
ar
X

iv
:1

30
7.

25
42

v2
  [

m
at

h.
D

G
] 

 1
9 

Ju
l 2

01
3

CALIBRATED AND PARALLEL STRUCTURES ON ALMOST

ABELIAN LIE ALGEBRAS

MARCO FREIBERT

Abstract. In this article, we determine the seven-dimensional almost Abelian
Lie algebras which admit calibrated or parallel G2-/G∗

2-structures. Along the
way, we show that certain well-established curvature restrictions for calibrated
and parallel G2-structures are not valid in the G∗

2 case. In more detail, we
provide the first example of a Ricci-flat calibrated G∗

2-structure on a compact
manifold whose holonomy is not contained in G∗

2. Moreover, we get examples

of non-flat parallel G∗

2-structures on almost Abelian Lie algebras g. We give a
full classification of these G∗

2-structures if g is additionally nilpotent.

1. Introduction

A G2-structure on a seven-dimensional manifold is given by a three-form ϕ ∈
Ω3M with pointwise stabilizer isomorphic to G2 ⊂ SO(7). ϕ induces a Riemannian
metric gϕ, an orientation and so a Hodge star operator ⋆ϕ on M . It is well-known,
cf., e.g., [FG], that ϕ is parallel with respect to the Levi-Civita connection of gϕ if
and only if ϕ is closed and coclosed and that then the holonomy of gϕ is contained
in the exceptional holonomy group G2.

There is a similar story for the split real-form G∗

2 ⊆ SO0(3, 4) of the complex
exceptional simple Lie group (G2)C. As in the G2-case, G

∗

2-structures are three-
forms ϕ ∈ Ω3M with pointwise stabilizer isomorphic to G∗

2 ⊆ SO0(3, 4). Here,
we have an induced pseudo-Riemannian metric gϕ of signature (3, 4) and again a
Hodge star operator ⋆ϕϕ. Moreover, ϕ is again parallel if and only if it is closed
and coclosed. If this is the case, the holonomy of gϕ is contained in G∗

2, which is
one of the exceptional cases in Berger’s [Be] list of holonomy groups of irreducible
non-symmetric simply-connected pseudo-Riemannian manifolds.

(Pseudo-)Riemannian metrics induced by parallel G2- or G∗

2-structures have a
very interesting curvature property: they are Ricci-flat. In the G2-case, this implies
that parallel G2-structures on Riemannian homogeneous spaces are flat. This is not
true for parallel G∗

2-structures, as recently has been observed by Kath in [K2]. Kath
constructed such structures on pseudo-Riemannian symmetric spaces which have
three-dimensional Abelian holonomy. In this article, we provide non-symmetric
examples of non-flat parallel G∗

2-structures on pseudo-Riemannian homogeneous
spaces. These are defined in the left-invariant setting on seven-dimensional al-
most Abelian Lie groups, i.e. Lie groups whose Lie algebra has a codimension one
Abelian ideal u, and they have one- or two-dimensional Abelian holonomy. Note
that Fino and Luján [FL] also found examples of left-invariant parallel G∗

2-structures
on nilpotent Lie groups which even have full holonomy G∗

2. More exactly, identify-
ing left-invariant structures on Lie groups with the corresponding structures on the
associated Lie algebra, we classify the seven-dimensional almost Abelian Lie alge-
bras g admitting parallel G2-structures or parallel G

∗

2-structures, respectively. We
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observe that parallel G∗

2-structures with non-degenerate codimension one Abelian
ideals are automatically flat. So the examples of non-flat parallel G∗

2-structures
have degenerate u. We give a full classification of the parallel G∗

2-structures with
degenerate u and show that their holonomy is Abelian and of dimension at most
two. Moreover, we provide a more detailed description of the holonomy groups in
the nilpotent case.

We also consider the weaker condition that only the G2- or G∗

2-structure ϕ ∈
Ω3M itself is closed. These G2- or G∗

2-structure are called calibrated and are one
of the basic classes of G2- or G∗

2-structures, when one divides these structures
according to their intrinsic torsion [FG]. Moreover, calibrated G2-structures also
have interesting curvature properties: If M is compact, then both the validity of
the Einstein condition [CI] for gϕ or the scalar-flatness of gϕ [Br2], and so also the
Ricci-flatness of gϕ, imply that ϕ is parallel and that gϕ has holonomy contained in
G2. Moreover, in [FFM], it has been shown that left-invariant Einstein calibrated
G2-structures on solvable Lie groups are flat. We show that all this is not true in
the G∗

2-case by giving an example of a compact nilmanifold with a calibrated G∗

2-
structure which is not parallel and does not have holonomy contained in G∗

2. More
generally, we classify the seven-dimensional almost Abelian Lie groups which admit
calibrated G2-structures or calibrated G∗

2-structures, respectively. The analogous
classification problem of the seven-dimensional nilpotent Lie algebras admitting
calibrated G2-structures has been solved in [CF].

The methods we use to obtain the classification results are the same as the ones
we used in [F] to determine the seven-dimensional almost Abelian Lie algebras ad-
mitting cocalibrated G2-structures or cocalibrated G∗

2-structures, respectively. We
show that the existence of a calibrated or parallel structure on a seven-dimensional
almost Abelian Lie algebra g is equivalent to the existence of a three-form of certain
type on u or to a pair of a three- and a four-form of certain type on u, respectively,
such that the application of ad(f7)|u ∈ gl(u), f7 ∈ g\u, to these forms gives zero.
Since ad(f7)|u determines the almost Abelian Lie algebra g fully, we get the desired
classification results.

The article is organized as follows: After recalling basic facts about G2-structures
and G∗

2-structures in the Subsections 2.1 and 2.2, we remind the reader in Subsec-
tion 2.3 of basic properties of almost Abelian Lie algebras g. In Section 3, we
prove our classification results. We start in Subsection 3.1 with the calibrated
case. In Subsection 3.2, we classify the seven-dimensional almost Abelian Lie alge-
bras admitting parallel G2-structures or parallel G

∗

2-structures with non-degenerate
codimension one Abelian ideal u, respectively. The case of parallel G∗

2-structures
with degenerate u is treated in Subsection 3.3.

2. Gǫ2-structures and almost Abelian Lie algebras

2.1. Gǫ2-structures on vector spaces. In this subsection, we discuss G2- and G∗

2-
structures on a vector space level. We use a unifying language to treat both cases at
once. We start by introducing these structures properly and recall afterwards some
basic properties. In the end of this subsection, we have a closer look at the k-forms
induced on a codimension one subspace. For more details on G2- and G∗

2-structures
and proofs of the mentioned facts, we refer the reader to [Br1], [K1] and [K2].

We first recall the concept of model tensors:

Definition 2.1. Let V be an n-dimensional vector space and tensors (Ψ1, . . . ,Ψl) ∈
T r1,s1V × . . .× T rl,slV and (ψ1, . . . , ψl) ∈ T r1,s1Rn × . . .× T rl,slRn be given. We
say that the l-tuple (Ψ1, . . . ,Ψl) has model tensors (ψ1, . . . , ψl) if there exists an
isomorphism f : V → Rn such that f∗ψi = Ψi for i = 1, . . . , l. In this case, we call
(

f−1(e1), . . . , f
−1(en)

)

an adapted basis.
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Next, we define G2- and G∗

2-structures using a unifying language:

Definition 2.2. Let V be a seven-dimensional vector space and ǫ ∈ {−1, 1}. A
three-form ϕ ∈ Λ3V ∗ is called a Gǫ2-structure (on V ) if

ϕǫ := −ǫ
(

e127 + e347
)

+ e567 + e135 − e146 − e236 − e245 ∈ Λ3
(

R
7
)∗

is a model three-form for ϕ. Here, e1, . . . , e7 is the canonical basis of
(

R7
)

∗

. If
ǫ = −1, we also call ϕ a G2-structure and if ǫ = 1, ϕ is also called a G∗

2-structure.

Remark 2.3. The stabilizer group GL(7,R)ϕ−1 of ϕ−1 ∈ Λ3
(

R7
)

∗

is G2, the simply-
connected compact real form of the exceptional complex Lie group (G2)C. More-
over, GL(7,R)ϕ1 is the split real form G∗

2 of (G2)C with π1(G
∗

2) = Z2. We like to
mention that there is a close connection of G2- and G∗

2-structures to the octonions
or split-octonions, respectively, which is discussed at some length, e.g., in [Br1].

Notation 2.4. To unify the treatment even more, we also set G−1
2 := G2 and G1

2 :=
G∗

2. Then GL(7,R)ϕǫ
= Gǫ2 for ǫ ∈ {−1, 1}.

The inclusions G2 ⊆ SO(7) and G∗

2 ⊆ SO0(3, 4) show that a Gǫ2-structure induces
a pseudo-Euclidean metric and an orientation such that adapted bases are oriented
and orthonormal. More exactly, we get:

Lemma 2.5. Let V be a seven-dimensional vector space and ϕ ∈ Λ3V ∗ be a Gǫ2-
structure. Then ϕ induces a pseudo-Euclidean metric gϕ, a metric volume form
φ(ϕ) and so also a Hodge star operator ⋆ϕ via

gϕ(v, w)φ(ϕ) =
1

6
vyϕ ∧ wyϕ ∧ ϕ

for v, w ∈ V such that each adapted basis (f1, . . . , f7) is orthonormal and oriented.
gϕ is positive definite if ǫ = −1. If ǫ = 1, then gϕ has signature (3, 4) with g(fi, fi) =
−1 for i = 1, 2, 3, 4 and g(fj, fj) = 1 for j = 5, 6, 7. Moreover, the Hodge dual ⋆ϕϕ
is given by

⋆ϕϕ = ǫ
(

f1256 + f3456
)

+ f1234 − f2467 + f2357 + f1457 + f1367,

where
(

f1, . . . , f7
)

is the dual basis of the adapted basis (f1, . . . , f7).

Proof. This is proven, e.g., in [CLSS] �

Next, we determine the model tensors of the induced k-forms on codimension
one subspaces. To do so, we first have to define these model tensors:

Definition 2.6. Let ǫ ∈ {−1, 1}. Then we set

ωǫ :=− ǫ
(

e12 + e34
)

+ e56 ∈ Λ2
(

R
6
)∗

,

ρǫ :=e
135 + ǫ

(

e146 + e236 + e245
)

∈ Λ3
(

R
6
)∗

,

ρ0 :=e126 − e135 + e234 ∈ Λ3
(

R
6
)∗

,

Ω0 :=e1256 + e3456 ∈ Λ4
(

R
6
)∗

.

(2.1)

In the next section, we will also need information on the stabilizer of the above
k-forms and related structures. Therefore, we denote by GL(n,R)(ψ1,...,ψl) the

common stabilizer of the forms ψ1 ∈ Λk1 (Rn)
∗

, . . . , ψl ∈ Λkl (Rn)
∗

on Rn and by
Lie

(

GL(n,R)(ψ1,...,ψl)

)

the associated Lie algebra.

Lemma 2.7. Let ι : C3 → R6 be the isomorphism of real vector spaces given by
ι(z1, z2, z3) := (Re(z1), Im(z1),Re(z2), Im(z2),Re(z3), Im(z3)). We get an induced
monomorphism from gl(3,C) to gl(6,R), which we also denote by ι. Using this
notation, the following statements are true:
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(i) Lie
(

GL(6,R)ρ−1

)

= ι(sl(3,C)) ∼= sl(3,C)
(ii) Lie (GL(6,R)ρ1) = {diag(A,B) ∈ gl(6,R)|A, B ∈ sl(3,R)} ∼= sl(3,R) ⊕

sl(3,R).

(iii) Lie (GL(6,R)ρ0) =
{(

A 0
B A−tr(A)I3

)

∈ gl(6,R)
∣

∣A ∈ gl(3,R), B ∈ sl(3,R)
}

.

(iv) Lie (GL(6,R)Ω0) =
{(

A−
tr(C)

2 I4 B

0 C

)

∈ gl(6,R)
∣

∣

∣A ∈ sp(4,R), B ∈ R4×2,

C ∈ gl(2,R)},
where sp(4,R) :=

{

A ∈ R4×4 |Atdiag(J, J) + diag(J, J)A = 0
}

with J :=
(

0 1
−1 0

)

∈ R2×2.

(v) Lie
(

GL(6,R)(ρ−1,
1
2ω

2
−1)

)

= ι(su(3)) ∼= su(3).

(vi) Lie
(

GL(6,R)(ρ−1,
1
2ω

2
1)

)

= ι(su(1, 2)) ∼= su(1, 2).

(vii) Lie
(

GL(6,R)(ρ1, 12ω2
−1)

)

= {diag (A,−At) ∈ gl(6,R)|A ∈ sl(3,R)} ∼=
sl(3,R).

Proof. (i) and (ii) are proven, for instance, in [H]. From these results, (v), (vi) and
(vii) immediately follow. (iii) is proven in [V] and (iv) in [F] �

We start with the model tensors of the induced forms on non-degenerate codi-
mension one subspaces:

Proposition 2.8. Let V be a seven-dimensional space, ϕ ∈ Λ3V ∗ be a Gǫ2-structure
on V and W be a six-dimensional subspace of V .

(a) If ǫ = −1, then (ϕ|W , ⋆ϕϕ|W ) has model tensors
(

ρ−1,
1
2ω

2
−1

)

.
(b) If ǫ = 1 and u has signature (2, 4) with respect to gϕ, then (ϕ|W , ⋆ϕϕ|W )

has model tensors
(

ρ−1,
1
2ω

2
1

)

.
(c) If ǫ = 1 and u has signature (3, 3) with respect to gϕ, then (ϕ|W , ⋆ϕϕ|W )

has model tensors
(

ρ1,− 1
2ω

2
−1

)

.

Proof. If ǫ = −1, then it is well-known, cf., e.g., [Br1], that GL(V )ϕ acts transitively
on the space of all lines in V . Hence it acts also transitively on the set of all
six-dimensional subspaces of V . Thus, we may assume W = span(f1, . . . , f6),
(f1, . . . , f7) being an adapted basis and directly get assertion (a).

If ǫ = 1, then [Br1] tells us that GL(V )ϕ acts transitively on the space of positive
lines in V and also on the space of negative lines in V . Thus, it acts also transitively
on all six-dimensional subspaces of fixed non-degenerate signature and we may
assume for (b) that W = span(f1, . . . , f6) and for (c) that W = span(f2, . . . , f7),
where (f1, . . . , f7) is an adapted basis. The computation that the induced forms on
V have the claimed model tensors is straightforward. �

Now we have a closer look at the k-forms a G∗

2-structure ϕ induces on a degener-
ate codimension one subspace. We show that we can choose a special basis adapted
to the codimension one subspace such that ϕ has a particular form.

Lemma 2.9. Let ϕ ∈ Λ3V ∗ be a G∗

2-structure on a seven-dimensional vector space
V and W be a six-dimensional subspace of V such that W is degenerate with respect
to the induced pseudo-Euclidean metric gϕ. Then there exists a basis F1, . . . , F7 of
V such that F1, . . . , F6 is a basis of W , F7 ∈ V \W and such that

ϕ = −F 156 − F 236 + F 245 − 1

2
F 127 − F 347.

The Hodge dual ⋆ϕϕ of ϕ is then given by

⋆ϕϕ = F 1256 + F 3456 +
1

2
F 1367 − 1

2
F 1457 + F 2347
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and the induced pseudo-Euclidean metric by

gϕ = −(F 2)2 + F 1 · F 7 + 2F 3 · F 6 − 2F 4 · F 5.

In particular, ϕ|W has model tensor ρ0 ∈ Λ3
(

R6
)

∗

and ⋆ϕϕ|W has model tensor

Ω0 ∈ Λ4
(

R6
)

∗

.

Proof. Let ϕ be a G∗

2-structure. Then there exists a basis f1, . . . , f7 of V such that

ϕ =− f127 − f347 + f567 + f135 − f146 − f236 − f245,

⋆ϕϕ =f1234 − f1256 − f3456 − f2467 + f2357 + f1367 + f1457,

and such that gϕ = −
∑4
i=1(f

i)2 +
∑7
j=5(f

j)2. By [Br1], GL(V )ϕ acts transitively
on the set of all null lines in V and so also on the set of all six-dimensional degenerate
subspaces of V . Since span(f1 + f7, f2, . . . , f6) is such a degenerate subspace, we
may assume W = span(f1 + f7, f2, . . . , f6). We define the basis F1, . . . , F7 of V via
its dual basis F 1, . . . , F 7 by setting

F 1 := f1 + f7, F 2 := f2, F 3 :=

√
2

2

(

f3 + f6
)

, F 4 :=

√
2

2

(

f4 + f5
)

,

F 5 :=

√
2

2

(

f4 − f5
)

, F 6 :=

√
2

2

(

f6 − f3
)

, F 7 := −f1 + f7.

A short computation gives the claimed formulas for ϕ, ⋆ϕϕ and gϕ. Moreover,

span(F1, . . . , F6) = ker(F 7) = span(f1 + f7, f2, . . . , f6) =W.

Thus, F1, . . . , F7 is a basis of V such that F1, . . . , F6 is a basis ofW and F7 ∈ V \W .

A model tensor of ⋆ϕϕ|W is obviously Ω0 ∈ Λ4
(

R6
)

∗

. Moreover,

ϕ|W = −F 156 − F 236 + F 245 = F 651 − F 623 + F 524,

and so ϕ|W has model tensor ρ0 = e126 − e135 + e234 ∈ Λ3
(

R6
)

∗

. �

Remark 2.10. In [K2], Kath shows that for each G∗

2-structure ϕ ∈ Λ3V ∗ on a
seven-dimensional vector space V there exists a basis F1, . . . , F7 of V such that
ϕ =

√
2
(

F 127 + F 356
)

−F 4∧
(

F 15 + F 26 − F 37
)

. The induced metric is then given

by gϕ = −(F 4)2+2
∑3
i=1 F

i ·F i+4. Kath calls such a basis a Witt basis. The basis
we construct in Lemma 2.9 is, up to a permutation and scaling of some basis vectors,
a Witt basis in the sense of Kath. Additionally, our basis is also “adapted” to the
codimension one subspace W . We abuse the notation and call in the following a
basis as in Lemma 2.9 a Witt basis (with respect to W ). Note that while the form
of the pseudo-Euclidean metric gϕ with respect to a Witt basis in our sense is not
as easy as with respect to a Witt basis in the sense of Kath, the induced forms on
W look nicer in our basis.

2.2. Gǫ2-structures on manifolds and Lie algebras. For fixed ǫ ∈ {−1, 1}, a
Gǫ2-structure on a seven-dimensional manifold M is a three-form ϕ ∈ Ω3M such
that ϕp ∈ Λ3T ∗

pM is a Gǫ2-structure on TpM for all p ∈ M . Since the stabilizer
of ϕp is conjugated to Gǫ2 ⊆ GL(7,R), such a three-form ϕ is the same as a Gǫ2-
structure onM in the usual sense, namely a reduction of the frame bundle F(M) to
Gǫ2. Note that a Gǫ2-structure on M induces a pseudo-Riemannian metric gϕ of the
corresponding signature and an orientation and so also a Hodge star operator ⋆ϕϕ
by Lemma 2.5. Thus, we also have the Levi-Civita connection ∇gϕ of the metric
gϕ.

Proposition 2.11. Let M be a seven-dimensional manifold, ǫ ∈ {−1, 1} and ϕ ∈
Ω3M be a Gǫ2-structure on M . Then ϕ is a parallel Gǫ2-structure, i.e. ∇gϕϕ = 0,
if and only if dϕ = 0 and d ⋆ϕ ϕ = 0. In this case, the holonomy group Hol(gϕ) of
gϕ is a subgroup of Gǫ2 and gϕ is Ricci-flat.
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Proof. The first equivalence is proven for ǫ = −1 in [FG] and for both cases in
[Br1]. The statement that the holonomy group is then a subgroup of Gǫ2 is simply
the holonomy principle. The Ricci-flatness of parallel G2-structures is shown in
[Bo]. The analogous statement for parallel G∗

2-structures may be found, e.g., in the
proof of [K2, Proposition 3.5]. �

In this article, we also consider the following weaker condition:

Definition 2.12. Let M be a seven-dimensional manifold, ǫ ∈ {−1, 1} and ϕ ∈
Ω3M be a Gǫ2-structure on M . Then ϕ is called calibrated if dϕ = 0.

We are mainly interested in left-invariant Gǫ2-structures on Lie groups G. These
are in one-to-one correspondence to Gǫ2-structures on the associated Lie algebra
g and via this correspondence, the exterior derivative on Ω•G corresponds to a
derivation d : Λ•g∗ → Λ•+1g∗ on Λ•g∗ uniquely defined by df = 0 for f ∈ Λ0g∗ ∼= R

and by (dα)(X,Y ) = −α([X,Y ]) for α ∈ g∗, X,Y ∈ g. Moreover, the Levi-Civita
connection∇gϕ on G corresponds to a bilinear map ∇gϕ : g×g → g. Hence, we may
speak of parallel and calibrated Gǫ2-structures on Lie algebras g, and these structures
correspond to left-invariant parallel and left-invariant calibrated Gǫ2-structures on
any Lie group G with Lie algebra g, respectively.

The geometry of parallel G2-structures on Lie algebras is very restrictive due to
the following classical result of Alekseevsky and Kimel’fel’d [AK]:

Theorem 2.13. [Alekseevsky, Kimel’fel’d] Ricci-flat Riemannian homogeneous
spaces are flat.

Corollary 2.14. Let g be a Lie algebra and ϕ ∈ Λ3g∗ be a parallel G2-structure.
Then the induced Riemannian metric gϕ is flat.

Remark 2.15. Theorem 2.13 does not hold in the pseudo-Riemannian case, cf., e.g.,
[AC], [K2] and [KO]. Below, we also provide more examples of Ricci-flat pseudo-
Riemannian homogeneous spaces which are not flat.

2.3. Almost Abelian Lie algebras. In this section, we give a rough review of
almost Abelian Lie algebras. More details and proofs of the results mentioned below
may be found in [F].

Definition 2.16. An n-dimensional Lie algebra g is called almost Abelian if g

admits a codimension one Abelian ideal u.

Almost Abelian Lie algebras are of the form g = u ⋊ Rfn ∼= Rn−1 ⋊ϕ R for
fn ∈ g\u, ϕ ∈ End (R,End (Rn)). Thus, the entire structure, and so also the
differential, is determined by one endomorphism, namely ad(fn)|u. Of course, by
rescaling ad(fn)|u or conjugating with an element in GL(u), the Lie algebra doesn’t
change. More exactly, the following is true:

Proposition 2.17. (a) Two n-dimensional almost Abelian Lie algebras g =
Rn−1⋊ϕR and g′ = Rn−1⋊ϕ′ R, ϕ, ϕ′ ∈ End (R,End (Rn)), are isomorphic
if and only if there exists γ ∈ R∗ and F ∈ GL(n − 1,R) such that ϕ′(1) =
γ ·

(

F−1 ◦ ϕ(1) ◦ F
)

.
(b) Let g be an almost Abelian Lie algebra, u be a codimension one Abelian

ideal and fn ∈ g\u. Use the decomposition g = u ⊕ span(fn) to identify

the annihilator fn
0 of fn with u∗ and let fn ∈ u0 be the element with

fn(fn) = 1. Set f := ad(fn)|u ∈ gl(u) and denote by g.ψ the natural action
of an element g ∈ gl(u) on ψ ∈ Λku∗. Then g∗ = u∗ ⊕ span(fn) and

dρ = fn ∧ f.ρ, d (ρ ∧ fn) = 0

for ρ ∈ Λku∗. Hence, a k-form ρ ∈ Λku∗ is closed if and only if f ∈
Lie(GL(u)ρ).
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Remark 2.18. Note that an almost Abelian Lie algebra has a unique codimension
one Abelian ideal u if and only if g /∈

{

Rn, h3 ⊕ Rn−3
}

, cf. the proof of [F, Propo-
sition 1].

Therefore, it is natural to encode the admittance of a calibrated or parallel
Gǫ2-structure in terms of properties of the real or complex Jordan normal form of
ad(f7)|u, as we will do in most cases in the next section.

3. Classifications

3.1. Calibrated Gǫ2-structures. In this subsection, we classify the seven-dimen-
sional almost Abelian Lie algebras g which admit calibrated Gǫ2-structures. One
result is that all seven-dimensional nilpotent almost Abelian Lie algebras admit
calibrated G∗

2-structures. We give examples of calibrated G∗

2-structure which are
Ricci-flat but not parallel and do not have holonomy contained in G∗

2.
We start with the main theorem of this subsection.

Theorem 3.1. Let g be a seven-dimensional real almost Abelian Lie algebra and
u be a six-dimensional Abelian ideal in g.

(a) The following are equivalent:
(i) g admits a calibrated G2-structure.
(ii) g admits a calibrated G∗

2-structure such that u has signature (2, 4) with
respect to the induced pseudo-Euclidean metric on g.

(iii) For any f7 ∈ g\u, there exist A, B ∈ sl(3,R) and an ordered basis
(f1, . . . , f6) of u such that the transformation matrix of ad(f7)|u with
respect to (f1, . . . , f6) is given by

(

A B
−B A

)

.

(iv) For any f7 ∈ g\u, the complex Jordan normal form of ad(f7)|u is
given, up to a permutation of the complex Jordan blocks, by diag

(

J, J
)

for some trace-free matrix J ∈ C3×3 in complex Jordan normal form.
(b) The following are equivalent:

(i) g admits a calibrated G∗

2-structure such that u has signature (3, 3) with
respect to the induced pseudo-Euclidean metric on g.

(ii) For any f7 ∈ g\u, there exist A, B ∈ sl(3,R) and an ordered basis
(f1, . . . , f6) of u such that the transformation matrix of ad(f7)|u with
respect to (f1, . . . , f6) is given by diag(A,B).

(iii) For any f7 ∈ g\u, the complex Jordan normal form of ad(f7)u is
given, up to a permutation of the complex Jordan blocks, by
diag(J1, J2) for trace-free matrices J1, J2 ∈ C

3×3 which are complex
Jordan normals form of real 3× 3-matrices.

(c) The following are equivalent:
(i) g admits a calibrated G∗

2-structure such that u is degenerate with re-
spect to the induced pseudo-Euclidean metric on g.

(ii) For any f7 ∈ g\u, there exists an ordered basis (f1, . . . , f6) of u,
A ∈ gl(3,R) and B ∈ sl(3,R) such that the transformation matrix of
ad(f7)|u with respect to (f1, . . . , f6) is given by

(

A 0
B A− tr(A)I3

)

Remark 3.2. • We like to point out that in (a), (iv), we, in fact, allow J ∈
C3×3 to be any complex matrix in complex Jordan normal form, whereas
in (b), (iii) we really require that J1, J2 ∈ C3×3 are complex Jordan normal
forms of real 3× 3-matrices. That means in the concrete situation that J1
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and J2 do either contain no Jordan block with a non-real number on the
diagonal or exactly two Jordan blocks of size 1 with a non-real number and
its complex conjugate, respectively, on the diagonal.

• In principle, we may also express the equivalent conditions (i) and (ii) in
(c) in terms of properties of the complex Jordan normal form of ad(f7)|u.
However, the precise statement is very complicated and not very instructive.
This is why we will only investigate the nilpotent case below.

Proof of Theorem 3.1. We fix f7 ∈ g\u, denote by f7 the element in u0 with

f7(f7) = 1 and identify f7
0 with u∗ using the decomposition g = u ⊕ span(f7).

In the following, we consider always the differential with respect to g.
Let ϕ ∈ Λ3g∗ be a calibrated Gǫ2-structure. There are unique ω ∈ Λ2u∗, ρ ∈ Λ3u∗

with ϕ = ω ∧ f7 + ρ. Proposition 2.17 (b) implies

0 = dϕ = d(ω ∧ f7 + ρ) = dρ.

By Proposition 2.8, ρ has model tensor ρ−1 ∈ Λ3
(

R6
)

∗

if ǫ = 1 and u has signature

(2, 4) or if ǫ = −1, ρ has model tensor ρ1 ∈ Λ3
(

R6
)

∗

if ǫ = 1 and u has signature

(3, 3) and ρ has model tensor ρ0 ∈ Λ3
(

R6
)

∗

if ǫ = 1 and u is degenerate.

Conversely, let ρ ∈ Λ3u∗ ∼= Λ3f7
0 be closed with model tensor ρ−1. Choose an

arbitrary G2-structure ϕ̃ ∈ Λ3g∗ and an arbitrary G∗

2-structure ϕ̌ ∈ Λ3g∗ such that
u has signature (2, 4) with respect to the induced pseudo-Euclidean metric gϕ̌. We
decompose

ϕ̃ = ω̃ ∧ f7 + ρ̃, ϕ̌ = ω̌ ∧ f7 + ρ̌

with ω̃, ω̌ ∈ Λ2u∗ and ρ̃, ρ̌ ∈ Λ3u∗. By Proposition 2.8, both ρ̃ and ρ̌ have model
tensor ρ−1. Hence, there are isomorphisms F̃ , F̌ : u → u with F̃ ∗ρ̃ = ρ = F̌ ∗ρ̌. We

define isomorphisms G̃, Ǧ : g → g by G̃|u := F̃ , Ǧ|u := F̌ and G̃(f7) := f7 =: Ǧ(f7).

Then G̃∗ϕ̃ is a G2-structure with G̃∗ϕ̃|u = ρ and the closure of ρ and Proposition

2.17 (b) show that G̃∗ϕ̃ is closed. Moreover, by the same arguments Ǧ∗ϕ̌ is a
calibrated G∗

2-structure with Ǧ∗ϕ̌|u = ρ. Since Ǧ is an isometry between (g, gǦ∗ϕ̌)

and (g, gϕ̌), the signature of u is (2, 4) with respect to gǦ∗ϕ̌. Similarly, we see

that for each closed ρ ∈ Λ3u∗ with model tensor ρ1 there exists a calibrated G∗

2-
structure ϕ̂ ∈ Λ3g∗ with ϕ̂|u = ρ and u having signature (3, 3) with respect to gϕ̂.
Moreover, we also can show in the same way that for each closed ρ ∈ Λ3u∗ with
model tensor ρ0 there exists a calibrated G∗

2-structure ϕ ∈ Λ3g∗ with ϕ|u = ρ and
u being degenerate.

Summarizing, the existence of a calibrated Gǫ2-structure ϕ ∈ Λ3g∗ such that gϕ|u
has the desired property is equivalent to the existence of a closed three-form ρ ∈
Λ3u∗ ∼= Λ3f7

0 with the corresponding model tensor mentioned above. Now Propo-
sition 2.17 (b) tells us that the closure of ρ is equivalent to ad(f7)|u ∈ Lie(GL(u)ρ).
Hence, the equivalence of (i)-(iii) in (a), of (i) and (ii) in (b) and of (i) and (ii) in
(c) follows from Lemma 2.7. The equivalence of (iii) and (iv) in (a) follows from
the fact that Lie(GL(6,R)ρ−1) = i(sl(3,C)) for some injective R-Lie algebra homo-
morphism i : gl(3,C) → gl(6,C) and that if J is a complex Jordan normal form
for A ∈ gl(3,C), then diag

(

J, J
)

is a complex Jordan normal form for i(A). The
equivalence of (ii) and (iii) in (b) is obvious. �

Remark 3.3. • Note that by Theorem 3.1, a seven-dimensional almost Abelian
Lie algebra admitting a calibrated Gǫ2-structure with non-degenerate codi-
mension one Abelian ideal is necessarily unimodular.

• In [F], the author shows that a seven-dimensional almost Abelian Lie algebra
g with codimension one Abelian ideal u admits a cocalibrated G∗

2-structure
such that u has signature (2, 4) if and only if g admits a cocalibrated G∗

2-
structure such that u has signature (3, 3). Moreover, the existence of a
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cocalibrated G∗

2-structure with non-degenerate u implies the existence of a
cocalibrated G∗

2-structure with degenerate u. The corresponding relations
do not hold for calibrated G∗

2-structures:
– If the complex Jordan normal form of ad(f7)|u is given by diag(1 +
i, 2 + 2i,−3− 3i, 1− i, 2− 2i,−3+ 3i), then Theorem 3.1 shows that
g admits a calibrated G∗

2-structure such that u has signature (2, 4)
but neither one such that u has signature (3, 3) nor one such that u

is degenerate.
– If the complex Jordan normal form of ad(f7)|u is given by diag(1, 2,

−3, 4, 5,−9), then Theorem 3.1 shows that g admits a calibrated G∗

2-
structure such that u has signature (3, 3) but neither one such that u
has signature (2, 4) nor one such that u is degenerate.

– If the complex Jordan normal form of ad(f7)|u is given by diag(1, 2,
3,−5,−4,−3), then Theorem 3.1 shows that g admits a calibrated
G∗

2-structure with degenerate u but neither one where u has signature
(2, 4) nor one where u has signature (3, 3).

Next, we take a closer look at calibrated Gǫ2-structures on seven-dimensional
nilpotent almost Abelian Lie algebras. By Engel’s theorem, an almost Abelian Lie
algebra g with codimension one Abelian ideal u is nilpotent if and only if ad(fn)|u
is nilpotent for fn ∈ g\u. Thus, for each partition n1 + . . . + nk = 6 of 6 with
n1, . . . , nk ∈ {1, . . . , 6}, n1 ≥ . . . ≥ nk, there is exactly one seven-dimensional
nilpotent almost Abelian Lie algebra, namely that one whose (complex or real)
Jordan normal form has Jordan blocks of sizes n1, . . . , nk. Therefore, in total we
have 11 such nilpotent Lie algebras and they are listed in Table 1 in the appendix.
All of them have rational structure constants. So the simply-connected Lie group G
with Lie algebra g admits a cocompact lattice Λ and we get compact nilmanifolds
G/Λ with calibrated Gǫ2-structures. Theorem 3.1 shows that the seven-dimensional
nilpotent almost Abelian Lie algebras which admit calibrated G2-structures are
given by R7, A5,1 ⊕ R2, n7,2, which is in accordance with the results obtained in
[CF]. In contrast, we can show that all seven-dimensional nilpotent almost Abelian
Lie algebras admit calibrated G∗

2-structures.

Corollary 3.4. Let g be a seven-dimensional nilpotent almost Abelian Lie algebra
with codimension one Abelian ideal u. Then the following is true:

(a) g admits a calibrated G2-structure if and only if g ∈
{

R
7, A5,1 ⊕ R

2, n7,2
}

.
(b) g admits a calibrated G∗

2-structure. More exactly, g admits a calibrated G∗

2-
structure with non-degenerate u if and only if

g ∈
{

n7,2, n6,1 ⊕ R, A5,1 ⊕ R
2, A4,1 ⊕ R

3, h3 ⊕ R
4, R7

}

,

and g admits a calibrated G∗

2-structure with degenerate u if and only if g 6=
A4,1 ⊕ R3.

Proof. Part (a) follows immediately from Theorem 3.1 as well as the classification of
the nilpotent almost Abelian Lie algebras admitting calibrated G∗

2-structures with
non-degenerate u. To finish the proof, we have use Theorem 3.1 (c) to classify the
nilpotent almost Abelian Lie algebras which admit a calibrated G∗

2-structure with
degenerate u. By Table 1, the sizes of the Jordan blocks in the Jordan normal form
of A4,1 ⊕ R3 is (3, 1, 1, 1). Thus, by Theorem 3.1 (c), we first have to find for each

partition (n1, . . . , nk) ∈ {1, . . . , 6}k, n1 + . . .+ nk = 6, n1 ≥ . . . ≥ nk, of 6 which is
not equal to (3, 1, 1, 1) matrices A ∈ gl(3,R) and B ∈ sl(3,R) such that the Jordan
normal form of ( A 0

B A ) consists of Jordan blocks of sizes (n1, . . . , nk) with zeros on
the diagonal. To do so, we denote by Jm a complex Jordan block of size m with
0 on the diagonal such that the 1s in Jm are on the superdiagonal. Moreover, we
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denote by e1, e2, e3 the canonical basis of R3 and write (v1, v2, v3) for the 3× 3-real
matrix with columns v1, v2, v3 ∈ R3. Then, the following is true:

• A Jordan normal form with Jordan blocks of sizes (1, 1, 1, 1, 1, 1), (2, 1, 1, 1,
1), (2, 2, 1, 1) or (2, 2, 2) may be achieved by choosingA = 0 and B ∈ sl(3,R)
of rank 0, 1, 2 or 3, respectively.

• A Jordan normal form with Jordan blocks of sizes (3, 2, 1), (4, 1, 1) or (4, 2)
may be achieved by A = diag(J2, 0) and B = (e1, 0, 0), B = (e2, 0, 0) or
B = (e2,−e2, e3), respectively.

• A Jordan normal form with Jordan blocks of sizes (3, 3), (5, 1) or (6) may
be achieved by choosing A = J3 and B = 0, B = (e2, 0, 0) or B = (e3, 0, 0),
respectively.

What is missing is to show that there are no A ∈ gl(3,R) and B ∈ sl(3,R) such
that the Jordan normal form of C := (A 0

B A ) has Jordan normal form with Jordan
blocks of sizes (3, 1, 1, 1). So let us assume the contrary. Then the rank of C is two
and so the rank of A is less than two. It cannot be 0, since then C2 would be zero.
Hence, it is one and we may assume that A = diag(J2(0), 0). But then B has to
be equal to B = (0, v, 0) for some v ∈ R3, since otherwise the rank of C would be
greater than two. Since B is trace-free, we have v = (v1, 0, v3) for v1, v3 ∈ R. But
then C2 = 0, a contradiction. This finishes the proof. �

We give two examples of Ricci-flat calibrated G∗

2-structures on almost Abelian
Lie algebras which are not parallel and do not have holonomy contained in G∗

2.
The first one is defined on a nilpotent Lie algebra and gives rise to a compact
nilmanifold with such a structure. To the best of the author’s knowledge, this
is the first example of a calibrated G∗

2-structure on a compact manifold with the
mentioned properties. Recall that in the G2-case there cannot be any Ricci-flat
calibrated G2-structure on a compact manifold which is not parallel, cf. [Br2] and
[CI].

Example 3.5. (a) We consider the Lie algebra g := span(f1, . . . , f7) uniquely
defined by [f3, f7] := f1, [f4, f7] := f3, [f5, f7] := f2, [f6, f7] := f5 and
[fi, fj ] := 0 for all other 1 ≤ i < j ≤ 7. Then g is nilpotent almost
Abelian with codimension one Abelian ideal u := span(f1, . . . , f6). Note
that g ∼= n7,2. By Lemma 2.9, the three-form

ϕ := −f156 − f236 + f245 − 1

2
f127 − f347 ∈ Λ3g∗

is a G∗

2-structure on g such that u is degenerate with respect to the in-
duced pseudo-Riemannian metric gϕ. We have dϕ = 0, i.e. ϕ is calibrated.
Moreover, we may use the explicit form of ⋆ϕϕ given in Lemma 2.9, to
deduce that d ⋆ϕ ϕ = −f23567 6= 0. A straightforward calculation, which
has effectively being carried out using Maple, shows that the only non-zero
curvature endomorphisms R(fi, fj) with 1 ≤ i < j ≤ 7 are given by

R(f2, f7) =− f6 ⊗ f1 +
1

2
f7 ⊗ f3,

R(f5, f7) =− 3

2
f5 ⊗ f1 −

3

4
f7 ⊗ f4,

R(f6, f7) =− f2 ⊗ f1 −
1

2
f7 ⊗ f2.
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Hence, gϕ is Ricci-flat. Moreover,

∇fi(R(f2, f7)) =∇fi(R(f5, f7)) = ∇fi(R(f6, f7)) = 0,

∇f7(R(f2, f7)) = 0, ∇f7(R(f5, f7)) =
3

2
R(f2, f7),

∇f7(R(f6, f7)) =
1

3
R(f5, f7)

for all i = 1, . . . , 6. Since gϕ is real-analytic, the Ambrose-Singer theo-
rem shows that the holonomy algebra of gϕ is given by span(R(f2, f7),
R(f5, f7), R(f6, f7)). Thus, the holonomy group of gϕ is three-dimensional
and Abelian. Moreover,

R(f6, f7).ϕ = f256 − 1

2
f367 +

1

2
f457 6= 0,

and so the holonomy is not a subgroup of GL(g)ϕ ∼= G∗

2.
(b) We give another example of a seven-dimensional almost Abelian Lie algebra

g with calibrated non-parallel Ricci-flat G∗

2-structure ϕ ∈ Λ3g∗ whose holo-
nomy is not contained in G∗

2. Let g := span(f1, . . . , f7) uniquely defined by
[fi, f7] = −2fi for i = 1, 3, 4 and [fj , f7] = fj for j = 2, 5, 6 and [fk, fl] = 0
for all other 1 ≤ k < l ≤ 7. Then u = span(f1, . . . , f6) is a codimension one
Abelian ideal in g. We consider again the three-form

ϕ := −f156 − f236 + f245 − 1

2
f127 − f347 ∈ Λ3g∗,

from which we know by Lemma 2.9 that it is a G∗

2-structure on g with
degenerate u. A short computation gives dϕ = 0 and d ⋆ϕ ϕ = f12567 −
f34567 6= 0, where we again use that we have an explicit formula for ⋆ϕϕ by
Lemma 2.9. Moreover, a nasty but straightforward calculation yields the
identity

R :=span(R(X,Y )|X,Y ∈ g)

=span
(

2f2 ⊗ f1 + f7 ⊗ f2, 2f
6 ⊗ f1 − f7 ⊗ f3,

2f5 ⊗ f1 + f7 ⊗ f4, 2f
4 ⊗ f1 + f7 ⊗ f5, 2f

3 ⊗ f1 − f7 ⊗ f6
)

.

and that gϕ is Ricci-flat. Moreover, ∇fi(R(fj , fk)) ∈ R for all i, j, k ∈
{1, . . . , 7}. Hence, the holonomy algebra equals R and so the holonomy
group of gϕ is five-dimensional and Abelian. Since

(

2f2 ⊗ f1 + f7 ⊗ f2
)

.ϕ 6=
0, as we computed in (a), the holonomy group of gϕ is not contained in
GL(g)ϕ ∼= G∗

2. Note that g is not unimodular and so cannot admit a co-
compact lattice.

We would like to point out that the methods we use here and in [F] to obtain the
classification results may also be used to classify the almost Abelian Lie algebras
admitting other types of G-structures. As an example, we may consider so-called
symplectic half-flat SU(3)-structures on six-dimensional almost Abelian Lie algebras
h. These are given by pairs (ω, ρ) ∈ Λ2h∗ × Λ3h∗ with model tensor (ω−1, ρ−1) ∈
Λ2

(

R6
)

∗ × Λ3
(

R6
)

∗

such that dω = 0 and dρ = 0. Looking again at the model
tensors of the induced two- and three-form on a codimension one Abelian ideal u,
we see that h admits such a structure if and only if for f6 ∈ h\u the endomorphism
ad(f6)|u of u is in a Lie subalgebra of gl(u) conjugate to sl(2,C) ⊆ sl(4,R) ⊆
gl(5,R). In particular, h = k ⊕ R for some five-dimensional almost Abelian Lie
algebra h. Note that this case has already been treated by different methods in
[FMOU] and our result here is in accordance with the results there.
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3.2. Parallel Gǫ2-structures with non-degenerate u. In this subsection, we
determine the seven-dimensional almost Abelian Lie algebras g admitting parallel
G2-structures or parallel G∗

2-structures with non-degenerate u, respectively. The
case of parallel G∗

2-structures with degenerate u will be treated in the next subsec-
tion.

We start with the theorem we want to prove. In contrast to the calibrated case,
we prefer in some cases to give directly all possible real Jordan normal forms.

Theorem 3.6. Let g be a seven-dimensional real almost Abelian Lie algebra with
six-dimensional Abelian ideal u. We set Ma,b :=

(

a b
−b a

)

for a, b ∈ R and let
f7 ∈ g\u. Then:

(a) g admits a parallel G2-structure if and only if there exists a, b ∈ R and a
basis (f1, . . . , f6) of u such that ad(f7)|u = diag(M0,a,M0,b,M0,−a−b) with
respect to (f1, . . . , f6).

(b) g admits a parallel G∗

2-structure such that u has signature (2, 4) if and only
if there exists a basis (f1, . . . , f6) of u such that

ad(f7)|u ∈
{(

Ma,b

M−a,b

M0,−2b

)

,

(

M0,c

M0,d

M0,−(c+d)

)

,

(

M0,e I2
M0,e

M0,−2e

)

,
(

0 I2
0 I2

0

)

∣

∣

∣

∣

a ∈ R
∗, b, c, d, e ∈ R

}

with respect to (f1, . . . , f6).
(c) g admits a parallel G∗

2-structure such that u has signature (3, 3) if and only if
the complex Jordan normal form of ad(f7)|u is , up to a permutation of the
Jordan blocks, of the form diag(J1, J2) with J1 ∈ R3×3 being an arbitrary
complex Jordan normal form of a real 3 × 3-matrix with tr(J1) = 0 and
J2 ∈ R3×3 being the complex Jordan normal form obtained from J1 by
multiplying the diagonal elements with −1.

(d) Parallel G2-structures and parallel G∗

2-structure with non-degenerate u are
flat.

Proof. The proof is completely analogous to the determination of the Lie algebras
admitting calibrated structures in the previous subsection.

Let ϕ ∈ Λ3g∗ be a parallel Gǫ2-structure with u being non-degenerate. Note
that we may assume that f7 ∈ g\u is orthogonal to u with respect to gϕ since for
any other f ′

7 ∈ g\u we have ad(f ′

7)|u ∈ R∗ · ad(f7)|u. Let f7 ∈ u0 be such that
f7(f7) = 1 and identify the annihilator f7

0 of f7 with u∗ using the decomposition
g = u⊕ span(f7). There are unique ω ∈ Λ2u∗, ρ, ν ∈ Λ3u∗ and Ω ∈ Λ4u∗ such that

ϕ = ω ∧ f7 + ρ, ⋆ϕϕ = ν ∧ f7 +Ω.

By Proposition 2.11, dϕ = 0 and d ⋆ϕ ϕ = 0. Thus, Proposition 2.17 (b) gives us
dρ = 0 and dΩ = and so that f := ad(f7) ∈ Lie

(

GL(u)(ρ,Ω)

)

. Proposition 2.8 tells
us the model tensors for (ρ,Ω) for each value of ǫ and each value of the signature of
u. Moreover, Lemma 2.7 gives us the Lie algebra of the stabilizer subgroup of the
corresponding model tensors. We obtain that f is in a subalgebra of gl(u) conjugate
to ι(su(3)) ⊆ gl(6,R) if ǫ = −1, that f is in a subalgebra of gl(u) conjugate to
ι(su(1, 2)) ⊆ gl(6,R) if ǫ = 1 and the signature of u is (2, 4) and that f is in a
subalgebra of gl(u) conjugate to {diag (A,−At) ∈ gl(6,R)|A ∈ sl(3,R)} ⊆ gl(6,R)
if ǫ = 1 and the signature of u is equal to (3, 3). Here, ι : gl(3,C) → gl(6,R) is the
injective R-Lie algebra homomorphism defined in Lemma 2.7.

In all three cases, we have an orthogonal decomposition g = u⊕ span(f7) into an
Abelian ideal u of g and an Abelian subalgebra span(f7) which acts skew-symmetric
on the Abelian ideal u. In the Riemannian case, i.e. for ǫ = −1, it is well-known
that this class is exactly the class of all flat Riemannian metrics on Lie algebras, cf.
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[M]. Of course, the flatness of a parallel G2-structure has already been known from
Proposition 2.11. In the pseudo-Riemannian case, the same calculations show that
the analogous class of metrics on Lie algebras consists also solely of flat metrics,
although it does not exhaust the class of flat pseudo-Riemannian metrics on Lie
algebras, cf., e.g., [N]. This proves (d).

We come back to the proof of (a)-(c) and assume now that f := ad(f7)|u, f7 ∈ g\u
is contained in a subalgebra h of gl(u) which is conjugate to ι(su(3)), ι(su(1, 2)) or
{diag (A,−At) ∈ gl(6,R)|A ∈ sl(3,R)}, respectively. By Lemma 2.7, there exists a

pair (ρ,Ω) ∈ Λ3u∗×Λ4u∗ ∼= Λ3f7
0×Λ4f7

0 such that h = Lie
(

GL(u)(ρ,Ω)

)

and such

that (ρ,Ω) has model tensors
(

ρ−1,
ω2

−1

2

)

,
(

ρ−1,
ω2

1

2

)

or
(

ρ1,−ω2
−1

2

)

, respectively.

By Proposition 2.17 (b), dρ = 0 and dΩ = 0. Now take a three-form ϕ̃ ∈ Λ3g∗

such that ϕ̃ is a G2-structure, a G∗

2-structure such that u has signature (2, 4) or a
G∗

2-structure such that u has signature (3, 3), respectively. We decompose

ϕ̃ = ω̃ ∧ f7 + ρ̃, ⋆ϕ̃ϕ̃ = ν̃ ∧ f7 + Ω̃.

with ω̃ ∈ Λ2u, ρ̃, ν̃ ∈ Λ3u∗ and Ω̃ ∈ Λ4u∗. By Proposition 2.11, (ρ̃, Ω̃) and (ρ,Ω)
have the same model tensors and so there exists a linear automorphism F : u → u

such that (F ∗ρ̃, F ∗Ω̃) = (ρ,Ω). Define the linear automorphism G : g → g by
G|u := F and G(f7) := f7. Then

ϕ := G∗ϕ̃ = G∗ω̃ ∧ f7 + ρ

is a G2-structure, a G∗

2-structure such that u has signature (2, 4) or a G∗

2-structure
such that u has signature (3, 3), respectively. Moreover,

⋆ϕϕ = ⋆G∗ϕ̃G
∗ϕ̃ = G∗ ⋆ϕ̃ ϕ̃ = G∗ν̃ ∧ f7 +Ω.

By Proposition 2.17 (b), dϕ = 0 and d ⋆ϕ ϕ = 0 and so Proposition 2.11 shows that
ϕ is a parallel G2-structure, a parallel G∗

2-structure such that u has signature (2, 4)
or a parallel G∗

2-structure such that u has signature (3, 3), respectively.
Now (a) follows by observing that all the complex Jordan normal forms of ele-

ments in ι(su(3)) are given by (ia,−ia, ib,−ib,−i(a+b), i(a+b)) for certain a, b ∈ R.
To deduce (b), note that in [DPWZ], all the complex Jordan normal forms of ele-
ments in u(1, 2) ⊆ gl(3,C) are determined. To get all the complex Jordan normal
forms of elements in su(1, 2) ⊆ gl(3,C), we only have to require additionally that
they are trace-free. Hence, the possible complex Jordan normal forms of elements
in su(1, 2) ⊆ gl(3,C) are

diag(a+ ib,−a+ ib,−2ib), diag(ic, id,−i(c+ d)), diag(J2(ie),−2ie), J3(0)

for a ∈ R∗ and b, c, d, e ∈ R, where Jm(λ) denotes a Jordan block of size m with
λ ∈ C on the diagonal. This gives us the claimed real Jordan normal forms for
elements in ι(su(1, 2)). (c) is obvious. �

Remark 3.7. There are seven-dimensional almost Abelian Lie algebras which admit
both a calibrated and a cocalibrated G2-structures but no parallel G2-structure. An
example is provided by the nilpotent Lie algebra n7,2.

We look again at the nilpotent case. By [M, Theorem 2.4], a nilpotent Lie algebra
g admits a flat Riemannian metric if and only if g is Abelian and so Proposition
2.14 shows that a nilpotent Lie algebra g admits a parallel G2-structure if and only
if g is Abelian. This is in accordance with Theorem 3.6. For the G∗

2-case with
non-degenerate u we get from Theorem 3.6:

Corollary 3.8. Let g be a seven-dimensional real nilpotent almost Abelian Lie
algebra and let u be a six-dimensional Abelian ideal in g. Then g admits a parallel
G∗

2-structure with non-degenerate u if and only if g ∈
{

R7, A5,1 ⊕ R2, n7,2
}

. If this
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is the case, then g admits both a parallel G∗

2-structure with u having signature (2, 4)
and a parallel G∗

2-structure with u having signature (3, 3).

3.3. Parallel G∗

2-structures with degenerate u. In this subsection, we deter-
mine all parallel G∗

2-structures ϕ ∈ Λ3g∗ on almost Abelian seven-dimensional Lie
algebras g which admit a degenerate codimension one Abelian ideal u with re-
spect to the induced pseudo-Riemannian metric gϕ. In contrast to the case of
non-degenerate u, we obtain parallel G∗

2-structures ϕ for which gϕ is a Ricci-flat,
non-flat pseudo-Riemannian metric with Abelian holonomy group of dimension at
most two. In the nilpotent case, we give a detailed description of the dimension of
the holonomy group of gϕ and identify the locally symmetric gϕ.

Convention 3.9. In this subsection, the holonomy group of a pseudo-Euclidean met-
ric on a Lie algebra g should be the holonomy group of the corresponding left-
invariant pseudo-Riemannian metric on the associated connected simply-connected
Lie group G̃ with Lie algebra g or, equivalently, the restricted holonomy group of
the corresponding left-invariant pseudo-Riemannian metric on any connected Lie
group G with Lie algebra g.

We start with a full description of all such parallel G∗

2-structures.

Theorem 3.10. Let g be a seven-dimensional almost Abelian Lie algebra, u be
a six-dimensional Abelian ideal in g and ϕ ∈ Λ3g∗ be a G∗

2-structure such that u

is degenerate with respect to the induced pseudo-Euclidean metric gϕ. Then ϕ is
parallel if and only if for some Witt basis (f1, . . . , f7) of g there exist A, B ∈ R2×2

and v, w ∈ R2 such that

(3.1) ad(f7)|u =









−tr(A) −tr(B) vt wt

0 0 0 vt

0 Jv A− tr(A)I2 B
0 0 0 A









with respect to the basis (f1, . . . , f6), where J :=

(

0 1
−1 0

)

∈ R2×2. If ϕ is parallel,

then the holonomy of gϕ is Abelian and at most two-dimensional.

Proof. We choose a Witt basis (f1, . . . , f7) for ϕ and set f := ad(f7). By Lemma
2.9, we have

ϕ = −f156−f236+f245−1

2
f127−f347, ⋆ϕϕ = f1256+f3456+

1

2
f1367−1

2
f1457+f2347.

By Proposition 2.11, ϕ is parallel if and only if dϕ = 0 and d ⋆ϕ ϕ = 0. Thus,
Proposition 2.17 (b) gives us that ϕ is parallel if and only if

f ∈ Lie
(

GL(u)(−f156−f236+f245,f1256+f3456)

)

.

By Lemma 2.9, −f156 − f236 + f245 = f651 − f623 + f524 has model tensor ρ0 ∈
Λ3

(

R6
)

∗

and Lemma 2.7 gives us that f ∈ Lie
(

GL(u)−f156
−f236+f245

)

if and only
if

(3.2) f =









−tr(A) −tr(B) vt wt

0 α 0 vt

z u A− (α+ tr(A))I2 B
0 z 0 A









for certain A, B ∈ R2×2, u, v, w, z ∈ R2, α ∈ R. By Lemma 2.7,

Lie
(

GL(u)f1256+f3456

)

=
{(

C−
tr(E)

2 I4 D

0 E

)∣

∣

∣C ∈ sp(4,R), D ∈ R
4×2, E ∈ R

2×2
}

,
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with sp(4,R) =
{

C ∈ R4×4 |Ctdiag(J, J) + diag(J, J)C = 0
}

. Thus, f as in Equa-

tion (3.2) is in Lie
(

GL(u)f1256+f3456

)

if and only if z = 0 and

0 =







− tr(A)
2 0 0

−tr(B) α+ tr(A)
2 ut

v 0 At −
(

α+ tr(A)
2

)

I2






·





0 1 0
−1 0 0
0 0 J





+





0 1 0
−1 0 0
0 0 J



 ·







− tr(A)
2 −tr(B) vt

0 α+ tr(A)
2 0

0 u A−
(

α+ tr(A)
2

)

I2







=





0 α 0
−α 0 utJ − vt

0 Ju+ v JA+AtJ − (2α+ tr(A))J





Since JA+ AtJ = tr(A)J for A ∈ R2×2 and J2 = −I2, this is equivalent to α = 0
and u = Jv. Hence, ϕ is parallel if and only if

ad(f7)|u = f =









−tr(A) −tr(B) vt wt

0 0 0 vt

0 Jv A− tr(A)I2 B
0 0 0 A









for certain A, B ∈ R2×2, v, w ∈ R2.
A lengthly but straightforward calculation, which may be carried out efficiently

using a computer algebra system like Maple, shows that the space R :=
span({R(X,Y )|X,Y ∈ g}) spanned by all curvature endomorphisms is a subspace
of V := span(2f5 ⊗ f1 + f7 ⊗ f4, 2f

6 ⊗ f1 − f7 ⊗ f3). Another computation shows

∇fi

(

2f5 ⊗ f1 + f7 ⊗ f4
)

= 0, ∇fi

(

2f6 ⊗ f1 − f7 ⊗ f3
)

= 0,

for all i = 1, . . . , 6 and

∇f7

(

2f5 ⊗ f1 + f7 ⊗ f4
)

=(2a11 + a22)
(

2f5 ⊗ f1 + f7 ⊗ f4
)

+ a12 ·
(

2f6 ⊗ f1 − f7 ⊗ f3
)

,

∇f7

(

2f6 ⊗ f1 − f7 ⊗ f3
)

=a21
(

2f5 ⊗ f1 + f7 ⊗ f4
)

+ (a11 + 2a22)
(

2f6 ⊗ f1 − f7 ⊗ f3
)

.

(3.3)

Since gϕ is real-analytic as a left-invariant metric, the Ambrose-Singer Theorem
shows that the holonomy algebra hol(gϕ) is a subspace of V . Moreover, V consists of
commuting endomorphisms and is two-dimensional and so the holonomy is Abelian
and at most two-dimensional. �

Note that we do not claim that all the parallel G∗

2-structures obtained in Theorem
3.10 are non-isomorphic. In fact, we will use now a Lie algebra automorphism to get
a more compact description of the possible endomorphisms ad(f7)|u in the nilpotent
case. Using this description, we are able to compute explicitly the dimension of the
holonomy group of the induced pseudo-Riemannian metric in dependence of the
remaining parameters in this case. Moreover, we are able to identify the locally
symmetric pseudo-Riemannian metrics.

Theorem 3.11. Let g be a seven-dimensional nilpotent almost Abelian Lie algebra,
u be a codimension one Abelian ideal and ϕ ∈ Λ3g∗. Then ϕ is a parallel G∗

2-
structure with degenerate u if and only if there exists a Witt basis f1, . . . , f7 such
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that

(3.4) ad(f7)|u =









0 −tr(B) vt wt

0 0 0 vt

0 Jv N B
0 0 0 N









with N =

(

0 δ
0 0

)

for some δ ∈ {−1, 0, 1} and arbitrary B = (bij)ij ∈ R2×2,

v, w ∈ R2. In this case, δ = 0 implies that gϕ is flat. If δ 6= 0, then the following is
true:

(i) gϕ has two-dimensional Abelian holonomy if and only if b21 6= 0.
(ii) gϕ has one-dimensional Abelian holonomy if and only if b21 = 0 and b11 6=

b22.
(iii) gϕ is flat if and only if b21 = 0 and b11 = b22.
(iv) gϕ is locally symmetric if and only if b21 = 0. In particular, if gϕ is locally

symmetric, the holonomy is at most one-dimensional.

Proof. By Theorem 3.10 and Engel’s Theorem, ϕ is parallel if and only if there
exists a Witt basis f1, . . . , f7 such that

ad(f7)|u =









−tr(A) −tr(B) vt wt

0 0 0 vt

0 Jv A− tr(A)I2 B
0 0 0 A









and such that ad(f7)|u is nilpotent. If ad(f7)|u is nilpotent, then, necessarily, A has

to be nilpotent. Computing (ad(f7)|u)6 for a nilpotent A, we see that the nilpotency
of A is also a sufficient condition for ad(f7)|u being nilpotent. By Lemma 2.9,
ϕ = −f156 − f236 + f245 − 1

2f
127 − f347. For C ∈ SL(2,R), we have JC = C−tJ

and so
(

C 0
0 C

)t

·
(

0 −J
J 0

)

·
(

C 0
0 C

)

=

(

0 −CtJC
CtJC 0

)

=

(

0 −J
J 0

)

.

Thus, diag(1, 1, C, C, 1) ∈ GL(7,R) stabilizes ϕ for all C ∈ SL(2,R). Under the
corresponding change of basis, the submatrix A of ad(f7)u gets mapped to C−1AC.
It is a well-known fact that each non-zero nilpotent A ∈ R2×2 is similar to the matrix
( 0 1
0 0 ) and obviously this is also true if we restrict the similarity transformations to

elements in GL(2,R) such that the absolute value of the determinant is equal to 1.
Now each such matrix can be written as a product of an element in SL(2,R) and
diag(1,−1). Thus, we may assume that C−1AC = ( 0 ǫ0 0 ) for some ǫ ∈ {−1, 1} if
A 6= 0 and the first claim follows.

If ad(f7)|u is as in the assertion, a straightforward calculation, which may be
carried out efficiently using Maple, shows that the only non-zero curvature en-
domorphisms R(fi, fj) with i < j are R(f5, f7) and R(f6, f7) and that they are
concretely given by

R(f5, f7) =− δb21
(

2f6 ⊗ f1 − f7 ⊗ f3
)

,

R(f6, f7) =− δb21
(

2f5 ⊗ f1 + f7 ⊗ f4
)

+ δ(b11 − b22)
(

2f6 ⊗ f1 − f7 ⊗ f3
)

.

So gϕ is flat if δ = 0 and we may assume for the rest of the proof that δ 6= 0. Since
the holonomy is at most two-dimensional, it is two-dimensional if b21 6= 0. If b21 = 0,
then only R(f6, f7) = δ(b11 − b22)

(

2f6 ⊗ f1 − f7 ⊗ f3
)

is non-zero and Equation
(3.3) shows that ∇(R(f6, f7)) = 0. Thus, the holonomy is one-dimensional if and
only if b21 = 0 and b11 6= b22 and gϕ is flat if and only if b21 = 0 and b11 = b22.
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Moreover, the only non-zero component (∇fiR)(fj, fk) with j < k is

(∇f7R) (f6, f7) = −2δb21
(

2f6 ⊗ f1 − f7 ⊗ f3
)

.

Thus, ∇R = 0, i.e. gϕ is locally symmetric, if and only if b21 = 0. �

Since Theorem 3.11 gives us only a description of the holonomy of the induced
pseudo-Riemannian metric in dependence of the parameters in Equation (3.4), we
end this section by determining which parameter values correspond to which seven-
dimensional nilpotent almost Abelian Lie algebra. Note that a complete list of
these Lie algebras is given in Table 1 and the names occurring in the following
proposition are also taken from this table.

Proposition 3.12. Let g be a seven-dimensional nilpotent almost Abelian Lie al-
gebra and u be a codimension one Abelian ideal. Assume that there exists B =
(bij)ij ∈ R2×2, v = (v1, v2) ∈ R2, w = (w1, w2) ∈ R2, δ ∈ {−1, 0, 1} and f7 ∈ g\u
such that ad(f7)|u is as in Equation (3.4) with respect to some basis (f1, . . . , f6) of
u.

(a) If δ 6= 0, then

g ∈
{

n7,3, n7,4, n6,1 ⊕ R, A5,1 ⊕ R
2, A5,2 ⊕ R

2
}

.

More exactly, the following is true:
(i) g = n7,4 if and only if v1 6= 0.
(ii) g = n7,3 if and only if v1 = 0, b21 6= 0 and tr(B) 6= −δv22.
(iii) g = A5,2 ⊕ R2 if and only if v1 = 0, b21 6= 0 and tr(B) = −δv22.
(iv) g = n6,1 ⊕ R if and only if v1 = b21 = 0 and either w1 6= δb11v2 or

tr(B) 6= −δv22.
(v) g = A5,1 ⊕ R2 if and only if v1 = b21 = 0, w1 = δb11v2 and tr(B) =

−δv22.
(b) If δ = 0, then

g ∈
{

n7,1, n7,2, n6,1 ⊕ R, A5,1 ⊕ R
2, h3 ⊕ R

4,R7
}

,

and, conversely, all these Lie algebras admit a codimension one Abelian
ideal u, a basis f1, . . . , f6 of u and f7 ∈ g\u such that ad(f7)|u is as in
Equation (3.4).

Proof. We set F := ad(f7)|u.
(a) Let δ ∈ {−1, 1}.

By direct computation, we get that the only non-zero entry of F 5 is
F 5[1, 6] = −v31 . Thus, the Jordan normal form consists of only one Jordan
block of size six, i.e. g = n7,4, if and only if v1 6= 0.

Let v1 = 0. Then we get that F 4 = 0 and that the only non-zero elements
of F 3 are F 3[1, 6] = δv2b21 and F 3[3, 6] = b21. Hence, the Jordan normal
form of F has a Jordan block of size four if and only if b21 6= 0. To determine
under which condition the Jordan normal form of F has Jordan blocks of
sizes (4, 2), i.e. g = n7,2, and when it has Jordan blocks of sizes (4, 1, 1), i.e.
g = A5,2 ⊕ R2, we have to compute the rank of F . Since the first column,
the third column and the last row of F are zero and the second row is a
multiple of the fifth row, the rank is the same as the rank of the following
4× 4-submatrix of F :

G :=









−tr(B) v2 w1 w2

v2 δ b11 b12
0 0 b21 b22
0 0 0 δ









∈ R
4×4
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Since the rank of F is three or four, it suffices to compute the determinant
of G. We have det(G) = −δb21

(

δ · tr(B) + v22
)

and so det(G) 6= 0 if and

only if tr(B) 6= −δv22 . Hence, (ii) and (iii) follow.
So let us now assume that v1 = b21 = 0. Then the only non-zero elements

of F 2 are F 2[1, 6] = −b11v2 + δw1 and F 2[3, 6] = v22 + δ · tr(B). Thus, the
Jordan normal form of F has a Jordan block of size three if and only if
w1 6= δb11v2 or tr(B) 6= −δv22 . Again, we have to compute the rank of
F , which is the same as the rank of G. Since the third column of G is a
multiple of the last column, we can do this by computing the rank of the
matrix





−tr(B) v2 w1 w2

v2 δ b11 b12
0 0 0 δ



 ∈ R
3×4.

If w1 6= δb11v2, then the last three columns are linearly independent and if
tr(B) 6= −δv22 , then the first, the second and the fourth column are linearly
independent. Thus, the rank is always three and so the Jordan normal form
has Jordan blocks of sizes (3, 2, 1), i.e. g = n6,1 ⊕ R.

So let us now assume that v1 = b21 = 0, w1 = δb11v2 and tr(B) = −δv22 .
Again, we have to compute the rank of F and may do this by computing
the rank of





−tr(B) v2 w1 w2

v2 δ b11 b12
0 0 0 δ



 ∈ R
3×4.

Since δ 6= 0, the rank is at least two. From w1 = δb11v2, tr(B) = −δv22
and δ2 = 1, we get that the first and the third column are multiples of the
second one. Hence, the rank is two and the Jordan normal form of F has
Jordan blocks of sizes (2, 2, 1, 1), i.e. g = A5,1 ⊕ R2.

(b) Let δ = 0. Then F 3 = 0 and one can show that F 2 = 0 if and only if v = 0.
Suppose first that v 6= 0, i.e. v1 6= 0 or v2 6= 0. Then F has one

Jordan block of size three and the rank of F is at most four. Moreover, the
submatrix of F obtained by erasing the first column and the last two rows
is given by









−tr(B) v1 v2 w1 w2

0 0 0 v1 v2
v2 0 0 b11 b12
−v1 0 0 b21 b22









∈ R
4×5,

and has at least rank three since v1 6= 0 or v2 6= 0. If we choose v = (1, 1),
w = 0 and B = diag(1, 0), then F has rank four and so the Jordan normal
form of F has Jordan blocks of sizes (3, 3), i.e. g = n7,2. If we choose
v = (1, 1), w = 0 and B = 0, then F has rank three and so the Jordan
normal form of F has Jordan blocks of sizes (3, 2, 1), i.e. g = n6,1 ⊕ R.

Suppose now that v = 0. Then the rank of F is the same as the rank of
the following 3× 3-submatrix:





−tr(B) w1 w2

0 b11 b12
0 b21 b22



 ∈ R
3×3.

Obviously, we may choose the parameters B = (bij)ij and w1, w2 in such
a way that the rank of the above matrix is equal to any of the numbers
3, 2, 1, 0. Hence, any Jordan normal form with Jordan blocks of maxi-
mal size two is possible and the corresponding seven-dimensional nilpotent
almost Abelian Lie algebras are n7,1, A5,1 ⊕ R2, h3 ⊕ R4 and R7.
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Appendix

Table 1 contains a list of all seven-dimensional nilpotent almost Abelian Lie al-
gebras and gives us the information on the existence of parallel G∗

2-structures and
on geometric properties of the induced pseudo-Riemannian metrics on these Lie
algebras that we get from Theorem 3.11 and Proposition 3.12. The names for the
Lie algebras in the first column are taken from [PSWZ] for the four-dimensional
and five-dimensional summands. For the six-dimensional summands and the seven-
dimensional indecomposable Lie algebras, we use the class symbol n, indicate the
dimension with the first index and enumerate the ones with the same dimension
with the second index. The second column contains the Lie bracket in the well-
known dual notation, i.e. we write down

(

de1, . . . , de7
)

for a basis
(

e1, . . . , e7
)

of g∗.
The third column indicates whether the Lie algebra g admits a parallel G∗

2-structure
or not. The next column, labeled “dim(Hol)” gives the possible dimensions of the
holonomy groups of a parallel G∗

2-structure on the Lie algebra g. If there is no
such structure on g, we write “-”. Finally, the last column tells us whether or not
there exists a parallel G∗

2-structure on g which induces non-flat locally symmetric
pseudo-Riemannian metric.

Table 1: parallel G∗

2-structures on 7d nilpotent almost Abelian Lie algebras

g Lie bracket
parallel

G∗

2-structure
dim(Hol)

non-flat loc.
symmetric

n7,1
(

e47, e57, e67, 0, 0, 0, 0
)

yes 0 no

n7,2
(

e27, e37, 0, e57, e67, 0, 0
)

yes 0 no

n7,3
(

e27, e37, e47, 0, e67, 0, 0
)

yes 2 no

n7,4
(

e27, e37, e47, e57, e67, 0, 0
)

yes 0, 1, 2 yes

n6,1 ⊕ R
(

0, 0, e12, e13, 0, e15, 0
)

yes 0, 1 yes

n6,2 ⊕ R
(

0, 0, e12, e13, e14, e15, 0
)

no - no

A5,1 ⊕ R
2

(e35, e45, 0, 0, 0, 0, 0) yes 0, 1 yes

A5,2 ⊕ R
2

(e25, e35, e45, 0, 0, 0, 0) yes 2 no

A4,1 ⊕ R
3

(e24, e34, 0, 0, 0, 0, 0) no - no

h3 ⊕ R
4

(e23, 0, 0, 0, 0, 0, 0) yes 0 no

R
7

(0, 0, 0, 0, 0, 0, 0) yes 0 no
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