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Abstract

Symmetries of three-dimensional topological field theories are naturally defined in terms of
invertible topological surface defects. Symmetry groups are thus Brauer-Picard groups. We
present a gauge theoretic realization of all symmetries of abelian Dijkgraaf-Witten theories.
The symmetry group for a Dijkgraaf-Witten theory with gauge group a finite abelian group A,
and with vanishing 3-cocycle, is generated by group automorphisms of A, by automorphisms
of the trivial Chern-Simons 2-gerbe on the stack of A-bundles, and by partial e-m dualities.
We show that transmission functors naturally extracted from extended topological field theories
with surface defects give a physical realization of the bijection between invertible bimodule
categories of a fusion category A and braided auto-equivalences of its Drinfeld center Z(A).
The latter provides the labels for bulk Wilson lines; it follows that a symmetry is completely
characterized by its action on bulk Wilson lines.
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1 Symmetries of abelian Dijkgraaf-Witten theories

Dijkgraaf-Witten theories are extended topological field theories that have a mathematically
precise gauge theoretic formulation with finite gauge group. In that setting, the fields of
the Dijkgraaf-Witten theory with gauge group G are obtained by first considering G-bundles,
to which then in a second step a linearization procedure is applied (see [Mo] for a recent
description). In the present note we investigate the notion of symmetries of three-dimensional
Dijkgraaf-Witten theories, regarded as extended 1-2-3-dimensional topological field theories.
To keep the presentation simple we restrict ourselves to the case that the gauge group is an
abelian group, which we denote by A.

Braided auto-equivalences of bulk Wilson lines. The task of understanding symmetries
in Dijkgraaf-Witten theories can be approached from two different angles, either algebraically
or gauge theoretically. From a purely algebraic point of view, one would consider the modular
category of bulk Wilson lines, which is the representation category D(A)-mod of the Drin-
feld double of A. Symmetries should then in particular induce braided auto-equivalences of
D(A)-mod.

The group of braided auto-equivalences (up to monoidal natural equivalence) can be de-
scribed as follows. Denote by A∗ the group of complex characters of A. The group A⊕A∗ comes
with a natural quadratic form q : A⊕A∗→C×, given by q(g+χ) =χ(g) for g+χ∈A⊕A∗. The
automorphism group of A⊕A∗ then has a subgroup, denoted by Oq(A⊕A

∗), consisting of those
group automorphisms ϕ which preserve this form, i.e. satisfy q(ϕ(z)) = q(z) for all z ∈A⊕A∗.
Now the group of braided auto-equivalences is isomorphic to this group Oq(A⊕A

∗) [ENOM].
Simple objects of D(A)-mod, and thus simple labels for bulk Wilson lines of the Dijkgraaf-
Witten theory with gauge group A, are in bijection with elements of A⊕A∗; a braided auto-
equivalence induces the natural action of the corresponding element of Oq(A⊕A

∗) on the group
A⊕A∗.

In this approach the auto-equivalences of D(A)-mod are not intrinsically realized in the
Dijkgraaf-Witten theory as a gauge theory. It is therefore not clear whether every braided auto-
equivalence of the category of bulk Wilson lines preserves all aspects of the three-dimensional
topological field theory so that it can indeed be regarded as a full-fledged symmetry of the
theory. It is not clear either whether a braided auto-equivalence would then describe a sym-
metry uniquely. There might be several different realizations, or also none at all, of the auto-
equivalences on other field theoretic quantities, such as boundary conditions.

Universal kinematical symmetries. It is thus important to find a field theoretic realization
of the auto-equivalences, relating to the fact that Dijkgraaf-Witten theories can be formulated
as gauge theories. At the same time we then get additional insight into the structure of
the group Oq(A⊕A

∗). From a gauge theoretic point of view it is natural to expect that the
symmetries of the stack Bun(G) of G-bundles are symmetries of both classical and quantum
Dijkgraaf-Witten theories. 1 One might call these symmetries universal kinematical symmetries
– kinematical, because they are symmetries of the kinematical setting, i.e. G-bundles; and
universal, because the manifold on which the G-bundles are defined does not enter. The

1 Actually, a general Dijkgraaf-Witten theory involves a 3-cocycle ω ∈Z3(G,C×). Here we only consider the
case of trivial ω, and hence do not expect any compatibility relations between the automorphism and ω.
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symmetries of Bun(G) form the 2-group AUT(G), i.e. the category whose objects are group
automorphisms ϕ : G→G and whose morphisms ϕ1→ϕ2 are given by group elements h∈G
that satisfy ϕ2(g) =hϕ1(g) h

−1 for all g ∈G. Since in the case of our interest the group A
is abelian, we can safely ignore the morphisms in the category AUT(A) and work with the
ordinary automorphism group Aut(A) of the group A.

The group Aut(A) of symmetries of Bun(A) can be identified in a natural way with a
subgroup of the group Oq(A⊕A

∗) of braided auto-equivalences. Indeed, for any α∈Aut(A),
the automorphism α⊕ (α−1)∗ of A⊕A∗ belongs to Oq(A⊕A

∗), where (α)∗ ∈Aut(A∗) is defined
by [α∗χ](a) :=χ(α(a)) for all χ∈A∗ and all a∈A. But this argument is purely group theoretical,
and it is not clear at this point whether the embedding has any physical relevance and relates
symmetries of bundles to braided auto-equivalences of bulk Wilson lines.

Universal dynamical symmetries. The realization of Dijkgraaf-Witten theories as gauge
theories leads to even more symmetries. Apart from a finite group G, a three-cocycle ω ∈Z3(G,
U(1)) is another ingredient of a Dijkgraaf-Witten theory. Geometrically this cocycle is inter-
preted [Wi] as a (Chern-Simons) 2-gerbe on the stack Bun(G) of G-bundles, and we may think
of ω heuristically as a topological Lagrangian. In the present note we restrict ourselves to the
case of vanishing cocycle ω, corresponding to a trivial 2-gerbe. Still, the automorphism group
of the trivial 2-gerbe is a non-trivial 3-group: it is the 3-group of 1-gerbes on G. It is thus
again natural to expect that this 3-group provides us with symmetries of the Dijkgraaf-Witten
theory with gauge group G. We call these symmetries dynamical universal symmetries, as they
involve symmetries of the topological Lagrangian.

By the results of [Wi], the objects of the 3-group of 1-gerbes on G are 2-cocycles on G;
isomorphism classes are described by elements of the group cohomology H2(G,C×). The group
generated by classical kinematical and dynamical symmetries has the structure of a semi-direct
product, H2(G,C×)⋊Aut(G). By [NR, Prop. 4.1] this group is isomorphic to the automor-
phism group of the fusion category G-vect of G-graded vector spaces. Indeed, this fusion
category enters in the construction of Dijkgraaf-Witten theories as topological field theories of
Turaev-Viro type.

If G=A is abelian, cohomology classes in H2(A,C×) are in bijection with alternating
bicharacters. (An alternating bicharacter is a map β : A×A→C× that is a group homomor-
phism in each argument and satisfies β(a, a) = 1 for all a∈A, and thus β(a1, a2) =β(a2, a1)

−1

for all a1, a2 ∈A.) Again, there is a natural embedding H2(A,C×) →֒Oq(A⊕A
∗) of finite

groups: to a class in H2(A,C×) described by an alternating bicharacter β, we associate a
map φβ : A⊕A∗→A⊕A∗ defined by φβ(a+χ) := (a+β(a,−)+χ(−)). One immediately ver-
ifies that φβ is an element of Oq(A⊕A

∗). Again it remains to be shown, though, that this
embedding is of physical relevance in the sense that it relates symmetries of the topological
Lagrangian to braided auto-equivalences.

Electric-magnetic dualities. The universal kinematical and dynamical symmetries cannot,
however, exhaust the symmetries of Dijkgraaf-Witten models – the subgroup of Oq(A⊕A

∗)
generated by them is a proper subgroup. As an illustration, consider the case that A is the
cyclic group Z2. This group does not admit any non-trivial automorphisms, i.e. Aut(A) = 1. It
does not admit any non-trivial alternating group homomorphism either, and hence the group
generated by the universal dynamical and kinematical symmetries is trivial. On the other hand,
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the group Aut(A⊕A∗) is the symmetric group S3 that permutes the three order-two elements
of A⊕A∗. Its subgroup Oq(A⊕A

∗) is the subgroup S2
∼=Z2 of S3 whose non-trivial element

exchanges the generator of A with the one of A∗; in physics terminology, a transformation of this
type is called an electric-magnetic duality, or e-m duality. The presence of such electric-magnetic
dualities is a central feature of gauge theories in various dimensions (see e.g. [KaW,KaBSS]
for a general discussion). Electric-magnetic dualities have a particularly explicit description
in theories that can be realized as lattice models, compare [DW,Ki, BuCKA] and references
therein.

Topological surface defects and bimodule categories. A proper understanding of the
situation, including a physical realization of the subgroups described above, calls for a unified
field theoretic perspective. In this note we explain that in the present situation, for which no
rigorous definition of symmetry for an extended topological field theory has been fully tested
out so far, topological surface defects provide such a perspective. In fact, the relation between
symmetries and classes of invertible topological codimension-one defects has been established
long ago [FFRS1, FFRS2] for the case of two-dimensional field theories. But the mechanism
that implements symmetries via topological defects is not restricted to the two-dimensional
case. One of the virtues of realizing symmetries in terms of topological defects of codimension
one is that this realization immediately determines how the symmetries act on all kinds of
aspects of the field theory, including in particular labels of boundaries and defects.

Topological surface defects in 3d TFTs have recently attracted increasing interest, see
[Bo, KK, KaS, BaMS, EKRS, KhTH, GGP, FSV1] for a selection of recent contributions. The
case of three-dimensional topological field theories of Turaev-Viro type is particularly well
understood. In particular, it is by now well-established that topological surface defects in
Dijkgraaf-Witten theories with gauge group A correspond to bimodule categories over the fu-
sion category A=A-vect of finite-dimensional A-graded vector spaces. Those defects which
describe symmetries correspond to invertible bimodule categories: accordingly we call them
invertible defects. Their fusion product with the opposite defect is the monoidal unit for fu-
sion, which is also called the invisible or transparent defect. Invertible defects can alternatively
be characterized by the fact that the only bulk Wilson lines that ‘condense’ on them are the
invisible bulk Wilson lines.

The group of (equivalence classes of) invertible bimodule categories, the so-called Brauer-
Picard group of A, has been described in [ENOM, NN]. In particular, a bijection has been
established [ENOM, Thm1.1] between invertible bimodule categories of a fusion category –
in our case A-vect – and braided auto-equivalences of its center – in our case the category
D(A)-mod of bulk Wilson lines. As a consequence, also (equivalence classes of) invertible
bimodule categories are described by the group Oq(A⊕A

∗).

The transmission functor. The results of [ENOM] are of purely representation theoretic
nature. The purpose of the present note is to investigate their consequences and counterparts
in Dijkgraaf-Witten theories as gauge theories. The bijection between equivalence classes of
invertible bimodule categories and braided auto-equivalences in [ENOM] leads us to consider
braided auto-equivalences Fd of D(A)-mod labeled by invertible bimodule categories d over
D(A)-mod. Thus to any invertible topological surface defect d we have to associate such a
braided auto-equivalence.
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Now in an extended three-dimensional topological field theory, functors are obtained from
surfaces with boundaries, and there is indeed a natural candidate for the relevant two-dimensio-
nal cobordism with defect. Namely, to yield an endofunctor of the category of bulk Wilson lines,
the cobordism should have one ingoing and one outgoing boundary; and it should not induce
any additional topological information; hence we have to consider a cylinder. The cylinder
can be thought of as coming from a cut-and-paste boundary in a three-dimensional topological
field theory. Such boundaries have to intersect surface defects transversally. Hence a surface
defect results in a line embedded in the cobordism. We are thus lead to consider a cylinder
Z =S1× [−1, 1] with a defect line along the circle D=S1×{0}⊂Z, as shown in the following
picture:

d

−1 0 1

(1.1)

In the sequel we regard the circle S1×{−1}⊂Z as incoming and the circle S1×{1}⊂Z
as outgoing. We denote the functor described by the cobordism (1.1) by Fd and call it the
transmission functor for the defect d. We will show in section 2.3 that for an invertible defect
in a general three-dimensional extended topological field theory, the transmission functor Fd
is a braided auto-equivalence of the category of bulk Wilson lines. The transmission functor
describes what happens to the type of a bulk Wilson line when it passes through the surface
defect d.

We note that in some physical applications Wilson lines can be interpreted as world lines
of quasi-particles, with the type of the quasi-particle specified by the type of the Wilson line.
When such a quasi-particle crosses an invertible topological surface defect of type d, then the
type of quasi-particle is changed according to the transmission functor Fd. In field-theoretic
terms, this change is brought about by a so-called Alice string [Sc, ABCMW, DB]. Let us
illustrate this interpretation with the situation that the surface defect is a half-plane R2

x≥0×R

in three-dimensional space R3∼=R2×R. The boundary of the half-plane consists of a Wilson
line that separates the surface defect d from the transparent defect (such Wilson lines always
exist). The intersection of the defect d with a plane R2×{t0} of fixed time is a half-line labeled
by d; this half-line constitutes the Alice string. Since the surface defect is topological, the
precise position of the half-line does not matter.

In the case of Dijkgraaf-Witten theories, transmission functors are explicitly accessible:
there is a gauge theoretic realization of topological surface defects in Dijkgraaf-Witten theories
based on relative bundles [FSV2]. As a consequence, topological defects are classified by a
subgroup H ≤A⊕A together with a cohomology class in H2(H,C×). The formalism developed
in [Mo] then allows one to compute the transmission functor.

In this note we provide a set of generators for the group Oq(A⊕A
∗) of braided auto-equi-

valences, which implies that universal kinematical and dynamical symmetries together with
electric-magnetic dualities generate all symmetries. We then give, for each of these generators
of Oq(A⊕A

∗), a topological defect, compute the resulting transmission functor and show that
it acts on simple labels for bulk Wilson lines by the natural action of Oq(A⊕A

∗) on A⊕A∗.
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This provides a field theoretic realization in terms of topological surface defects for all braided
auto-equivalences. At the same time it establishes that the embeddings of the subgroups of
dynamical and kinematical universal symmetries described above are indeed physical. When
combined with the results of [ENOM], it also follows that the braided equivalences of bulk
Wilson lines are in bijection with field-theoretic symmetries. 2 Hereby we realize all elements
of the Brauer-Picard group as gauge-theoretic dualities.

Plan of the paper. The rest of this note is organized as follows. Section 2 collects some back-
ground about topological surface defects in Dijkgraaf-Witten theories and provides information
about transmission functors arising from invertible defects. In Section 3 we construct these
defects explicitly for various classes of generators and compute their transmission functors.
Finally we show in Section 4 that the group of invertible defects is generated by kinemati-
cal and dynamical symmetries together with e-m dualities. Technically, this is proven as the
group-theoretical statement that a certain set of elements of the group Oq(A⊕A

∗) generates
this group.

2 Surface defects in DW theories and the transmission

functor

2.1 Surface defects in Dijkgraaf-Witten theories

A model independent analysis of topological surface defects between topological field theories
of Reshetikin-Turaev type has been presented in [FSV1]. We summarize the pertinent aspects
of that analysis: For C and C′ modular tensor categories, a topological surface defect separating
the Reshetikhin-Turaev theories with bulk Wilson lines labeled by C and by C′, respectively,
exists if and only if the modular category C⊠ (C′)rev is braided equivalent to the Drinfeld
center of some fusion category A; 3 here (C′)rev is the same monoidal category as C′, but with

opposite braiding. We call the corresponding braided equivalence functor C⊠ (C′)rev
≃
−→Z(A)

a trivialization of C⊠ (C′)rev. If such a trivialization exists, then the bicategory of defects is
equivalent to the bicategory of module categories over the fusion category A.

In the present paper we are interested in the case of defects that separate a Dijkgraaf-
Witten theory based on the abelian group A from itself. Thus the category of bulk Wilson
lines is already a Drinfeld center, C= C′ =Z(A-vect), and accordingly there is a distinguished
trivialization

C⊠ (C′)rev
≃
−→ Z(A⊕A-vect) . (2.1)

The defects of our interest are thus classified by module categories over the category of A⊕A-
graded vector spaces.

Indecomposable A⊕A-vect-module categories have been classified in [Os]: they correspond
to subgroups H ≤A⊕A, together with a two-cocycle on H . That they describe surface defects
of Dijkgraaf-Witten theories has been explicitly demonstrated in [FSV2].

2 This is reminiscent of the situation in two-dimensional rational conformal field theories, where the action
of topological line defects on bulk fields characterizes isomorphism classes of defects, so that the action of
topological line defects on bulk fields has been used in the classification of defects.

3 Then the classes of C and C′ in the Witt group [DaMNO] of modular tensor categories coincide.
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2.2 The transmission functor

We want to determine the transmission functor Fd : C→C for an invertible topological surface
defect d described by an indecomposable module category over C. The physical interpretation
of the transmission functor Fd for an invertible defect is as follows. When a bulk Wilson line
labeled by an object U ∈C passes through the surface defect d, its label changes to Fd(U)∈C.
(Recall that no bulk Wilson lines condense on the defect.)

We now explain why the transmission functor for an invertible surface defect in an extended
three-dimensional topological field theory has a natural structure of a braided auto-equivalence.
First of all, by composing the transmission functor Fd for a surface defect d with the transmission
functor Fd for the opposite defect d and invoking fusion of defects, we conclude that Fd ◦
Fd= IdC =Fd ◦ Fd, so that Fd is indeed an auto-equivalence. To proceed, it will be convenient
to draw the cylinder (1.1) as an annulus with an embedded defect line, according to

d

−1 0 1 (2.2)

To discuss monoidality we then have to compare the functors corresponding to the two ‘trinion’
surfaces shown in the following picture:

d d d

(2.3)

For a general defect, the functors associated to these two trinions are not isomorphic and the
transmission functor is not monoidal; one rather obtains monoidal functors between categories
of local modules over braided-commutative algebras in C. But if the defect is invertible, then
the functors corresponding to the two trinions are isomorphic. In fact, a natural isomorphism

⊗ ◦ (Fd×Fd) =⇒ Fd ◦ ⊗ (2.4)

of functors C ×C→C is furnished by the following three-manifold with corners and defects:

(2.5)
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Such a three-manifold with corners is to be read as a span of manifolds from the bottom lid
to the top lid. To show that this natural transformation provides a monoidal structure on the
functor Fd, one needs to check an identity of natural transformations. This identity follows
from the fact that the following two three-manifolds with corners and defects are related by a
homotopy relative to the boundary:

(2.6)

(This homotopy, restricted to the surface defect, looks like the homotopy used in two-dimensional
topological field theories to show associativity of the algebras assigned to circles, but its role is
rather different.) In a similar manner the property that the monoidal structure on Fd is braided
can be deduced from the fact that the following two three-manifolds with corners and defects
are homotopic as well:

(2.7)
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Remark 2.1. In passing, we mention another physical application: According to [KaS], surface
defects provide an interpretation of the so-called TFT construction (see [SFR] for a review) of
correlators of two-dimensional rational conformal field theories associated with the category C.
Thereby a surface defect d in particular determines a modular invariant torus partition function
Zd of the conformal field theory. For an invertible defect d with transmission functor Fd, the
resulting torus partition function is of automorphism type; its coefficient matrix reads

Zdij = δ[Ui],[Fd(U
∨

j )] , (2.8)

where {Ui} is a set of representatives of the isomorphism classes of simple objects of C.

2.3 Transmission functors for Dijkgraaf-Witten theories

In the case of our interest the modular tensor category C is the representation category of the
(untwisted) Drinfeld double D(A) of a finite abelian group A, and a topological surface defect is
described by a subgroup H of A⊕A and a two-cocycle on H . To obtain the relevant groupoids
of bundles we follow the prescription of [FSV2] to find the appropriate relative bundles: For
a defect associated to the subgroup H ≤A⊕A with two-cocycle θ∈Z2(H,C×), the objects
of the category of relative bundles consist of an A-bundle P±

A on each of the two cylinders
Z− :S1× [−1, 0] and Z+ :=S1× [0, 1], an H-bundle PH on D and an isomorphism

α : IndA⊕AH PH
≃
−→ (P+

A )
∣∣
D
× (P−

A )
∣∣
D

(2.9)

of A⊕A-bundles on D. Using that the cylinders Z± are homotopic to the circle D, one can
describe all bundles appearing in (2.9) by bundles on a circle. And since α is an isomorphism,
one can work with an equivalent groupoid in which only the H-bundles appear as data. As a
consequence the category of relative bundles can be replaced by the action groupoid H \\

ad
H

for the adjoint action of H on itself. The objects of this groupoid are group elements h∈H ,
which can be thought of as holonomies of the H-bundle on the defect circle with respect to
some fixed base point; the morphisms of the groupoid correspond to gauge transformations.

According to the general picture of Dijkgraaf-Witten theories [Mo], for the cylinder we thus
get a span of groupoids. For each boundary circle, we have the category of A-bundles on S1,
which we replace by the equivalent action groupoid A \\

ad
A. The relevant functor is restriction

of bundles to the boundary components. To describe it, consider the group homomorphisms
obtained from the canonical projections p1,2 for A⊕A to its two summands,

πi : H →֒ A⊕A
pi
−→ A . (2.10)

These give rise to functors
π̂i : H \\

ad
H → A \\

ad
A (2.11)

on action groupoids, acting both on objects and morphisms like πi. We thus can replace the
span of groupoids of categories of bundles and relative bundles by the equivalent span

H \\
ad
H

π̂2

%%
❏❏

❏❏
❏❏

❏❏
❏

π̂1

yytt
tt
tt
tt
t

A \\
ad
A A \\

ad
A

(2.12)
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of finite groupoids. Next we linearize, i.e. for each groupoid consider the category of functors
from the groupoid to vect. This gives us two pullbacks

π̂∗
i : [A \\

ad
A, vect] → [H \\

ad
H, vect] , (2.13)

as well as pushforwards
π̂i ∗ : [H \\

ad
H, vect] → [A \\

ad
A, vect] (2.14)

as their two-sided adjoints. Note that the category [A \\
ad
A, vect]∼=D(A)-mod∼= C is the cate-

gory of labels for bulk Wilson lines of the Dijkgraaf-Witten theory.
We finally construct a functor [H \\

ad
H, vect]→ [H \\

ad
H, vect] from the two-cocycle θ, fol-

lowing [Mo, Sect. 5.4]. To this end we first transgress θ∈Z2(H,C×) to ωθ ∈Z
1(H \\

ad
H,C×), a

one-cocycle for the loop groupoid H \\
ad
H ∼= [∗ \\Z, ∗ \\G]. According to [Wi, Thm. 3] this is the

commutator

ωθ(h1; h2) =
θ(h1, h2)

θ(h2, h1)
, (2.15)

which is an alternating bicharacter on the abelian group A. (As is well known, alternating
bicharacters for an abelian groupA are in bijection with the group cohomologyH2(A,C×).) The

groupoid algebra C[H \\
ad
H ] has as a basis the morphisms bγ;h : γ

h
−→ γ in H \\

ad
H ; its product is

composition of morphisms, wherever this is defined, and zero else. We can canonically identify

C[H \\
ad
H ]-mod ≃ [H \\

ad
H, vect] . (2.16)

The two-cocycle ωθ gives an algebra automorphism

ϕθ : C[H \\
ad
H ] → C[H \\

ad
H ] ,

bγ;h 7→ ωθ(γ : h) bγ;h ,
(2.17)

which in turn provides us with the desired functor

ϕ∗
θ : C[H \\

ad
H ]-mod → C[H \\

ad
H ]-mod . (2.18)

The transmission functor FH,θ is now obtained [Mo, Sect. 5.4] by pre- and post-composing
this functor with the pullback and pushforward functors obtained above:

FH,θ : [A \\
ad
A, vect]

π̂∗

1−−→ [H \\
ad
H, vect]

ϕ∗

θ−−→ [H \\
ad
H, vect]

(π̂2)∗−−−→ [A \\
ad
A, vect] . (2.19)

In particular the transmission functor is explicitly computable. Thus for any given invertible
surface defect (H ≤A⊕A, θ) of the Dijkgraaf-Witten theory with gauge group A we can find
the corresponding braided equivalence FH,θ explicitly. From these explicit expressions, it is
clear that the transmission functor only depends on the cohomology class of θ.

2.4 Action of the transmission functor on simple objects

Let us determine the action of the transmission functor on the isomorphism classes of simple
objects. For the double of a general finite group G these classes are in bijection with pairs
consisting of a conjugacy class c of G and an irreducible representation χ of the centralizer of a
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representative of c. If G=A is abelian, this reduces to pairs (a, χ) consisting of a group element
a∈A and an irreducible character χ∈A∗; thus the isomorphism classes of simple objects are

π0([A \\
ad
A, vect]) ∼= A⊕A∗. (2.20)

The group structure on π0([A \\
ad
A, vect]) coming from the monoidal structure on the category

[A \\
ad
A, vect] coincides with the natural group structure on A⊕A∗.

It is straightforward to determine the action of each of the three functors (2.13), (2.14) and
(2.18) on such pairs. First, for the pullback along π̂1 maps we find

[π̂∗
1] : π0([A \\

ad
A, vect]) → π0([H \\

ad
H, vect]) ,

(a , χ) 7→
⊕

h∈p−1
1 (a)

(h , p∗1χ) (2.21)

with p∗1 defined by [p∗1χ](h) :=χ(p1(h)). Second, the functor ϕ∗
θ acts as

[ϕ∗
θ] : π0([H \\

ad
H, vect]) → π0([H \\

ad
H, vect]) ,

(h , ψ) 7→ (h , ψ+ωθ(h;−))
(2.22)

with ωθ as in (2.15). And third, the pushforward along π̂2 maps

[(π̂2)∗] : π0([H \\
ad
H, vect]) → π0([A \\

ad
A, vect]) ,

(h , ψ) 7→
⊕

χ2∈A
∗

(p2(h) , χ2) δp∗2χ2,ψ
. (2.23)

3 Realizing the symmetries

As discussed in detail in Section 4, the group Oq(A⊕A
∗) is generated by the following elements:

1. The kinematical universal symmetries, which come from automorphisms of the stack of
A-bundles. They are given by the subgroup Skin :=

{
α⊕α−1 ∗ |α∈Aut(A)

}
, which is

isomorphic to Aut(A).

2. The dynamical universal symmetries, which can be identified with the group of (equiv-
alence classes of) 1-gerbes on the stack of A-bundles. They are given by the group of
alternating bicharacters on A. In the terminology of quantum field theory [SW], the
connection on a 1-gerbe is called a B-field. Accordingly we refer to the subgroup of
alternating bicharacters as B-fields and denote it by SB.

3. Partial electric-magnetic (or e-m, for short) dualities. Such a symmetry is given by the
exchange, in A⊕A∗, of a cyclic summand C of A with its character group C∗. More
explicitly, for A written in the form A=A′ ⊕C with C a cyclic subgroup, it acts on
A⊕A∗=A′ ⊕C⊕(A′)∗⊕C∗ as idA′ ⊕ δ⊕ id(A′)∗ ⊕ δ−1, with δC : C→C∗ any isomorphism
from C to C∗.
If one fixes a decomposition of A into a direct sum of cyclic groups Ci, together with an
isomorphism δi : Ci→C∗

i for each cyclic summand, then the corresponding partial e-m
dualities generate a subgroup of Oq(A⊕A

∗), which we denote by Se-m.
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For each type of generator, we will now specify the subgroup H of A⊕A and cocycle θ that
label the corresponding invertible surface defect.

Remark 3.1. In principle, for any element of the group Oq(A⊕A
∗) the subgroupH ≤A⊕A and

the cocycle θ can be computed from the results in [ENOM, Sect. 10.2]. However, Theorem 1.1.
of [ENOM] ensures that there is a bijection between equivalence classes of invertible topological
surface defects and equivalence classes of braided equivalences. Hence it is sufficient to verify
that a given defect described by a pair (H, θ) reproduces the correct braided equivalence.

We will make use of the following fact, which is the specialization to abelian groups of
Proposition 5.2 of [NR]:

Corollary 3.2. The A-vect-bimodule category associated with the pair (H, θ) is invertible iff

H · (A⊕ {0}) = A⊕ A = (A⊕ {0}) ·H (3.1)

and the restriction of the commutator cocycle ωθ (2.15) to

H∩ :=
(
H ∩ (A⊕ {0})

)
×
(
(A⊕ {0}) ∩H

)
(3.2)

is non-degenerate.

3.1 Kinematical symmetries: group automorphisms

The automorphisms in Skin are the symmetries of the stack Bun(A) and are thus symmetries
of the classical configurations.

A group automorphism α : A→A induces a group automorphism α∗ : A∗→A∗ acting on
χ∈A∗ as

[α∗χ](a) := χ(α(a)) (3.3)

for all a∈A. The combined group automorphism α̃ :=α⊕ (α−1)∗ : A⊕A∗→A⊕A∗ satisfies

q
(
α̃(a+χ)

)
= q

(
α(a) +α−1∗(χ))

= [α−1∗(χ)](α(a)) = χ(α−1α(a)) = χ(a) = q(a+χ) ,
(3.4)

i.e. preserves the quadratic form q and is thus an element of Oq(A⊕A
∗).

We claim that the surface defect whose transmission functor corresponds to the automor-
phism α̃ is the following: For the subgroup, we take the graph of α, i.e.

Hα := {(a, α(a)) | a∈A} < A⊕A , (3.5)

and for two-cocycle on Hα the trivial two-cocycle θ◦. (We could actually take any exact two-
cocycle; for the transmission functor only the cohomology class matters.) For instance, for
α= id, H is the diagonal subgroup of A⊕A, which describes the invisible defect, while for the
‘charge conjugation’ a 7→ a−1 it is the antidiagonal subgroup.

Let us first check that the pair (Hα, θ◦) defines an invertible surface defect. We have

Hα · (A⊕ {0}) = {(ab , α(a) | a, b∈A} = A⊕A (3.6)

12



and analogously (A⊕ {0}) ·Hα=A⊕A. Moreover,
(
Hα ∩ (A⊕ {0})

)
= {0} =

(
(A⊕ {0}) ∩Hα

)
, (3.7)

so that trivially the restriction of ωθ◦ to (Hα)∩ is non-degenerate. Thus both conditions in
Corollary 3.2 are satisfied, and hence the defect labeled by (Hα, θ◦) is indeed invertible.

Next we compute the action of the transmission functor FHα,θ◦ on isomorphism classes
of simple objects. The functor ϕ∗

θ◦
is the identity, so that the transmission functor is the

composition

(a;χ) p
[π̂∗

1 ]−−−→ (a, α(a); χ̃) p
[π̂2∗]−−−−→ (α(a), α−1∗(χ)) (3.8)

where χ̃∈H∗
α is defined by χ̃(a, α(a)) =χ(a). Thus indeed FHα,θ◦ acts on isomorphism classes

of simple objects by α̃∈Oq(A⊕A
∗).

3.2 Dynamical symmetries: B-fields

These symmetries come from automorphisms of the trivial 2-gerbe on Bun(A). They are thus
symmetries of the classical action. A dynamical symmetry is described by an alternating
bicharacter β : A×A→C×. To such a bicharacter β we associate the group homomorphism

ξβ : A→A∗ that acts as [ξβ(a)](b) =β(a, b) for a, b ∈ A. The automorphism β̃ for a dynamical
symmetry is then given by

β̃(a+χ) = a+ ξβ(a) + χ . (3.9)

This is an automorphism because ξβ is a group homomorphism, and it is in Oq(A⊕A
∗) because

β is in addition antisymmetric:

[ξβ(a)](a) = β(a, a) = 1 (3.10)

for all a∈A, which implies β(a, b) = (β(b, a))−1 for a, b∈A.

We claim that the surface defect whose transmission functor reproduces β̃ ∈Oq(A⊕A
∗) looks

as follows: The relevant subgroup is the diagonal subgroup Adiag≤A⊕A (independently of the
particular choice of β), and the relevant two-cocycle θβ on Adiag

∼=A is characterized by the
fact that its commutator cocycle ωθβ is β. (Recall that for the transmission functor only the
cohomology class of the two-cocycle matters; the alternating bicharacters are in bijection to
these classes.)

Now notice that we have Adiag=Hα=id with Hα as in (3.5), so that as a special case of (3.6)
and of (3.7) we see that

Adiag · (A⊕ {0}) = A⊕ A = (A⊕ {0}) · Adiag (3.11)

and (
Adiag ∩ (A⊕ {0})

)
= {0} =

(
(A⊕ {0}) ∩Adiag

)
, (3.12)

respectively. Thus precisely as in Section 3.1 we can conclude that the surface defect labeled
by the pair (Adiag, θβ) is invertible.

The action of the transmission functor FAdiag,θβ on isomorphism classes of simple objects is
obtained as follows:

(a;χ) p
[π̂∗

1 ]−−−→ (a, a; χ̃) p

[ϕ∗

θ
δ
]

−−−→ (a, a; χ̃+ξβ(a)) p
[π̂2∗]−−−−→ (a;χ+ξβ(a)) = β̃(a+χ) , (3.13)

where χ̃∈Adiag is defined by χ̃(a, a) =χ(a). Thus FAdiag,θβ acts on isomorphism classes precisely

by β̃ ∈Oq(A⊕A
∗).
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3.3 Partial e-m dualities

The partial e-m dualities appear as symmetries of quantized Dijkgraaf-Witten theories. Every
partial e-m duality can be obtained in the following manner. Suppose that A is written as a
direct sum A∼=A′ ⊕C with C a cyclic subgroup (allowing for the case that A′ is the trivial
subgroup). This induces a similar decomposition of the character group A∗: denoting by C∗

the subgroup of A∗ of characters that vanish on A′, and by (A′)∗ the subgroup of characters

vanishing on C, we have A∗∼= (A′)∗⊕ C∗.
As abstract groups, C and C∗ are isomorphic. Fix an isomorphism δC : C→C∗ and define

the automorphism δ of the group A⊕A∗∼=A′ ⊕C ⊕ (A′)∗⊕C∗ as follows: δ is the identity on
the summands A′ and (A′)∗, while on C ⊕C∗ it acts as

( c , ψ ) 7−→
(
δ−1
C (ψ) , δC(c)

)
. (3.14)

That δ preserves the quadratic form is seen by calculating

q
(
δ(a′+c+χ′+ψ)

)
= q

(
a′ + δ−1

C (ψ) + χ′ + δC(c)
)

= χ′(a′) · [δC(c)](δ
−1
C (ψ)) = χ′(a′) · ψ(c) = q(a′+c+χ′+ψ) .

(3.15)

We claim that the surface defect whose transmission functor corresponds to δ∈Oq(A⊕A
∗)

is as follows: The relevant subgroup of A⊕A is the group Hδ :=A′
diag⊕C ⊕C, where A′

diag

is embedded diagonally into the summand A′ ⊕A′ of A⊕A, while the cocycle θδ on Hδ is
characterized by its commutator cocycle, which is defined to act as

ωθ
δ
((a′, c1, c2), (ã

′, c̃1, c̃2)) := [δC(c1)](c̃2) · ([δC(c2)](c̃1))
−1 (3.16)

(this is obviously an alternating bicharacter on Hδ). For determining the transmission functor,
it again suffices to know this bicharacter.

To verify invertibility, note that

A′
diag · (A

′ ⊕ {0}) = {(a′b′, b′) | a′, b′ ∈A′} = A′ ⊕A′ (3.17)

and analogously (A′ ⊕{0}) ·A′
diag=A′ ⊕A′, which implies that (A⊕{0}) ·Hδ =A⊕A = Hδ ·

(A′ ⊕ {0}). Moreover, we have

A′
diag ∩ (A′ ⊕ {0}) = {0} = (A′ ⊕ {0}) ∩ A′

diag , (3.18)

which implies that (Hδ)∩= (C ⊕C)× (C ⊕C). To see that ωθ
δ
restricted to (Hδ)∩ is non-dege-

nerate, we fix a generator a of C and denote by ψ∈C∗ the character with value ψ(a) = e2πi/N ,
with N = |C|. Then δC(a) =ψl with l such that (l, N) = 1, and we find

ωθ
δ
(ap1; aq1, ap2, aq2) = e2πil(p1q2−q1p2)/N . (3.19)

Now e2πil/N is a primitive N -th root of unity, so that for any pair (p1, q1) we can find (p2, q2)∈Z

×Z such that p1q2 − q1p2 6=0 mod N . Hence ωθ
δ
is non-degenerate. We can thus again invoke

Corollary 3.2 to conclude that the defect labeled by (Hδ, θδ) is invertible.
To compute the action of the transmission functor on simple objects, we note that the

problem splits into a part involving only the subgroup A′ and another part involving only the
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cyclic group C. The first problem reduces to the computation of the transmission functor for
the defect associated with the identity automorphism, which was treated in section 3.1. Thus
we can restrict ourselves to the case that A=C is cyclic. In this case the action of the pullback
functor on the simple object (c, χ) with b∈C and χ∈C∗ reads

(c;χ) p
[π̂∗

1 ]−−−→
⊕

c̃∈C

(
c, c̃;χ[1]

)
(3.20)

with the character χ[1] ∈ (C ⊕C)∗ taking the values χ[1](d, d̃) =χ(d) for d, d̃∈C. Next we note
that the functor ϕ∗

θ
δ
acts on simple objects of D(C⊕C)-mod as

(c, c̃, χ[1]) p

[ϕ∗

θ
δ
]

−−−→ (c, c̃, χ[2]) (3.21)

with the character χ[2] ∈ (C ⊕ C)∗ taking the values χ[2](d, d̃) =χ(d) [δC(c)](d̃)/[δC(c̃)](d) for
d, d̃∈C. This is, in turn, mapped by the pushforward functor [π̂2∗] to those characters χ[3] ∈C∗

for which p∗2χ
[3]=χ[2]. This condition amounts to the identity

χ[3](d̃) = χ[2](d, d̃) = χ(d)
[δC(c)](d̃)

[δC(c̃)](d)
(3.22)

for all d, d̃∈C. Considering the dependence of both sides of this equality on d̃ determines
χ[3] = δC(c), while the fact that the dependence on d on the right hand must be trivial shows
that we need χ(d) = [δC(c̃)](d) for all d∈C. This means that in the summation over c̃ in (3.20)
only the term with δC(c̃) =χ survives the pushforward. We conclude that the composition of the
three functors maps the simple object (c, χ) to a single simple object, as befits an equivalence.
Concretely,

(c, χ) 7−→ (δ−1
C (χ), δC(c)) , (3.23)

and thus the defect realizes an e-m duality.

4 Generators of Oq(A⊕A∗)

It remains to be shown that the three types of group elements discussed in the preceding section
– corresponding to kinematical and dynamical classical symmetries and to partial e-m dualities
– indeed constitute a set of generators for the Brauer-Picard group Oq(A⊕A

∗). To this end we
have to show that an arbitrary element of Oq(A⊕A

∗) can be expressed as a product of elements
in a suitable explicitly specified set of generators. This description turns out to be similar
to the description of symplectic or orthogonal groups over the integers (see e.g. [HuR, SW])
and the proof involves a variant of the Euclidean algorithm similar as in the proof of Bruhat
decompositions (see e.g. [Re]). Technical complications arise from the need to respect the
divisibility properties of the orders of the generators.

We start by introducing pertinent notation. Any finite abelian group A can be presented
as A=

⊕
pA

(p) with the sum being over all primes and A(p) a direct sum of cyclic groups of
order a power of p. To analyze the group A we present it in terms of some arbitrary, but fixed,
ordered family (ai | i=1, 2, ... , r) of generators such that (writing the group product additively)

A(p) =
r⊕

i=1

〈ai | p
ℓiai=0〉 =

r⊕

i=1

Zpℓi =
⊕

s

(
Zps

)⊕ns
(4.1)
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with non-negative integers ns, r=
∑

s ns and ℓi. It will be convenient to order the generators
such that the powers of p appear in ascending order, i.e. ℓi≤ ℓj for i < j. It is easy to see that

Aut(A) =×p primeAut(A
(p)) as well as Oq(A⊕A

∗) =×p primeOq(A
(p)⊕A(p) ∗) . (4.2)

As a consequence we can, and will, restrict our attention to a single prime p. By a slight abuse
of notation, in the sequel we will just write A for A(p).

In terms of the generators, a general group element is a linear combination
∑r

i=1 γ̄i ai with
γ̄i ∈Zmod pℓi . In the sequel we freely replace such classes γ̄i by representatives γi ∈Z; also,
we denote by γ−1

i ∈Z a representative of the inverse of γi modulo pℓi. For the character group
A∗ we choose generators xi in such a way that xi(ai) is a primitive pℓith root of unity while
xi(aj) = 1 for i 6= j, so that the quadratic form q is given by

q
(∑r

i=1(γi ai+ ζi xi)
)
= exp

(
2πi

r∑

i=1

p−ℓi γi ζi
)
, (4.3)

and in particular ord(xi) = ord(ai). With these conventions, an element g of Oq(A⊕A
∗) (or, for

that matter, of End(A⊕A∗)) is determined by the expressions

g(ai) =

r∑

j=1

(
αgi,j aj + ξgi,j xj

)
and g(xi) =

r∑

j=1

(
βgi,j aj + ηgi,j xj

)
(4.4)

for i=1, 2, ... , r, with suitable constraints on the coefficients αgi,j, ξ
g
i,j, β

g
i,j , η

g
i,j ∈Z which, how-

ever, we do not need to spell out.
We introduce three subgroups of Aut(A⊕A∗):

Skin :=
{
α⊕α−1 ∗ |α∈Aut(A)

}
∼= Aut(A) ,

SB :=
〈
bi,j | 1≤ i < j≤ r

〉
and Se-m :=

⊕r
i=1Di

∼= Z
⊕r
2 .

(4.5)

Here Di
∼=Z2 is generated by the automorphism di that exchanges ai and xi and leaves all other

generators fixed, while bi,j is given by

bi,j :





ai 7→ ai + xj ,

aj 7→ aj − xi ,

ak 7→ ak for k 6∈ {i, j} ,

xk 7→ xk .

(4.6)

It is not hard to check that the groups (4.5) are actually subgroups of Oq(A⊕A
∗)<Aut(A⊕A∗).

The groups (4.5) describe kinematical universal symmetries (Skin), dynamical symmetries or
B-fields (SB), and partial e-m-dualities associated to the direct sum decomposition (4.1) of A
(Se-m), respectively.

We will also be interested in two particular types of elements of Skin: for i 6= j satisfying
ord(ai) = ord(aj) we set

ti,j :





aj 7→ aj − ai ,

ak 7→ ak for k 6= j ,

xi 7→ xi + xj ,

xk 7→ xk for k 6= i ,

(4.7)
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and for γ 6=0 mod p and any j

ωj;γ :





aj 7→ γ−1 aj ,

ak 7→ ak for k 6= j ,

xj 7→ γ xj ,

xk 7→ xk for k 6= j .

(4.8)

We further introduce a separate notation for those elements of Skin that act as a transposition
on pairs of generators of some fixed order and leave all other generators fixed, according to

τi,j :





ai ↔ aj ,

ak 7→ ak for k 6∈ {i, j} ,

xi ↔ xj ,

xk 7→ xk for k 6∈ {i, j}

(4.9)

with ord(aj) = ord(ai). These generate a subgroup S=
⊕

sSns
≤Skin consisting of elements

that permute pairs (ai, xi) of generators of the same order. Below, for convenience we allow for
i= j in (4.9), i.e. for any i, τi,i is just the unit element of Oq(A⊕A

∗).

We now establish the following

Fact 4.1. Oq(A⊕A
∗) is generated by the subgroups (4.5).

Proof.

Step 1 : Given g ∈Oq(A⊕A
∗) we show that multiplying g with suitable elements of the sub-

groups (4.5) yields a group element that leaves the last generator xr invariant.

Step 1a : Describe g as in (4.4). We first consider the case that ord(ηgr,i xi)< ord(xr) for all
i. Then, since g must preserve the order of xr, there exists at least one value of i such that
ord(βgr,i ai) = ord(xr). Take one such value (say, the largest one satisfying the equality) and
denote it by k(r) or, for brevity, just by k. Then the group element g′ := dk ◦ g acts as

g′(xr) ≡ dk(g(xr)) = g(xr) + (βgr,k− ηgr,k) (xr− ar) , (4.10)

so that in particular ord(ηg
′

r,k xk) = ord(βg
′

r,k xk) = ord(xr).

Step 1b : By step 1a we can assume that g satisfies ord(ηgr,k xk) = ord(xr), i.e. ord(xk) = ord(xr)
and ηgr,k 6=0 mod p. It follows that τk,r ∈S≤Skin and that there exists a γ ∈Z such that

γ ηgr,k=1 mod p. Then the group element g′ :=ωr;γ ◦ τr,k ◦ g acts as in (4.4) with ηg
′

r,r=1.

Step 1c : Invoking step 1b we assume from now on that g satisfies ηgr,r=1. Further, for i 6= r

the element g′ := (bi,r)
βg
r,i satisfies βg

′

r,i=βgr,i− βgr,i=0. Hence by composing g successively, for
all i=1, 2, ... , r−1, with the group element bi,r raised to the power βgr,i one obtains a group
element g̃ satisfying

g̃(xr) = βgr,r ar + xr +

r−1∑

i=1

ξgr,i xr . (4.11)

Now by construction, g̃∈Oq(A⊕A
∗), while on the other hand q(g̃(xr)) = exp(2πi p−ℓrβgr,r). Thus

in fact we must have βgr,r=0 mod pℓr .
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Step 1d : By step 1c we can assume that g satisfies βgr,i=0 for all i=1, 2, , ... , r. Further, for

i 6= r the element g′ := (tr,i)
ηgr,i satisfies ηg

′

r,i= ηgr,i− ηgr,i=0. Hence by composing g successively,
for all i=1, 2, ... , r−1, with the group element tr,i raised to the power ηgr,i one obtains a group
element g̃ satisfying g̃(xr) =xr.

Step 2 : By step 1 we can assume that g(xr) =xr. Now consider the image g(xr−1) of the
group element xr−1. We manipulate it in full analogy with what we did with g(xr) in step
1, just replacing r 7→ r−1 everywhere, but with the following amendment: In case that in the
analogue of step 1a the label k= k(r−1) should turn out to take the value r, before proceeding
to replacing g 7→ dk ◦ g we consider instead of g the group element

g′ := tr−1,r ◦ g . (4.12)

After this replacement we can assume that k≤ r−1. As a consequence, afterwards one never will
have to compose with elements from (4.5) of the form ωr;γ or br,j ◦ dr which would potentially
alter the input relation g(xr) =xr. Thus by further proceeding along the lines of step 1 we end
up with a group element g̃ satisfying both g̃(xr) =xr and g̃(xr−1) =xr−1.

Steps 3, 4, ... , r : Proceed iteratively for g(xr−j) for j=2, 3, ... , r−1, where in the jth iteration
the role of tr−1,r in (4.12) is taken over by tr−j,r−l for suitable l < j.
The result is a group element g̃ satisfying g̃(xi) =xi for all i=1, 2, ... , r.

Step r+1 : By step r we can assume that g(xi) =xi for all i=1, 2, ... , r. We show that this in
fact implies that g(ai) = ai +

∑r
j=1 ξ

g
i,j xj for all i=1, 2, ... , r. Indeed, from [HiR] we know that

in order for g to belong to Aut(A⊕A∗), the matrix M(g) =

(
αg ξg

βg ηg

)
with block matrices

αg, ξg, βg, ηg consisting of the coefficients in (4.4), must satisfy det(M(g) mod p) 6=0.
Now for g of the form considered here we have ηg= 11r×r and β

g=0; this implies in particular
that 0 6= det(M(g) mod p) = det(αg mod p), and thus that αg ∈Aut(A). As a consequence,
together with g also the product g′ := g ◦

(
(αg)−1⊕(αg)∗

)
is an element of Oq(A⊕A

∗). On the
other hand, we have explicitly

g′(ai) = ai +
∑

j

ξg
′

i,j xj and g(xi) =
∑

j

ηg
′

i,j xj . (4.13)

Hence the fact that g′ belongs to Oq(A⊕A
∗) amounts in particular to the following restrictions,

which together are also sufficient:

q(g′(ai)) = q(ai) =⇒ ξg
′

i,i = 0 ,

q(g′(ai+aj)) = q(ai+aj) =⇒ ξg
′

i,j + ξg
′

j,i = 0 for i 6= j ,

q(g′(ai+xi)) = q(ai+xi) =⇒ ηg
′

i,i = 1 ,

q(g′(aj+xi)) = q(aj+xi) =⇒ ηg
′

i,j = 0 for i 6= j .

(4.14)

Together, these restrictions just say that g′ ∈SB.

This concludes the proof.

In the following example we illustrate how the result follows from an explicit analysis in a
particularly simple case.
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Example 4.2. A=Zp.

It is not hard to see that in order for (4.4) to be in Oq(A⊕A
∗), it is necessary and sufficient

that the numbers α, β, ξ, η satisfy αξ=0=βη and αη+βξ=1 modulo p. These constraints
are solved by

ξ = 0 = β , η = α−1 and by α = 0 = η , β = ξ−1. (4.15)

Among the solutions of the second type is in particular the case ξ= β=1, which gives the
(unique) e-m duality, while all other solutions of this type are obtained from one of the first
type by composing with the e-m duality. In short, we have

Oq(Zp⊕Z
∗
p) = Skin ⋊ Se-m (4.16)

with
Skin = Aut(Zp) = GL1(Fp) = F

×
p
∼= Zp−1 and Se-m = Z2 . (4.17)

In particular, |Oq(Zp⊕Z
∗
p)|=2(p−1).
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Varona, and J. Verdera, eds. (European Math. Society, Zürich 2006), p. 443–458
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