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Root Systems In Finite Symplectic Vector Spaces
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Abstract. We study realizations of root systems in possibly degenerate sym-

plectic vector spaces over finite fields, up to symplectic isomorphisms. The

main result of this paper is the classification of such realizations for the field

F2. Thereby, each root system requires a specific degree of degeneracy of the

symplectic vector space. Our main motivation for this paper is, that for each

such realization of a root system we can construct a Nichols algebra over a

nonabelian group.
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1. Introduction

1.1. Motivation and applications. For a given n×n Cartan matrix with entries

in Z, a root system of rank n is generated by a basis of a n-dimensional euclidean

vector space V = Cn (the simple roots) with the scalar products between all basis

elements prescribed by the Cartan matrix. The Cartan matrix is usually visualized

by a generalized Dynkin diagram. One demands stability of the set of all roots

under the action of the Weyl/Coxeter group associated to the Cartan matrix. Root

systems play among others a prominent role in the theory of Lie algebras as well as

Nichols algebras, which appear naturally as Borel parts of quantum groups [AS10],

such as uq(g).

In our recent study of Nichols algebras over certain nonabelian groups G of nilpo-

tency class 2 in [Len13] we started with a root system over C with given Cartan

matrix for a Nichols algebra over an abelian group G/[G,G]. Then, this Nichols al-

gebra was extended to G using an additional root system structure on a symplectic

vector space V = G/G2 over the finite field F2 with the same Cartan matrix. In

this application, the symplectic form is induced by the commutator map of G and

the prescribed Dynkin diagram is thus a G-decorated commutativity graph.

In the following article, we shall present a definition and classification of symplec-

tic root system over the field F2. As every Cartan matrix can only have entries

0, 1 ∈ F2, it is sufficient to consider simply-laced Dynkin diagrams and hence ordi-

nary graphs. A symplectic root system over F2 is then defined as a decoration of the

Dynkin diagram graph by simple roots, which are vectors in a (possibly degenerate)

symplectic vector space V = Fn
2 , such that the decorations of two nodes are (sym-

plectic) orthogonal iff the nodes are non-adjacent. The Coxeter group asociated to

the Dynkin diagram over C acts on the set of all roots by symplectic isomorphisms.

If the decorations form a basis of V , the symplectic root system is called minimal.

We achieve a complete classification of symplectic root systems over F2 up to sym-

plectic isomorphisms on arbitrary graphs. Especially we clarify, which Dynkin dia-

gram admits a symplectic root system for a given nullity, i.e. the degree of degen-

eracy of the symplectic form and hence the dimension of the nullspace dim(V ⊥).

This nullity turns out to be bounded by the coclique number of the graph. We call

symplectic root systems over nondegenerate symplectic vector spaces “extraspecial”

as they correspond to extraspecial groups in Section 7.2.

We conclude by giving credit to previous work:

Our notion of a symplectic root system has appeared already in Lusztig’s repre-

sentation theory of finite Lie groups as a technical tool [Lusz84] Chp. 9. It was

also extensively studied in singularity theory under the name vanishing lattices1 by

Wajnryb [Wa80], Chmutov [Ch82][Ch83] and Jansen [Jan83][Jan85]. The possible

1We thank Sergei Chmutov for helpful comments.



groups have been classified by [Jan83] Thm. 4.8 and the number of isomorphism

classes of symplectic root systems for a given graph is reduced in [Jan85] Thm. 7.5

to the case F2. To the best of our knowledge, our combinatorically derived results

are complementary and determine the explicit isomorphism classes over F2, as well

as the unique nullity, and apply also for non-minimal symplectic root systems.

1.2. Structure of the article. We start with basic definitions in Section 2 and

give first examples and properties in Section 3. Most importantly we can prove

already at this point a universal property of minimal symplectic root systems,

especially they are unique up to isomorphism, as well as their existence. This shows

that a minimal symplectic root system of a given graph exists for precisely one

isomorphy type of symplectic vector spaces (nullity). However, this result does not

yet determine the nullity nor the isomorphy classes of the non-minimal symplectic

root systems, which is content of the remaining article.

Corollary (Universal Property). Suppose (f, V ) and (g,W ) to be symplectic root

systems on the same graph G and assume moreover (f, V ) minimal. Then there

exists a homomorphism of symplectic root systems φ : (f, V ) → (g,W ). Especially

two minimal symplectic root systems are always isomorphic.

Lemma (Existence). For every graph G there exists a minimal symplectic root

system. By the universal property it is unique up to isomorphism.

We introduce a straightforward notion of quotients and find immediately:

Corollary. For every graph G there is up to isomorphism a unique minimal sym-

plectic root system and all symplectic root system of G are quotients thereof.

In Section 4 we then consider the restriction of a symplectic root systems to an in-

duced subgraph G ⊂ D and derive bounds for the change in nullity of the symplectic

root systems. As an application we prove a bound on the nullity of a symplectic

root system in terms of the coclique number of the graph and briefly discuss the

extremal cases of the inequality (ADE- vs. complete graphs).

In the main Section 5 of this paper we introduce a construction that extends a

given minimal symplectic root system on a subgraph by one node.

Theorem (Minimal Extensions). Let D be a graph, p ∈ D a node and G = (g,W )

a minimal symplectic root system of a spanning subgraph G := D − p. Then there

exists a unique minimal symplectic root system F = (f, V ) on D extending G.

Proof. The construction proceeds in the following steps for extending extraspecial,

nullspace and finally arbitrary symplectic root systems. From the second step on,

the extensions fall into two distinct cases yielding for V either higher or lower nullity

than W according to the different cases in the Restriction Theorem 4.3.

• In Section 5.1 we construct almost extraspecial extensions of extraspecial

symplectic root systems, i.e. W nondegenerate. The proof uses the mini-

mality of G to express the indicator function λ of a neighbourhood of p in D



as a linear form λ̃. Then is uses the assumed nondegeneracy to construct a

distinguished element w0 ∈ W and a thereof the new decoration f(p) ∈ V .

• In Section 5.2 we classify in contrast extensions of symplectic root systems

consisting only of nullspace W = W⊥. Especially G is totally disconnected.

Thereby we need surprisingly the choice of an additional nondegenerate

symmetric bilinear form (, ) on the nullspace regarded as vector space over

F2. As before we construct a linear form λ̃, but we yield two cases: Either

λ̃ = 0, then D is again totally disconnected, V = V ⊥ is extended by yet

another nullvector and has higher nullity then W . For λ̃ 6= 0 we decompose

W = ker(λ̃) ⊕ xk and extend x by the to-be-definied decoration f(p) = y

to a new hyperbolic plane H1. Especially V then has lower nullity than W

• In Section 5.3 we combine the preceeding results and achieve the final classi-

fication result for extending arbitrary sympletic root systems by one point.

The crucial ingredient is an artificial nondegenerate, symmetric bilinear

form 〈〈, 〉〉 extending the symplectic form. Thereby we effectively write the

neighbourhood of the new point as a symmetric difference of two graphs

obtained by the two previous methods.

• In Section 5.4 we give an additional very explicit formula for 2-point-

extensions of a given extraspecial symplectic root system. The criterium

avoids the use of the artificial mixed bilinear form and provides a nice

characterization in terms of the two 1-point extensions and their possible

interaction. This is used in the example calculations for ADE-type in Sec-

tion 6.

�

Note that determining the nullity for a given graph is tedious and usually requires

to successively apply the extension theorem. As an example, in Section 6 we deter-

mine explicitly decoration and nullity for all symplectic root systems corresponding

to Dynkin diagrams of finite Cartan type, i.e. in the ADE family. We start with

an induction on A2n−2 → A2n, which turns out to yield minimal symplectic root

systems of extraspecial type. Then we extend by explicit nodes to reach the other

diagrams with higher nullity. We indeed find that Cartan type root systems typ-

ically require the smallest possible nullity (0 or 1), except D2n needs 2. We then

determine all non-minimal quotients up to Dynkin diagram automorphisms.

As further topics, we first connect in Section 7.1 the notion of symplectic root sys-

tems to the well-known notion over C. We describe, how a symplectic decoration

of the graph as considered here can be additively extended to a full root systems

and prove that the Coxeter group accociated to the prescribed Cartan matrix (e.g.

the Weyl group) acts on this natural set of symplectic vectors by symplectic iso-

morphisms.

Section 7.2 explains the application of symplectic root systems to Nichols algebras.

In [Len13] we constructed the first Nichols algebras of rank > 2 over nonabelian



groups G. The construction starts with a known finite-dimensional Nichols algebra

over an abelian group Γ of simply-laced Cartan type with a diagram automorphism

Z2. Then, a symplectic root system over the field F2 is used to construct a new

link-indecomposable finite-dimensional covering Nichols algebra over a central ex-

tension Z2 → G → Γ and again over C.

Here, the symplectic vector space over F2 is V := Γ/Γ2 with the symplectic form

induced by the commutator map on G. The symplectic root systems then provides

a basis of V adapted to the existing Dynkin diagram. Especially the nullity of V

corresponds to a specific size of the center Z(G). We hope the present classification

will enable the classification of diagonal Nichols algebras over nilpotent groups.

2. Main Definition

Throughout this article, we assume all graphs to be finite and all vector spaces to

be finite-dimensional.

Definition 2.1. The following unusually general notion is custom in the theory

of p-groups, see e.g. [Hup83] paragraph II.9 (p. 215): A (possibly degenerate) sym-

plectic vector space is a vector space V over a field k with a (possibly degenerate)

bilinear form

〈, 〉 : V × V → k

that is alternating:

〈v, v〉 = 0

Note that alternating forms are always skew-symmetric, but for char(k) = 2 skew-

symmetric is equivalent to symmetric and does not imply alternating. The nullspace

(or radical) of V is defined as

V ⊥ := {v ∈ V | ∀w∈V 〈v, w〉 = 0}

Note that W⊥ for a subspace denotes the radical ⊂ W , not the complement ⊂ V .

Theorem 2.2. ([Hup83] Satz II.9.6 (p.217)) Every (finite-dimensional) symplec-

tic vector space V, 〈, 〉 possesses a symplectic basis {x1, . . . xn, y1, . . . yn, z1, . . . zk}

consisting of mutually orthogonal nullvectors zi ∈ V ⊥ and hyperbolic planes Hi =

xik⊕ yik, 〈xi, yi〉 = 1

V ∼=(x1k⊕ y1k)⊕
⊥ (x2k⊕ y2k)⊕

⊥ · · · ⊕⊥ z1k⊕⊥ z2k⊕⊥ · · ·

Definition 2.3. Denote by k = dimV ⊥ the nullity, the number of nullvectors

zi in a basis. Further denote by n the conullity, the number of hyperbolic planes

Hi = xik⊕ yik generating V . Altogether 2n+ k = dimV . By Theorem 2.2 the type

(n, k) precisely characterizes the isomorphism type of a symplectic vector space V .

• We call V extraspecial, iff the form is nondegenerate V ⊥ = 0, i.e. the V is

of type (n, 0) and necessarily of even dimension 2n. The name is chosen as

the associated p-groups are usually called extraspecial, see Section 7.2.



• We call V almost extrapecial, iff dimV ⊥ = 1, i.e. V is of type (n, 1) and

necessarily of odd dimension 2n+ 1. The name is chosen as the associated

p-groups are usually called almost extraspecial, see Section 7.2.

The key notion of a symplectic root system over F2 will now be given purely in terms

of graph theory, as the Dynkin diagram is always simply-laced in characteristic 2.

Note that we yet have no satisfying general definition for arbitrary characteristic.

Definition 2.4. A symplectic root system F = (f, V ) over the field k = F2 on a

(finite) graph D consists of a (finite-dimensional) symplectic vector space V over

the field F2 together with a node decoration f : D → V such that

• The image f(D) generates V as a vector space.

• Two nodes p, q ∈ D are adjacent in the graph D iff their f -decorations in

V are not orthogonal 〈f(α), f(β)〉 6= 0 (then already = 1F2
),

We call F = (f, V ) of type (n, k), iff the symplectic vector space V is of type (n, k).

We call F minimal iff the decorations {f(α)}α∈D form a basis of V .

3. First Properties And Examples

Example 3.1. Let G = A1 = {p} be an isolated point. Because the node decorations

f(p) have to generate V , the only symplectic root systems F = (f, V ) are

• V = zF2 with f(p) = z of type (0, 1), which is minimal.

• V = {0} with f(p) = 0 of type (0, 0), which is not minimal.

Lemma 3.2. Let G = G1∪G2 be a disconnected union of subgraphs. Then any mini-

mal symplectic root system F = (f, V ) decomposes as V = V1⊕
⊥V2 with f(Gi) ⊂ Vi

inducing minimal symplectic root system on each subgraphs. The orthogonal sum

especially implies, that if these smaller symplectic root system are of type (n1, k1)

resp. (n2, k2), then F is of type (n1 + n2, k1 + k2).

Proof. Because the decorations {f(p)}p∈G by the assumed minimality of F form a

basis of V , we may decompose V as direct sum of subspaces Vi with basis {f(p)}p∈Gi
:

V = V1 ⊕ V2

G1, G2 were assumed to be mutually disconnected, so the defining property of

symplectic root systems implies

∀p∈G1 q∈G2
〈f(p), f(q)〉 = 0

As the sets {f(p)}p∈Gi
generate respectively Vi the sum is orthogonal as asserted.

�

Example 3.3. Let G be a totally disconnected graph, then the preceeding lemma

shows each minimal symplectic root system to be of type (0, |G|) as V decomposes

orthogonally into 1-dimensional nullspaces for each isolated point as in example 3.1.

If the graph contains proper edges, a pure nullspace V = V ⊥ will not suffice:



Example 3.4. Let G = A2 = {p, q} be two connected points. The decorations

f(p), f(q) have to generate V , thus it can have dimension at most 2. Pure nullspace

cases can be discarded, because 〈f(p), f(q)〉 = 0 contrary to the assumed edge pq.

Hence the only remaining possibility is a single hyperbolic plane V = xF2⊕
6⊥yF2, i.e.

V of type (1, 0). Here, indeed we yield a minimal symplectic root system f(p) = x

and f(q) = y with 〈f(p), f(q)〉 = 1. Note that there are many other possibilities,

e.g. f(p) = x + y and f(q) = y, but these choices obviously just differ by a linear

isomorphism that preserves the symplectic form.

The last example shows, that one has to classify symplectic root system according

to some isomorphism criterion.

Definition 3.5 (Homomorphisms of symplectic vector spaces). Let V,W be (pos-

sibly degenerate) symplectic vector spaces, then we call a linear map φ : V → W a

symplectic homomorphism, iff

∀v,w∈V 〈v, w〉V = 〈φ(v), φ(w)〉W

If moreover φ is bijective, we call φ symplectic isomorphism. Note that if V is

degenerate, a symplectic homomorphism needs not to be bijective. Rather, φ might

possess a kernel ker(φ) ⊂ V ⊥. The conullies of V and Im(φ) ⊂ W coincide, but the

nullity of V might be higher.

Definition 3.6 (Morphisms). Let G be a fixed graph and F = (f, V ), G = (g,W )

symplectic root systems of G. A symplectic root system homomorphism φ : F → G

is a linear map φ : V → W that intertwines the decorations: φ ◦ f = g. If moreover

φ is bijective, we call φ a symplectic root system isomorphism.

Remark 3.7. Note that we require the graph D,G to be fixed sets. Hence a graph

automorphism on D may interchange non-isomorphic symplectic root system in this

definition. For nontrivial examples of ADE-type see Remark 6.2.

The assertion of φ ◦ f = g for symplectic root system morphisms already proves φ

to be a a symplectic homomorphism, as the defining property of a symplectic root

system (f, V ) already fixes the entire symplectic form on V :

Lemma 3.8. Suppose φ : (f, V ) → (g,W ) to be a homomorphism between symplec-

tic root systems. Then φ is already a surjective symplectic homomorphism 〈v, w〉V =

〈φ(v), φ(w)〉W .

Proof. We calculate that φ preserves the symplectic form. First, the defining prop-

erty of the symplectic root systems (f, V ) and (g,W ) on the same graph already

fixes the value of the symplectic form on the decorations:

∀p,q∈G 〈f(p), f(q)〉 = 〈g(p), g(q)〉 = 0F2
, 1F2

Because we assumed φ to be a homomorphism of symplectic root systems φ◦ f = g

∀p,q∈G 〈f(p), f(q)〉 = 〈φ(f(p)), φ(f(q))〉



so φ is a symplectic homomorphism V → W . Moreover, by definition of a symplectic

root system the images f(p) generate V , hence φ is necessarily surjective. �

Because for a minimal symplectic root system (f, V ) the decorations {f(p)}p∈G

even form by definition a basis of V , we always find in this case a unique linear

map φ : V → W with g = φ ◦ f .

Corollary 3.9 (Universal Property). Suppose (f, V ) and (g,W ) to be symplectic

root systems on the same graph G and assume moreover (f, V ) minimal. Then there

exists a unique homomorphism of symplectic root systems φ : (f, V ) → (g,W ).

Especially two minimal symplectic root systems are always isomorphic.

On the other hand, since G is supposed finite: If (g,W ) is minimal, then any sym-

plectic root system homomorphism φ : (f, V ) → (g,W ) is an isomorphism.

By inducing a symplectic form on the formal vector space generated by the nodes

of G we find morover2:

Lemma 3.10 (Existence). For every graph G there exists a minimal symplectic root

system. By the universal property (Corollary 3.9) it is unique up to isomorphism.

Proof. Consider the vector space V over F2 generated by a basis {vp | p ∈ G} and

the symplectic form defined on this basis by

〈vp, vq〉 =







1F2
, if p 6= q adjacent

0F2
, else

The bilinear form 〈, 〉 is symmetric and we check it is indeed an alternating form

over F2:

〈
∑

p∈G

apvp,
∑

p∈G

apvp〉 =
∑

p∈G

a2p〈vp, vp〉+ 2
∑

p6=q∈G

apaq〈vp, vq〉 = 0

Moreover, it is clear that by definition F := (f, V ) with f(p) = vp is a symplectic

root system. �

Let conversely be φ : V → W be a surjective symplectic homomorphism, i.e φ

surjective and

〈v, w〉V = 〈φ(v), φ(w)〉W

For a given symplectic root system F = (f, V ) on a graph G we may consider the

pair G := (φ ◦ f,W ) and verify for G the defining property of a symplectic root

system on the same underlying graph G. First we check

∀p,q∈G 〈(φ ◦ f)(p), (φ ◦ f)(q)〉W = 〈f(p), f(q)〉V = 0F2
, 1F2

Secondly by definition the symplectic root system F requires Im(f) to generate V

and thus by the assumed surjectivity of φ the images of φ ◦ f generate again W .

Hence we have proven that G is indeed a new symplectic root system. Especially

by dimensionality reasons, the new root system cannot be minimal unless φ is a

2We thank the referee for pointing out this significantly easier approach



symplectic isomorphism; in which case the symplectic root systems G and F are

isomorphic.

Definition 3.11 (Quotient). Let (f, V ) be a symplectic root system on a graph

G and φ : V → W be a surjective symplectic homomorphism, then we define the

quotient symplectic root system on the same graph by (φ◦f,W ). Thereby φ becomes

a homomorphism between the symplectic root systems.

In view of the universal property and the existence of minimal symplectic root

systems by Corollary 3.9 and Lemma 3.10) we have altogether:

Corollary 3.12. For every graph G there is up to isomorphism a unique minimal

symplectic root system and all symplectic root system of G are quotients thereof.

4. A Restriction Theorem

Definition 4.1. Let F = (f, V ) be a symplectic root system of a graph D and G ⊂ D

the induced subgraph of a subset of vertices of D. Then we define the restriction F |G

to be (f |G ,W ), where f is restricted to G and W ⊂ V is the subspace generated by

the image f(G). The restriction is clearly a symplectic root system of G.

Lemma 4.2 (Orthogonal Projection). This is a generalization of orthogonal pro-

jection to the degenerate case (and probably not new): Suppose W ⊂ V to be sym-

plectic vector spaces and suppose a given v ∈ V such that v ⊥ W⊥. Then there

exists a decomposition v = v0 + vW with vW ∈ W and v0 ⊥ W . Moreover, all such

decompositions are of the form v = (v0 + t) + (vW − t) with some t ∈ W⊥.

Proof. Denote by xi, yi, zj any symplectic basis of W (Theorem 2.2) and define

vW :=
∑

k

(〈v, yk〉xk − 〈v, xk〉yk)

Then as claimed vW ∈ W by construction. Moreover we define v0 := v − vW and

check on the symplectic basis that as asserted v0 ⊥ W :

〈v0, xi〉 = 〈v − vW , xi〉

= 〈v, xi〉 −
∑

k

(〈v, yk〉〈xk, xi〉 − 〈v, xk〉〈yk, xi〉)

= 〈v, xi〉+ 〈v, xi〉〈yi, xi〉 = 0

The same calculation proves v0 ⊥ yi. Finally we have by construction v0 ∈ v +W

and hence v0 ⊥ W⊥ by the additional assumption v ⊥ W⊥.

For the last claim, assume that v = v0 + vW = v′0 + v′W with v0, v
′
0 ∈ W and

vW , v′W ⊥ W . Then t := v′0 − v0 = −(v′W − vW ) is contained in W and t ⊥ W ,

hence t ∈ W⊥. �

Theorem 4.3 (Restriction). Let F = (f, V ) be a symplectic root system of type

(n, k) on a graph D, let p ∈ D be any node and denote by G the induced subgraph

on D − p. Then the restricted symplectic root system F |G = (f |G ,W ) is either

(1) of same type (n, k) and F was not minimal



(2) of type (n, k − 1), especially F was not extraspecial

(3) of type (n− 1, k + 1), especially F |G is not extraspecial

Proof. Consider the subspace W ⊂ V generated by the image f(G). Either of the

following cases applies:

(1) V = W , then F |G has the same type as F . Further, F could not have been

minimal, because the decoration f(p) ∈ W was linear dependent.

(2) V = f(p)F2⊕W . We denote by (n′, k′) the type of W and aim to determine

the two remaining cases as k′ = k±1. Then V contains at least n′ mutually

orthogonal hyperbolic planes, hence n ≥ n′, and the nullspace is dim(V ⊥) ≥

k′−1 (it depends on whether f(p) ⊥ W⊥). This implies by dim(V ) = 2·n+k

and dim(W ) = 2 · n′ + k′ that the type (n′, k′) is as claimed.

�

Corollary 4.4. For γ the size of a maximal coclique Γ in a graph G and (f, V ) a

symplectic root system of G of type (n, k) we get the following bound:

n ≤ |G − Γ| = |G| − γ

Proof. We perform induction along |G − Γ|. For G = Γ the graph is totally dis-

connected, hence obviously (see Lemma 3.2) any symplectic root system is of type

n = 0 and the bound holds with equality.

Now we proceed with the induction step: Suppose (f, V ) to be a symplectic root

system on some graph G with a maximal coclique Γ ( G. Choose any p ∈ G − Γ

and consider the restriction (f |G−p,W ) of type (n′, k′). By induction,

n′ ≤ |G − p| − γ′ = |G| − 1− γ

because Γ is also a coclique in G − p, which is maximal, hence γ′ = γ. Now by

Theorem 4.3 we have n = n′ or n = n′ + 1, hence n ≤ n′ + 1 and as asserted

n ≤ n′ + 1 ≤ |G| − 1− γ + 1 = |G| − γ

�

Note that the bound in the corollary is met for all Cartan type graphs in Section

6 (even D2n). On the other hand, the complete graphs G = KN provide examples

with γ = 1 (the maximal possible value on the right hand side) but still (almost-)

extraspecial n ≈ |G|/2 – the minimum possible values on the left hand side.

5. An Extension Theorem

Definition 5.1. Let D be a graph and G ⊂ D a subgraph induced by a subset of

vertices in D. A symplectic root system F = (f, V ) on D is called extension of a

given symplectic root system G = (g,W ) on G, if the restriction F |G = G.



5.1. Extending Extraspecial Symplectic Root Systems.

Theorem 5.2 (Extension of Extraspecials). Let D be a graph, p ∈ D a node and

G = (g,W ) a minimal extraspecial symplectic root system of G := D−p. Then there

exists an almost extraspecial minimal extension F = (f, V ) of G to D.

Proof. To construct F , take V = zF2 ⊕
⊥ W , which is an almost extraspecial sym-

plectic vector space, and f |W = g extending G as demanded. To choose the new

decoration f(p), we consider the indicator function of the neighbourhood of p in G:

λ : G → F2 ∀q∈G λ(q) = 1 :⇔ pq ∈ Edges(D)

Because G was assumed minimal i.e. g(G) is a basis of W , there is a unique linear

form λ̃ on W such that

λ̃ : W → F2 ∀q∈G λ(q) = λ̃(g(q))

Because we assumed G extraspecial, i.e. W nondegenerate, there is a unique element

w0 ∈ W ∀w∈W 〈w0, w〉 = λ̃(w)

The choice f(p) := w0 + z then turns F = (f, V ) into a symplectic root system, as

∀q∈G 〈f(p), f(q)〉 = 〈w0, g(q)〉 = λ̃(g(q)) = λ(q)

while for elements q, q′ ∈ G the condition was already satisfied in G. Moreover, as

the f(q) = g(q) for q ∈ G already formed a basis of W by assumption of minimality,

together with f(p) ∈ z +W we get a basis of V . Hence we constructed an almost

extraspecial minimal symplectic root system on D. �

5.2. Extending Nullspace Symplectic Root Systems. The proof of the last

extension theorem crucially relies on the nondegeneracy of the symplectic form.

However, for a degenerate vector space W of type (n, k), generally only few edge-

configurations to the new point p can be constructed by simply using an existing

vector in w0 ∈ W together with a new nullvector z as above.

This can be seen already by counting, as there are |W/W⊥| = 22n possible w0 in

contrast to 22n+k possible edge configurations. Note that these cases correspond to

the restriction case 2 in Theorem 4.3. The remaining 22n
(
2k − 1

)
configurations

require, in addition to the choice of an element w0, a new symplectic base-pair in

V from a former nullvector in W causing additional new edges – corresponding to

the restriction case 3 in Theorem 4.3.

Before turning to the question of extending an arbitrary minimal symplectic root

system, let us look at the opposite extreme case: The extension of a symplectic root

system of type (0, k), i.e. on a pure nullspace W = W⊥. Because of the Restriction

Theorem 4.3, the extension V can only have type (0, k + 1) (=new nullvector) or

(1, k − 1) (=new hyperbolic plane). We show that both cases can be constructed

depending on the aspired graph extension. The following proof models similarly to

the proof of Theorem 5.2 the indicator function λ of a neighbourhood of p by a

linear form λ̃ via an artificially chosen nondegenerate symmetric bilinear form on



W⊥. Then in the nontrivial case λ̃ 6= 0 one constructs V by extending the kernel

of λ̃ by a new hyperbolic plane H1 = x1k⊕ y1k.

Theorem 5.3 (Extension of Nullspaces). Let G = (g,W ) be a minimal symplectic

root system of type (0, k) on a graph G, i.e. W = W⊥ a pure nullspace. Let D be

a graph with p ∈ D a node, such that G := D − p. Then there exists a minimal

extension F = (f, V ) of G to D of either one of the following types:

• (0, k + 1), if D is completely disconnected.

• (1, k − 1), if D contains at least one edge.

The extension F is unique up to isomorphism by Corollary 3.12.

Note that in this Theorem the graph G has to be totally disconnected by definition

and D is a star graph with center p connected to a subset of G, the neighbourhood

of p ∈ D. The first case of the Theorem is then if the neighbourhood of p in D is

empty.

Proof. The first case is a trivial construction, so let’s turn to the second case: In

order to produce edges at all (see Example 3.4), V of dimension 1 + k cannot be a

pure nullspace and thus of type (n, 1+ k− 2n) for n > 0. The vice-versa restriction

to G = D−p is the assumed G of type (0, k), so by Theorem 4.3 only n = 1 an hence

type (1, k−1) remains: This is case 2 in the cited Restriction Theorem: V possesses

one hyperbolic plane H1 = xk⊕yk, that is separated by the restriction to G and W .

We may explicitly construct such a V as follows: Consider again the indicator

function λ of the neighbourhood of p in D (such a neighbourhood is subset of G):

λ : G → F2 ∀q∈G λ(q) = 1 :⇔ pq ∈ Edges(D)

By assumption of the second case of the assertion, D not totally disconnected, so

λ 6= 0. Because G was assumed minimal i.e. g(G) is a basis of W , there is a unique

linear form λ̃ 6= 0 on W such that

λ̃ : W → F2 ∀q∈G λ(q) = λ̃(g(q))

Choose an element x ∈ W with λ̃(x) = 1F2
, which is possible by λ̃ 6= 0. Such an x

can be used to project W → ker(λ̃) by w 7→ w − λ̃(w) · x.

With these preperations we define:

V := ker
(

λ̃
)

︸ ︷︷ ︸

V ⊥

⊕⊥ (xk⊕ yk) = W ⊕ yk 〈x, y〉 := 1

f(p) := y

f(q) := g(q)

:= g(q)− λ̃ (g(q)) · x
︸ ︷︷ ︸

∈ker(λ̃)

+λ̃ (g(q)) · x ∀q ∈ G



Note that the vice-versa restriction to G is equal to G. The pair (f, V ) defined this

way satisfies the axioms of a symplectic root system. This can be seen for node

pairs p, q involving the new point p by

∀q∈G 〈f(p), f(q)〉 = 〈y, g(q)− λ̃ (g(q)) · x
︸ ︷︷ ︸

∈ker(λ̃)⊂V ⊥

+λ̃ (g(q)) · x〉

= 〈y, λ̃ (g(q)) · x〉

= λ̃ (g(q)) = λ(q)

while for node pairs q, q′ ∈ G the condition was already satisfied in G. To show

that the new decorations form a basis, note first the g(q) for q ∈ G already formed

a basis of W by assumption of minimality and the new decoration f(p) := y is

linearly independent. �

5.3. Extending Arbitrary Symplectic Root Systems. Quite surprisingly, a

uniform treatment of the two extremal cases (nondegenerate and nullspace) is pos-

sible and yields an equally strong statement as in the cases above. For this, one has

to introduce an artificial non-symplectic nondegenerate bilinear form.

Definition 5.4 (Mixed Completion). Let W, 〈, 〉 be a symplectic vector space over k

and choose π : W → W⊥ a fixed projection to the nullspace and (, ) a nondegenerate

symmetric bilinear form on the vector space W⊥. We define the mixed completion

〈〈, 〉〉 : W ×W → k by

〈〈v, w〉〉 := 〈v, w〉+ (π(v), π(w))

Lemma 5.5. The mixed completion is a nondegenerate bilinear form on W .

Proof. Suppose some v ∈ W to be in the radical, i.e.

∀w∈W 〈〈v, w〉〉 = 〈v, w〉+ (π(v), π(w)) = 0

Suppose first w ∈ W⊥, then the left (symplectic) term vanishes, hence for the

entire term to be 0, the second (, π(w))-term has to vansh as well. Since π|W⊥ is

the identity and (, ) is nondegenerate, we deduce π(v) = 0 i.e. v ∈ ker(π). But then

already for all w ∈ W (π(v), π(w)) = 0 and hence the assumption reduces to:

∀w∈W 〈v, w〉 = 0 ⇒ v ∈ W⊥

Because π was a projection the two deductions v ∈ ker(π) and v ∈ W⊥ amount to

v = 0. Hence the radical is {0} and 〈〈, 〉〉 is indeed nondegenerate as asserted. �

With this tool we combine the techniques for extending extraspecials as well as

nullspaces (Sections 5.1 and 5.2) by effectively writing the new graph as a symmetric

difference of two graphs obtained by the two methods. Thus we achive a general

extension result for arbitrary minimal symplectic root systems:

Theorem 5.6 (Minimal Extensions). Let D be a graph, p ∈ D a node and G =

(g,W ) a minimal symplectic root system of G := D− p. Then there exists a unique

minimal extension F = (f, V ) of G to D.



Remark 5.7. Restriction (Theorem 4.3) shows, that if G is of type (n′, k′), then F

is either of type (n, k) = (n′, k′ +1), which case is similar to extraspecial extension

Theorem 5.2, or (n, k) = (n′ + 1, k′ − 1), which combines the approach with a new

symplectic basepair as in Theorem 5.3.

Which case applies and which precise decoration the new point receives can generally

only be decided along the steps of the proof below. However, uniqueness opens the

path to directly write down an extended symplectic root system. Also, the case of

a double extension of an extraspecial symplectic root system allows for a direct

treatment; see Lemma 5.8.

Proof. Choose a fixed projection to the nullspace π : W → W⊥, a nondegenerate

symmetric bilinear form (, ) on the vector space W⊥ and a mixed completion of the

symplectic form on W (Definition 5.4), which is nondegenerate by Lemma 5.5.

〈〈v, w〉〉 = 〈v, w〉 + (π(v), π(w))

The proof proceeds at first largly along the Extraspecial Extension Theorem 5.2:

• Consider the indicator function of the neighbourhood of p (⊂ G):

λ : G → F2 ∀q∈G λ(q) = 1 :⇔ pq ∈ Edges(D)

• Because G is minimal, again there is a unique linear form on W such that

λ̃ : W → F2 ∀q∈G λ(q) = λ̃(g(q))

• By nondegeneracy of the mixed completion, we find a unique

w̃0 ∈ W ∀w∈W 〈w̃0, w〉 = λ̃(w̃)

which we decompose according to the projection π : W → W⊥:

w̃0 = (w̃0 − π(w̃0)) + π(w̃0) =: w0 + z0 ∈ ker(π)⊕W⊥

At this point, let us go one step in the proof back by rewriting the decomposition

for the linear form λ̃ : W → F2 and even the indicator function λ : G → F2:

∀w∈W λ̃(w) = 〈〈w̃0, w〉〉

= 〈〈w0, w〉〉+ 〈〈z0, w〉〉

=: λ̃W/W⊥(w) + λ̃W⊥(w)

∀q∈G λ(q) = λ̃ (g(q))

= λ̃W/W⊥ (g(q)) + λ̃W⊥ (g(q))

=: λW/W⊥(w) + λW⊥(q)



The subindices W/W⊥,W⊥ were chosen for the following reason:

λ̃W/W⊥ (w) = 〈〈w0, w〉〉

= 〈w0, w〉+ (π(w0), π(w))

w0 ∈ ker(π) = 〈w0, w〉

⇒ λ̃W/W⊥ : W → W/W⊥ → F2

λ̃W⊥(w) = 〈〈z0, w〉〉

= 〈z0, w〉+ (π(z0), π(w))

z0 ∈ W⊥ = (π(z0), π(w))

π projection = (π(z0), π(w))

⇒ λ̃W⊥ : W
π
→ W⊥ → F2

The intuition behind the upcoming construction is the following: The indicator

functions λW/W⊥ , λW⊥ on G define different graphs DW/W⊥ ,DW⊥ extending G.

• The first extension can be realized by an element 〈w0,−〉, even though

this is not generally true if the symplectic form is degenerate. It can thus

be realized by adding f(p) := w0 ∈ W as in the Extraspecial Extension

Theorem 5.2. Note that there we added a nullvector z only to again yield

a minimal symplectic root system V = W ⊕ zk.

• The second extension can be realized by an element (z0, π(−)), even though

it is not generally true that an indicator function λ factorizes over π. It

can thus be realized by adding as in the Nullspace Extension Theorem

5.3 either f(p) = 0 for z0 = 0 (and adding a nullvector to achieve a

minimal symplectic root system) or for z0 6= 0 by projecting to ker(λ̃) and

introducing a new basepair x, y.

The indicator function λ for D we wish to finally achieve has been written above as

the F2-sum of the indicator functions λW/W⊥ , λW⊥ and hence the neighbourhood

of p in D is constructed as a symmetric difference for DW/W⊥ ,DW⊥ .

We now carry out this proof idea: The precise definition of V and hence the type

of symplectic root system we construct depends crucially on z0:

(1) For z0 = 0 and hence λW⊥ = 0 we proceed as in the proof of Theorem 5.2:

V := W ⊕⊥ zk

f(p) := w0 + z

f(q) := g(q) ∀q ∈ G

Note that the vice-versa restriction to G is equal to G. The pair (f, V )

defined this way satisfies the axioms of a symplectic root system of type

(n, k) = (n′, k′ +1) extending G of type (n′, k′), which we prove as follows:

Obviously, the new decorations generate V and the symplectic root system



property for edges qq′ ∈ G hold already in G.

For the new edges pq adjacent to p ∈ D the symplectic root system

property is fulfilled as follows:

〈f(p), f(q)〉 = 〈w0 + z, g(q)〉

z ∈ V ⊥ = 〈w0, g(q)〉

w0 ∈ ker(π) = 〈w0, g(q)〉+ (w0, g(q))

= 〈〈w0, g(q)〉〉

= λW/W⊥(q)

λW⊥ = 0 = λ(q)

Hence 〈f(p), f(q)〉 = 0 iff pq non-adjacent in D.

(2) For z0 6= 0 and hence λ̃W⊥ 6= 0 we combine the previous approach using

w0 with the introduction of a new hyperbolic plane Hn+1 as in the proof of

Theorem 5.3: Choose an element x ∈ W with λ̃W⊥ (x) = 1F2
; such an x can

be used to project W → ker(λ̃W⊥ ) by w 7→ w − λ̃W⊥(w) · x. Then define:

V := ker
(

λ̃W⊥

)

︸ ︷︷ ︸

V ⊥

⊕⊥ (xk ⊕ yk) = W ⊕ yk 〈x, y〉 := 1

f(p) := w0 + y

f(q) := g(q)

:= g(q)− λ̃W⊥ (g(q)) · x
︸ ︷︷ ︸

∈ker(λ̃
W⊥)

+λ̃W⊥ (g(q)) · x ∀q ∈ G

Note that the vice-versa restriction to G is equal to G. The pair (f, V )

defined this way satisfies the axioms of a symplectic root system of type

(n, k) = (n′ + 1, k′ − 1) extending G of type (n′, k′), which we prove as

follows:

The new decorations generate V and the symplectic root system property

for edges qq′ ∈ G hold already in G. For the new edges pq adjacent to p ∈ D

the symplectic root system property is fulfilled as follows:

〈f(p), f(q)〉 = 〈w0 + y, g(q)〉

= 〈w0, g(q)〉+ 〈y, g(q)− λ̃W⊥ (g(q)) · x
︸ ︷︷ ︸

∈ker(λ̃
W⊥)

+λ̃W⊥ (g(q)) · x〉

= λ̃W/W⊥ (g(q)) + 〈y, λ̃W⊥ (g(q)) · x〉

= λ̃W/W⊥ (g(q)) + λ̃W⊥ (g(q))

= λW/W⊥ (q) + λW⊥ (q)

= λ(q)



Hence 〈f(p), f(q)〉 = 0 iff pq non-adjacent in D.

�

5.4. Tool: Double-Extensions of Extraspecial Symplectic Root Systems.

Finally, we give a practical criterion to obtain the unique minimal symplectic root

system which are double extension of extraspecial ones without having to use mixed

completions: Let D be a graph, p, q ∈ D vertices and G = (g,W ) a minimal ex-

traspecial symplectic root system of G := D−{p, q} (i.e. of type (n, 0) for 2n = |G|).

We apply Theorem 5.6 twice: The first extension yields an almost extraspecial ex-

tension (n, 1), the second extension allows two cases:

• a type (n, 2) minimal extension F = (f, V ) of G to D.

• an extraspecial minimal extension F = (f, V ) of G to D (=type (n+ 1, 0))

To determine the case and the precise new decorations f(p), f(q) we now may first

apply the much easier Extraspecial Extension Theorem 5.2 to the extensions of G

to D − p resp. D − q, yielding elements wp ∈ W resp. wq ∈ W for the w0 in the

proof of Theorem 5.2. These elements determine the full extension as follows:

Lemma 5.8 (Double-Extension of Extraspecials). Depending on wp, wq as defined

above the extension F = (f, V ) has the following form

pq ∈ Edges(D) pq 6∈ Edges(D)

wp ⊥ wq (n+ 1, 0) (n, 2)

wp 6⊥ wq (n, 2) (n+ 1, 0)

with the previous decorations g(q) on G and new decorations

Case V f(p) f(q)

(n, 2) W ⊕⊥ zpF2 ⊕
⊥ zqF2 wp + zp wq + zq

(n+ 1, 0) W ⊕⊥ (xF2 ⊕ yF2) wp + x wq + y with 〈x, y〉 := 1

Proof. By the Extraspecial Extension Theorem 5.2 there exist unique extensions

Fp := (Fp, zpF2⊕
⊥W ) resp. Fq := (Fq, zqF2⊕

⊥W ) of G to Dp := D−p resp. Dq :=

D− q with fp(q) := zp+wp resp. fq(p) := zq +wq (and ∀r∈G fp(r) = fq(r) := g(r))

for specificly constructed wp, wq ∈ W .

Hence we may aim to construct a symplectic root system F = (f, V ) for D such

that the restrictions to Dp resp. Dq are Fp resp. Fq (conversely we again see that

every symplectic root system on D has to be of this form).

Note first, that any pair of vertices except p, q is contained in Dp or Dq and hence

by construction the symplectic root system condition has to be checked only for

the particular pair pq. Here we calculate

〈f(p), f(q)〉 = 〈zq + wq, zp + wp〉

= 〈zq, zp〉+ 〈wq , wp〉

because by construction zp, zq ⊥ W . The expression should be 0, 1 depending on

wheather pq ∈ Edges(D). Hence depending on this and wp ⊥ wq, precisely one of



the possibilities 〈zp, zq〉 = 0, 1 turns F into an symplectic root system of D.

�

6. Example: Symplectic Root Systems for ADE

The unique extension in Theorem 5.2 requires the smaller symplectic root system

to be extraspecial. To avoid the general Theorem 5.6 we use in the following proof

the double extension of extraspecials in Lemma 5.8. We start with an induction to

construct unique minimal symplectic root systems for all A2n, that turn out to be

all extraspecial (nullity k = 0). Then we add either one or two more vertices to

achieve the other diagrams with higher nullity.

Extending the extrapecial minimal A2n by one node by invoking Theorem 5.2 does

not require any further consideration and immediately yields almost extraspecial

symplectic root systems (nullity k = 1) on A2n+1, D2n+1, E7. On the other hand,

when doubly extending an extraspecial A2n−2 to A2n (induction) and to D2n, E6, E8

using Lemma 5.8 one has to check by explicit calculation, which case of this theorem

applies: usually extrapecial and only for D2n of type (n, 2).

Theorem 6.1. Each simply-laced root system in characteristic 0 of Cartan type

An, Dn≥4, E6,7,8 admits symplectic root systems precisely of the following types.

Each symplectic root system in the lists exists and is unique up to isomorphism.

Note that D2n+2 has 3 non-isomorphic (n, 1)-quotients.

A2n (n, 0) minimal D2n+1 (n, 1) minimal E6 (3, 0) minimal

A2n+1 (n, 1) minimal D2n+1 (n, 0) quotient E7 (3, 1) minimal

A2n+1 (n, 0) quotient D2n+2 (n, 2) minimal E7 (3, 0) quotient

D2n+2 (n, 1) 3 quotients E8 (4, 0) minimal

D2n+2 (n, 0) quotient

In the proof below, explicit decorations are constructed for each case.

Remark 6.2. Graph automorphisms preserve the minimal symplectic root systems

and hence induce a symplectic isomorphism on V . E.g. the flip of A2n correspond

to the symplectic involution ∀i xi ↔ yi. The same holds for unique quotients.

On the other hand, the 3 non-isomorphic quotients of type (n, 1) for D2n+2 are

permuted by the graph automorphisms as follows:

• For n 6= 0 there is a single order-2 graph automorphism on D2n+2 inter-

changing two of the three quotients while preserving the third.

• The graph D4 has the exceptional automorphism group S3, which permutes

all three quotients.

The proof will proceed in several steps. We first clarify A2n which is the building

block for all other diagrams:



Lemma 6.3. A2n has a unique symplectic root system, which is minimal and ex-

traspecial. It’s precise form is in the natural linear node ordering:

xn + xn−1, yn−1 + yn−2, xn−2 + xn−3, . . . , yn−2 + yn−3, xn−1 + xn−2, yn + yn−1

where the midmost decorations are . . . y2 + y1, x1, y1, x2 + x1 . . . or respectively

. . . x2 + x1, y1, x1, y2 + y1 . . . depending on the genus of n (note that x, y may be

switched by the obvious symplectic isomorphism)

Proof. Certainly for n = 1 the unique symplectic root system x1, y1 of type (1, 0)

is minimal and extraspecial, see example 3.4.

Now assume inductively that A2n has the unique extraspecial minimal symplectic

root system G = (g,W ) as asserted. We wish to invoke Lemma 5.8 to extend this

extraspecial minimal symplectic root system on A2n by new vertices p resp. q at-

tached to each end of A2n+2. To prove that we indeed land in the extraspecial case

1 of the Lemma and to determine the precise new decoration, we need to first add

one node on each end seperately with decorations zp + wp resp. zq + wq.

This means we have to calculate an actually unique wp (resp. wq), such that

〈wp, g(r)〉 = 1 for the leftmost node r of A2n and 〈wp, g(r
′)〉 = 0 for all other

vertices. We indeed verify easily, that wp = yn has this property:

〈wp, xn + xn−1〉 = 〈yn, xn + xn−1〉 = 1

〈wp, xi + xi−1〉 = 0 ∀i<n

〈wp, yi + yi−1〉 = 0 ∀i<n

〈wp, yn + yn−1〉 = 〈yn, yn + yn−1〉 = 0

for n > 1 respectively for n = 1:

〈wp, x1〉 = 〈y1, x1〉 = 1

〈wp, y1〉 = 〈y1, y1〉 = 0

By symmetry we analogously have wq = xn. Because p, q are not connected and

wp 6⊥ wq, Lemma 5.8 applies yielding case 1. Hence it indeed provides V to

be extraspecial with new symplectic base-pair zp, zq, which we from now on call

yn+1, xn+1, and the new decorations

fA2n+2
(p) = zp + wp = yn+1 + yn fA2n+2

(q) = zq + wq = xn+1 + xn

which is as asserted (after a symplectic isomorphism switching all xi, yi). �

For later use, we also wish to calculate the necessary w0 to attach a node to certain

vertice in A2n in:

Lemma 6.4. When applying Theorem 5.2 to the symplectic root system G = (g,W )

of G = A2n constructed in Lemma 6.3, the following explicit elements w0 ∈ W

arrise, depending on the neighbourhood in G of the new to-be-added node p:

• w0 = yn, for attaching p to only the first node of A2n.



• w0 = xn + xn−1, for attaching p to only the second node of A2n (n ≥ 2)

• w0 = yn+yn−1+yn−2, for attaching p to only the third node of A2n (n ≥ 3).

(the excluded cases are as follows: for n = 1 the second node is the first node from

the right and for n = 2 the third node is the second node from the right)

Proof. The first claim (=attaching to the first node) has already been shown during

the inductive proof of Lemma 6.3.

For the second claim (=attaching to the second node), note that the newly added

p has thus the same neighbourhood as the first node in A2n, hence also the w0

coincides with the decoration of this first node (xn + xn+1 resp. x1 for n = 1).

For the third claim (=attaching to the third node) we directly calculate, that w0 =

yn + yn−1 + yn−2 is orthogonal on all node decorations except the third. Again, all

vertices decorated only by yi or by xi<n−2 have obviously orthogonal decoration):

〈yn + yn−1 + yn−2, xn + xn−1〉 = 〈yn, xn〉+ 〈yn−1, xn−1〉 = 0

〈yn + yn−1 + yn−2, yn−1 + yn−2〉 = 0

〈yn + yn−1 + yn−2, xn−2 + xn−3〉 = 〈yn−1, xn−1〉 = 1

· · ·

〈yn + yn−1 + yn−2, yn−2 + yn−3〉 = 0

〈yn + yn−1 + yn−2, xn−1 + xn−2〉 = 〈yn−1, xn−1〉+ 〈yn−2, xn−2〉 = 0

〈yn + yn−1 + yn−2, yn + yn−1〉 = 0

�

We may now continue with the cases D2n+1 for n ≥ 2 resp. E7 which only require to

invoke Theorem 5.2 on the obvious subgraph A2n resp. A6 with unique extraspecial

symplectic root system by the preceeding lemma. The w0’s calculated above yield

the precise decorations of the new node p attached to the second resp. third node

to be:

fD2n+1
(p) = z1 + xn + xn−1

fE7
(p) = z1 + y3 + y2 + y1

Finally, as in Lemma 6.3, further calculations are needed when doubly extending

the unique minimal extraspecial symplectic root systems on A2n to D2n+2, E6, E8

using Lemma 5.8:

We first check that the extensions to E6 resp. E8 by attaching vertices p, q to the

first and second node of the obvious subgraphs A4 resp. A6 again yield extraspecial

symplectic root system. The respective wp, wq were determined in Lemma 6.4 to

be yn, xn + xn−1. As wp 6⊥ wq and p, q not connected we indeed again land in the

extraspecial case 1 of the Lemma and hence the newly added vertices receive the

following decorations:



f(p) := zq + wq = yn+1 + yn f(q) := zp + wp = xn+1 + xn + xn−1

fE6
(p) := y3 + y2 fE6

(q) := x3 + x2 + x1

fE8
(p) := y4 + y3 fE8

(q) := x4 + x3 + x2

Then we turn to extending D2n+2 from the obvious subgraph A2n by attaching two

nodes p, q both to the first node. Again by Lemma 6.4 we thus get wp = wq = yn.

Still p, q are disconnected, but this time wp ⊥ wq, hence we land in case 2 of Lemma

5.8 yielding a type (n, 2) symplectic root system, where we denote the two newly

added nullvectors z1 := zp and z2 := zq and hence yield decorations:

fD2n+2
(p) = z1 + yn fD2n+2

(p) = z2 + yn

We still need to check, that all three possible quotient symplectic root systems of

type (n, 1) are non-isomorphic. The decorations are respectively:

f
(1)
D2n+2

(p) = z + yn f
(1)
D2n+2

(q) = xn

f
(2)
D2n+2

(p) = yn f
(2)
D2n+2

(q) = z + xn

f
(3)
D2n+2

(p) = z + yn f
(3)
D2n+2

(q) = z + xn

An isomorphism φ intertwining φ◦f (1) = f (2) needs to send φ : z+yn ↔ z+yn and

fix z. To keep all other decorations yi+yi−1 we further conclude φ : z+yi ↔ z+yi,

which contradicts the stability of the midmost decoration y1.

An isomorphism φ intertwining φ ◦ f (1) = f (3) (or symmetrically φ ◦ f (2) = f (3))

needs to send different decorations yn, z+ yn to the equal decorations z+ yn, z+ yn

which is impossible. Hence the three quotients of type (n, 1) are mutually non-

isomorphic. Moreover, there is a unique quotient of type (n, 0) with decoration:

f
(0)
D2n+2

(p) = yn f
(0)
D2n+2

(q) = xn

This concludes the proof of Theorem 6.1.

7. Application

7.1. The Action of the Coxeter/Weyl-Group. The following notion can be

found e.g. in [Hum72] Section 9.2:

Definition 7.1. Let E, (, ) be a euclidean vector space over k = R. A subset of

R ⊂ E is called a (finite) root system, if the following axioms are satisfied:

• R is finite, spans E and 0 6∈ R

• If α ∈ R, then the only multiples of α in R are ±α.



• If α ∈ R, then the reflections leaves R invariant:

σα(β) := β −
2(α, β)

(α, α)
α

• If α, β ∈ R then 2(α,β)
(α,α) ∈ Z

Introduce dα = 1
2 (α, α). As usual, we will in the following assume (, ) to be norma-

lized such that dα ∈ Z and at least one dα = 1. This implies in particular

(α, β) = dα
2(α, β)

(α, α)
∈ Z

In fact, every root system has a basis R0 of simple roots: A basis means here a

basis of the vector space E, such that all roots α are integer linear combinations

of R0, with either all coefficients positive or negative. The Cartan matrix of R is

defined as

∀α6=β∈R0
Cα,β :=

2(α, β)

(α, α)
= d−1

α (α, β) Cα,α := 2

Note that there is different convention regarding the order of the Cartan matrix

indices α, β; the one above is custom in quantum groups.

Frequently, the Cartan matrix is visualized as a Dynkin diagram with nodes R0 and

edges drawn for Cα,β 6= 0. The Weyl group W is the Coxeter group determined by

the symmetrized Cartan matrix (, ). The Weyl group W is generated by reflections

σα, α ∈ R. Hence it acts on E as isometries and fixes R. The classification of finite

Lie algebras implies dα ∈ {1, 2, 3} with dα = 1 for short roots.

Theorem 7.2. Let C be the Cartan matrix of a root system R, W the corresponding

Weyl group and (, ), dα normalized as in Definition 7.1. Let G be the graph with nodes

R0 and edges drawn whenever (α, β) ≡ 1 mod 2.

Suppose F = (f, V ) is a minimal symplectic root system for G. Then, the decoration

f : R0 → V can be additively extended to a map f̃ : R → V . Furthermore we

can define a natural action of W on V by symplectic isomorphisms, such that f̃

intertwines the W-actions on R, V and hence especially fixes f̃(R) ⊂ V .

Note: If R is simply-laced, then G is just the Dynkin diagram of R. For Bn it is the

Dynkin diagram A1 × · · · × A1, for Cn it is A1 × An−1, for F4 it is A1 × A1 × A2

and for G2 it is A2.

Proof. The proof is essentially the invariance of (, ) under the action of W : By the

assumed minimality the image of the sets G = R0 under f is a basis of V . Hence

there exists for each simple root α ∈ R0 a unique map σ̃α : V → V such that this

basis {f(β)}β∈R0
is mapped accordingly:

σ̃α (f(α)) := f̃ (σα(β))

= f̃ (β − Cα,βα)

= f(β)− Cα,βf(α)

Note that by additive extension, these formulae hold for non-simple roots α, β as

well, but simple reflection of simple roots will suffice here. Note also, that especially



for C not simply-laced, f̃ does not need to be injective, as e.g. β and β − 2α are

mapped to the same vectors in the vector space V .

We yet have to check that the expressions for σ̃α indeed define a symplectic iso-

morphism, i.e. preserves the symplectic form 〈, 〉 on V , which we again check on the

basis f(R0):

〈f (σ̃α(β)) , f (σ̃α(γ))〉

= 〈f(β)− Cα,βf(α), f(γ)− Cα,γf(α)〉

= 〈f(β), f(γ)〉 − Cα,β〈f(α), f(γ)〉 − Cα,γ〈f(β), f(α)〉 + 〈f(α), f(α)〉

= 〈f(β), f(γ)〉 − Cα,β · dαCα,γ + Cα,γ · dαCα,β + 0

= 〈f(β), f(γ)〉

Here we calculated in F2 and used that by definition

〈f(α), f(β)〉 = (α, β) = dαCα,β = −dβCβ,α

�

7.2. Commutativity Graphs and Nichols Algebras. In the application [Len13]

of symplectic root systems to Nichols algebras over finite nilpotent groups G, a

symplectic root system is used to determine a generating set of elements with com-

mutators prescribed by a fixed graph G. Thereby the commutator map plays the

role of the symplectic form. Note that again we so far only consider commutators

of order 2.

Definition 7.3. Let G be a graph and G a finite group. A decoration f : G → G is

said to have G as commutativity graph iff

• For α, β ∈ G the images f(α), f(β) commute iff α, β are non-adjacent.

• The images f(G) are a generating system of G

We call such a decoration minimal iff the generating system f(G) is minimal, i.e.

no proper subset generates all of G.

Suppose we are given a finite group with [G,G] = Z2. As usual for p-groups we

consider the skew-symmetric, isotropic commutator map [, ] (see [Hup83]):

G×G
[,]
−→ [G,G] = Zp

g, h 7→ [g, h] = ghg−1h−1

[h, g] = [g, h]−1 [g, g] = 1

Because [G,G] is clearly central, the map is bimultiplicative (the right-hand-side

argument’s works analogously):

[g, h][g′, h] = (ghg−1h−1)(g′hg′−1h−1)

= g(g′hg′−1h−1)hg−1h−1

= gg′hg′−1g−1h−1

= [gg′, h]



Thus the commutator map factorizes to V := G/G2 ∼= Fn
2 :

V × V
〈,〉
−→ F2

Example 7.4. Consider the extraspecial groups G = 22·n+1
± , which are central

products of n groups Gi each isomorphic to

22·1+1
+ = D4 22·1+1

− = Q8

Central product means hereby, that G2
i = Z(Gi) = [Gi, Gi] ∼= Z2 of all factors are

identified, especially G2 = Z(G) = [G,G] ∼= Z2.

Then V = G/G2 = ×iZ2 × Z2 has a basis of elements xi, yi and the commutator

map corresponds to the standard symplectic form 〈xi, yi〉 = F2. Especially extraspe-

cial groups correspond to nondegenerate symplectic vector spaces V, 〈, 〉.

Similary,allowing an additional factor G0 = Z4, the resulting groups are known as

almost-extraspecial 22·n+2
± corresponding to a symplectic vector space of type (n, 1).

Remark 7.5. In [Len13] we start with a group-2-cocycle u ∈ Z2(G/[G,G],Z2) for

to the central extension G, corresponding to the symplectic form as follows

u(ḡ, h̄)u−1(h̄, ḡ) = [g, h] = 〈ḡ, h̄〉

We now show how symplectic root systems can be used to construct generating

sets of G with prescribed commutativity graph G. In the application [Len13] the

graph G is a Dynkin diagram of a Nichols algebra B(M) over the abelian group

Γ := G/[G,G] and we construct the covering Nichols algebra B(M̃) over G. The

use of a symplectic root system thereby guarantees that the G-decorations in the

covering Nichols algebra commute iff nodes are disconnected, which is a necessary

condition for finite Nichols algebras, see [HS10], Prop. 8.1.

Note that the next Theorem is restricted to G a group of order 2n, but every group

with [G,G] = Z2 can be written G = Godd ×G2, where Godd is abelian and of odd

order, while G2 is a 2-group.

Theorem 7.6. Let G be a 2-group with [G,G] = Z2 and define as above the fol-

lowing symplectic vector space:

(V, 〈, 〉) :=
(
G/G2, [, ]

)

Let G be a graph and F = (f, V ) a symplectic root system for G, then any lifts gα ∈ G

of the decoration elements {f(α)}α∈G ⊂ V = G/G2 has G as commutativity graph.

Moreover, the lifts form a minimal generating system of G iff F was a minimal

symplectic root system.

Proof. The main assertion follows almost by definition: For any α, β ∈ G we show

that the lifted G-decoration α 7→ gα commute iff the V -decorations are symplec-

tically orthogonal, which happens by the symplectic root system property iff α, β



are non-adjacent in G:

[gα, gβ] = 〈gα, gβ〉

= 〈f(α), f(β)〉

We yet have to prove that the lifted decorations {gα}α∈G indeed generate G, as

the symplectic root system decorations {f(α)}α∈G generate V and especially a

minimally G-generating set corresponds to a basis of V . This is the content of the

following much more general theorem for p-groups and V = G/Φ(G):

Theorem 7.7 (Burnside Basis Theorem [Hup83] Satz III.3.15 (p. 273)). Every

minimally generating set of a 2-group G (no element may be omitted) g1, . . . gn

consists precisely of n = dimF2
(V ) elements for V := G/G2, whose images in V

form a basis.

�
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