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Abstract

We present a mathematical derivation of some of the most important physical quantities arising
in topological bilayer systems with permutation twist defects as introduced by Barkeshli et al.
[BaJQ1]. A crucial tool is the theory of permutation equivariant modular functors developed
by Barmeier et al. [BFRS, BaS].
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1 Introduction

Topological phases of matter have become one of the most important areas of interplay between
mathematical physics and condensed matter physics. It has been known for a long time that
three-dimensional topological field theories of Reshetikhin-Turaev type describe certain univer-
sality classes of robustly gapped systems in 2+1 dimensions, e.g. of quantum Hall fluids. This
class of theories includes in particular abelian Chern-Simons theories, which can be defined
using integer lattices. In more generality, a basic datum describing a topological phase is a
modular tensor category (this notion will be recalled in Section 2).

We wish to study a topological phase described by some modular tensor category D, ex-
clusively working in the context of the category D. From D one can construct an extended
topological field theory, as a symmetric monoidal 2-functor

tftD : cobord3,2,1 −→ 2-vect (1)

from extended cobordisms to 2-vector spaces, i.e. to finitely semisimple abelian categories; we
refer to [Mo] for a review of the relevant notions. The 2-functor tftD provides us with the
following structure.

• For a one-dimensional oriented manifold S one gets a category: for S the disjoint union of
n circles, one has tftD(S) =D⊠n, with ⊠ the Deligne product of categories enriched over
complex vector spaces. The category D associated to a circle has the physical interpretation
of labels for Wilson lines and for point-like insertions on Wilson lines. Thus in the condensed
matter system the isomorphism classes of objects of D describe types of quasi-particle exci-
tations in the topological phase.

• For a surface, possibly with marked points – or rather, closed disks excised around the marked
points – that are end points of Wilson lines and thus carry the labels of quasi-particles, we
get a vector space of conformal blocks. In the context of topological quantum computing
these spaces, as subspaces of vector spaces arising in a suitable microscopical model, have
been proposed for quantum codes; see e.g. [BMCA, KK] for details in the context of Hopf
algebras and of lattice models corresponding to TFTs of Turaev-Viro type, respectively.
(In the present paper we are only interested in the behavior of universality classes. We do
not touch the very important question of their possible realization in microscopic models.)

• Three-dimensional manifolds with corners give linear maps between the spaces of conformal
blocks assigned to their boundaries. On the category D this amounts in particular to the
structure of a braiding, and on the vector spaces of conformal blocks to representations of
mapping class groups. The latter are of interest in the implementation of quantum gates.
For example, one needs information about the ‘size’ of the representations of the mapping
class group to know whether a given system allows for universal quantum gates.

This structure raises in particular three types of questions about topological phases:

• The problem of classifying the possible types of quasi-particles.

• The problem of computing the dimension of the associated spaces of conformal blocks, which
has the interpretation of the number of qubits that can be stored in the corresponding
quantum code.

• The problem of understanding the braid group representations on spaces of conformal blocks.
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In recent years physical boundaries and surface defects in three-dimensional topological field
theories have attracted increasing attention. In this note we do not consider boundaries; we
furthermore restrict our attention to surface defects in a single topological phase described by
the modular tensor category D.

Surface defects lead to a riches of phenomena. Specifically, the three types of problems
just stated have natural generalizations to situations in which defects are present. These are
the issues we discuss in the present note, for the specific case of twist defects in bilayer systems.

• For any pair a, a′ of topological surface defects there is a category Wa,a′ of Wilson lines con-
fined to the defect surface, which separate a surface region labeled by a from a surface region
labeled by a′. The objects of this category label defect Wilson lines, while the morphisms
label point-like insertions on those Wilson lines. In the application to topological phases,
such Wilson lines do not describe intrinsic quasi-particles, but rather extrinsic objects with
long-range interaction [BaJQ1]. More generally, there are categories of Wilson lines at which
an arbitrary finite number of surface defects end (see the figure (33) below). A first problem
is to obtain a concrete description of these categories.

• Surface defects and generalized Wilson lines can intersect transversally surfaces to which
one would like to associate appropriate generalizations of conformal blocks. This raises
the question of how to define these vector spaces and how to obtain expressions for their
dimensions, generalizing the Verlinde formula.

• On these vector spaces, one has the action of appropriate versions of mapping class groups.
It is an important task to understand these groups and their actions in detail.

It has been demonstrated in a model-independent analysis [FSV1] that surface defects which
separate two regions that are both in the phase labeled by D are described by module categories
over the modular tensor category D (again, the notion of D-module category, or D-module,
will be recalled in Section 2). For a general modular tensor category D, the classification of
D-modules, and thus of surface defects, is out of reach. Notable exceptions are abelian Chern-
Simons theories, as studied in [KaS, FSV1, BaJQ2], and Dijkgraaf-Witten theories, for which
D is the category of finite-dimensional representations of the Drinfeld double of a finite group
G, as well as the category of integrable highest weight representations of the affine Lie algebra
based on sl(2,C) at positive integral level. For Dijkgraaf-Witten theories subgroups of G and
certain group cochains enter the classification [Os2] (for the corresponding boundary conditions
and surface defects and their geometric interpretation see [FSV2]), while in the sl(2,C) case an
A-D-E classification emerges [KO].

Any modular tensor category D has at least one indecomposable module, namely the regular
D-module given by the abelian category D itself, with the action being just the ordinary tensor
product of D. The corresponding defect TD is the transparent (or invisible) defect, which is
a monoidal unit under fusion of surface defects. (For a discussion of TD in the context of
Dijkgraaf-Witten models see [FSV2, Sect. 3.6].) Generically it can be hard to find other D-
modules besides TD. There is, however, one general situation in which a non-trivial module
category can be identified, namely when the modular tensor category D is the Deligne product
D= C⊠ C of two copies of another modular tensor category C (with the same structure of
modular tensor category, in particular the same braiding, on each copy). In the condensed
matter literature this situation is known as a bilayer system, see e.g. [BaW, BaQ, BaJQ1] for
recent work.
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For any bilayer system described by D= C⊠ C, in addition to the regular D-module there
is a second module category, which is defined on a single copy of the abelian category C; its
module category structure has been given in [BFRS, Thm. 2.2]. This type of surface defect
is the main subject of the present letter. We will present it in detail in Section 2, where we
also demonstrate that it corresponds to the permutation twist defect PD [BaJQ1] of the bilayer
system, which permutes the different layers. We then also obtain the relevant categories of
generalized Wilson lines, thereby providing a model-independent solution of the problem of
describing the generalized quasi-particle excitations in the presence of the permutation twist
defect. In Section 3 we present the relevant spaces of conformal blocks. In applications to quan-
tum computing their dimensions give the number of qubits that can be stored in a topological
code realized by bilayer fractional quantum Hall states in the universality class of the bilayer
topological phase.

The results reported in this letter have obvious generalizations to n-layer systems, corre-
sponding to the situation that D= C⊠n is the Deligne product of any number n of copies of the
same modular tensor category C. In this case we find a D-module category for every element of
the symmetric group Sn that describes a permutation of the n layers. The mathematical tools
to describe these systems in detail are available [BHS, BFS, Ban, BFRS, BaS]: for the sake of
clarity of the exposition we refrain from presenting them in this note.

2 The module category PD and categories of defect Wil-

son lines

Module categories. A fusion category (over C) is a rigid semisimple linear monoidal cat-
egory, enriched over the category of (complex) vector spaces, with only finitely many iso-
morphism classes of simple objects, such that the endomorphisms of the monoidal unit form
just the ground field, End(1) =C id1. All categories in this letter will be finitely semisimple
abelian C-linear categories. Usually we assume fusion categories to be strictly monoidal, so
that we can drop the associativity constraints. All categories of Wilson lines in topological field
theories, including defect and boundary Wilson lines, are in our context described by fusion
categories. A modular tensor category C is a braided fusion category in which the braiding

cU,V : U ⊗ V
∼=−→ V ⊗U obeys a non-degeneracy condition: the |IC| × |IC|-matrix with entries

si.j := tr(cSj ,Si
◦ cSj ,Si

) , (2)

where (Si)i∈IC is a set of representatives for the isomorphism classes of simple objects of C, is
invertible. Examples of modular tensor categories arise from Chern-Simons theories, in which
case they can be described in terms of finite abelian groups with a quadratic form (abelian
Chern-Simons theories) or of integrable highest weight representations of affine Lie algebras
(non-abelian Chern-Simons theories).

A module category M over a monoidal category D (or a D-module, for short) consists of
a category M and a C-linear bifunctor ⊙ : D×M→M together with functorial associativity
and unit isomorphisms

(X ⊗Y )⊙M
∼=−→ X ⊙ (Y ⊙M) and 1⊙M

∼=−→M (3)
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for X, Y ∈D and M ∈M, obeying coherence conditions. For details see e.g. [Os1, Sect. 2.3];
we refer to the functor ⊙ as the mixed tensor product. Thinking about a fusion category as a
categorification of a unital associative ring, module categories are categorifications of modules
over that ring. Taking the tensor product ⊗ : D×D→D and the associated associativity and
unit constraints of D, any fusion category D is, as already mentioned, a module category TD

over itself, analogously as any ring is a module over itself. In topological field theories with
defects the module category TD describes the transparent defect, separating two regions that
both support the same topological phase labeled by D.

A module category for bilayer systems. In the case of bilayer systems, i.e. D= C⊠ C
with a modular tensor category C, there is another generic module category PD. The abelian
category underlying PD is just C itself. The mixed tensor product for PD is defined in terms of
the tensor product ⊗ in C by

(U ⊠V )⊙M = U ⊗V ⊗M (4)

for M ∈C and U ⊠ V ∈D. (In the definition, it suffices to consider objects of D of the form
U ⊠V with U, V ∈C only; such objects are called ⊠-factorizable.)

The existence of such a D-module generalizes the fact that for a commutative ring R, the
tensor product ring R⊗ZR has R as a module, with action (a⊗ b) . m= a bm for a, b,m∈R.
Commutativity of R ensures that this prescription constitutes an action, i.e. the equality of
[(a1 ⊗ a2) (b1⊗ b2)] . m= a1 b1 a2 b2m and (a1⊗ a2) . [(b1⊗ b2) . m] = a1 a2 b1 b2m. The categori-
fication of commutativity of R is the structure of a braiding; accordingly we take the natural
isomorphisms

ψX,X′,M : (X ⊗X ′)⊙M = U ⊗U ′ ⊗V ⊗ V ′ ⊗M
∼=−→ X ⊙ (X ′⊙M) = U ⊗V ⊗U ′ ⊗ V ′ ⊗M

(5)

(with X =U ⊠V ∈D, X ′ =U ′
⊠V ′ ∈D and M ∈C) as the associativity constraints for the

mixed tensor product of PD that are part of the defining data of the module category to be
given by the braiding in C, i.e.

ψX,X′,M = idU ⊗ cU ′,V ⊗ idV ′⊗M . (6)

This mixed associativity constraint has been derived geometrically from the theory of covering
surfaces [BaS, Eq. (17)]. There is in fact a whole family of possible constraints for the mixed
tensor product, involving higher powers of the braiding c [BFRS, Thm. 2.2], but they are all
equivalent [BFRS, Thm. 2.4].

PD as part of an equivariant topological field theory. That PD is a twist defect [BaJQ1]
has the following mathematical formalization: the module category PD with underlying abelian
category C is part of a more comprehensive structure [Bar, BaS] – together with the modular
category D it forms a Z2-equivariant modular category [Tu, Ki]. This amounts to the existence
of further mixed fusion functors, including functors

C × D → C and C × C → D (7)
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and constraints which we will need later in our discussion. The structure of a Z2-equivariant
modular category can be derived from a Z2-equivariant topological field theory

tftZ2

D : cobordZ2

3,2,1 −→ 2-vect (8)

which has as domain a cobordism category of manifolds with Z2-covers. The functor tftZ2

D can
be given explicitly by applying the functor tftC (see (1)) for the (non-equivariant) topological
field theory based on C to the total spaces of the covers,

tftZ2

D (−) = tftC(cov(−)) . (9)

For a detailed discussion in the framework of modular functors we refer to [BaS].

The Azumaya algebra AP . We need to collect a few facts about the module category
PD. As any semisimple indecomposable (left) module category over a fusion category D, the
category PD describing the permutation twist defect can be realized [Os1] as the category of
(right) modules over an algebra AP internal in D,

PD ≃ mod-AP . (10)

One possible choice for this algebra is the internal end of the tensor unit 1∈C, i.e. AP =EndC(1).
As an object of the category D this is [BFRS]

AP =
⊕

i∈IC

U∨
i ⊠ Ui , (11)

where the sum is over the isomorphism classes of simple objects of C; its algebra structure is
given explicitly in [BFRS, Thm. 5.1]. The algebra AP has a natural Frobenius algebra structure,
which is presented in [BFRS, Prop. 6.1]. Furthermore, it is an Azumaya algebra in D [BFRS,
Thm. 7.3]. Let us explain the latter notion. For an algebra A in a braided fusion category C
there are two braided induction functors

α±
A : C → A-bimodC . (12)

They associate to an object U ∈C the bimodule with underlying object A⊗U and with the left
action ρ± :=mA ⊗ idU : A⊗A⊗U→A⊗U given by multiplication mA in A, while the right
action is ̺+ := (mA ⊗ idU) ◦ (idA ⊗ cU,A) and ̺− := (mA ⊗ idU) ◦ (idA⊗ c−1

A,U), respectively. The
functors (12) have a natural structure of a monoidal functor; A is called an Azumaya algebra
iff α+

A , or equivalently α−
A , is a monoidal equivalence. For C the monoidal category of modules

over a commutative ring, this coincides with the textbook definition of Azumaya algebras [VZ].

Remark 1. (i) Recall that for describing a bilayer system we have to take the same braiding
on the two copies of C in D= C⊠ C. There is another important structure of a braided fusion
category on the tensor category C⊠ C, namely the ‘enveloping category’ Cenv = C⊠ Crev in which
the second copy of C is instead endowed with the inverse braiding. If C is modular, then
the enveloping category is a modular category as well; in fact, modularity implies that it is
equivalent to the Drinfeld center of C, i.e. Cenv ≃Z(C). This structure of a modular tensor
category is not the one relevant for bilayer systems.

(ii) When regarded as an object of the enveloping category Cenv = C⊠ Crev the object (11) of
the abelian category C⊠ C has again a natural Frobenius algebra structure, which is of interest
in various other contexts, see e.g. [Mü, FFRS1, KR, FSS]. This algebra structure on the object
(11) is commutative with respect to the braiding of Cenv, rather than Azumaya.
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Braided induction for tensor products of algebras. Given two unital associative alge-
bras A1 and A2 in a braided monoidal category, their tensor product A1⊗A2 can be endowed
with the structure of a unital associative algebra with multiplication

(A1⊗A2)⊗ (A1⊗A2)
idA1

⊗c
A2,A1

⊗idA2−−−−−−−−−−−−→ A1⊗A1⊗A2⊗A2

m
A1

⊗m
A2−−−−−−−→ A1⊗A2 . (13)

(Replacing the over-braiding cA2,A1
by the under-braiding c−1

A1,A2
yields a different algebra struc-

ture on the same object A1⊗A2. This algebra is isomorphic, as an associative algebra, to the
algebra structure on A2⊗A1 obtained with the convention chosen here.)

We will now establish a relation between the braided induction functors for the algebras A1

and A2 and those for A1⊗A2. We first introduce a functor

β+ : A2-bimodC −→ (A1⊗A2)-bimodC (14)

that sends B≡ (B, ρ, ̺)∈A2-bimodC to A1⊗B with the (A1⊗A2)-bimodule structure given by
the left action

(A1⊗A2)⊗ (A1⊗B)
idA1

⊗c
A2,A1

⊗idB−−−−−−−−−−−−→ A1⊗A1⊗A2⊗B
m

A1
⊗ρ

−−−−−→ A1⊗B (15)

and the right action

(A1⊗B)⊗ (A1⊗A2)
idA1

⊗cB,A1
⊗idA2−−−−−−−−−−−−→ A1⊗A1⊗B⊗A2

mA1
⊗̺

−−−−−→ A1⊗B . (16)

Again, β+ has a natural monoidal structure. Moreover, one verifies that

α+
A1⊗A2

= β+ ◦ α+
A2

(17)

as monoidal functors. Similarly,we introduce another monoidal functor

β− : A1-bimodC → (A1⊗A2)-bimodC , (18)

sending B≡ (B, ρ, ̺)∈A1-bimodC to A2⊗B with the (A1⊗A2)-bimodule structure given by
the left action

(A1⊗A2)⊗ (A2 ⊗B)
idA1

⊗m
A2

⊗idB−−−−−−−−−−→ A1⊗A2⊗B
c−1

A2,A1
⊗idB−−−−−−−−→ A2⊗A1⊗B

idA2
⊗ρ−−−−−→ A2⊗B

(19)
and the right action

(A2⊗B)⊗ (A1⊗A2)
idA2

⊗̺⊗idA2−−−−−−−−−→ A2⊗B⊗A2

idA2
⊗c−1

A2,B−−−−−−−−→ A2⊗A2⊗B
mA2

⊗idB−−−−−−→ A2⊗B .
(20)

By direct calculation one sees that the family

νU := cA2,A1
⊗ idU : A2⊗A1⊗U −→ A1⊗A2⊗U (21)

of isomorphisms, for U ∈C, furnishes a monoidal natural isomorphism ν : β− ◦α−
A1

=⇒α−
A1⊗A2

.
Similarly one verifies that the the same family of isomorphisms gives a monoidal natural iso-
morphism

ν̃ : β− ◦ α+
A1

=⇒ β+ ◦ α−
A2
. (22)

This is summarized in the
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Proposition 2. The following diagram of monoidal functors and monoidal natural isomor-

phisms commutes:

(A1⊗A2)-bimodC

+3

ν

+3

Id

A1-bimodC

β−

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
ν̃ +3 A2-bimodC

β+

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

C
α−
A1

88rrrrrrrrrrrrrr

α−
A1⊗A2 **

C
α−
A2

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

α+

A1

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚ C
α+

A2

ff▲▲▲▲▲▲▲▲▲▲▲▲▲▲

α+

A1⊗A2tt

(23)

The Azumaya algebra AP ⊗AP . We use these observations to study the algebra AP ⊗AP

internal in D. As a tensor product of two Azumaya algebras, it is again Azumaya. Now re-
call [DNO, Cor. 3.8] that, up to equivalence, an indecomposable module category M over a
modular tensor category D is characterized by a pair B1, B2 of connected étale algebras in
D together with a braided equivalence ΨM : B1-mod0D

≃−→B2-mod0 rev
D between the category

of local B1-modules and the reverse of the category of local B2-modules. It follows from the
results of [FFRS1] that for the module category M=mod-A of right modules over an al-
gebra A∈D these characteristic data can be extracted from the braided induction functors
α±
A : D→A-bimodD. In the particular case that A is an Azumaya algebra, the two functors α±

A

are monoidal equivalences and the two étale algebras B1 and B2 are just the tensor unit 1, so
that B1-mod0D =D=B2-mod0

D. Moreover, in this case the braided equivalence Ψmod-A : D→D
is given by

Ψmod-A = (α+
A )−1 ◦ α−

A . (24)

Now according to [BFRS, Prop. 7.3], for the Azumaya algebra AP the local induction functors
satisfy α+

AP
(U ⊠V )∼=α−

AP
(V ⊠U),. This implies that the functor Ψmod-AP

acts on objects and
morphisms by permutation, in particular

Ψmod-AP
(U ⊠V ) = V ⊠U . (25)

Remark 3. We can now see that the module category PD over D describes the permutation
twist surface defect of [BaJQ3]. To this end we note [FSV1, Sect. 4] that for a defect surface
labeled by a D-module M the functor ΨM describes the transmission of bulk Wilson lines
through the defect surface. Thus for A=AP bulk Wilson lines get permuted according to
(25) when passing through the defect surface. This is precisely the property characterizing the
permutation twist defect [BaJQ3].

Lemma 4. Let A and A′ be Azumaya algebras in a braided fusion category. Then we have the

isomorphism

Ψmod-A⊗A′
∼= Ψmod-A ◦Ψmod-A′ (26)

of monoidal functors.

Proof. Given the definition (24) of the monoidal functors, the statement follows immediately
from the commuting diagram (23), from which one can also read off the monoidal natural
isomorphism.
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Proposition 5. The Azumaya algebra AP ⊗AP in D is Morita equivalent to the tensor unit

1D of D.

Proof. Combining (25) and (26) we have Ψmod-AP⊗AP
∼=Ψmod-AP

◦Ψmod-AP
= IdD. Thus by [DNO,

Cor. 3.8] the module categories mod-AP⊗AP and mod-1D are equivalent, i.e. AP ⊗AP and 1D

are Morita equivalent.

Categories of defect Wilson lines. We are now in a position to find the relevant categories
of defect Wilson lines. Consider two types of surface defects separating a topological phase of
type D from itself, corresponding to two D-modules M1 and M2. According to [FSV1] the cat-
egory of surface Wilson lines separating M1 from M2 is the functor category FunD(M1,M2)
of D-module functors. If the left module categories M1 and M2 are realized as the categories
of right modules over algebras A1 and A2 in D, respectively, then this functor category is
equivalent to the category of A1⊗Aop

2 -modules in D. We are interested in the situation that
the two D-modules in question are either TD or PD, corresponding to the transparent and to
the permutation twist defect. Proposition 5 tells us that under forming tensor products the
Azumaya algebra AP for the twist defect PD has order two up to Morita equivalence; as a
consequence, when calculating the functor categories we can work with AP in place of Aop

P . We
then find the following categories of defect Wilson lines:

• The category FunD(TD, TD) of defect Wilson lines separating the transparent surface defect
from itself is just D, as expected:

FunD(TD, TD) ≃ (1D⊗1D)-modD ∼= 1D-modD ∼= D . (27)

• There are two categories of defect Wilson lines separating the transparent defect from the
twist defect, FunD(TD,PD) and FunD(PD, TD); we find

FunD(TD,PD) ≃ (1D⊗AP)-modD
∼= AP-modD

∼= C (28)

and, in a similar manner, FunD(PD, TD)∼= C. As shown in [FSV1, Sect. 6.2], each such Wilson
line labeled by W ∈C gives rise to a (special symmetric Frobenius) algebra in the Morita
class of AP ; this is actually just the internal end EndC(W ) [Os1, Sect. 3].

• Finally, the category of defect Wilson lines separating the twist defect from itself is

FunD(PD,PD) ≃ (AP⊗AP)-modD ≃ 1D-modD
∼= D . (29)

The category describing Wilson lines which separate the twist defect from the transparent
defect provides the labels for a permutation-type “genon” of [BaJQ1]. Genons are thus labeled
by objects of the category C.

Fusion of surface defects. Topological surface defects can be fused. In the particular
situation of two surface defects separating a topological phase of type C from itself, described
by C-modules M1 and M2, the fusion product is the C-module M1⊠C M2. The Deligne
product ⊠C of two module categories over a braided fusion category is the categorification of
the tensor product M1 ⊗RM2 of two left modules M1 and M2 over a commutative ring R and
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has a similar universal property. For a precise definition see [ENOM, Def. 3.3&Sect. 4.4]. By
[ENOM, Prop. 3.5] there is an equivalence

M1 ⊠C M2 ≃ FunC(Mop
1 ,M2) (30)

of abelian categories.
The right hand side of (30) has a natural interpretation [FSV1] as the category of surface

Wilson lines that separate the surface defect labeled by Mop
1 from the one labeled by M2.

This is no coincidence: if we realize two module categories M1 and M2 over a modular tensor
category C as the categories of right modules over algebras A1 and A2 internal in C, the fused
module category M1⊠C M2 is realized by the category of right A1⊗A2-modules. Now consider
a defect surface with the topology of a plane, separated by a Wilson line into two half planes
labeled by A1 and by A2, respectively. Wilson lines of this type are labeled by the category
of A1-A2-bimodules which equals, as an abelian category, (A1⊗Aop

2 )-modC. By folding the
plane along the Wilson line we arrive at a configuration in which a Wilson line separates the
transparent surface defect TC from the surface defect that is obtained by fusing the surface
defect with label A1 with the orientation-reversed surface defect for A2. This is the C-module
category

A1-modC ⊠C A
op
2 -modC ∼= (A1⊗Aop

2 )-modC . (31)

Now for any C-module categoryM, the category of surface Wilson lines separating the transpar-
ent defect TC from M is FunC(C,M)∼=M, and hence in the case at hand the abelian category
(A1⊗Aop

2 )-mod. Thus the equality of the two abelian categories can be understood through the
folding procedure and provides a consistency check on the description of the fusion of surface
defects by the Deligne product.

It follows in particular that the transparent defect, described by the algebra 1C in C, acts
as a (bi)monoidal unit. In the case of permutation twist defects in the bilayer system based on
D = C ⊠ C, we get

PD ⊠D PD
∼= (AP⊗AP)-modD

∼= D , (32)

where in the last step we used again that the Azumaya algebra AP ⊗AP is Morita equivalent
to the tensor unit. Thus the fusion product of the twist defect PD with itself is the transparent
defect; this is certainly not unexpected.

More general Wilson lines. A topological field theory of Reshetikhin-Turaev type actually
admits more general types of Wilson lines, in which any finite number of surface defects meet.
Locally in a three-manifold, the situation looks like in the following picture, in which, as in the
formalism used in [FSV2], the locus of the Wilson line in a three-manifold is actually a tube:

(33)
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In situation at hand, each of the surface defects that meet at the Wilson line can be either
the transparent defect or the twist defect. We denote the decorated one-dimensional manifold
consisting of a circle with an nT -tuple ~p ≡ (p1, p2, ... , pnT ) of points marked with the transparent
defect TD and an nP -tuple ~q ≡ (q1, q2, ... , qnP

) of points marked by the twist defect PD by S~p,~q,
and the associated category of generalized Wilson lines by tft(S~p,~q). Because of the Z2-fusion
rules obeyed by the transparent and twist defects, the category tft(S~p,~q) is equivalent to D if
nP is even, and equivalent to C if nP is odd.

A geometric understanding of the categories of generalized Wilson lines is provided by the
cover functor cov of [BaS, Prop. 2], which maps the decorated one-manifold S~p,~q as follows to a
two-sheeted cover of the circle S1. First, take the disjoint union of two copies S̃(1) and S̃(2) of
the non-connected manifold obtained by replacing the open intervals in S1 \ (~p∪ ~q) by closed
intervals. For each marked point qi this gives two points q1,li and q1,ri on S̃(1) and two points
q2,li and q2,ri on S̃(2). They are associated to the interval on the left hand side and to the one on
the right hand side of qi ∈S1, respectively. Next we identify q2,li with q1,ri and q1,li with q2,ri . For
the points pi a similar construction is performed, but this time we identify p1,li with p,1,ri and
p2,li with p2,ri . The two different identifications are illustrated in the left and right hand parts
of the following figure:

cov(Σ)

Σ

q1,l

q2,l

q

q1,r

q2,r

cov(Σ)

Σ

q1,l

q2,l

q

q1,r

q2,r

(34)

We have thus associated a two-sheeted cover cov(S)→S to the decorated one-manifold S~p,~q.
As already indicated in (9), the equivariant topological field theory tftZ2

D is obtained [BaS] by
applying the TFT functor associated to C to the cover.

Let us check that the categories of generalized Wilson lines for decorated one-manifolds that
we have computed in (27) – (29) coincide with the evaluation of the 2-functor tftC on the total
space cov(S) of the two-sheeted cover of S. If the number nP of twist defects is even, then
cov(S)→S is the trivial cover whose total space has two connected components; we thus get

tftZ2

D (S) = tftC(S
1 ⊔S1) ≃ tftC(S

1)⊠ tftC(S
1) = C ⊠ C = D . (35)

If nP is odd, then the total space cov(S) is connected and we obtain instead the category
tftZ2

D (S) = tftC(S
1) = C.

3 Generalized conformal blocks and their dimensions

To an oriented surface Σ with boundaries, an extended topological field theory assigns a functor.
More explicitly, given a decomposition ∂Σ =−∂Σ− ⊔ ∂Σ+ of the boundary into incoming and
outgoing parts, we get a functor

tftD(Σ) : tftD(∂Σ−) −→ tftD(∂Σ+) . (36)

To achieve a detailed understanding of these functors, two particular perspectives prove to be
helpful: First, the functors for particularly simple surfaces can be assembled to obtain those for
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more complicated surfaces. Second, by assigning specific objects of D to the boundary surfaces,
one arrives at vector spaces of (generalized) conformal blocks. We address both of these points
of view.

Mixed tensor products. The basic observation that allows for the first perspective is that
any oriented surface with boundary admits a decomposition into pairs of pants, cylinders and
disks. Evaluating the TFT-functor on the pair of pants Y with two incoming and one outgoing
boundary circles gives a functor

tftD(S
1)⊠ tftD(S

1) ∼= tftD(S
1⊔S1) −→ tftD(S

1) . (37)

This endows the category D associated to the circle with a tensor product functor. (An asso-
ciativity constraint for this tensor product is then provided by the natural transformation that
the TFT associates to a suitable three-manifold with corners; this way D becomes a monoidal
category.)

Once we allow for non-trivial defects, we get additional categories associated to decorated
circles, and thereby additional tensor products; they relate different categories and are thus
mixed tensor products. In the case of twist defects, these tensor products can be extracted
from the underlying equivariant topological field theory. If we deal with a permutation equiv-
ariant theory, mixed tensor products have been computed [BaS, Sect. 4.3] with the help of the
cover functor, which we already encountered in (9). Proceeding in this way we find:

• Denote by n1 and n2 the numbers of twist defects ending on the two ingoing circles and
by n3 the number of twist defects of the outgoing circle. On the pair of pants we then
have (n1+n2+n3)/2 lines that connect boundary circles, all labeled by the twist defect. The
following picture shows a case with n1=5, n2=7 and n3=6 and with each line connecting
two different circles:

(38)

• If the numbers n1 and n2 are both even, then n3 is necessarily even as well. Thus the
categories assigned to the boundary circles are all equivalent to D. According to [BaS], the
functor associated to any such pair of pants is the tensor product in the monoidal category
D:

tftD(Yn1,n2,n3
) : D ×D −→ D

(U1⊠U2)× (V1⊠V2) 7−→ (U1⊗V1)⊠ (U2⊗V2) .
(39)

• If n1 is even and n2 is odd, then n3 is necessarily odd, and the functor is the mixed tensor
product:

tftD(Yn1,n2,n3
) : D × C −→ C

(U1⊠U2)×M 7−→ U1 ⊗U2⊗M ,
(40)
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where on the right hand side the tensor product in C appears.
The situation is analogous when n1 is odd and n2 is even.

• If both n1 and n2 are odd, then n3 is even. In this case the functor is the one computed in
[BaS, Sect. 4.3, p. 314]:

tftD(Yn1,n2,n3
) : C × C −→ D

M ×N 7−→ ⊕
i∈IC

(M ⊗N ⊗S∨
i )⊠Si .

(41)

Again we have a geometric understanding of these functors. Consider a pair of pants Y with
a pattern of non-intersecting surface defect lines, as in the figure (38). And again we take two
copies of Y with the defect lines removed and glue them together according to the prescription
in the figure (34), with the identification depending on whether the defect line is labeled by the
transparent defect or the twist defect. This way we get a two-sheeted cover Ỹn1,n2,n3

→Yn1,n2,n3

which restricts on the boundary circles to the cover constructed in Section 2. The functors
tftD(Yn1,n2,n3

) just described are then the functors tftC(Ỹn1,n2,n3
).

Spaces of conformal blocks. We now turn to the second perspective and focus on spaces of
conformal blocks. Consider an oriented surface Σ, for the moment without defects, with only
ingoing boundary circles, i.e. ∂Σ =−∂Σ−

∼= (S1)⊔n and ∂+Σ = ∅. The extended topological field
theory provides a functor tftD(Σ) : D⊠n→ vect. Specifying an object in D for each boundary
circle, we obtain a vector space, known as a space of conformal blocks. In applications to
topological quantum computing, these spaces are the spaces of ground states and are thus the
recipients of qubits. The dimension of the space of conformal blocks, and thus the ground state
degeneracy, is computed by the Verlinde formula.

In the presence of surface defects in the three-dimensional theory, the topological surface Σ
is endowed with a collection of non-intersecting lines. Such lines are closed or have end points
on the boundary circles of Σ. Each segment of a line is labeled either by the transparent defect
TD or by the twist defect PD. A typical situation is displayed in the following figure:

(42)

Here lines labeled by the transparent defect TD are drawn as dotted lines, while those labeled
by the twist defect PD are drawn as solid lines.

A boundary circle is drawn as a double line if an even number of PD-lines ends on it; the
associated category is D= C⊠ C. Boundary circles with an odd number of PD-lines are drawn
as single lines; the corresponding category is C. Among the single-line circles are those on which
only one PD-line ends; these are “genons”. (Thus in the picture (42) there is one genon, the
lower of the two single-line circles.)

Our task is to construct for a surface Σ with m0 boundary circles having an even number
of PD-lines and m1 boundary circles having an odd number a functor

tftD(Σ) : D⊠m0 ⊠ C⊠m1 −→ vect (43)
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that describes generalized conformal blocks, including their dependence on the labels of the
boundary circles. By the axioms of topological field theory, the gluing of surfaces must give
rise to the composition of the associated functors. As a consequence, the functor tftD(Σ) can
be expressed as a composite of the functors arising in a pair-of-pants decomposition of the
surface Σ. The latter are already known from the previous discussion: they are provided by
the equivariant topological field theory tftZ2

D . Note that surfaces with Z2-covers can be glued,
and in an equivariant topological field theory this translates into the composition of functors.

Hereby we are led to the following generalization of the construction for pairs of pants given
above. To a surface Σ with embedded TD-lines and PD-lines we associate a two-sheeted cover
cov(Σ)→Σ as follows: Again we glue together two copies of Σ with all defect lines removed,
in a way that is determined by the surface defect labeling the defect line, as in the figure (34).
(A variant is to glue standard disks to the boundary circles of Σ so as to get closed oriented
surfaces. In this formulation one gets two-fold branched covers, with branch points in disks
whose boundaries contain an odd number of twist defects. As mentioned, circles with one twist
defect describe genons; they are thus end points of branch cuts, compare [BaJQ3].)

It is crucial that the construction of Z2-covers is compatible with the gluing of surfaces with
defects. Indeed, consider the surface Σ1#Σ2 that is obtained by gluing together, along appro-
priate boundary circles, surfaces Σ1 and Σ2 with defects. Then the Z2-cover of Σ1#Σ2 furnished
by our construction is the same as the surface obtained by gluing the cover cov(Σ1)→Σ1 to
the cover cov(Σ2)→Σ2,

cov(Σ1#Σ2) = cov(Σ1)# cov(Σ2) . (44)

We thus conclude that the generalized conformal block functor for a general surface as in (43)
is obtained by applying tftC to the two-fold cover cov(Σ), i.e. we have tftD(Σ) = tftC(cov(Σ))
as in (9). This provides a model independent confirmation of an insight gained in the study
[BaJQ1] of several classes of models.

A generalization of the Verlinde formula. What we have achieved is to identify the
generalized conformal blocks in the bilayer topological field theory based on D associated to a
surface with defects with ordinary conformal blocks for tftC on the cover of that surface. As a
consequence, we can compute the dimension of these spaces with the ordinary Verlinde formula
for the theory based on C.

Consider a closed surface of genus g, and thus of Euler characteristic χ=2− 2g, obtained
by gluing disks to the boundary circles of a surface Σ. Let Σ have N0 boundary circles with
an even number of twist defects, labeled with objects Ui ⊠ Ũi ∈D for i=1, 2, ... , N0, where
Ui, Ũi ∈C, and N1 boundary circles with an odd number twist defects, labeled with objects
Vj ∈C for j=1, 2, ... , N1. Then by the Riemann-Hurwitz theorem the cover cov(Σ) has Euler
characteristic 2χ−N1, i.e. the genus of the cover increases linearly with N1. A boundary circle
of Σ with an even number of twist defects has a pre-image on cov(Σ) consisting of two circles;
we label them by the objects Ui and Ũi of C, respectively, with the relevant value of i. A
boundary circle of Σ with an odd number of twist defects has a single circle as its pre-image,
which we label by the appropriate object Vj ∈C. Taking for simplicity the objects Ui, Ũi and
Vj to be simple, we arrive this way at the following formula for the dimensions of spaces of
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generalized blocks:

dimC

(
tftD(Σ; {Ui⊠Ũi} , {Vj})

)
=

∑

n∈IC

(S0,n)
2χ−N1

N0∏

i=1

SUi,n

S0,n

SŨi,n

S0,n

N1∏

j=1

SVj ,n

S0,n

. (45)

Here S is the modular S-matrix of the category C, i.e. the matrix obtained from s=(si,j)
as given in (2) by rescaling such that S is unitary and symmetric, and where 0∈ IC is the
isomorphism class of 1C.

For instance, for Σ =S2 of genus 0, N0=0 and all Vj equal, the dimension is

dimC

(
tftD(S

2; ∅ , {V, V, ... , V })
)
=

∑

n∈IC

(S0,n)
4−2N1(SV,n)

N1 . (46)

Dependence of the dimension of spaces of conformal blocks on the genon type.

In the context of quantum computing twist defects are of interest because the relevant spaces
of conformal blocks are associated with surfaces of higher genus, so that they generically have
larger dimension than conformal blocks for surfaces without twist defects. From this perspective
it should also be appreciated that each genon comes with the choice of a label, which is an
object in the category C. Since this datum enters in the dimension formula (45), it constitutes
an additional handle on increasing the dimension of the space of conformal blocks.

As a simple instructive example, take a sphere with four genons, i.e. Σ=S2, N0=0 and
N1 =4, and take C to be the modular tensor category of the critical Ising model, describing a
free Majorana fermion. (For a related discussion of genons in this model see [BaJQ1, Sect.V].)
Then cov(Σ) =T is a torus with four boundary circles, and the set IC of isomorphism classes
of simple objects of C has three elements, IC = {1C, σ, ǫ}. We consider two extreme choices for
the labels of the genons. First, let all genons be labeled by 1C, which is the monoidal unit of
C. Then the dimension of the space of generalized conformal blocks is

d4(1C) := dimC

(
tftD(S

2; ∅ , {1C, 1C, 1C, 1C})
)

= dimC

(
tftC(T; 1

⊗4
C )

)
= dimC

(
tftC(T; 1C)

)
=

∣∣IC
∣∣ = 3 .

(47)

Second, if all genons are labeled by σ, then by using the fusion rules σ⊗σ∼= 1C ⊕ ǫ and ǫ⊗ ǫ∼= 1C

we get
d4(σ) := dimC

(
tftD(S

2; ∅ , {σ, σ, σ, σ})
)

= dimC

(
tftC(T; σ

⊗4)
)
= dimC

(
tftC(T; 2 1C ⊕ 2 ǫ

)

= 2
[
dimC

(
tftC(T; 1C)

)
+ dimC

(
tftC(T; ǫ)

) ]
= 2 (3 + 1) = 8 .

(48)

To see that these numbers agree with formula (46), just note that for the Ising model we have
(S0,n) =

1
2
(1,

√
2, 1) and (Sσ,n) =

1
2
(
√
2, 0,−

√
2). The corresponding numbers for arbitrary N1

are
dN1

(1C) = 2N1−3 + 2N1/2−2 and dN1
(σ) = 23N1/2−3, (49)

respectively, and thus grow exponentially with the number of genons. The growth depends,
however, explicitly on the choice of label for the genon, and a judicious choice leads to more
powerful codes.
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Braiding. For a Z2-equivariant category, the notion of a braiding has to be replaced by the no-
tion of an equivariant braiding. Concretely, part of the data are two autoequivalences τD : D→D
and τC : C→C of the categories involved. As shown in [BaS], τD act as τD(U ⊠V ) =V ⊠U , while
τC is the identity endofunctor of C. If V ∈C labels a circle with an odd number of PD-defects,
then the equivariant braiding is given by functorial isomorphisms cV,W : V ⊗W → τ(W )⊗V .
These isomorphisms have been computed [BaS, Sect. 4.6] from the cover functor and look as
follows.

• The braiding of two objects V =V1⊠V2 ∈D and W =W1⊠W2 ∈D is just cCV1,W1
⊠ cCV2,W2

[BaS, Eq. (23)], as one would expect for bilayer systems.

• The equivariant braiding of V = V1⊠ V2∈D and W ∈C is more complicated; it involves the
twist θ as well as over- and underbraidings:

cV,W = (cCV1,W
⊗ θ−1

V2
) ◦ (idV1

⊗ (cCW,V2
)−1) : V1⊗V2⊗W

∼=→W ⊗V1⊗V2 . (50)

• Similarly, for V ∈C and W =W1⊠W2 ∈D we have

cV,W = (cCW1,W2
⊗ idV ) ◦ ((cCW1,V

)−1⊗ idW2
) : V ⊗W1⊗W2

∼=→W2⊗W1⊗V . (51)

• The equivariant braiding of two objects in D is still more complicated; we refer to the last
equation-picture in [BaS, Sect. 4.6].

It is an interesting and important problem to obtain the appropriate generalizations of map-
ping class groups of surfaces with boundary disks and defect lines and the representations of
these groups on the spaces of generalized conformal blocks, as well as to relate them to repre-
sentations of mapping class groups of higher genus surfaces. For results in the condensed matter
literature see [BaJQ1, FHN]. This issue is of direct relevance for the problem of implementing
universal quantum gates on topological codes described by these spaces of generalized confor-
mal blocks. It has already been demonstrated [FNW, BaJQ1] that the presence of twist defects,
via the induced mapping class group actions of higher genus, renders the double layer Ising sys-
tem with permutation twist defects universal for quantum computing, while it is non-universal
without defects in genus zero.

A remark on orbifolding. We conclude this note with a speculative remark. As pointed
out in [BaJQ1], gauging the symmetry that underlies a twist defect can deconfine the extrinsic
defects such that they become intrinsic quasi-particles in a topological phase described by
the corresponding orbifold theory. As a physical mechanism for such a gauging, based on
the analogy with the emergence of a Z2-gauge theory by a proliferation of double vortices
in a superfluid the authors of [BaJQ1] propose a proliferation of double-twist defects. We
conjecture that on the level of topological field theory this mechanism is implemented by a three-
dimensional analogue of the generalized orbifolds of [FFRS2], in which an orbifold construction
is realized with the help of a network of defect lines.
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