, Section 11.5] on the cohomology of a homoge-
neous space G/H of a general compact connected Lie group G with closed and connected subgroup H . Let
π : G → G/H denote the corresponding principal H-bundle, and let f : G/H → BH be a classifying map for
π. Then there is an isomorphism

Φ: H∗
top(G/H ;R)

∼=
−→ Aπ ⊗ ΛP̂π

of graded algebras, where Aπ := CW∗
π(HomR(S

∗h,R)h) = im(f∗ : H∗
top(BH ;R) → H∗

top(G/H ;R)) is the

image of the Chern-Weil homomorphism of π and P̂π := PG ∩ im(π∗ : H∗
top(G/H ;R) → H∗

top(G;R)) for
PG ≤ H∗

top(G;R) the graded subspace of primitive elements. Moreover, Φ makes the diagram

Aπ // Aπ ⊗ ΛP̂π // H2∗
top(G;R)

HomR(S
∗h,R)h

CW∗

π

OO

C̃W
∗

��

CW∗

π // H2∗
top(G/H ;R)

Φ

OO

π∗

// H2∗
top(G;R)

H2∗
top(BH ;R)

f∗

// H2∗
top(G/H ;R)

commute.

Example 6.1 (G = SLp(C)). Then K = SUp and Gu = SUp× SUp. By Example 4.6 b) we have that k ≤ g

is n.c.z. for all a and thus Proposition 4.2 yields

Hn(SLp(C), U(1)) ∼= Hn
Lie((slp(C), sup),R)⊕Hn

top(B SUp;Z) ∼= Hn
top(SUp;R)⊕Hn

top(B SUp;Z)

for each n ≥ 1 (cf. Remarks 4.3 and 4.5), and the groups on the right are well-known (see for instance [FOT08,
Corollary 1.86] and [Hat02, Corollary 4D.3]).

We now run through some interesting and illustrative cases in which G is a connected non-compact real
form of a simple complex Lie group, K is the maximal compact of G and Gu the maximal compact of the
complexification GC (see [Hel78, Chapter X] for notation and details).

Example 6.2 (G = SLp(R)). Then K = SOp and Gu = SUp. The case p = 2q + 1 ≥ 3 has been treated in
Example 4.7. If p = 2q ≥ 4 is even, then

H∗
top(BK;R) ∼= HomR(S

∗so2q;R)
so2q = Λ(P1, ..., Pq−1, Eq)

is generated by the Pontryagin classes P1, ..., Pq−1, where Pi is of degree 4i, and the Euler class Eq of degree
2q. Moreover, E2

q = Pq [MS74, Theorem 15.9]. We now consider the kernel of CW∗
π. By [GHV76, Proposition

10.6.III] it is generated (as an algebra without unit) by the image of i∗ : HomR(S
∗su2q,R) → HomR(S

∗so2q,R).
From [GHV76, Example 11.11.4] we get

i∗(Ci) =

{
0 if i odd

(−1)i/2Pi/2 if i even

where C2, ..., C2q denote the Chern classes (C1 is missing since we consider SUp, not Up). Thus we have

Aπ = R[Eq]/(E
2
q ) and by [GHV76, Proposition 10.26.VII] we have that ker(i∗) ∼= P̂π is generated by the

suspensions of the odd Chern classes C̃3, C̃5, ..., C̃2q−1 with C̃i ∈ H2i−1
top (SUp;R). Consequently,

H∗
top(SUp / SOp;R)

∼=
(
R[Eq]/(E

2
q )
)
⊗ Λ(C̃3, C̃5, ..., C̃2q−1).

In particular, f∗ : H2q
top(B SO2q;R) → H2q

top(SU2q / SO2q;R) does not vanish on the Euler class. By Remark
5.2, j∗ : H

n
top(B SO2q;Z) → Hn

top(B SO2q;R) is injective. Thus the characteristic homomorphism

ε2q : H2q(SL2q(R);Z) → H2q(SL2q(R);R)
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does not vanish on the integral Euler class and 0 6= ε2q(Eq) ∈ H2q(SL2q(R);R) is flat (cf. Remark 3.10).

Example 6.3 (G = SU∗

2p
). Then K = Spp and Gu = SU2p. From [MT91, Theorem III.6.7] one sees that

H∗
top(Gu/K;R) is generated by 1 and elements of odd degree. Thus spp is n.c.z. in su2p by Example 4.6 c).

Consequently, all characteristic homomorphisms

εn : Hn(SU∗
2p;Z) → Hn(SU∗

2p;R)

vanish and we have the description of Hn
top(SU

∗
2p;U(1)) from (14).

Example 6.4 (G = Sp
p
(R)). Then K = Up and Gu = Spp. From [MT91, Theorem III.6.9 (1)] one sees

that H∗
top(Gu/K;R) is evenly graded and that

f∗ : H∗
top(BUp;R) → H∗

top(Spp /Up;R)

is surjective with kernel generated by the alternating products {
∑
i+j=2k(−1)iCiCj | k ≥ 1} of the Chern

classes. By Remark 5.2, j∗ : H
n
top(BUp;Z) → Hn

top(BUp;R) is injective. Thus the characteristic homomor-
phism

εn : Hn(Spp(R);Z) → Hn(Spp(R);R)

has as kernel precisely the integral linear combinations of the alternating products
∑

i+j=2k(−1)iCiCj of the

integral Chern classes (for k ≥ 1). In particular, 0 6= ε2n(Cn) ∈ H2n(Spp(R);R) is flat (cf. Remark 3.10).
With [MT91, Theorem III.6.9 (2+3)], a similar argument also applies to G = SU(p,q) and G = Sp(p,q).

Remark 6.5. The results on the non-vanishing of the characteristic morphisms on the Euler class or the
Chern classes are a refinement of some well-known identities in the abstract group cohomology Hn

gp(G;R) for
G = SLp(R) and G = Spn(R) (see [Mil58] and [Dup78, Section 9]). What follows from re results of this paper
is that these classes do not only live in Hn

gp(G;R), but that they lift to the topological group cohomology
Hn(G;R).

We end this section with establishing the following stability result.

Proposition 6.6. The natural homomorphisms SLp(C) → SLp+1(C) and SLp(R) → SLp+1(R) induce iso-
morphisms

Hn(SLp+1(C);U(1))
∼=

−−→ Hn(SLp(C);U(1)) and Hn(SLp+1(R);U(1))
∼=

−−→ Hn(SLp(R);U(1))

for sufficiently large p.

Proof. From the descriptions of

Hn
top(B SOp;Z) ∼= Hn

top(B SLp(R);Z) and Hn
top(SUp / SOp;R)

∼= Hn
vE(SLp(R);R)

in [Bro82] and [MT91, Theorem III.6.7 (2)] on sees that SLp(R) → SLp+1(R) induces an isomorphism for
sufficiently big p. Thus the same holds for Hn(SLp(R);U(1)) by the long exact sequence (7) from Remark
2.1 and the Five Lemma. The argument for SLp(C) is exactly the same (cf. [MT91, Corollary III.3.11 and
Theorem III.5.5]).
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Fasc. XV, Trav. Math., XV, pp. 69–194 (Univ. Luxemb., Luxembourg, 2004)

[Nee06] Neeb, K.-H. Towards a Lie theory of locally convex groups. Jpn. J. Math. 1 (2006)(2):291–468

[Seg70] Segal, G. Cohomology of topological groups. In Symposia Mathematica, Vol. IV (INDAM, Rome,
1968/69), pp. 377–387 (Academic Press, London, 1970)

http://dx.doi.org/10.1007/978-0-387-84794-8
http://dx.doi.org/10.3929/ethz-a-004845065
http://dx.doi.org/10.1007/978-3-0348-8338-2
http://dx.doi.org/10.1007/978-3-0348-8338-2
http://dx.doi.org/10.1007/BF02564625
http://dx.doi.org/10.1007/BF02564625
http://dx.doi.org/10.1007/b80626
http://dx.doi.org/10.1007/b80626
http://www.ams.org/mathscinet-getitem?mr=0440554


References 25

[Spa66] Spanier, E. H. Algebraic topology (McGraw-Hill Book Co., New York, 1966)

[Swi75] Switzer, R. M. Algebraic topology—homotopy and homology (Springer-Verlag, New York, 1975).
Die Grundlehren der mathematischen Wissenschaften, Band 212

[WW13] Wagemann, F. and Wockel, C. A Cocycle Model for Topological and Lie Group Cohomology. Trans.
Amer. Math. Soc. (to appear, 32. pp) (2013). arXiv:1110.3304

http://arxiv.org/abs/1110.3304

	1 A recap of topological group cohomology
	2 The long exact sequence and the characteristic morphisms
	3 The relation to relative Lie algebra cohomology
	4 Subalgebras non-cohomologous to zero
	5 Semi-simple Lie groups
	6 Examples

