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EQUIVARIANT MOTIVIC HOMOTOPY THEORY

PHILIP HERRMANN

ABSTRACT. In this paper we study a model structure on a category of schemes
with a group action and the resulting unstable and stable equivariant motivic
homotopy theories. The new model structure introduced here samples a com-
parison to the one by Voevodsky and Hu-Kriz-Ormsby. We show that it allows
to detect equivariant motivic weak equivalences on fixed points and how this
property leads to a topologically convenient behavior of stable equivalences.
We also prove a negative result concerning descent for equivariant algebraic
K-theory.

1. INTRODUCTION

The study of transformation groups has a long history in many abstract and geo-
metric areas of mathematics, including topology and algebraic geometry. However,
recently equivariant matters experienced an increased focus in algebraic topology,
not only due to their role in the work of Hill-Hopkins-Ravenel. This trend is also
observed in motivic homotopy theory, where a foundational setup for equivariant
considerations is provided by [VoeOTl [HKOT11]. In this work, we present an alter-
native account to equivariant motivic homotopy theory, based on slight variation
of the Nisnevich-style Grothendieck topology on the category of smooth G-schemes
over a field. This new topology is build in a way that allows to detect equivari-
ant local weak equivalences on fixed points. More precisely, under rather mild
restrictions to the transformation group G (cf. Remark [Z8)), there exist right ad-
joint fixed point functors (—)? : GSm/k — Sm/k, for all H < G, whose left Kan
extensions give rise to a family of functors (—)# : sPre(GSm/k) — sPre(Sm/k),
such that f: X — Y in sPre(GSm/k) is a local weak equivalence if and only if
A XH — YH is an ordinary (Nisnevich-)local weak equivalence for all H < G
(cf. Corollary B4)). Further, we show that the usual Al contracting Bousfield lo-
calization interacts nicely with respect to the local model structures on both sides
and the above implies a characterisation of equivariant Al-local weak equivalences
in the same terms.

Proposition A morphism f € sPre(GSm/k) is an A'-local weak equivalence
if and only if for all subgroups H < G the morphism fH is an Al-local weak
equivalence in sPre(Sm/k).

Following the topological work of Mandell [Man04] and its motivic adaption in
[HKOT1], we develop some stable equivariant motivic homotopy theory. In particu-
lar, we show how motivic analogs of (Lewis-May) fixed points (—)? and geometric
fixed points ®¥, from genuine motivic G-spectra to ordinary P'-spectra, both de-
tect equivariant stable weak equivalences, cf. Propositions &

Finally, we investigate the descent property for equivariant algebraic K-theory
and conclude that the topology under investigation does not allow equivariant al-
gebraic K-theory to satisfy descent. We notice that by the same argument also
the isovariant topology of [Serl(] does not allow descent for equivariant algebraic
K-theory - in contrast to [SerT0, Theorem 4.2]. These results have to be seen in
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correlation to where it is shown that the equivariant Nisnevich topology

from [VoeOIl HKO11] allows K-theory descent.
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2. EQUIVARIANT GROTHENDIECK TOPOLOGIES

In [VoeOT] Voevodsky first defined a Nisnevich-style topology on the category of
G-equivariant quasi-projective schemes. This approach was taken up by others and
has since then been developed in several slightly different contexts, e.g. [HKOTI]
HOV12]. Originally, Voevodsky defined the equivariant Nisnevich topology
as generated by étale equivariant maps which have an equivariant splitting sequence.
After a discussion of concepts of stabilizers and fixed-points, we will rephrase the
following definition in Lemma

Definition 2.1. An étale equivariant morphism f: X — Y € GSm/k is a covering
in the equivariant Nisnevich topology if there is a sequence of G-invariant closed
subvarieties

(Z):YnJrlg_Yng_g_YO:Y,

such that f has an equivariant section on Y; \ Yj41
The main focus in this work will be on the following alternative topology.

Definition 2.2. A morphism f: X — Y € GSm/k is a covering in the fixed-point
Nisnevich topology, if f# : X — Y# is an ordinary Nisnevich covering in Sm/k,
for all H < G.

Remark 2.3. a) Instead of considering all subgroups, we could just insist on Nis-
nevich covers for a family F of subgroups. We would call the resulting topology
the F-fixed-point Nisnevich topology or just the F-Nisnevich topology. For the
family F = All consisting of all H < G, we abbreviate the notation speak of
the H-Nisnevich topology in the following.

b) After a recollection of definitions and properties of isotropy and fixed-point
functors for schemes in the following subsection, we will have a closer look at
these two topologies and have a detailed comparison result in subsection

2.1. Isotropy and Fixed-Points. Now we introduce two concepts of stabilizers.
Their difference will be responsible for many distinctions in the following and will
finally explain the difference between the two topoloies introduced above - the
equivariant Nisnevich topology and the fiexed point Nisnevich topology.

Definition 2.4. Let G be a group scheme acting on a scheme X and « : k(z) = X
be a point of X. The scheme theoretic stabilizer G, is defined by the pullback
diagram

(2.1) G,——=Gx X

l l(aXaprx)

k(x) 297 X x X.

In general, an action ax : G x X — X of a group object G on some object X is
called free if the morphism

(ax,pryx):Gx X — X xX
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is a monomorphism. By the characterization of locally finite type monomorphisms
[Gro67, Proposition 17.2.6] this implies that an action in Sm/k is free if and only if
all isotropy groups are trivial in the sense that G, =N Spec(k(x)) is an isomorphism
for all z € X.

There is a forgetful functor U : GSm/k — |G|Top. As we only consider finite
constant group schemes G, we disregard the difference between G and its underlying
space |G| here. Applying U to the diagram (2I) we obtain a morphism i : G, — S,
into the pullback in G7T op:

Sy ——=GxUX

| .

* ——=UX xUX.

where S, is the set theoretic stabilizer of x.

Lemma 2.5. Let G be a finite constant group acting on a scheme X and let © € X.
Then there is an inclusion of subgroups G, < S, < G.

Proof. We know that for an element x in the underlying set UX of the scheme X
we have

Sy = {g € G | the set map ¢g: UX — UX satisfies gz = =}
and in the same way we can describe (the underlying set of) G, as

G, = {g € S, | the induced morphism g : k(z) — k(x) equals id,(,)}.
(]

Example 2.6. Let L : k be a Galois extension and consider the Galois action of
G := Gal(L : k) on Spec(L). Then the scheme theoretic stabilizer G, of the unique
point * in Spec(L) is trivial while the set theoretic isotropy S, is all of G in this
case. For the induced action of G on Spec(Qp), the scheme theoretic stabilizer
Gp of a point p € Spec(Or) recovers the inertia group of p while S, gives the
decomposition group of p.

Let & be a field of characteristic 0 and let GSm/k be the category of G-equivariant
separated smooth k-schemes with G-equivariant morphisms. Much power in clas-
sical equivariant topology is obtained from adjunctions connecting equivariant to
non-equivariant questions, e.g. the two adjunctions with the functor from spaces to
G-spaces which adds a trivial G-action. Due to the usual problems with quotients
in algebraic geometry it seems to be difficult to carry both of the mentioned ad-
junctions to a motivic setup. Therefore, we decide to build up our theory with a
focus on an adjunction analogous to the classical adjunction

(—)esivial = Top = GTop: ().
For any k-scheme X there is the trivial G-scheme
(2.2) X = (X,Gx X 25 X)

over k. Mapping X to Xi, gives embeddings Schy C GSchy and Sm/k C GSm/k.
For X € GSchy, we define the functor

hxa : SChEp — Set, Y — Homegsch, (Ytr, X)
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It is natural to ask for the representability of hyc and one is inclined to denote
a representing object by X“. The following theorem answers this question and
supports the notation.

Theorem 2.7. Let G be a finite constant group scheme over k and let X € GSchy.
Then there exists a G-invariant closed subscheme X of X with a trivial G-action,
representing hxa .

Proof. Let {U,};cr be the family of all closed G-invariant subschemes of X on which
G acts trivially and let J; be the quasi-coherent ideal of Ox corresponding to U;.
Let J := N;J; be the intersection of Ox modules and denote by XE the closed
subscheme of X corresponding to the ideal sheaf J. Then X% is G-invariant and
has a trivial G-action as it is shown in Theorem 2.3]. O

Remark 2.8. Theorem[2. 7 has a notable history. It is stated in more general terms
as [DGT0, Exp. VIII, Théoréme 6.4]. Fogarty still tried to loose the assumptions
on G in Theorem 2.3], but his published proof contains a gap which can
not be closed, as shown in [Wri76]. However, in this special case of a finite constant
group scheme Fogarty’s proof also holds.

Lemma 2.9. Let G be a finite constant group scheme over k and let X € GSm/k.
Then XS is a smooth k-scheme and thus we have an adjunction

(2.3) tr:Sm/k = GSm/k : (—)°.
Proof. This follows essentially from Luna’s slice theorem [Lun73, Théoréme du slice

étale, p.97] (cf. [HKOTT (1)]). O

We obtain similar adjunctions for all subgroups H < GG as a composition
Sm/k = HSm/k = GSm/k : (—)H,
where the left adjunction is as in (2.3) and the right adjunction is given by restricting

the G action to an H action. This gives the family {(—)"}y<g of fixed-point
functors we have used in Definition to define the H-Nisnevich topology.

2.2. Comparison. Now that we have recalled the essential concepts for a dis-
tinction of the equivariant Nisnevich topology and the alternative H-Nisnevich
topology, we will rephrase these topologies in terms focusing on pointwise isotropy
groups. This will allow to describe a relation of the two topologies in Corollary
2. 1]

The following lemma is Proposition 3.5] and gives a good collection of
the equivalent definitions of the equivariant Nisnevich topology from the literature.

Lemma 2.10. Let f : X — Y be an étale morphism in GSm/k. The following are
equivalent:

(1) f is a covering in the equivariant Nisnevich topology.
(2) f is a covering in the topology generated by the cd-structure with squares

A——C

|

B—'~D,
where i is an open inclusion and p is étale and restricts to an isomorphism
p_l(D \ B)red = (D \ B)Ted-
(8) For every y € Y there is an element x € X such that [ induces an iso-

morphism between the residue class field k(x) and k(y) and between the
set-theoretic isotropy groups.
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Lemma 2.11. Let G be a finite constant group and let f : X — Y be an étale
morphism in GSm/k such that for all y € Y there is an element x € X with

f*ky) =N k(x). If there is such an x with the additional property that Sy = S¢ (g
then f induces an isomorphism of the respective scheme theoretic stabilizers.

Proof. Since f is equivariant, we have an inclusion of the underlying subgroups
Gy < Gy forallx € X. Let y € Y and z € X be as above and let g be an
element in the underlying set of G. From the assumptions we know that g is then
also an element in the set theoretic stabilizer S,.. Consider the commutative square

gy=id
OY,y > OY,y

J/fz lfz
9u
OX,;E - OX,:E-
We need to see that the action g, induced by g on the local ring of X at x is trivial,
i.e. g =id, to conclude that the underlying subgroups G, and G, coincide. Since
fz induces an isomorphism on residue fields, it follows from Nakayama’s Lemma
that f, is itself surjective. So, f, is an epimorphism and we cancel it in f, = g, 0 f,
to obtain g, = id and hence G, = G, for the underlying subgroups of G. Finally,
we may again apply that f induces an isomorphism between x(y) and x(z) to obtain
that f also induces an isomorphism

Gy = |Ga| X K(z) = |Gyl x K(y) = Gy

of the scheme theoretic isotropy groups. O

Lemma 2.12. A morphism f: X — Y in GSm/k is a cover in the H-Nisnevich
topology (an H-cover) if and only if [ is étale (as a morphism of schemes), for
every point y in Y there is a point x in X, such that f induces an isomorphism of
residue fields, and

(*) also induces an isomorphism Gy = Gy of scheme theoretic stabilizers.

Proof. First, assume that f : X — Y € GSm/k is a morphism such that f¢ is
Nisnevich in Sm/k and f induces an isomorphism on scheme theoretic isotropy.
In the commutative diagram

v 2 Ly

the morphisms (& and ¥ are closed immersions, hence so are j and i. From the
isotropy condition (*) it follows that f is surjective, so that by dimension X is
a union of irreducible components of X xy Y and thus ¢ and also f¥ are étale.
If for any y € Y™ an element € X is given with the property that f induces
isomorphisms of the respective residue fields and scheme theoretic stabilizers, then
z is in X and therefore f¥ is Nisnevich.

Conversely, let f be a Nisnevich cover in Sm/k for all subgroups H < G. Given
an element y € Y say with G, = H x r(y), then y is in Y and there is an element
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x in X such that f induces an isomorphism from (y) to x(z). Since x is in X
we know

G, =K xk(z) > H x k(z) =2 Hx k(y) =Gy
and the equivariance of f implies G, < Gy, so that f induces an isomorphism on
scheme theoretic isotropy. O

Corollary 2.13. Fvery equivariant Nisnevich cover is an H -cover.
Proof. This follows from the above lemma combined with Lemma 2171 O

The following example reminds one to be careful while thinking about isotropy
groups and fixed points.

Example 2.14. Let L : k be a finite Galois extension and G = Gal(L : k). The
induced G-action on Spec(L) has empty fixed points Spec(L)¥ = (. This is since
Spec(L)¢ is by construction a closed subscheme of Spec(L) and

Hom s (Spec(L), Spec(L)“) = Homgsmyk(Spec(L)sr, Spec(L)) = 0.

The set-theoretic stabilizer S, of the unique point * is obviously the whole group
G, but the scheme theoretic stabilizer is trivial, that is G, = Spec(L), since the
action is free and hence the left vertical arrow in the pullback diagram

G, —— G x Spec(L)

:l wlz

Spec(L) — 2 Spec(L) x Spec(L)
is an isomorphism as well.

Lemma 2.15. The H-Nisnevich topology is subcanonical, i.e. representable pre-
sheaves are sheaves on GSm/k.

Proof. Let {Z; % Z}; be an H-Nisnevich covering and let U : GSm/k — Sm/k
be the forgetful functor. U is faithful and as a (trivial) fixed point functor U takes
the chosen covering to a Nisnevich covering in Sm/k. Hence, the bottom row in
the diagram

Homg (Z, X) —— [[Home (Z;, X) =——=[[Hom¢(Z; xz Z;, X)

| | |

Homk(UZ, UX) — HHomk(UZl, UX) — HHomk(UZZ Xvuz UZj), UX)

is an equalizer and all vertical arrows are injective. A family (o;); in the product
[THomeg(Z;, X) which is equalized by the double arrow is mapped to a family in
[THomy (UZ;, UX) which is also equalized and therefore comes from a morphism
g in Homy(UZ,UX). To see that g is equivariant we have to show that the square
labeled with ’?” commutes in the following diagram.

id i i
GxHZiGX—UIGmeGxX

l O ‘/az ? lax
e

117 Z——>X

First note that all +; and g o ¢; are equivariant. The square in question commutes
since both the outer rectangle and the left square commute, and since idg x [] f;
is an epimorphism. O
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Corollary 2.16. The equivariant Nisnevich topology is also subcanonical.

Lemma 2.17. For all H < G, the H fized points functor (=) : GSm/k — Sm/k
is continuous map of sites.

Proof. [AGV72| TII.Proposition 1.6.] O
Lemma 2.18. The adjunction [23)) extends via left Kan extension of (=) to an
adjunction

(2.4) ((—)%) : sShv(GSm/k) = sShv(Sm/k) : R,

where the right adjoint is composition with (—)¢.

Proof. Consider the situation

GSm/k Y sPre(GSm/k)
o A
)° Sm/k L : : R
X Yl
sPre(Sm/k)

where L is the left Kan extension of Yo(—)% along the horizontal Yoneda embedding
Y and R is the right adjoint of L. The right adjoint R is given by composition with
(—)%, which is a continuous map of sites and so R restricts to a functor R’ in

sPre(GSm/k) <L>_l sShv(GSm/k)

3

sPre(Sm/k) —— sShv(Sm/k)

of sheaves with respect to the Nisnevich (resp. H-Nisnevich) topology. Thus, we
have that ((—)G)* := ayLi; is right adjoint to RS, O

From now on we will mostly leave sheaves aside and focus on a theory of
presheaves. The few statements about sheaves we collected so far were just given
to allow a study of points for this H-Nisnevich topology on GSm/k in the next
subsection.

For any subgroup H < G, we define the H-fixed points functor

(2.5) () : sPre(GSm/k) — sPre(Sm/k)
as the composite

respg

_\H
sPre(GSm/k) —— sPre(HSm/k) Sl sPre(Sm/k)
Xt+— X (G xg —),
where resy is the restriction functor or forgetful functor. Note that precomposing
with the induction functor GG x g — coincides with the left Kan extension of resy :

GSm/k — HSm/k. Hence we could have equivalently defined H-fixed points as a
left Kan extension in one step.

Remark 2.19. The functor (—)¢ : sPre(GSm/k) — sPre(Sm/k) is also right
adjoint which can be seen as follows. On the scheme level we have the adjunction
(—)er : Sm/k = GSm/k : (—)Y with the left adjoint given by the trivial G-
action functor (—)¢;. The right adjoint R to the left Kan extension of (—)¢, along
the obvious Yoneda embedding is given by precomposition with (—)¢, and hence
commutes with colimits. Further, for a representable sheaf X we evaluate

R(X)(U) = Homgsm /k(Utr, X) = HOmsm/k(U,XG) = E(\é(U)
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and note that R and (—)% coincide on representables and therefore are equal.
The same arguments work to show that resy : sPre(GSm/k) — sPre(HSm/k) is
also right adjoint and we eventually note that the H-fixed points functor (—) :
sPre(GSm/k) — sPre(Sm/k) from (ZI) is a left and right adjoint functor, for all
H<G.

3. EQUIVARIANT MoTIivic HoMoTOPY THEORY

The following example was explained to me by Ben Williams. It shows that local
weak equivalences with respect to the equivariant Nisnevich topology can not be
detected by the family {(—)*}y<¢ of fixed-point functors.

Example 3.1. Let Y in Z/2-Sm/C be given by the disjoint union G,, [] G,
be equipped with the Z/2 action permuting the summands. Let X = G,, =
Spec(C[T, T~1]) carry the Z/2 action induced by T' + —T. We define a Z/2-
equivariant morphism

p::idHJ:Y%X,

where o is the non-trivial automorphism acting on X. Note that the fixed-point
morphisms

id]id
p¢ = GmHGm L G,, and
P& =idy
are Nisnevich covers in the usual non-equivariant sense. Now, consider the coequal-
izer diagram
YxxY—=Y ——W
\X |
I'h
Y
X

The map h is not a local weak equivalence in the equivariant Nisnevich topology
and p is not a cover in that topology. The reason is that the generic point of
X = G, inherits an action and does not lift to Y: There is a map

(t — —t) O Spec(C(t)) = X = Gy,
but the value of the point at Y and W is ) since
() = Homg(C(¢),Y) - Homg (C(t), W).

Hence, h is not a local weak equivalence for the equivariant Nisnevich topology and
the morphism p can not be a covering for this topology.

3.1. Characterization of Unstable Equivalences. Recall that a point z in a
topos T' is a geometric morphism z : Set — T or equivalently, by Freyd’s Theorem,
a functor z* : T' — Set which commutes with colimits and finite limits. In this
subsection GSm/k is equipped with the H-Nisnevich topology by default.

Denote by Hensel := {z* : F + F(Spec(O% ,) | # € X}x the set of functors
indexed over all X in a small skeleton of Sm/k. This gives a conservative family of
points for the Nisnevich topology on Sm/k [MV99, Lemma 3.1.11], i.e. a morphism
f in sPre(Sm/k) is local weak equivalence if and only if 2* f is a weak equivalence
of simplicial sets for all z, X.

Lemma 3.2. Let z* be a point in sShv(Sm/k). Then the composition x* o (—)H is
a point in sShv(GSm/k). Hence, if f € sPre(GSm/k) is a local weak equivalence,
then f is a local weak equivalence in sPre(Sm/k).
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Proof. By Remark the left Kan extension
(=) : sPre(GSm/k) — sPre(Sm/k)

is also a right adjoint and therefore preserves limits. As a left adjoint it preserves
colimits and hence x* o (—)¥ is a point in sShv(GSm/k). Thus, for any local weak
equivalence f € sPre(GSm/k) the morphism x* f# is weak equivalence of simplicial
sets, so fH is local weak equivalence in sPre(Sm/k). O

Lemma 3.3. The set of functors sShv(GSm/k) — Set given by

{z*o ()Y |H<G z" e Hensel }
is a conservative family of points in sShv(GSm/k) (for the H-Nisnevich topology).
Proof. Let X := (f/" : X; = X)je; be a family of morphisms in GSm/k such that

( (XHf XH))je.]

is surjective for all Nisnevich points z* € Hensel and H < G. Then by [AGV72]
Proposition 6.5.a], (fjH : X]H — X*H);ey is a Nisnevich covering in Sm/k. Hence,
X is a H-Nisnevich covering. (]

The following is also an immediate consequence.

Corollary 3.4. A morphism f € sPre(GSm/k) is a local weak equivalence if and
only if for all subgroups H < G the morphism fH is a local weak equivalence in
sPre(Sm/k).

Corollary 3.5. For all subgroups H < G, the adjunction
(=)™ : sPre(GSm/k) = sPre(Sm/k) : R
is a Quillen adjunction for the local injective model structures.
Proof. We have just concluded that (—) preserves local weak equivalences. Be-

cause of being right adjoint (and the fact that both categories have pullbacks) the
functor (—)f also preserves monomorphisms, i.e. local injective cofibrations. [

To achieve the same result for Al-local weak equivalences we cite a result of
Hirschhorn which takes care of the Bousfield localization on both sides of a Quillen
adjunction.

Proposition 3.6. Let F' : C = D : G be a Quillen pair and let K be a class of
morphisms in C. Denote by LiC, resp. Ly kD, the left Bousfield localization of C
with respect to K, resp. of D with respect to the image of K under the left derived
of F. Then F : LxC = L1, kD : G remains a Quillen pair.

Proof. [Hir03, Theorem 3.3.20] O

Lemma 3.7. Let H,K < G. The composition (—)X o (=)g : sPre(Sm/k) —
sPre(Sm/k) equals some coproduct of identities. In particular, the H-fized points
functors (—)H are right Quillen functors in a Quillen adjunction

(=) : sPre(Sm/k) < sPre(GSm/k) : (—)¥
with respect to the local injective model structures.

Proof. Both functors commute with colimits, so we only need to check the statement
for representables. We have

(")) = (/HxY) =@/mF xy= [[ 7.

(G/H)K
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Furthermore, the functors (—)¥ detect local weak equivalences by Corollary B4
and a (finite) coproduct of local weak equivalences is a local weak equivalence.
Eventually, to check that (—)y preserves monomorphisms recall that (—)z is the
left Yoneda extension of G/H x — : Sm/k — GSm/k which preserves all finite
limits. Left Kan extensions of flat functors preserve finite limits and in particular
monomorphisms. O
)H

Lemma 3.8. For every subgroup H < G, the H-fized points functor (—)" is a

right Quillen functor in the adjunction
(—)g : sPre(Sm/k) < sPre(GSm/k) : (—)%
with respect to the A'-local injective model structures.

Proof. By Proposition 3.6 the Quillen adjunction
(—)g : sPre(Sm/k) < sPre(GSm/k) : (—)%
of Lemma [3.7] descents to a Quillen adjunction

Ly sPre(Sm/k) %ZLL()HK sPre(GSm/k)
of left Bousfield localizations, where K is the class of morphisms represented by
{X xA' - X | X € Sm/k} and L(_),, K is the image of that class under the total
left derived of (—)g. The latter is a (proper) subclass of the class of morphisms
represented by {X x A! - X | X € GSm/k} which is used to Al-localize on the
equivariant side. Hence, the identity gives a left Quillen functor

Ly, ksPre(GSm/k) — sPre(GSm/k)

where the right hand side carries the A'-local injective model structure. By com-
posing the two Quillen adjunctions we obtain the conclusion. 0

Proposition 3.9. A morphism f € sPre(GSm/k) is an A'-local weak equivalence
if and only if for all subgroups H < G the morphism {7 is an A'-local weak
equivalence in sPre(Sm/k).

Proof. By Proposition the functors (—) are left Quillen functors for the Al-
local injective model structures. Thus, it follows by Ken Brown’s Lemma [Hir03]
Lemma 7.7.1] that (=) preserves Al-local weak equivalences.

Conversely, suppose that f: X — Y in sPre(GSm/k) is a map such that for all
subgroups H of G, the morphism f# € sPre(Sm/k) is an Al-local weak equiva-
lence. Let 7 be a fibrant replacement functor in the A'-local injective structure on
sPre(GSm/k). Then (—) takes the diagram

X—f>Y

rf

rX ——rY

to the diagram

H
XH f4> YH
~a1
(rp)*

(rx) Ty

where all the arrows decorated with ~41 are Al-local weak equivalences. Hence
(rf)H is an Al-local weak equivalence between objects which are A'-locally injective
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fibrant by Lemma[3.8 Therefore, (rf) is a local weak equivalence for all H and it
follows by Corollary B4l that rf is a local weak equivalence and so f is an A'-local
weak equivalence. O

4. STABLE EQUIVARIANT MoTIvic HOMOTOPY THEORY

4.1. The Stable Model Category. The definition of representation spheres be-
low already aims towards a stable equivariant homotopy theory. Analogously to
the work of Mandell [Man04] in classical topology, and to Hu, Kriz, and Ormsby
in [HKOT1] we consider spectra with respect to smashing with the regular repre-
sentation sphere.

Definition 4.1. Let V € GSm/k be a representation of G. We define the repre-
sentation sphere SV to be the quotient

V/(V —0)

in sPre(GSm/k). For the special case of the regular representation we introduce
the notation
Te = SAICI.

Remark 4.2. A linear algebraic group is called linearly reductive if every rational
representation is completely reducible. It is the statement of Maschke’s Theorem
that a finite group is linearly reductive if the characteristic of k does not divide
the group order. A splitting of the representation V' causes a splitting of the
representation sphere:
SVEW = gV A SV

Clearly, the reason to invert the regular representation sphere is to invert smashing
with all representation spheres and therefore it should be emphasized that the group
G has to be linearly reductive for this approach to make sense.

However, there are models for stable homotopy theory based on enriched functors
BIu06l instead of sequential spectra. These allow a more flexible
stabilization and in a recent preprint [CJ11] Carlsson and Joshua apply this tech-
nique to stabilize a slightly different approach to equivariant motivic homotopy
theory without being restricted to linearly reductive groups.

The category Sp(C, Q) of sequential spectra in a model category C with respect
to a left Quillen functor @ : C — C consists of objects

(Xna Un)neNa

where the X,,’s are objects in C and oy, : Q(X,,) = X, 41 are morphisms in C, the
so-called bonding maps. The morphisms in Sp™(C, Q) are given by sequences of
morphisms in C which commute with the respective bonding maps.

There is the usual Yoga of model structures for stable homotopy theory in the
sense of spectra in general model categories (cf. [Hov01]) that also applies to the
equivariant and non-equivariant stable motivic homotopy theory as developed be-
low. We depict our procedure in the following diagram, where in the top row the
relevant categories of equivariant motivic spaces, sequential and symmetric spectra
and their standard Quillen adjunctions show up. Below the top row, various model
structures appear and are connected by arrows.

oo

(4.1) sPre.(GSm/k) =——= Sp(sPre.(GSm/k), Te A —)
=

(1) local injective (3) levelwise

! i
(2) Al-local injective (4) stable
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Here, we choose to start with the local injective model structure (1) on pointed
simplicial presheaves, in which the cofibrations are given by monomorphisms and
weak equivalences are the local weak equivalences after forgetting the basepoint.
The vertical arrows mean Bousfield localization, in this case at the class

{XNAL - X | X € GSm/k}

which gives the Al-local injective model structure (2). This model structure can
be lifted to a projective levelwise model structure on sequential Tg-spectra [Jar00]
Lemma 2.1] (3), which can be localized at the class of stable equivalences to result
in a stable model structure (4).

Fortunately, compared with Hovey’s general setup, we are in the good situation
of [Hov01l Theorem 4.9] and thus we may proceed as Jardine in [Jar00] to define
stable weak equivalences.

Lemma 4.3. The adjunction
Ta A — : sPre (GSm/k) = sPre (GSm/k) : Qr,,
prolongates canonically to an adjunction
Y0, 1 Sp'(sPre (GSm/k), Tg A —) = Sp(sPre (GSm/k), Tg A —) : O,
called fake suspension adjunction.

Proof. Use the identity transformation on (Tg¢ A —)? to prolongate Tg A — and
compose unit and counit of the adjunction to obtain a natural transformation

Ta A Q16 (=) = Qe (Ta A —))
which prolongates Q. to the right adjoint. (I

Remark 4.4. The above lemma is originally [HovOTIl Corollary 1.6] in the general
situation. Note that there is no twisting of the smash factors involved in the bonding
maps, which is why the resulting suspension is called fake suspension in contrast
to the suspension defined in ([2]).

Definition 4.5. Let R denote a levelwise fibrant replacement functor. A morphism
f € SpN(sPre (GSm/k), Tg A —) is called a stable equivalence if

(€ o sh)*R(f)
is a levelwise equivalence.

For Jardine’s machinery to work, we need to assure that the object T which is
used for suspending fulfills a technical property, which then implies a good behavior
of the right adjoint to smashing with T¢.

Lemma 4.6. The object Tg € sPre (GSm/k) is compact in the sense of [JarQQ,
2.9].

Proof. The analog statement about the presheaf quotient Al /(A!\ 0) in Jardine’s
work is [Jar(00, Lemma 2.2]. All the arguments in the proof are statements about the
flasque model structure on simplicial presheaves on a general site [[sa05]. The only
thing used about about schemes is that an inclusion of schemes gives a monomor-
phism of the represented presheaves, which is true for an inclusion of equivariant
schemes like (A[G] \ 0) < A[G] as well. O

Theorem 4.7. Let T be a compact object in sPre (GSm/k). There is a proper
simplicial model structure on the associated category Sp" (sPre (GSm/k), T A —) of
T'-spectra with stable weak equivalences and stable fibrations.

Proof. This works as in [Jar00, Theorem 2.9]. O
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Definition 4.8. Let X in Sp'(sPre (GSm/k),Tg A —). We define the suspension
Y1,X by ¥7,X, =Tg A X, with bonding maps

T/\idxn

UEX:TG/\Tg/\Xn—%TGATG/\XTLEOX—)TG/\X”JA

where 7 : Ta A Tg — Tg A Tg denotes the twist of the two smash factors. The
right adjoint to X, is also levelwise given by the internal hom Qr,,, i.e. Qr,(X), =
Qr, (X,,) with bonding maps adjoint to

X, ATg 5 TaAX, 25 Xoq.
Together these two functors give the suspension adjunction
(4.2) Zr, : Sp(sPre (GSm/k), Tg A —) = Sp" (sPre (GSm/k), Ta A —) : Qr.

To be able to untwist the levelwise smashing inside the definition of the functor
Te A — an important condition appears to be the symmetry of T¢.

Lemma 4.9. There is an Al-homotopy in sPre.(GSm/k) between the cyclic per-
mutation of the smash factors

Ta AT ATg = Ta ATag A Ta
and the identity.

Proof. This is [HKOT1, Lemma 2] for the A'-local model structure with respect to
the equivariant Nisnevich topology, but the topology on GSm/k does not matter
for this statement to hold. (|

A consequence, which is also true in the more general situation of Hovey’s [Hov01]
Theorem 9.3], is that smashing with T¢ is invertible in the stable model.

Theorem 4.10. The suspension adjunction [2) is a Quillen equivalence with
respect to the stable model structure.

Proof. Let Y be fibrant and f : T¢ A X — Y in Sp"(sPre (GSm/k),Tg A —). By
[Jar00, Corollary 3.16]
ev : Tg/\QTGY%Y

is a stable equivalence, so we may deduce from the commutative diagram

Ta A Q’]I‘GY
Tf* l
f
TeAX —L oy

that f is a stable equivalence if and only if Tf* is a stable equivalence, which
is by [Jar00, Corollary 3.18] if and only if the adjoint morphism f* is a stable
equivalence. O

Proposition 4.11. Let V' be a representation of G. Then the adjunction
— A SV SpN(sPre, (GSm/k), Tg A —) = Sp' (sPre (GSm/k), Tg A —) : QY
is a Quillen equivalence.

Proof. Smashing with SV is a left Quillen functor. There exists a representation
W such that V& W = nA% is a n-fold sum of the regular representation. By using
the theorem above one can show that Q7T¢ o 8" is *Quillen inverse’ to SV. O
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In Definition 4.3 a morphism f : X — Y of equivariant spectra was defined to be
a stable equivalence if colim; (€2 osh)R(f) is a levelwise equivalence of equivariant
spectra. Equivalently, for all m,n € N and all H < G the induced maps of all
sectionwise n-th homotopy groups in level m of the H-fixed points are isomorphisms,
ie.

(4.3)  fu:colim[G/H A S™ ATY, Xpnrilu] — colim[G/H A S™ AT, Yiilv]
is an isomorphism of groups for all U € Sm/k.

The standard simplicial enrichment of local homotopy theory on sPre(C) gives
us another splitting of T¢.

Lemma 4.12. There is an isomorphism Tg = S' A (A[G] — 0) in the unstable
equivariant homotopy category.

Proof. Recall that T = A[G]/(A[G] — 0) where A[G] is pointed by 1 and consider
the diagram

*—>TG

consisting of push out squares. The two morphisms decorated with a tilde are
Al-local weak equivalences. The vertical one being

A[1] A (A[G] — 0) 229 AJ0] A (A[G] — 0) = *

and the horizontal one by Proposition Further, both morphisms to the push
out P are cofibrations and hence by left properness there is a zig-zag

Tg < P = S' A (A[G] —0)
of weak equivalences. O

Continuing from ([3)) we compute that f is a stable equivalence if and only if
the induced map

colim[G/HAS™ A (A[G] —0)", Xprilo] — colim[G/HAS™ T A(A[G] —0)", YVinti|vr]
is an isomorphism. This leads naturally to the following definition.

Definition 4.13. Let X in SpM(sPre (GSm/k),Tg A —). The weighted stable
homotopy groups ﬂftX are defined to be the presheaf of groups on Sm/k given by

T (X)(U) = colim[G/H A S° A (A[G] = 0)* A UL, XJ]
Lemma 4.14. A morphism f : X — Y of equivariant spectra is a stable equivalence
if and only if it induces isomorphisms
mie(f) s ml(X) = 7 (Y)
forall s,t € Z and H < G.
Proof. This is the analog of [Jar00, Lemma 3.7]. O
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Cofiber and Fiber Sequences. Recall from Theorem [£7] and Proposition [11] that
we consider SpN(GSm/k) as a proper stable model category. The theory of cofiber
and fiber sequences is therefore quite convenient. Given a morphism f: X — Y of
equivariant spectra the homotopy cofiber (resp. homotopy fiber) is defined by the
homotopy push out (resp. homotopy pullback) square

X—f>1/ hofib(f)—»[
* — hocofib(f) x—L .y

The simplicial structure on Sp™(GSm/k) provided by Theorem 7 implies that
there is a stable weak equivalence

hocofib(X — ) ~ S* A X

At this point we omit a thorough introduction of the triangulated structure on
the stable homotopy category SH(k, G) via S* | (A[G]—0)-bispectra and (co-) fiber
sequences which works out perfectly analogous to what is developed in Jardine’s
Section 3.3 of [Jar(0]. Instead, we just state the following important consequence.

Lemma 4.15. Given a cofiber sequence

xLyo hocofib(f)
of equivariant spectra, there is a long exact sequence of presheaves of groups
(4.4) cee— th(X) — Wgt(Y) — ﬂgt(hocofib(f)) — 7TsG—1,t(X) — ...

4.2. Naive G-Spectra and Change of Universe. For a smooth connection be-
tween stable equivariant and non-equivariant homotopy theories it is convenient to
introduce naive G-spectra, a natural intermediate. We mirror some results from

the topological theory (cf. [LMS86, Section IT]).

Definition 4.16. An object in Sp"(sPre (GSm/k),T A —) is called a (sequen-
tial) naive G-spectrum. We consider the category SpM(sPre (GSm/k), T A —) of
naive G-spectra as endowed with the stable model structure analogous to (1),
i.e. take the A'-local injective model structure with respect to the H-Nisnevich
topology on sPre (GSm/k) and localize the levelwise (projective) model structure
on SpM(sPre (GSm/k), T A —) along stable equivalences.

We will usually continue to call an object E in Sp™(sPre (GSm/k),Tg A —)
an equivariant spectrum or G-spectrum, but to emphasize the distinction E is
sometimes called a genuine G-spectrum.

Given a non-equivariant spectrum X in Sp"(sPre (Sm/k)) we may apply the
canonical prolongation of the trivial G-action functor (£.9)

(=)tr : sPre(Sm/k) — sPre(GSm/k)
on X to obtain a naive G-spectrum Xg,. Let E be any naive G-spectrum and define
a genuine G-spectrum i, F by (i, E), = T¢ A E, with bonding maps
T AinEn = Ta AT AiyE, S22 T2 A B, .

The resulting functor 4, from naive to genuine G-spectra has a right adjoint ¥,
which is defined by (i*E), = Homg(T%, E,) with bonding maps

TNiE, - i"E 41 = HomG(']NTgH, E,+1) adjoint to

TE AT A" E, 2 Ta AT A Homg (TR, E,) <5 Tg A En 225 By
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This way, we have defined a change of universe adjunction
iy : Sp'(sPre (GSm/k), T A —) = Sp"(sPre (GSm/k), Tg A —) : i*.

The name is derived from an account to classical stable equivariant topology based
on coordinate-free spectra, where spectra are indexed on a universe with a trivial
G-action in the naive case and indexed on a universe of arbitrary representations
in the genuine case.

Lemma 4.17. The change of universe adjunction (i.,i*) is a Quillen adjunction
with respect to the stable model structures.

Proof. The pair (i.,i*) is a Quillen adjunction with respect to the levelwise model
structures. Let X be a stably fibrant genuine G-spectrum, in particular we have
weak equivalences

X, = Homy(Ta, Xnt1)

of Al-l(lcally fibrant simplicial presheaves for every n. The right Quillen functor
Hom (T, —) preserves them and we compute

i* X, = Hom (TP, X,,) ~ Hom, (T, Hom (T, Xpi1))
= Hom (T, Homg(TE™, Xt1)) = (7 X)n

and note that i* X is a stably fibrant naive G-spectrum [Jar((, Lemma 2.7]. Further,
the adjunction (i.,¢*) is compatible with the simplicial enrichments and we combine
this with the (SM7)-style characterization of stable equivalences [Jar00, Corollary
2.12]: Let W be a stably fibrant and levelwise-injective fibrant genuine G-spectrum
and let f: X — Y be a trivial cofibration of naive G-spectra. The diagram

sSet(i,Y, W) —L sSet (i, X, W)

l: lz

sSet(Y,i*W) fé sSet(X,*W)

commutes and therefore i, f is a stable equivalence (and a cofibration). O

The forgetful functor (—)¢ : sPre(GSm/k) — sPre(Sm/k) (the e-fixed points
functor) also has a canonical prolongation

(=)¢: Sp"(sPre (GSm/k), T A —) — Sp" (sPre (Sm/k), T A —)

and for a (genuine) G-spectrum F, we call E¢ (resp. (i*E)¢) the underlying non-
equivariant spectrum of F.

Lemma 4.18. Let E be a naive G-spectrum. The unit morphism
E—i%iE
18 a non-equivariant stable equivalence.

Proof. Let X be a naive G-equivariant suspension spectrum. Consider the commu-
tative diagram

(4.5) X > i, X

Nl lw

R*X¢ —— R™i"i,X°
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of non-equivariant spectra. We compare domain and codomain of the lower hori-
zontal morphism. The level n in the domain is given by

R*X| = c%i(r)n Hom(77, X7,,,)
= colim Hom(7Y,T7 A X£)
Jj=0

while for the codomain we need a few transformations to compute

Ri%i, X}, = colim Hom(T7,i"6. X},

= cg%i(r)n Hom (77, HomG('INFé+”, 'TF]GJrn AXjgn))

= cg%i(r)n Homg (G4 ATI A ’f’g", 'INF]GJrn A Xjin)
and replace G4 /\”]fgr" by the weakly equivalent G ATUTMGI=1)  The equivariant
weak equivalence is given by G4+ AY® — GLAY, (g,2) — (g,9-2) in sPre (GSm/k).
We continue

~ coggn Hom, (G4 A TIT0+m(E-1) ﬁ'grn ANXjin)

3>
= colim Hom (77 F0U+m(G=1) (T o X, )

= colim Hom(77+U+m(G=1) pit+n)(G=1) 5 xe)
7>0 "

Thus, the (filtered and hence homotopy) colimit in the codomain is taken over
a cofinal system for the colimit in the domain. Therefore, the lower horizontal
morphism is a levelwise equivalence in diagram (5.

Now let X be an arbitrary naive G-spectrum. X is stably equivalent to the
colimit

colim(EF Xg —» 27 X4 [-1] = EFXq[-1] — ..))

of shifted suspension spectra. By the same arguments as in [Jar00, Lemma 4.29],
basically because stable weak equivalences are closed under filtered colimits [Jar(0]
Lemma 3.12], the conclusion follows from the first part of this proof. (]

Not only the forgetful functor (—)¢ has a canonical prolongation, but also its
space level adjoint functor ind = Gt A— prolongates canonically due to the twisting
isomorphism Gy AT A X =T NGy A X to naive G-spectra.

Lemma 4.19. The adjunction
ind : Sp"(sPre (Sm/k), T A —) = Sp™(sPre (GSm/k), T A —) : res = (—)°
is a Quillen adjunction with respect to the stable model structures.

Proof. First, note that (ind,res) is a Quillen adjunction for the levelwise model
structures by Lemma and that res preserves levelwise equivalences. Since we
have

res(R*°X) = res <c01>ig1 Hom (7", Xn)>
= col>ig1 res (Hom~(T", X,,))

= col>ign Hom(T™",res(X,,)) = R res(X)

it follows that res also preserves stable equivalences. Together with a characteriza-
tion of stably fibrant objects [Jar(Q0, Lemma 2.7&2.8] a similar computation reveals
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that res preserves stably fibrant objects. As the stable model structures are left
Bousfield localizations of the levelwise ones, it is sufficient to show that ind maps
trivial cofibrations to stable equivalences. So let f : X — Y be a trivial cofibration
in SpM(sPre (Sm/k), T A—) and let W be a stably fibrant and injective-levelwise fi-
brant object in Sp™(sPre (GSm/k), T A—). We make use of the simplicial structure
and observe that the diagram

sSet(ind(Y'), W) ) sSet(ind(X), W)

S

sSet(Y,res(W)) T~> sSet (X, res(W))

commutes and that res(W) is still stably fibrant and ’injective’. Thus, ind(f) is a
stable equivalence [Jar(0, Corollary 2.12]. O

Lemma 4.20. Let d : E — F be a non-equivariant stable equivalence of naive
G-spectra and let X be stably equivalent to an induced naive G-spectrum. Then the
map

d, : [X,E] = [X, F]

is an isomorphism.

Proof. Due to naturality the diagram

o

[X, E] —= [ind(D), E] — [D, E¥]

o

(X, F] — [ind(D), F] — [D, F*]

commutes, where the maps decorated with "=’ are isomorphisms by Lemma (.19
and the assumption of a stable equivalence between X and ind(D). Further, we
assume the d° is a stable equivalence, hence (d¢). and d, are isomorphisms. O

Proposition 4.21. Let X be stably equivalent to an induced naive G-spectrum and
let E be any naive G-spectrum. Then there is an isomorphism
iy [X,E) S5 i X, 0, E).

Proof. By Lemma and Lemma [£.20] the morphism i, is a composition of iso-
morphisms
iy [ X, B] 25 (X, 0%, F) = [i,X,i.E].
O

With the same arguments as for Lemma [LT9 all the other induction/restriction
adjunctions
indZ : sPre (HSm/k) = sPre(GSm/k) : res$
prolongate to Quillen adjunctions between the respective naive equivariant cate-
gories as well. This is also true for the fixed-point functors and we record the

following lemma for the study of fixed-point functors of genuine G-spectra in the
next subsection.

Lemma 4.22. For all H < G, the canonically prolongated adjunction
(=) - Sp™(sPre (Sm/k), T A —) = Sp" (sPre (GSm/k), T A —) : (—)%

is a Quillen adjunction with respect to the stable model structure on both sides.
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Proof. Again, note that ((—)g,(—)") is a Quillen adjunction for the levelwise
model structures. Let f: X — Y be a stable acyclic cofibration of non-equivariant
spectra. We have to show that fy is a stable equivalence of naive G-spectra or
equivalently that for all n € N and K < G the morphism R*(fy)X is an Al-local
weak equivalence. Since we have

Hom(7", X*) = Homypye(q) (T AG/K4 A ()., X) = Homq(T%, X)*

we see that (R®(fu)n)® = R®((fg)¥), holds and the statement follows from
Lemma 3.8 O

4.3. Characterization of Stable Weak Equivalences. In this section we define
two fixed point functors

(4.6) (=) : SpMN(sPre (GSm/k), T A —) — Sp(sPre (Sm/k), T A —)
(4.7) o SpM(sPre (GSm/k), Tg A —) — Sp (sPre (Sm/k), T A —)

from G-spectra to non-equivariant spectra for any subgroup H < G. The situation
is pretty much the same as in classical stable equivariant homotopy theory, where
the (Lewis-May) fixed point functor (—)* has the expected left adjoint, but is rather
abstract and the geometric fized point functor ® is the levelwise extension of the
unstable fixed point functor. We show that both families of fixed-point functors
detect motivic equivariant stable weak equivalences. This means that we obtain
two stable versions of Proposition 3.9

The Lewis-May fixed points. For a non-equivariant T-spectrum F we define the

push forward Efyeq to a genuine G-spectrum by the composition
(4.8)

Sp"(sPre (Sm/k), T A —) Sp"(sPre (GSm/k), Tg A —)

Sp(sPre (GSm/k), T A —),

(=) fixed

that is Xgxeq is the genuine G-equivariant spectrum defined by
(Xﬁxed)n == Tg A (Xn)tr

where Tg is the representation sphere associated to the reduced regular represen-
tation and (X,)t, is the image of X,, under the left adjoint functor (=), from the
adjunction

(4.9) (=)t : sPre (Sm/k) = sPre (GSm/k) : (—)¢
of left Kan extensions, cf. (2:2)). The bonding maps of Xaxeq are defined by

To AT A (X — — — = T A (Xi1 )i
']TG AN ’Egﬂ AT A (Xn)tr

Since not only ((—)tr, (—)%), but by Lemma 22| the whole family of fixed-point
adjunctions canonically prolongates to Quillen adjunctions

(—)m : Sp™(sPre (Sm/k), T A —) = Sp"(sPre (GSm/k), T A —) : (—)¥

we may compose adjoints and make the following definition.
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Definition 4.23. Let X be a genuine G-equivariant spectrum. We define the
(Lewis-May) H-fixed points of X by

XH .= (i*x)H
Lemma 4.24. The adjunction
(—)fixed : SpN(sPre_ (Sm/k), TN-)= SpN(sPre,(GSm/k:), TaA—): (—)G

as well as the other H-fized point adjunctions are Quillen adjunctions with respect
to the stable model structures.

Proof. The Lewis-May fixed point adjunctions are compositions of Quillen adjunc-
tions by LemmalLITl (change of universe) and Lemma22] (naive fixed points). O

Proposition 4.25. Let f : X — Y be a morphism in Sp" (sPre(GSm/k)). Then

the following are equivalent

(1) f is a stable weak equivalence.
(2) For all subgroups H < G, the morphism f¥ is a stable equivalence of non-
equivariant spectra.

Proof. The morphism f is a stable equivalence of G—spectra if and only if it induces
isomorphisms on all weighted stable homotopy groups m,. We compute

[G/H A S*H A (A[G] — 0), X% = [G/H A S5 A (Gm)tﬂ' ATE x,1¢

where we use Lemma [.12] and the splitting Tg =T A ﬁ‘g ~ STAG,, A 'J~Tg, so that
we can (cofinally) replace A[G] — 0 by G,,, A T¢ and obtain
=~ [G/H A S*H A (G,,)HH, Q%Zﬂxj]G
= [G/H A S*H A (G)'™ " X [t];]¢
= (559 A (Go)H, 1 X[ 1]
=[S A (G)' ™, X [t

So that equivalently f¥ induces isomorphisms on non-equivariant weighted stable
homotopy groups and hence is a stable equivalence for all H < G. O

The geometric fixed points. We will need the following lemma to extend the ad-
junction of Corollary 2.18] from unstable to stable homotopy theories.

Lemma 4.26. The G-fized points of the regular representation sphere are canoni-
cally isomorphic to the Tate object T, i.e.

(Te) =T

Proof. The regular representation A[G] decomposes into a sum @' ;m;U; of in-
equivalent irreducible representations U;. Let U; be the trivial representation,
which splits off canonically due to the norm element ¥,cc g in the finite group case.

Then we have
UG ~ Al ifi=1
! 0 else,

because non-trivial fixed-points would give a G-invariant submodule and hence a
G-invariant complement (by Maschke’s Theorem in our case). t
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Corollary 4.27. There is a canonical natural isomorphism
(=AT)o (=) = (=)%0 (= ATg)

of functors sPre (GSm/k) — sPre (Sm/k) and hence a prolongation of the adjunc-
tion (Z4) to an adjunction

®Y : Sp"(sPre (GSm/k), (— ATg)) = Sp™(sPre (Sm/k), (— A T)).

Proof. The left Kan extension (—)¢ from Corollary 218 preserves smash products
since it is also right adjoint by Remark [2.19
Therefore, the isomorphism from the lemma above gives a natural isomorphism

T A (=)° 2 TG A () = (Tg A-)°.
From this natural transformation 7 : ((—)¢ AT) = (— A T¢)® one obtains a

prolongation of (—)¢ by (X)) = (X,,)¢ with bonding maps

n

TAXS——-=XG,

TXTL\L
G
In

(Tg A X,)C
To prolongate the right adjoint R of (—)G one needs a natural transformation
Te ARY(—) = Ra(T A —),
but using the adjunction and in particular the counit € we obtain natural morphisms
(T ARC(=)C =T A (RE(—-))C 425 7 A —.
The prolongations are still adjoint. O

Remark 4.28. For a finite group G the norm element Y cqcg € A[G] gives a

—

canonical splitting A[G] = A! x A[G] of the trivial part of the regular representation.
Therefore, we have a canonical morphism from the Tate object T" with a trivial
action to the regular representation sphere T which factors for any H < G as

T ———Tq
N
N
N /
Tg
This canonical morphism cg gives a natural transformation
T A (=) 2 TH A (<) = (T A=)
which leads to a prolongation of the H-fixed points to a functor
(4.10) o : SpM(sPre (GSm/k), T A —) — Sp'(sPre (Sm/k),T A —).
Lemma 4.29. Let X € sPre.(GSm/k) and let Y be a genuine equivariant G-
spectrum. For all subgroups H < G, we have
PT(XAY)=XT A (Y).
In particular, ®F is compatible with suspension spectra in the sense that
P9 (2 X) = BFXC.

Proof. The geometric fixed points functor ®# is a prolongation and smashing with
a space is defined as a levelwise smash product, thus the first statement follows
from the compatibility of the space level fixed point functors with smash products.
For the second statement additionally use Lemma O
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One adds a disjoint basepoint to the unique morphism FG — % and then takes
the homotopy cofiber of the suspension spectra in Sp™(GSm/k) to acquire the
cofiber sequence

(4.11) EG, — 5° % EG,

which is of fundamental importance in equivariant homotopy theory.

Lemma 4.30. The unreduced suspension EG defined by the cofiber sequence
EG, — S = EG

18 non-equivariantly contractible.

Proof. The space EG is non-equivariantly contractible, hence the morphism of
spectra EG, — S° is a stable weak equivalence of the underlying non-equivariant
spectra. Applying [Jar00, Lemma 3.7] twice to the long exact sequence of underlying
T spectra

o T8 (BEG) = w1y (EGy) = m.4(S°) = m o (EG) — ...
we see that EG is contractible. O

Lemma 4.31. Let f : X — Y be a non-equivariant stable equivalence of equivariant
motivic spectra. Then

s an equivariant stable equivalence.

Proof. We consider the cofiber sequence
X LY = hocofib(f) = 2

and assume that Z is non-equivariantly contractible. Let Z — Z’ be a stably fibrant
replacement in Sp™ (sPre.(GSm/k), T¢ A—). Then Z' is levelwise non-equivariantly
contractible and FG4 A Z is stably equivalent to EG4 A Z'. But EG A Z' is even
equivariantly levelwise contractible and hence so is EG4 A Z. O

For a comparison of geometric and Lewis-May fixed points, we introduce the
following generalization of EG. A family of subgroups of G is defined to be a set F
of subgroups of G, such that F is closed under taking subgroups and conjugation.
Given such a family F, there might exist a G-representation V' = Vr with the
property that

(4.12) v >0 e,
0  iHEF

On the other hand, given a G-representation V', the set of subgroups with defining
property ([{I2)) is a family of subgroups. We consider the cofiber sequence

V-0, —8"=8Y
and observe that the fixed points (SY) are computed by the diagram

(V-0 ——vH

|

—_ (SV)H.

Thus, (SV)H is SO for subgroups H which are not in F and otherwise (SV)
is equal to S?™", for some r > 0. Denote by EF the infinite smash product
colim;>o(V —0)" and by EF the infinite smash product colim;>o(S")". It follows
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that E\./FH is SO if H is not in F. For a subgroup H € F the H-fixed points are
an infinite smash of positive dimensional spheres and therefore contractible. In
particular, we note that for the family P of all proper subgroups of GG, the reduced
regular representation gives an adequate representation and the fixed points of the
unreduced suspension EP are given by

——H i
A O
Lemma 4.32. The evaluation morphism
(EP A X)S = 0% (X)
is a levelwise equivalence of non-equivariant spectra.
Proof. We compute that
(EP A X)$ = Homg (T, EP A X,,)¢
=~ sSete (T A (= )i, EP A X,)

where ']NTZ is a homotopy colimit of equivariant cells G/H A SPH#:21 and therefore
= holimsSet (G/Hy A SPH9 A (<), EP A X,)
N —H
= holim sSet(SP7 1 A (—)i, EP A X][T)
H<G

All the non-initial holim-factors corresponding to proper subgroups are contractible

e

and since A[G] has no trivial subrepresentation we have (pg, o) = (0,0), so that

—G
~ 5Set(SOA (<), EP AXS) = XC.
0

We are now ready for a characterization of equivariant stable equivalences by
their geometric fixed points.

Proposition 4.33. Let f : X — Y be a morphism in Sp"(sPre (GSm/k)). Then
the following are equivalent

(1) f is a stable weak equivalence.
(2) For all subgroups H < G, the morphism ®(f) is a stable equivalence of
non-equivariant spectra.

Proof. Assume that f is a stable equivalence. Let Py be the family of all proper
subgroups of H. When applying the left Quillen functor 57\771 A — we still have a
stable equivalence and by Proposition [£.25] for all subgroups H of G we thus have
a non-equivariant stable equivalence

(EPu AT (EPy AX)T = (EPy AY)H

which implies by Lemma E32 that ® (f) is a stable equivalence.

Conversely, assume that for all subgroups H of G the map ®(f) on geometric
fixed points is a stable equivalence. We proceed by induction on the order of G.
For |G| = 1 there is nothing to show, since ®¢ is basically the identity then. So let
G be non-trivial and assume the claim to be true for all proper subgroups of G. So
res$ f is an equivariant stable equivalence for all proper subgroups H of G and by
Proposition .25 this implies that for these subgroups also f is a non-equivariant
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stable equivalence. We are going to show that f& is a stable equivalence as well.
Smashing f with the norm sequence ([@IT]) for EP we obtain a diagram

EPAX —>X—>EPAX

L
EPAY — =Y — = FEPAY

where EP, A f is a stable equivalence by an argument completely analogous to the
proof of Lemma A3 We may apply (—) to the whole diagram above and using
Lemma E32 we find that f¢ is surrounded by stable equivalences in the diagram

(EPAX)6 —= XG — = (EP AX)C

-k
(EPAY)S —>YC — -~ (EPAY)C

with rows cofiber sequences. Therefore, € is a stable equivalence and we conclude
again by using Proposition [L.28] that f itself is a stable equivalence. O

5. REPRESENTABILITY OF EQUIVARIANT ALGEBRAIC K-THEORY

This subsection starts with a recollection of equivariant algebraic K-theory fol-
lowing Thomason [Tho87]. The main result of this subsection shows that equivari-
ant algebraic K-theory does not satisfy descent with respect to topologies that, like
the H-Nisnevich topology, contain certain morphisms as coverings. We also recall
a result of Krishna and @stveer that the equivariant Nisnevich topology of
Definition 2] allows K-theory to satisfy descent. Finally, we discuss the effect of
our non-descent result on the K-theory descent property of the isovariant Nisnevich
topology as it is investigated in [Ser10].

Definition 5.1. Let X be in GSm/k. A quasi-coherent G-module (F, ) on X is
given by a quasi-coherent Ox-module F' and an isomorphism

w:axF =N praF
of Ogx x-modules, such that the cocycle condition

(praze) o ((id xax)"p) = (m x id)"p
is satisfied. F is called coherent (resp. locally free) if it is coherent (resp. locally
free) as an Ox-module.

Coherent G-modules on some X in GSm/k form an abelian category M (G, X)
and locally free coherent G-modules (G-equivariant vector bundles) form an exact
subcategory P(G, X). To these exact categories we associate the simplicial nerve
BQM(G,X) (resp. BQP(G, X)) of Quillen’s @Q-construction. Finally, denote by
G(G,X)=QBQM(G,X) and K(G,X) = QBQP(G, X) the K-theory spectra (or
infinite loop spaces) associated to the exact categories of coherent G-modules on X
and to those that are locally free. In his fundamental work Thomason already shows
that for a separated noetherian regular G-scheme X the inclusion of categories
induces an equivalence K (G, X) = G(G, X) [Tho87, Theorem 5.7] and that hence
for such an X the equivariant K-theory satisfies homotopy invariance in the sense
that the projection induces an equivalence

K(G,X) = K(G, X x A"
even with respect to any linear G-action on A" [Tho87, Corollary 4.2].
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By the origin of the use of the word motivic in this area of mathematics, or in
other words by Grothendieck’s idea of what it should mean to associate a motive
to a scheme, it should be considered a fundamental test for any candidate of a mo-
tivic homotopy category, whether it allows representability for a sufficient amount
of cohomological theories or not. One obstacle for a theory F' to be representable
in H(k,G) is that it has to satisfy (hypercover) descent with respect to the topol-
ogy used to define the local model structure. This is a kind of homotopical sheaf
condition which implies the compatibility of the theory F' with local weak equiv-
alences. For the following we may restrict our attention to the weaker notion of
Cech descent.

Definition 5.2. An objectwise fibrant simplicial presheaf F' on a site C satisfies
Clech descent with respect to the topology on C if for any covering family {U; — X},
in C the morphism

(5.1) F(X) — holim([[, F(U;) == 1, F(Ui xx U;) == ...)

is a weak equivalence of simplicial sets. An arbitrary simplicial presheaf is said to
satisfy Cech descent if an objectwise fibrant replacement of it does.

It is a straight reformulation of this definition that a simplicial presheaf F satisfies
Cech descent if and only if for any covering Y = {U; — X }; and an injective fibrant
replacement F’ of F the induced map

sSet(X, F') — sSet(C(U), F')

is a weak equivalence of simplicial sets.

In [KO12) Theorem 5.4] Krishna and @stvaer show that the presheaf of K-theory
of perfect complexes on Deligne-Mumford stacks satisfies descent with respect to
a version of the Nisnevich topology. Restricting the results from Deligne-Mumford
stacks to the subcategory of G-schemes, the topology restricts to the equivariant
Nisnevich topology and their results imply descent of equivariant K-theory for the
equivariant Nisnevich topology (cf. [KO12l Remark 7.10]).

However, the rest of this section is devoted to showing that equivariant K-
theory does not satisfy descent with respect to certain topologies, including the
H-Nisnevich topology.

Proposition 5.3. FEquivariant algebraic K-theory does not satisfy descent with
respect to the H-Nisnevich topology.

Proof. Suppose that K(G,—) satisfies descent for the H-Nisnevich topology on
Z/2 — Sm/R, then in particular K(Z/2,—) satisfies Cech descent for Spec(C)gal
and the H-Nisnevich cover

Z/2 x Spec(C)yr — Spec(C)gal
induces a weak equivalence
K(Z/2,Spec(C)ga) — holim (K (G,Z/2 x C) = K(Z/2,(Z/2 x C)*?)...)
as in (BI). We compute the equivariant K-theory of G-torsors using [Mer(5]
Proposition 3] as K(Z/2,Spec(C)ga1) ~ K(Spec(R)), K(Z/2,Z/2 x Spec(C)) ~

K (Spec(C)), and so on, which implies an equivalence

K (Spec(R)) — holim (K (Spec(C)) = K (Spec(C) x Spec(C)))...).
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Thus, the homotopy limit on the right hand side computes to

holim (K (Spec(C)) = K (Spec(C) x Spec(C)))...)
~ Map(hocglim C(Z)2 = %), K (Spec(C)))

~ Map(EG, K (Spec(C)))

= K (Spec(C))"Y ~ K (Spec(R)),

and so we finally obtain an equivalence K (Spec(R)) — K¢ (Spec(R)) which gives a
contradiction, since K (Spec(R)) contains a non-zero additional information com-
ing from the Brauer group. (]
Remark 5.4.

(1) The proof above can easily be generalized to more general field extensions.

[AGVT2

[Blu06]

[CI11]

]

One needs to assure that there is some non-zero [-torsion in the Brauer
group of the base field and that the [-completed descent spectral sequence
(cf. [Mit97] Corollary 1.5]) converges and hence allows to detect this addi-
tional [-torsion elements.

The same proof also provides a counterexample to the main theorem of
[Ser1(] that equivariant K-theory satisfies ’isovariant’ descent. In loc. cit. a
parametrized version of scheme-theoretic isotropy is introduced as Gx,
where X is a G-scheme, and defined as the pullback

Gx—>G><X

X — A X xX.

Now Serpé calls a family {U; — X}; in GSm/k an isovariant Nisnevich
cover if the underlying family of schemes is a Nisnevich cover and for all
U; = X the induced morphism Gy, — Gx furnishes a pullback square

GU-; I GX

|

Ui—>X.

The singleton {f : Z/2 x Spec(C)y — Spec(C)gar } defines an isovariant Nis-
nevich cover. This is because firstly the G-actions on domain and codomain
are free. Therefore, the corresponding commutative square of type (B2 is a
pullback square. Secondly, f is a non-equivariant Nisnevich covering, since
the components of G x Spec(L) map to Spec(L) along the elements of the
Galois group.

Eventually, {f} is also a counterexample to the proof of [Serl( Propo-
sition 2.7], since f/G is the canonical map Spec(L) — Spec(k) which is not
a Nisnevich cover.
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