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ON THE HOMOLOGY AND HOMOTOPY OF COMMUTATIVE SHUFFLE

ALGEBRAS

BIRGIT RICHTER

Abstract. For commutative algebras there are three important homology theories, Harrison
homology, André-Quillen homology and Gamma-homology. In general these differ, unless one
works with respect to a ground field of characteristic zero. We show that the analogues of
these homology theories agree in the category of pointed commutative monoids in symmet-
ric sequences and that Hochschild homology always possesses a Hodge decomposition in this
setting. In addition we prove that the category of pointed differential graded commutative
monoids in symmetric sequences has a model structure and that it is Quillen equivalent to the
model category of pointed simplicial commutative monoids in symmetric sequences.

1. Introduction

Symmetric sequences are used in many areas of mathematics: Joyal [J81] baptized them
species, they are important in the theory of operads and one symmetric monoidal model of the
stable homotopy category is given by symmetric spectra [HSS00] and these are spectra that are
built out of symmetric sequences in spaces (simplicial sets).

Let k be an arbitrary commutative ring with unit. The aim of this paper is to understand
homology theories for commutative monoids in symmetric sequences and to investigate the
corresponding homotopy theory of simplicial and differential graded objects. A crucial ingre-
dient for our investigation is a result by Stover. He proved [Sto93, 9.10] that the norm map
N =

∑

σ∈Σn
σ induces an isomorphism between coinvariants and invariants of tensor powers

(1) N : (V ⊙n)Σn → (V ⊙n)Σn

for all n > 1 and all reduced symmetric sequences V , thus the zeroth Tate cohomology group
of Σn with coefficients in V ⊗n vanishes. Therefore, quite often arguments work in this context
that otherwise only hold in characteristic zero. A second way to interpret Stover’s result is that
the difference between commutative monoids and commutative monoids with divided power
structures disappears. In fact we show that there is a natural way to associate an ordinary graded
divided power algebra to every commutative monoid in symmetric sequences (see Theorem 2.3).

For commutative algebras A over a commutative ring k there are several important homology
theories: André-Quillen homology, AQ∗, takes derived functors of indecomposables in the simpli-
cial sense, Harrison homology, Harr∗, takes the indecomposables of the Hochschild complex and
Γ-homology, HΓ∗, views the commutative algebra as an E∞-algebra and takes its homology in
this setting. An identification [PR00] says that Γ-homology can also we viewed as the stabiliza-
tion of a commutative algebra: The category of commutative augmented algebras is enriched in
the category of pointed simplicial sets, so A⊗Sn makes sense for a simplicial model Sn of the n-
sphere. Taking Sn = (S1)∧n gives rise to natural stabilization maps πk(A⊗Sn) → πk+1(A⊗Sn+1)
and Γ-homology can be identified with the stable homotopy groups of A⊗ S• [PR00, Theorem
1].

In general all three homology theories differ drastically: if k is F2 for instance, then André-
Quillen homology of the polynomial ring F2[x] vanishes above degree zero whereas Γ-homology
of F2[x] with coefficients in F2 is isomorphic to (HF2)∗HZ [RiRo04, 3.2]. In contrast Harrison
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homology of F2 viewed as an F2-algebra is not trivial in positive degrees whereas André-Quillen
homology and Γ-homology are zero (see for instance [RoWh02, Example 6.7]). One reason
for these differences is that the operad of commutative algebras is in general not Σ-free unless
we work in characteristic zero: the operad Com over k is Com(n) = k for all n and this is
k-projective but not projective as a module over the group algebra of the symmetric group
Σn, k[Σn]. Usually one replaces the operad Com by an E∞-operad to make things homotopy
invariant. For instance Mike Mandell showed [M03, 1.8] that the normalization functor induces
an isomorphism between André-Quillen homology for simplicial E∞-algebras and André-Quillen
homology for differential graded E∞-algebras. We take the point of view that we want to keep
the operad Com but work in an underlying symmetric monoidal category with enough Σ-freeness
to make up for the algebraic defects of the operad Com.

We show that Harrison homology, André-Quillen homology and Gamma homology coincide
if we consider reduced commutative monoids in symmetric sequences. In other contexts such
algebras are called commutative shuffle algebras [Ron11]; shuffle algebras play an important
rôle in the theory of combinatorial Hopf algebras. If A is such a monoid and if A is levelwise
projective as a k-module we have

AQ∗(A; k) ∼= Σ−1Harr∗(A) ∼= HΓ∗(A)

(see Theorems 3.3 and 3.4). We also show that the Hodge decomposition for Hochschild homol-
ogy is valid in our context in arbitrary characteristic (Theorem 3.6).

We establish a model category structure for pointed commutative monoids in symmetric
sequences of chain complexes with fibrations and weak equivalences induced by the underlying
category (see Corollary 5.7). This should be compared to commutative differential graded
algebras, where such a model structure does not exist unless one works over the rationals.

We extend the classical Dold-Kan correspondence to a Quillen equivalence between the model
category structures of pointed simplicial commutative shuffle algebras and pointed differential
graded commutative shuffle algebras (Theorem 6.5). Here we call a monoid A pointed if its
zeroth level consists precisely of the unit of the underlying category. This generalizes Quillen’s
result [Qu69, Remark on p. 223] in the characteristic zero setting.

Brooke Shipley showed [S07] that there is a Quillen equivalence between the model categories
of Hk-algebra spectra and differential graded k-algebras for any commutative ring k. We use
her chain of functors to show in Proposition 7.1 that commutative Hk-algebra spectra give rise
to natural examples of differential graded and simplicial commutative shuffle algebras. In fact,
we conjecture that there is a Quillen equivalence between commutative Hk-algebra spectra and
commutative monoids in spectra of simplicial k-modules and commutative monoids in spectra
of differential graded k-modules. We plan to address this question in future work.

Acknowledgement: I thank Teimuraz Pirashvili for several helpful discussions. The idea,
that all common homology theories of commutative algebras should agree in the setting of
symmetric sequences is due to him. John Rognes asked whether commutative shuffle algebras
are divided power algebras in a suitable sense and thanks to this question I thought about the
structures that lead to Theorem 2.3.

2. Commutative shuffle algebras

We will fix an arbitrary commutative ground ring k. If S is a set, then kS denotes the free
k-modules generated by S. We denote by Σn the symmetric group on n letters and by kΣn its
group algebra.

For general facts about symmetric sequences I recommend [AM10, Sto93]. If C is any category,
then we denote by CΣ the category of symmetric sequences in C. Its objects are sequences
X = (X(ℓ))ℓ∈N0 of objects X(ℓ) of C such that every X(ℓ) carries a left Σℓ-action with Σℓ
denoting the symmetric group on ℓ letters. We call X(ℓ) the ℓth level of X. A morphism
f : X → Y between two objects X,Y of CΣ is a sequence of morphisms f(ℓ) : X(ℓ) → Y (ℓ) in
C such that every f(ℓ) is Σℓ-equivariant.
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If (C,⊠, 1) is symmetric monoidal and possesses sums that distribute over the monoidal
product, e.g., if C is closed, then CΣ inherits a symmetric monoidal product from C if C has
coequalizers.

In the following the categories of k-modules, simplicial modules and chain complexes play an
important rôle. If we denote the category of k-modules by mod, then the usual tensor product
of k-modules, ⊗, gives rise to a symmetric monoidal category (modΣ,⊙, I) such that for two
M,N ∈ modΣ we get in level ℓ

(M ⊙N)(ℓ) =
⊕

p+q=ℓ

kΣℓ ⊗kΣp⊗kΣq
M(p)⊗N(q).

Here the right-hand side denotes the coequalizer with respect to the Σp×Σq-action on M(p)⊗
N(q) and on Σℓ by viewing Σp×Σq as a subgroup of Σℓ = Σp+q. This structure is usually called
the tensor product of symmetric sequence of modules. We use the notation ⊙ in an attempt to
minimize confusion.

The unit for this symmetric monoidal structure is the symmetric sequence I with

I(ℓ) = 0 for ℓ 6= 0 and I(0) = k.

For the symmetry we denote by χ(q, p) ∈ Σq+p the permutation with

χ(q, p)(i) =

{

i+ p, for 1 6 i 6 q,

i− q, for q < i 6 q + p.

The symmetry, tw, for ⊙ is then defined by sending a class [σ⊗x⊗y] with σ ∈ Σp+q, x ∈ X(p)
and y ∈ Y (q) to

tw[σ ⊗ x⊗ y] = [(σ ◦ χ(q, p))⊗ y ⊗ x].

For graded modules the situation is similar but we might introduce the sign (−1)|x||y| in
tw. These symmetric monoidal structures on mod and modΣ transfer to symmetric monoidal
structures on non-negatively graded chain complexes, dgmod, and to dgmodΣ such that for
X∗, Y∗ ∈ dgmodΣ (with ∗ denoting the chain degree) we get in chain degree n

(X∗ ⊙ Y∗)(ℓ)n =
⊕

p+q=ℓ

⊕

r+s=n

kΣℓ ⊗kΣp⊗kΣq
Xr(p)⊗ Ys(q).

Thus

(X∗ ⊙ Y∗)(ℓ) =
⊕

p+q=ℓ

kΣℓ ⊗kΣp⊗kΣq
X∗(p)⊗ Y∗(q)

if we follow the usual grading convention for tensor products of chain complexes.
Similarly, for simplicial modules, smod, and the corresponding category of symmetric se-

quences therein, smodΣ, we get for A•, B• ∈ smodΣ

(A•⊙̂B•)(ℓ) =
⊕

p+q=ℓ

kΣℓ ⊗kΣp⊗kΣq
A•(p)⊗̂B•(q)

where ⊗̂ denotes the symmetric monoidal product for simplicial modules, i.e., in simplicial
degree n this yields

(A•(p)⊗̂B•(q))n = An(p)⊗Bn(q)

with a diagonal action of face and degeneracy operators.
As we will use these categories frequently in the rest of the paper we ease notation by

abbreviating dgmodΣ to dgΣ and smodΣ to sΣ .
We will make frequent use of the following two constructions. Let M be a reduced object in

modΣ, i.e., M(0) = 0.
The free associative monoid generated by M is

T (M) =
⊕

i>0

M⊙i

3



and the free commutative monoid generated by M is

C(M) =
⊕

i>0

M⊙i/Σi.

Sometimes, we need the reduced version of C(M), so let C̄(M) be the free commutative non-
unital monoid in symmetric sequences generated by M . Then C̄(M) =

⊕

i>1M
⊙i/Σi. Unrav-

elling the definitions shows that these objects deserve their names.
Note that elements in C(M) behave like polynomials in every level, but globally they can

differ. Take for instance asM the symmetric sequence that is concentrated in level 1 and is equal
to k there. Then we can define an element d in C(M) by d(ℓ) = [idℓ⊗1⊗ . . .⊗1] ∈M⊙ℓ/Σℓ(ℓ).
So d is non-trivial in every level and if we would like to assign a degree to this ’polynomial’ we
could do that levelwise with the degree of d(ℓ) being ℓ, but this assignment does not give rise
to any reasonable notion of global degree.

A monoid in A in modΣ has a multiplication map µ : A⊙A→ A. For a fixed level ℓ the map
µ(ℓ) is a Σℓ-equivariant map

µ(ℓ) :
⊕

kΣℓ ⊗kΣp⊗kΣq
A(p)⊗A(q) → A(ℓ).

As the coset Σℓ/Σp × Σq has the set of (p, q)-shuffles, Sh(p, q), as a set of representatives, one
can also define a monoid in symmetric sequences of modules by declaring that there is a map
µ(σ) : A(p) ⊗ A(q) → A(p + q) for every (p, q)-shuffle σ and that these maps satisfy certain
coherence conditions as spelled out in [Ron11, Definition 2.1].

Definition 2.1.

• A monoid in modΣ is called a shuffle algebra.
• A commutative monoid in modΣ is a commutative shuffle algebra.

Before we move on to the differential graded and simplicial context we give three examples
of commutative shuffle algebras in the category of (graded) modules.

• Let V be a k-module. Then we can define the symmetric sequence generated by V as

Sym(V )(ℓ) = V ⊗ℓ

where Σℓ acts by permuting the tensor coordinates. Then Sym(V ) is a commutative
shuffle algebra despite the fact that its underlying graded object is the tensor algebra
generated by V , i.e., the free associative algebra generated by V .

• If A∗ is a graded commutative k-algebra, then Stover defines a symmetric sequence A±
∗

[Sto93, p. 323] with
A±

∗ (ℓ) = Aℓ
with the Σℓ-action given by the sign-action:

σ.a := sgn(σ)a.

With this convention, A±
∗ is actually a commutative shuffle algebra. Note that just

placing Aℓ in level ℓ does not define a commutative monoid.
• If ε : A → k is an augmented commutative unital k-algebra, then we can define the
symmetric sequence grΣ(A) in k-modules by grΣ(A)(ℓ) = Iℓ/Iℓ+1 where I denotes the
augmentation ideal of A and where grΣ(A)(ℓ) carries the trivial Σℓ-action. Then grΣ

actually defines a functor from the category of augmented commutative unital k-algebras
to commutative shuffle algebras.

We also get interesting functors from commutative shuffle algebras to ordinary (graded)
commutative algebras. The following notion is a variant of Stover’s definition [Sto93, 14.4].

Definition 2.2. Let A be an augmented commutative unital shuffle algebra. Then we define
Ψ(A) to be the graded module with

Ψ(A)n =

{

0, n odd,

Am, n = 2m.
4



We let Ψ(A) carry a symmetrized multiplication by setting

a · b :=
∑

σ∈Sh(p,q)

σµ(id ⊗ a⊗ b) =
∑

σ∈Sh(p,q)

µ(σ ⊗ a⊗ b)

for homogeneous a ∈ Ψ(A)2p = A(p) and b ∈ Ψ2q(A).

In the following we use the abbreviation Sh(p; n) for the set of shuffles Sh(p, . . . , p
︸ ︷︷ ︸

n

). This set

carries an action of the symmetric group on n letters where an element σ ∈ Σn acts via the
precomposition with the corresponding block permutation σb ∈ Σpn which permutes the blocks
{1, . . . , p}, {p+1, . . . , 2p},. . .,{p(n− 1) + 1, . . . , pn} as σ permutes the numbers {1, . . . , n}. We
denote by S(p;n) a set of representatives for the quotient of Sh(p; n) by Σn.

Theorem 2.3. For every augmented commutative shuffle algebra with A(0) = k, Ψ(A) is a
graded divided power algebra.

Proof. For any element x ∈ Ψ(A) of positive degree 2p we define

γn(x) :=
∑

σ∈S(p;n)

µ(σ ⊗ x⊗n).

As x⊗n is invariant under the Σn-action, this is well-defined and n!γn(x) = xn. We have to
show that this definition gives a divided power structure on Ψ(A).

• The product γn(x) · γm(x) is equal to
∑

σ∈Sh(np,mp)

∑

τ1∈S(p;n)

∑

τ2∈S(p;m)

µσ((σ ◦ (τ1 ⊕ τ2))⊗ x⊗(n+m)).

On the other hand γn+m(x) is
∑

ξ∈S(p;n+m)

µΣ(ξ ⊗ x⊗(n+m).

Composing elements in Sh(np,mp) with the sum of elements in Sh(p; n) and Sh(p;m)
gives precisely the set Sh(p; n+m). In γn(x) · γm(x) we devide out by the action of Σn
and Σm whereas for γn+m(x) we build the quotient with respect to Σn+m and therefore
we obtain

(2) γn(x) · γm(x) =

(
n+m

n

)

γn+m(x).

• The n-the divided power of a sum of two homogeneous elements of positive degree 2p is

γn(x+ y) =
∑

σ∈S(p;n)

µΣ(σ ⊗ (x+ y)⊗n)

=
∑

σ∈S(p;n)

n∑

i=0

∑

τ∈Sh(i,n−i)

µΣ(σ ⊗ τ(x⊗i ⊗ y⊗(n−i))).

For
∑n

i=0 γi(x) · γn−i(y) we obtain

n∑

i=0

∑

ξ∈Sh(ip,(n−i)p)

∑

τ1∈S(p;i)

∑

τ2∈S(p;n−i)

µΣ((ξ ◦ (τ1 ⊕ τ2))⊗ x⊗i ⊗ y⊗(n−i)).

As

µΣ(σ ⊗ τ(x⊗i ⊗ y⊗(n−i))) = µΣ((σ ◦ τ b)⊗ x⊗i ⊗ y⊗(n−i))

we can again finish the comparison by a bijection of the indexing sets in the two sum-
mations.
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• For the iteration of divided powers we express γn(γm(x)) as

∑

σ∈S(pm;n)

∑

ρ1∈S(p;m)

. . .
∑

ρn∈S(p;m)

µΣ((σ ◦ (ρ1 ⊕ . . .⊕ ρn))⊗ (x⊗m)⊗n).

The indexing set is in bijection with the quotient of Sh(p;mn) by Σn acting by block
permutations composed with Σm × . . .×Σm whereas for γnm(x) we get the quotient of
the same set of shuffles by the group Σmn and therefore

(3) γn(γm(x)) =
(nm)!

n!(m!)n
γnm(x).

• If we apply γn to a product of of two homogeneous elements x ∈ Ψ2p(A) and y ∈ Ψ2q(A),
then we obtain

∑

σinS(p+q;n)

∑

τ1∈Sh(p,q)

∑

τ2∈Sh(p,q)

µΣ((σ ◦ (τ1 ⊕ τ2))⊗ (x⊗ y)⊗n).

In contrast to this we get

xn · γn(y) =
∑

ξ∈Sh(pn,qn)

∑

ρ1∈Sh(p;n)

∑

ρ2∈S(q;n)

µΣ(ξ ◦ (ρ1 ⊕ ρ2)⊗ x⊗n ⊗ y⊗n)

so the x- and y-terms appear in a different order. Using the relation

µΣ(ξ ◦ (ρ1 ⊕ ρ2)⊗ x⊗n ⊗ y⊗n) = µΣ(ξ ◦ (ρ1 ⊕ ρ2) ◦ χ⊗ (x⊗ y)⊗n)

for the permutation χ that shuffles the x-terms next to the y-terms we can again compare
the two terms by a bijection of the indexing sets and hence we obtain

(4) γn(x · y) = xn · γn(y)

for elements in positive degrees. The multilinearity of the tensor product also ensures
that the above equation holds for x in Ψ(A)0 = A(0) = k.

�

Note that Ψ(Sym(V )) is the tensor algebra T (V [2]) on the k-module V [2] (V concentrated
in degree 2) with the shuffle multiplication. This also carries a divided power structure which
is made explicit in [Rob, §5].

3. Homology theories

3.1. Harrison homology. Benoit Fresse introduces a version of Harrison homology for reduced
commutative monoids in the category of symmetric sequences of k-modules by mimicking the
classical definition, thus it is defined as the homology indecomposables of the bar complex [F11,
6.8]: If A is a reduced commutative monoid in symmetric sequences in mod, then

Harr∗(A) := H∗(IndecB(A)).

Here, working with reduced monoids corresponds to the setting where one considers aug-
mented monoids and takes coefficients in the ground ring. In this sense Harrison homology as
above corresponds to Harrison homology of k ⊕ A with coefficients in k. In the following we
assume that M is a reduced symmetric sequence in mod such that every M(ℓ) is k-projective.
Fresse proves [F11, Proposition 6.9] that Harrison homology, Harr∗, of C̄(M) gives back the
generators, if M is levelwise k-projective, i.e.,

Harr∗(C̄(M)) ∼= ΣM.
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3.2. Gamma homology. Gamma homology [RoWh02] can be identified with E∞-homology
[F11, Theorem 9.5], HE∞

∗ , which in turn can be defined as the stabilization of En-homology.
If A is a non-unital commutative algebra (in k-modules or reduced symmetric sequences of
k-modules), then Fresse shows [F11]

HE∞

∗ (A) = colimHEn
∗ (A) ∼= colimH∗Σ

−nBn(A) =: Σ−∞B∞(A).

We assume again that M is a reduced symmetric sequence which is degreewise k-projective.
Fresse calculates the homology of the bar construction applied to C̄(M) [F11, Proposition 6.2]
and we obtain by an iteration of this result:

H∗B
nC̄(M) ∼= C̄(ΣnM).

The isomorphism is induced by a map ∇n. For ∇1 : C̄ΣM → BC̄M one considers the inclusion
M → C̄M . This map combined with the natural map from the suspension to the bar construc-
tion yields ΣM → BC̄M and as BC̄M is commutative, we can extend this map to CΣM [F11,
6.2]. Note that the case n = 1 is the Hochschild-Kostant-Rosenberg Theorem in disguise.

As En-homology of C̄(M) is isomorphic to H∗(Σ
−nBnC̄(M)), an immediate consequence of

[F11, 6.3] is:

Proposition 3.1. For every M as above

HEn
∗ (C̄(M)) ∼= Σ−nC̄(ΣnM).

With the help of this identification, we can show that Gamma-homology of C̄(M) behaves
like Harrison homology, up to a suspension.

Theorem 3.2. For every reduced symmetric module M which is levelwise k-projective we have

HΓ∗(C̄(M)) = HE∞

∗ (C̄(M)) ∼=M.

This isomorphism is natural in M .

Proof. We have to understand the maps in the direct system for HE∞

∗ (C̄(M)), i.e., we have to
understand the squares of the form

Σ−nC̄(ΣnM)
ψn //

Σ−n∇n

��

Σ−(n+1)C̄(Σ(n+1)M)

Σ−(n+1)∇n+1
��

H∗Σ
−nBn(C̄(M))

σn // H∗Σ
−(n+1)Bn+1(C̄(M))

and in particular, we have to determine what the effect of the maps ψn is. The map σn is the
stabilization map from En-homology to En+1-homology. It is induced by the canonical map

ΣBnC̄(M) → Bn+1C̄(M).

Let s−n(snm1 · . . . · snmℓ) denote an element in Σ−nC̄(ΣnM). Under Σ−n∇n it is sent to
s−n[m1]n · . . . · [mℓ]n where · denotes the product in Bn and [−]n denotes an n-fold iterated
bracket in the bar construction. Therefore

σn(Σ
−n∇n(s−n[m1]n · . . . · [mℓ]n)) = s−(n+1)[[m1]n · . . . · [mℓ]n].

For a product of monomial length one we obtain

σn(Σ
−n∇n(s−n[m1]n) = s−(n+1)[m1]n+1

and this is in the image of Σ−(n+1)∇n+1 with

ψn(s−nsnm1) = ψn(m1) = s−(n+1)sn+1m1 ∈ Σ−(n+1)C̄(Σ(n+1)M).

Elements of higher monomial length cannot be in the image of Σ−(n+1)∇n+1 ◦ ψn for degree
reasons. Therefore the maps in the stabilization sequence

ψn : Σ
−nC̄(ΣnM) → Σ−(n+1)C̄(Σ(n+1)M)

7



are given by identifying the summand Σ−nΣnM = M ⊂ Σ−nC̄(ΣnM) with the summand

Σ−(n+1)Σ(n+1)M = M ⊂ Σ−(n+1)C̄(Σ(n+1)M) and by projecting all other summands to zero.
Thus M is the direct limit of the stabilization process. �

3.3. André-Quillen homology. We can define André-Quillen homology for reduced commu-
tative monoids in symmetric sequences as usual: For every such A there is a standard free
simplicial resolution

. . .
//
//
//

//

C̄3(A) //
//

//
oo
oo

oo
C̄2(A)

//
//oo

oo
C̄(A)oo

and we define André-Quillen homology of A (with trivial coefficients) to be

AQ∗(A) = H∗(Qa(C̄
•+1(A))

where Qa(−) denotes the module of indecomposables and the homology is taken of the cor-
responding chain complex. Note that the canonical inclusion A → C̄(A) is a section to the
augmentation C̄(A) → A that codifies the commutative monoid structure on A.

Definition 6.1 will describe a model category structure on commutative monoids in symmetric
sequences of simplicial modules and one can prove then that any free simplicial resolution, P•,
gives rise to the same homology groups, i.e., AQ∗(A) = H∗(Qa(P•)).

3.4. Comparison. We obtain the following comparison result.

Theorem 3.3. Let A be a reduced commutative shuffle algebra such that every A(ℓ) is projective
as a k-module, then

AQ∗(A) ∼= Σ−1Harr∗(A).

Proof. Let P• be the free simplicial resolution in the category of reduced commutative monoids
in symmetric sequences with Pt = C̄t+1(A). We consider the bicomplex with Indec(B(Pt))s in
bidegree (s, t).

Taking homology in s-direction and using Fresse’s result gives

Hs(Indec(B(Pt))∗ = Harrs(Pt) =

{

0, s > 0,

ΣQa(Pt), s = 0,

and therefore

HtHs(Indec(B(Pt))∗ ∼= HtΣQa(P•) ∼= AQt−1(A).

On the other hand, the section s : A→ P0 ensures thatHtIndec(B(P•)) reduces to Indec(B(A))
in degree t = 0. Thus the total complex of our bicomplex calculates the Harrison homology
groups of A and hence we obtain

AQr(A) ∼= Harrr+1(A) for all r > 0.

�

In a similar manner we can show that André-Quillen homology is isomorphic to Γ-homology:

Theorem 3.4. Let A be a reduced commutative shuffle algebra such that every A(ℓ) is projective
as a k-module, then

AQ∗(A) ∼= HE∞

∗ (A).

Proof. In this case we consider the bicomplex which is CE∞

p (C̄q+1(A)) in bidegree (p, q). Its
total complex computes E∞-homology of A, but taking homology in p-direction first yields

HE∞

p (C̄q+1(A)) ∼= C̄q(A) ∼= Qa(C̄
q+1(A))

and thus if we then take homology in q-direction we obtain André-Quillen homology of A. �

Therefore, all three homology theories coincide for reduced commutative monoids in sym-
metric sequences:

Σ−1Harr∗(A) ∼= AQ∗(A) ∼= HE∞

∗ (A).
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3.5. Hodge decomposition. Let k be any field and assume that A is a non-unital reduced
commutative shuffle algebra. For any symmetric sequence M we denote by C̄qM the qth ho-
mogeneous part of C̄M , i.e., C̄qM =M⊙q/Σq.

Definition 3.5. For q > 0 the pth q-André-Quillen homology group of A is defined as

AQ(q)
p (A) := HpΣ

−1C̄qΣQa(C̄
•+1(A)).

This definition should be compared to the definition of q-André-Quillen homology of an
augmented commutative algebra with coefficients in the ground ring in the usual setting as the

homology of ΛqQa(C
•+1(A)) ([L98, §3.5],[Qu68, §6]). Note that AQ

(1)
p (A) ∼= AQp(A).

Theorem 3.6. For every reduced commutative shuffle k-algebra A we have

HE1
n (A) ∼=

⊕

p+q=n

AQ(q)
p (A).

Proof. We consider the bicomplex in symmetric sequences given by Σ−1Bp(C̄
q+1A) in bidegree

(p, q). Taking vertical homology first yields Σ−1Bp(A) and taking the pth horizontal homology
afterwards gives HE1

p (A). Thus the spectral sequence converges to the E1-homology groups of
A.

If we take horizontal homology first we obtain

HE1
q (C̄p+1A) = Hq(Σ

−1BC̄(C̄p(A))) ∼= (Σ−1C̄(ΣC̄pA))q ∼= Σ−1C̄qΣQa(C̄
p+1A).

Thus vertical homology of this yields AQ
(q)
p (A). Therefore we obtain a spectral sequence

E2
p,q = AQ(q)

p (A) ⇒ HE1
p+q(A).

We have to show that there are no higher differentials in this spectral sequence. To this end we
consider the map of bicomplexes induced by ∇:

Σ−1C̄pΣQa(C̄
q+1A) ∼= Σ−1C̄pΣC̄

qA→ Σ−1BpC̄
q+1A.

The left hand side carries only non-trivial vertical differentials. The horizontal homology groups

Σ−1C̄ΣC̄qA ∼= H∗(Σ
−1BC̄q+1A)

are isomorphic and we also get an isomorphism on the associated E2-terms. Thus we know that
the homology groups of the associated total complexes agree and hence the E2-term is already
isomorphic to the E∞-term. As we are working over a field, there are no extension issues. �

4. Symmetric sequences in the dg and simplicial context

From now on k is an arbitrary commutative unital ring. For a chain complex X∗ and an
integer r > 0 we denote by F r(X∗) the symmetric sequence

F r(X∗)(n) =

{

0, n 6= r,

k[Σr]⊗X∗, n = r.

As usual we denote by Dn the n-disc complex, i.e., the chain complex which has k in degrees n
and n−1 and whose only non-trivial differential is the identity map; Sn is the n-sphere complex
which has k as the only non-trivial entry in chain degree n.

A standard result [Hi03, Theorem 11.6.1, 11.5] turns the category of symmetric sequences of
non-negatively graded chain complexes, into a cofibrantly generated model category:

Proposition 4.1. The category dgΣ is a cofibrantly generated model category. Its generating
cofibrations are given by

IΣ = {F r(Sn−1) → F r(Dn), n > 1, r > 0}

and its generating acyclic cofibrations are

JΣ = {F r(0) = 0 → F r(Dn), n > 1, r > 0}.
9



A map f : X∗ → Y∗ in dgΣ is a weak equivalence (fibration) if its evaluations f(n) : X∗(n) →
Y∗(n) are fibrations (weak equivalences) in the model category structure of non-negatively graded
chain complexes for all n > 0.

Similarly, as the model category of simplicial k-modules is cofibrantly generated with gen-
erating cofibrations and generating acyclic cofibrations induced from the ones in the model
structure of simplicial sets, we can transfer the model structure to symmetric sequences of
simplicial k-modules and obtain the following structure.

Proposition 4.2. There is a cofibrantly generated model category structure on the category
of symmetric sequences in simplicial k-modules, sΣ, such that a map f : A• → B• is a weak
equivalence (fibration) if and only if f(n) : A•(n) → B•(n) is a weak equivalence (fibration) for
all n > 0.

The Dold-Kan correspondence establishes an equivalence of categories between non-negatively
graded differential graded objects in an abelian category A and simplicial objects in A. The
category sΣ is the category of simplicial objects in modΣ and dgΣ is the category of non-
negatively graded chain complexes in modΣ. Hence we can apply the Dold-Kan theorem:

Proposition 4.3. The normalization functor induces an equivalence of categories

N : sΣ → dgΣ .

If we denote by Γ the inverse of N , then the pair (N,Γ) gives rise to a Quillen equivalence
between the model categories sΣ and dgΣ . As the abelian structure in modΣ is formed
levelwise, we obtain that for an A• in sΣ the normalization of A• is given by

(N(A•))(n) = N(A•(n)).

Consequently we also get that Γ is formed levelwise and therefore if we start with a chain
complex X∗ then

(5) Γ(F rX∗) = F rΓ(X∗)

where F r is the functor that assigns to a simplicial k-module A• the symmetric sequence in
simplicial modules with

(F rA•)(n) =

{

0, n 6= r,

k[Σr]⊗A•, n = r.

Note that we can express k[Σr]⊗A• also as

k[Σr]⊗̂A•

where k[Σr] denotes the constant simplicial object with value k[Σr] in every simplicial degree

and ⊗̂ is the tensor product of simplicial modules.

5. A model structure on reduced commutative monoids in symmetric sequences

In characteristic zero there is a nice model structure on the category of differential graded
commutative algebras where the fibrations and weak equivalences are determined by the for-
getful functor to (non-negatively graded) chain complexes. If the characteristic of the field k
fails to be zero or if we want to work relative to a commutative ground ring k, then such a
model structure does not exist. Stanley constructed a model structure with different features
in [Sta∞].

One crucial problem is that the free commutative algebra generated an acyclic complex
doesn’t have to be acyclic. For instance for the n-disc complex, Dn, for even n the free commu-
tative algebra on Dn is k[xn] ⊗ Λ(xn−1). The differential is determined by ∂(xn) = xn−1 and
the derivation property. If we consider ∂(x2n) then this gives 2xn−1xn, and if we can’t divide
by 2 in k, then this phenomenon and similar ones in higher degrees cause non-trivial homology.
We will see that such problems disappear when one works with symmetric sequences.
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Definition 5.1.

(1) We denote the category of unital commutative monoids in symmetric sequences of non-
negatively graded chain complexes by CdgΣ and the one of unital commutative monoids
in symmetric sequences of simplicial modules by CsΣ .

(2) We call an object A ∈ CsΣ (or CdgΣ ) pointed, if A(0) = k. The full subcategory

consisting of these objects is denoted by C+
sΣ (or C+

dgΣ ).

(3) The category of reduced commutative monoids in symmetric sequences in dgΣ or sΣ

consists of commutative non-unital monoids A with A(0) = 0. We denote by C−
dgΣ and

C−
sΣ the corresponding categories.

Reduced differential graded commutative shuffle algebras avoid this problem. Before we
discuss a suitable model category structure we give some examples of such algebras.

• Let C∗ be a non-negatively graded chain complex of k-modules. The symmetric sequence

Sym(C∗)(ℓ) = C⊗ℓ
∗

is a differential graded commutative shuffle algebra and we can reduce it by setting its
zero level to zero.

• Let ε : A∗ → k be an augmented differential graded commutative unital k-algebra with
augmentation ideal I∗. We define a symmetric sequence grΣ(A∗) as

grΣ(A∗)(ℓ) = Iℓ∗/I
ℓ+1
∗

but now we let Σℓ-act on gr
Σ(A∗)(ℓ) by the signum-action. Then grΣ(A∗) is a differential

graded commutative shuffle algebra and we can define a reduced version by setting
its zero level to zero. In fact grΣ defines a functor from the category of augmented
differential graded commutative unital k-algebras to differential graded commutative
shuffle algebras.

We consider the free commutative monoid functor from dgΣ to the category of commutative
monoids in dgΣ , CdgΣ ,

C : dgΣ → CdgΣ , V∗ 7→ C(V∗) =
⊕

ℓ>0

V ⊙ℓ
∗ /Σℓ.

There is a canonical map from the unit I to C(V∗) for any V∗ given by the inclusion into the
summand for ℓ = 0. Note that for any k-module V we can identify Sym(V ) with C(F 1V ).

A crucial auxiliary result is the following.

Lemma 5.2. Let X∗ be
⊙

i∈S

⊙

j∈T C(F riDnj) where S and T are some arbitrary indexing sets
and S ∋ ri 6= 0 6= nj ∈ T for all i, j. Then the canonical map

I → H∗(X∗)

is an isomorphism of symmetric sequences in graded k-modules.

Remark 5.3. Note that the case r = 0 is excluded: If Y∗ is a chain complex, then F 0Y∗ is a
symmetric sequence concentrated in level zero and C(F 0Y∗) is also concentrated in level zero
where it is the free graded commutative algebra generated by Y∗, so in that case we can’t expect
the result to hold.

Proof. By definition F rDn is concentrated in level r with value kΣr ⊗ Dn and this implies

(F rDn)⊙a(m) ∼=

{

k[Σar]⊗ (Dn)⊗a, m = ar,

0, otherwise.

Hence C(F rDn) is only non-trivial in levels of the form ℓ = ar and

C(F r(Dn))(ar) ∼= (k[Σar]⊗ (Dn)⊗a)/Σa.
11



But as chain complexes

(k[Σar]⊗ (Dn)⊗a)/Σa ∼=
⊕

Σar/Σa

(Dn)⊗a

with Σar/Σa denoting the coset of the subgroup Σa of Σar where Σa permutes the r-blocks of
numbers of cardinatily a in {1, . . . , ar}. Therefore the homology of C(F rDn) is trivial for all
levels ℓ > 0 and the only contribution to homology arises from I ⊂ C(F r(X∗)) in level zero.

Note that ⊙

i∈S

⊙

j∈T

C(F riDnj) ∼= C(
⊕

i∈S

⊕

j∈T

F riDnj)

because ⊙ is the categorical sum in CdgΣ and C(−) is left adjoint to the forgetful functor from
commutative monoids to modΣ. An induction shows that finite ⊙-products of factors of the
form C(F rDn) have homology isomorphic to I and as

⊙

i∈S

⊙

j∈T C(F riDnj ) is a colimit over
finite ⊙-products we get the claim. �

Recall that C+
dgΣ denotes the full subcategory of CdgΣ consisting of commutative monoids

A in CdgΣ with A(0) = S0. Note that the objects C(F r(X∗)) are in C+
dgΣ for all r > 0. We

denote by dgΣ+ the full subcategory of dgΣ consisting of reduced objects. Let C−
dgΣ be the

category of commutative non-unital monoids B in (dgΣ ,⊙) with B(0) = 0. We obtain C+
dgΣ

from C−
dgΣ by adding the unit S0, in fact there is an equivalence of categories between C+

dgΣ

and C−
dgΣ

C−
dgΣ

( )+ //C+
dgΣ¯( )

oo

where for any A ∈ C+
dgΣ the non-unital algebra Ā consists of the augmentation ideal of A and

where B+ = S0 ⊕B.
Categorical sums are straightforward. In the category C+

dgΣ the sum of two objects is given
by their ⊙-product. For reduced commutative monoids we obtain an induced structure.

Lemma 5.4. Let B1, B2 be two objects in C−
dgΣ . Then their categorical sum is given by the

symmetric sequence B1 ⋄B2 with

(B1 ⋄B2)(ℓ) = B1(ℓ)⊕B2(ℓ)⊕
⊕

p+q=ℓ,p,q>1

k[Σℓ]⊗k[Σp×Σq] B1(p)⊗B2(q).

Proof. Note that B1 ⋄ B2 is isomorphic to the augmentation ideal of ((B1)+) ⊙ ((B2)+). As
the augmentation ideal functor is part of an equivalence of categories, it preserves sums. This
proves the universal property and also determines the multiplication on B1 ⋄B2 as the one that
is inherited from ((B1)+)⊙ ((B2)+). �

The reduced sequence 0 which consists of the zero module in every level is a unit for ⋄
(compare [AM10, p. 267]).

Remark 5.5. Note that the proof of Lemma 5.2 also gives that ♦i∈S♦j∈TC(F riDnj) has trivial
homology.

Theorem 5.6. The category C−
dgΣ has a Quillen model category structure such that a morphism

is a fibration (weak equivalence), if its underlying map in dgΣ is a fibration (weak equivalence).

Proof. Let C̄(X∗) be the reduced free commutative monoid generated by X∗ ∈ dgΣ+,

C̄(X∗) =
⊕

ℓ>0

(X∗)
⊙ℓ/Σℓ.

We consider the following two sets.

I− := {C̄(F r(Sn−1)) → C̄(F r(Dn)); r, n > 1},

J− := {0 = C̄(F r(0)) → C̄(F r(Dn)); r, n > 1}.
12



We show that C−
dgΣ is a cofibrantly generated model category with generating cofibrations I−

and generating acyclic cofibrations J−. The weak equivalences are the maps inducing quasi-
isomorphisms in each level. We use Hovey’s criterion [Ho99, 2.1.19].

The domains of our generators are small and the weak equivalences satisfy 2-out-of-3 and
closure under retracts. We have to understand maps with the right lifting property (RLP) with
respect to I− and J−, I−-inj and J−-inj.

A diagram like

C̄(F r(Sn−1)) //

��

X

f

��
C̄(F r(Dn)) // Y

is adjoint to the diagram

Sn−1 //

��

UX(r)

Uf(r)

��
Dn // UY (r)

in the category of chain complexes. Here, UX denotes the underlying object in dgΣ of X. Thus
the RLP is equivalent to Uf(r) being an acyclic fibration in the category of chain complexes
for all r > 1.

Analogously we get that the RLP with respect to J− is equivalent to Uf(r) being a fibration
of chain complexes for all r > 1. Therefore we obtain that I−-inj equals the intersection of
J−-inj with the class of weak equivalences.

It remains to show that J−-cells are weak equivalences and I−-cofibrations. Remark 5.5
ensures that each building block of a J−-cell object is acyclic and so are directed limits of
sums, thus we get the acyclicity. By definition I−-cofibrations are the maps with the left lifting
property (LLP) with respect to the maps that have the RLP with respect to I−. Hence we are
looking for maps with the LLP with respect to maps f with Uf(r) being an acyclic fibration
in chain complexes for all r > 1. These are maps g such that Ug(r) is a cofibration of chain
complexes for all r > 1. The maps in J− satisfy this property. We showed that this property is
preserved by pushouts and (transfinite) composition preserves this property as well. �

Corollary 5.7. The category C+
dgΣ possesses a model category structure.

Proof. A morphism f in C+
dgΣ is a weak equivalence, fibration or cofibration if and only if I⊕ f

is one. �

Note that the model structure on C+
dgΣ is also cofibrantly generated with

I+ := {C(F r(Sn−1)) → C(F r(Dn)); r, n > 1}

as generating cofibrations and

J+ := {I = C(F r(0)) → C(F r(Dn)); r, n > 1}

as generating acyclic cofibrations.

6. A Dold-Kan correspondence for commutative shuffle algebras

It is a folklore result, that the model categories of reduced simplicial commutative algebras
over Q, sComQ, and of reduced differential graded commutative algebras over Q, dComQ, are
Quillen equivalent. A proof is given in [Qu69, p.223]. We adapt Quillen’s argument to the
setting of commutative shuffle algebras and show that the implementation of the symmetric
groups into the monoidal structure allows us to drop the characteristic zero assumption.

We discussed the model category structure on C+
dgΣ before. On C+

sΣ we take Quillen’s model

structure on simplicial objects in a nice category. As usual, free maps are crucial:
13



Definition 6.1.

• A morphism f : A• → B• in C+
sΣ is free, if there is a subsymmetric sequence in sets Zq

of Bq such that Bq = Aq ⊙ C(kZq) and fq : Aq → Bq is the inclusion of Aq into this
sum. In addition, the Zq are closed under degeneracies in B•, i.e., si(Zq) ⊂ Zq+1 for all
degeneracies si of B• and for all q.

• An object A• in C+
sΣ is free, if the map from the initial object k to A• is free, i.e., if

Aq ∼= C(kZq) for all q with Zq ⊂ Aq as above.

Let W denote the forgetful functor W : C+
sΣ → sΣ .

Definition 6.2. (compare [Qu68, 2.9]) A morphism f : A• → B• in C+
sΣ is

• a weak equivalence, if W (f) is a weak equivalence in sΣ .
• a cofibration, if f is a retract of a free map and
• a fibration if it has the right lifting property with respect to acyclic cofibrations.

With these definitions, C+
sΣ is a model category.

The normalization functor N : sΣ → dgΣ passes to a functor N : C+
sΣ → C+

dgΣ :

Lemma 6.3. The functor N : sΣ → dgΣ is lax symmetric monoidal.

Proof. Let A•, B• be any two objects in sΣ . We have to show that the diagram

N(A•)⊙N(B•)
sA,B //

tw

��

N(A•⊙̂B•)

N(tw)
��

N(B•)⊙N(A•)
sB,A // N(B•⊙̂A•)

commutes for a suitable binatural map s. Here, tw denotes the corresponding symmetry iso-
morphism. For a fixed level ℓ we define s as the composite

⊕

p+q=ℓ kΣℓ ⊗kΣp⊗kΣq
⊗N(A•(p))⊗N(B•(q))

id⊗shA•(p),B•(q)

��
⊕

p+q=ℓ kΣℓ ⊗kΣp⊗kΣq
⊗N(A•(p)⊗̂B•(q))

∼=

��
N(

⊕

p+q=ℓ kΣℓ⊗̂kΣp⊗̂kΣq
A•(p)⊗̂B•(q)).

Here, shA•(p),B•(q) denotes the ordinary shuffle transformation of the simplicial modules A•(p)
and B•(q). For a fixed pair (p, q) with p+ q = ℓ a homogeneous element [σ⊗x⊗y] with σ ∈ Σℓ,
x ∈ N(A•(p)) and y ∈ N(B•(q)) is sent via s to [σ⊗ sh(x⊗ y)]. If we twist first and then apply
s we get [σ ◦χ(p, q)⊗ sh(y⊗ x)]. As the shuffle transformation is lax symmetric monoidal, this
is the image of [σ ⊗ sh(x⊗ y)] under N(tw). �

Lemma 6.4. The functor N : C+
sΣ → C+

dgΣ possesses a left adjoint

LN : C+
dgΣ → C+

sΣ .

Proof. The construction is standard: IfX∗ is a reduced object in dgΣ then we define LN (C(X∗))
as C(Γ(X∗)). Every object A∗ ∈ C+

dgΣ can be written as a coequalizer

C(C(Ā∗))
//// C(Ā∗) // A∗.

As a left adjoint, LN has to respect colimits and hence we define LN (A∗) as the coequalizer of

C(Γ(C(Ā∗))) = LNC(C(Ā∗))
//// LNC(Ā∗) = C(Γ(Ā∗)).

�
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Transferring Quillen’s sketch of proof [Qu69, p. 223] to the setting of pointed commutative
shuffle algebras yields the following result.

Theorem 6.5. The pair (N,LN ) induces a Quillen equivalence between the model categories
C+
dgΣ and C+

sΣ for every commutative ground ring k.

Before we prove the theorem, we state a few lemmata. First, we need to understand the
associated graded of a free commutative monoid.

Lemma 6.6. Let S∗ be a symmetric sequence in graded sets with S∗(0) = ∅. Then the associated
graded of C(kS∗) with respect to the filtration coming from powers of the augmenation ideal
m ⊂ C(kS∗) is isomorphic to C(kS∗):

grC(kS∗) = C(kS∗)/m⊕m/m2 ⊕m2/m3 ⊕ . . . ∼= C(kS∗).

This result is the analog of the well-know fact that the associated graded of a free commutative
algebra is isomorphic to the very same free commutative algebra.

As S∗(0) = ∅ we get that grC(kS∗)(ℓ) =
⊕ℓ

i=0m
i/mi+1 and that (kS⊙i

∗ /Σi)(ℓ) = 0 for i > ℓ.

Proof. The indecomposables of C(kS∗) arem/m
2 ∼= kS∗. The inclusion mapm/m2 → grC(kS∗)

extends to a morphism of commutative monoids

ξ : C(kS∗) → grC(kS∗).

In every level ℓ elements p(ℓ) in

C(kS∗)(ℓ) = I(ℓ)⊕ kS∗(ℓ)⊕ (kS⊙2
∗ /Σ2)(ℓ)⊕ . . .

have only finitely many non-trivial summands and we denote p(ℓ) by (p0(ℓ), . . . , pℓ(ℓ), 0, . . .)
with pi(ℓ) ∈ (kS⊙i

∗ /Σi)(ℓ). The map ξ is then given by

ξ(ℓ)(p0(ℓ), . . . , pℓ(ℓ), 0, . . .) = ([p0(ℓ)], [p1(ℓ)], . . . , [pℓ(ℓ)], 0, . . .)

where [pi(ℓ)] denotes the equivalence class of pi(ℓ) with respect to mi+1.
As the intersection (kS⊙i

∗ /Σi) ∩m
i+1 is zero, the map ξ is injective.

Let z be an arbitrary element of grC(kS∗). Then z(ℓ) has finitely many non-trivial summands
and we write

z(ℓ) = ([z0(ℓ)], [z1(ℓ)], . . . , [zℓ(ℓ)], 0, . . .).

Here, zi(ℓ) ∈ mi(ℓ) and thus we know that zi(ℓ) ∈
⊕

r>i(kS
⊙r
∗ /Σr)(ℓ) so we can express zi(ℓ)

as qii(ℓ) + . . . + qiℓ(ℓ) with q
i
j(ℓ) ∈ (kS⊙j

∗ /Σj)(ℓ) ⊂ mj. Therefore

ξ(q00(ℓ), . . . , q
ℓ
ℓ(ℓ), 0, . . .) = ([q00(ℓ)], . . . , [q

ℓ
ℓ(ℓ)], 0, . . .) = ([z0(ℓ)], . . . , [zℓ(ℓ)], 0, . . .).

�

Lemma 6.7.

(1) Let C∗ be a cell object in C+
dgΣ and I its augmentation ideal, then grC∗

∼= C(I/I2) in

C+
dgΣ .

(2) If A• is a free object in C+
sΣ and if Î is its augmentation ideal, then

grA•
∼= C(Î/Î2) ∈ C+

sΣ .

Proof. The underlying commutative monoids in symmetric sequences of graded modules of C∗

and A• are of the form C(X∗) and C(Y•), where X∗ and Y• are trivial in level zero and are
degreewise free k-modules. Thus, by Lemma 6.6 we know that the canonical maps

C(I/I2) → grC∗

and
C(Î/Î2) → grA•

are isomorphisms of underlying commutative monoids in symmetric sequences in graded k-
modules. It remains to show that these isomorphism are compatible with the differential on C∗

and the simplicial structure maps of A•.
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Let [σ ⊗ x1 ⊗ . . .⊗ xr] denote a generator in (I/I2)⊙r/Σr)(ℓ) (i.e., σ ∈ Σr, xi ∈ I/I2(pi) for
some suitable pi) and let d be the differential in C∗. Then

d[σ ⊗ x1 ⊗ . . . ⊗ xr] = ±
r∑

j=1

[σ ⊗ x1 ⊗ . . .⊗ dxj ⊗ . . . ⊗ xr]

and the canonical map ξ sends this element to ±
∑r

j=1 µ(σ⊗ x1 ⊗ . . .⊗ dxj ⊗ . . .⊗ xr) where µ

denotes the multiplication in C∗. As d is a derivation the latter is equal to d(µ(σ⊗x1⊗. . .⊗xr)).
The argument for the simplicial structure maps is similar. We spell it out for the face

maps. The ith face map, di, sends a generator [σ ⊗ x1 ⊗ . . . ⊗ xr] in ((Î/Î2)⊙r/Σr)(ℓ) to
[σ ⊗ dix1 ⊗ . . . ⊗ dixr] and applying ξ yields µ(σ ⊗ dix1 ⊗ . . . ⊗ dixr). As A• is a simplicial
monoid, this is equal to di(µ(σ ⊗ x1 ⊗ . . .⊗ xr)). �

Lemma 6.8. If C∗ ∈ C+
dgΣ is a cell object, then LNC∗ is free.

Proof. Recall that a cell object C∗ in C+
dgΣ is a sequential limit of pushouts of the form

⊙

r∈R

⊙

d∈D C(F rSd−1) //

��

Cn∗

��
⊙

r∈R

⊙

d∈D C(F rDd) // Cn+1
∗

where the left vertical map is induced by the inclusions of spheres into disks. It therefore
suffices to show that one such map LNC(F rSd−1) → LNC(F rDd) is free. This works similar to
Quillen’s argument [Qu69, Proof of 4.4]: LNC(F rSd−1) is CF rΓ(Sd−1) and this in turn can be
identified with CF r(k̄∆d−1/∂∆d−1). Similarly the simplicial model of the d-disc can be chosen
as ∆d/Λdd where Λdd is the d-horn of dimension d, i.e., the simplicial set that is generated by all

top faces of idd ∈ ∆d but the last one. The inclusion of Sd−1 into Dd can then be modelled by
the map dd : ∆

d−1 → ∆d. We can then choose Zq to be the symmetric sequence in sets that is

concentrated in level r and is generated as a module by all simplices in ∆d/Λdd that are not in

the image of ∆d−1/∂∆d−1 under dd. �

For an inductive step we need the following auxiliary result about homology and free objects.

Lemma 6.9. For every X∗ ∈ dgΣ the canonical map β : H∗(CX∗) → H∗(NC(Γ(X∗)) =
π∗C(Γ(X∗)) is an isomorphism.

Proof. Stover shows [Sto93, 9.10] that for any reduced symmetric sequence M in mod the
free commutative algebra generated by M , C(M), embeds into the free associative algebra
T (M) =

⊕

n>0M
⊙n via a split inclusion, j : C(M) → T (M). Thus we can transfer Quillen’s

retract argument [Qu69, Proof of 4.5] to our context and consider the commutative square

H∗(CX∗)

j∗
��

β // H∗NC(Γ(X∗))

j∗
��

H∗(TX∗)

̺

SS

β′

// H∗NT (Γ(X∗)).

̺

SS

Here, ̺ is induced by a splitting of j. In every level the tensor algebra TX∗ consists of copies
of tensor powers of X∗. The Eilenberg-Zilber equivalence turns β′ into an isomorphism. As β
is a retract of β′ it is an isomorphism as well. �

Proof of Theorem 6.5. This proof is an adaptation of [Qu69, Proof of 4.6].

Let C∗ ∈ C+
dgΣ and denote by Î the augmentation ideal of LNC∗ and by I the augmentation

ideal of C∗. The powers of Î filter Î and this filtration respects the multiplication: Îr · Îs ⊂
Îr+s. As N is lax monoidal, we get that NÎr · NÎs ⊂ NÎr+s and the unit of the adjunction
η : C∗ → NLNC∗ satisfies η(Ir) ⊂ NÎr.
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We consider the associated graded of C∗, grC∗ =
⊕

r>0 I
r/Ir+1, and similarly gr(LNC∗) =

⊕

r>0 Î
r/Îr+1. As N is exact we obtain

Ngr(LNC∗) = N(
⊕

r>0

Îr/Îr+1) ∼=
⊕

r>0

N(Îr/NÎr+1).

We denote by triv the full subcategory of C−
dgΣ consisting of objects with trivial multiplication

and by i the inclusion functor from triv to C−
dgΣ . Let A∗ be an object of triv and and let

C∗ ∈ C+
dgΣ . Then the morphisms in C−

dgΣ from C̄ to i(A∗) are precisely the maps in triv from

C̄/C̄2 to A∗.

Similarly, the morphisms in C−
dgΣ from NÎ to i(A∗) are in bijection with the morphisms in

triv from NÎ/NÎ2 to A∗ but as NÎ/NÎ2 is isomorphic to N(Î/Î2) and as the category triv is
equivalent to the category of reduced symmetric sequences of chain complexes we can identify
this set of morphisms with the morphisms in symmetric sequences of simplicial vector spaces
from Î/Î2 to Γ(A∗) and these in turn correspond to maps in C−

sΣ from Î to i(Γ(A∗)). As LN
is left adjoint to N we finally get a bijection with the morphisms from I to N(i(Γ(A∗))) and

the latter is isomorphic to i(A∗). Therefore, I/I
2 and Î/Î2 satisfy the same universal property

concerning maps from I to i(A∗) and hence they are isomorphic.

Note that an adjunction argument also shows that Î/Î2 ∼= Γ(I/I2). The induced map on the
associated graded induced by the unit of the (LN , N)-adjunction is therefore of the form

gr(η) : gr(C∗) ∼= C(I/I2) → Ngr(LNC∗) ∼= N(C(Î/Î2)) ∼= NCΓ(I/I2).

As it sends the generators I/I2 to Î/Î2 it is of the form as β in Lemma 6.9 and thus it is a weak
equivalence. A levelwise 5-lemma argument and an induction then shows that H∗(I/I

r)(ℓ) ∼=
H∗(N(Î/Îr))(ℓ) for all r > 2. If we fix an ℓ, then – as I and Î are reduced – for all r > ℓ + 1

we get Ir(ℓ) = Îr(ℓ) = 0 and thus

H∗(I(ℓ)) ∼= H∗(I/I
r)(ℓ) ∼= H∗(N(Î/Îr))(ℓ) ∼= H∗N(Î),

so η is a weak equivalence. �

Remark 6.10. Of course, it is natural to ask whether one can extend the result above and
establish a Quillen equivalence between (reduced) E∞-monoids and commutative monoids in
symmetric sequences, or more generally, whether for (certain types of) operads P , homotopy P -
algebras and P -algebras have equivalent homotopy categories. We plan to pursue this question
in future work.

7. Commutative Hk-algebra spectra

Brooke Shipley proved [S07] that there is a chain of Quillen equivalences between the model
categories of Hk-algebra spectra and differential graded k-algebras. This chain is derived from
a composite of functors from Hk-module spectra in symmetric spectra via the category of
symmetric spectra in simplicial k-modules and symmetric spectra in non-negatively graded
chain complexes:

Hk-mod
Z //SpΣ(smod)

φ∗N //SpΣ(dgmod).

Here, SpΣ(smod) is the category of symmetric sequences in simplicial k-modules that are mod-

ules over the commutative monoid k̃(S) with k̃(S)(ℓ) being the simplicial free k-module gen-

erated by the non-basepoint simplices of the ℓ-sphere. Similarly, SpΣ(dgmod) is the category
of symmetric sequences in non-negatively graded chain complexes of k-modules with a module
structure over the commutative monoid k[•] with k[•](ℓ) = k[ℓ] being the chain complex with
chain group k concentrated in chain degree ℓ with trivial Σℓ-action. These categories of sym-
metric spectra are symmetric monoidal with respect to the smash product which is nothing but
the coequalizer of the tensor product of symmetric sequences where the action of the respective
commutative monoid on the left and right factor is identified.
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The functor Z is defined as
Z(M) = k̃(M) ∧k̃(Hk) Hk

and
φ∗N(A•)(ℓ) = N(A•(ℓ))

with k[•]-module structure given by the equivalences

φ(ℓ) : k[ℓ] ≃ N(k̃(S)(ℓ)).

Shipley shows [S07, p. 372] that Z is strong symmetric monoidal and that φ∗N is lax sym-
metric monoidal.

Proposition 7.1. The forgetful functors V1 : Sp
Σ(smod) → sΣ and V2 : Sp

Σ(Ch>0) → dgΣ

are lax symmetric monoidal. Hence every commutative Hk-algebra spectrum A gives rise to
a commutative simplicial shuffle algebra V1(ZA) and a commutative differential graded shuffle
algebra V2(φ

∗N(ZA)).

Proof. For A•, B• ∈ SpΣ(smod) there is a binatural projection map

π1(A•, B•) : V1(A•)⊙̂V1(B•) = A•⊙̂B• → A•⊙̂Z̃(S)B• = A• ∧B•.

As k̃(S) is a commutative monoid and as ⊙̂ is a symmetric monoidal structure, π1 turns V1
into a lax symmetric monoidal functor. An analogous argument applies to V2. �

Remark 7.2. IfA is a commutativeHk-algebra spectrum, then V1(ZA) is pointed if ZA(0) = k,
for instance if A is a square-zero extension A = Hk∨M whereM is an Hk-module concentrated
in positive levels.
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