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Abstract. Given Gray-categories P and L , there is a Gray-category Tricat ls(P ,L) of lo-
cally strict trihomomorphisms with domain P and codomain L , tritransformations, trimod-
ifications, and perturbations. If the domain P is small and the codomain L is cocomplete,
we show that this Gray-category is isomorphic as a Gray-category to the Gray-category
Ps-T -Alg of pseudo algebras, pseudo functors, transformations, and modifications for a
Gray-monad T derived from left Kan extension.

Inspired by a similar situation in two-dimensional monad theory, we apply the coher-
ence theory of three-dimensional monad theory and prove that the the inclusion of the
functor category in the enriched sense into this Gray-category of locally strict trihomo-
morphisms has a left adjoint such that the components of the unit of the adjunction are
internal biequivalences. This proves that any locally strict trihomomorphism between Gray-
categories with small domain and cocomplete codomain is biequivalent to a Gray-functor.
Moreover, the hom Gray-adjunction gives an isomorphism of the hom 2-categories of tri-
transformations between a locally strict trihomomorphism and a Gray-functor with the cor-
responding hom 2-categories in the functor Gray-category. A notable example is given
by locally strict Gray-valued presheafs with small domain. Our results have applications
in three-dimensional descent theory and point into the direction of a Yoneda lemma for
tricategories.

1 Introduction

Three-dimensional monad theory is the study of Gray-monads and their different kinds of
algebras. While three-dimensional monad theory is by now well-developed, see [7, Part III]
and [16], there are only few examples. This paper is based on the insight that one example
from two-dimensional monad theory can be transferred to the three-dimensional context. This
is in fact nontrivial since the amount of computation is considerably higher than in the two-
dimensional context. On the other hand, we have been in need of exactly this three-dimensional
result for applications in three-dimensional descent theory.

We here provide the details of the reformulation. We show how under suitable conditions
on domain and codomain the locally strict trihomomorphisms between Gray-categories P and
L correspond to pseudo algebras for a Gray-monad T on the functor Gray-category [obP ,L]
derived from left Kan extension, where obP is the underlying set of objects of P considered as
a discrete Gray-category. The conditions are that the domain P is a small and that the codomain
L is a cocomplete Gray-category. In fact, we prove that the Gray-categories Ps-T -Alg and
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2 HOMOMORPHISMS OF GRAY-CATEGORIES AS PSEUDO ALGEBRAS

Tricat ls(P ,L) are isomorphic as Gray-categories, which extends the local result mentioned in
[16, Ex. 3.5]. On the other hand, the Eilenberg-Moore object [obP ,L]T for this monad is given
by the functor Gray-category [P ,L], and there is an obvious inclusion of [P ,L] into Ps-T -Alg.
The relation of these two Gray-categories was studied locally by Power [16] and by Gurski using
codescent objects [7]. This mimics the situation one categorical dimension below, which started
with Blackwell et al.’s paper [2] and was later refined by Lack using codescent objects [11]. We
readily show that a corollary of Gurski’s central coherence theorem [7, Th. 15.13] applies to
the Gray-monad on [obP ,L]: The inclusion of the Eilenberg-Moore object [obP ,L]T into the
Gray-category Ps-T -Alg of pseudo T -algebras has a left adjoint such that the components of the
unit of this adjunction are internal biequivalences.

This corresponds to the fact from two-dimensional monad theory that given a small 2-category
P and a cocomplete 2-category L, the inclusion of the functor category [P, L] (in the sense of Cat -
enriched category theory) into the 2-category Bicat (P, L) of functors, pseudonatural transforma-
tions and modifications has a left adjoint such that the components of the unit of this adjunction
are internal equivalences. While this is not explicitly stated, it follows from Lack’s coherence
theorem [11, Th. 4.10]. Explicit partial results may be found in [15, Ex. 4.2] and [2, Ex. 6.6].

We now go on to expand on the monad T , its properties, and the identification of Ps-T -Alg.
For this purpose we will need the unique Gray-functor H : obP → P which is the identity on
objects, and the Gray-functor [H, 1] : [P ,L]→ [obP ,L] from enriched category theory, which
is given on objects by precomposition with H. This functor sends any cell of [P ,L] such as
a Gray-functor or a Gray-natural transformation to its family of values and components in L
respectively. By the theorem of Kan adjoints, left Kan extension LanH along H provides a left
adjoint to [H, 1], and T is the Gray-monad corresponding to this adjunction. This is all as in
the 2-dimensional context, and the story is then usually told as follows: The enriched Beck’s
monadicity theorem shows that [H, 1] : [P ,L] → [obP ,L] is strictly monadic. That is, the
Eilenberg-Moore object [obP ,L]T is isomorphic to the functor category [P ,L] such that the
forgetful functor factorizes through this isomorphism and [H, 1]. On the other hand, the monad
has an obvious explicit description. In fact, by the description of the left Kan extension in terms
of tensor products and coends we must have:

(T A)Q =

∫ P∈obP
P (P,Q) ⊗ AP (1)

where A is a Gray-functor obP → L and where Q is an object of P . Recall that the tensor
product is a special indexed colimit. For enrichment in a general symmetric monoidal closed
category V , it is characterized by an appropriately natural isomorphism in V :

L(P (P,Q) ⊗ AP, AQ) � [P (P,Q),L(AP, AQ)] , (2)

where [−,−] denotes the internal hom of V . Thus, in the case of enrichment in Gray , (2) is an
isomorphism of 2-categories. In fact, the tensor product gives rise to a Gray-adjunction, and its
hom Gray-adjunction is given by (2).

To achieve the promised identification of Ps-T -Alg with Tricat ls(P ,L), we have to determine
how the data and Gray-category structure of Ps-T -Alg transforms under the adjunction of the
tensor product. Indeed, one can also identify the Eilenberg-Moore object with the functor Gray-
category in this fashion. For example, an object of [obP ,L]T is an algebra for the monad T .
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The definition of such an algebra is just as for an ordinary monad. Thus, it consists of a 1-
cell a : T A → A subject to two algebra axioms. According to equation (1), the Gray-natural
transformation a is determined by components aPQ : P (P,Q) ⊗ AP→ AQ. These are objects in
the 2-category L(P (P,Q) ⊗ AP, AQ) . The internal hom of Gray is given by the 2-category of
strict functors, pseudonatural transformations, and modifications. Thus aPQ corresponds under
the hom adjunction (2) to a strict functor APQ : P (P,Q)→ L(AP, AQ), and the axioms of an
algebra imply that this gives A the structure of a Gray-functor P → L .

Given a Gray-monad on a Gray-category K , the notions of pseudo algebras, pseudo functors,
transformations, and modifications are all given by cell data of the Gray-category K . In the case
that K = [obP ,L], this means that the data consists of families of cells in the target L . Parts
of these data transform under the adjunction of the tensor product into families of cells in the
internal hom, that is, families of strict functors of 2-categories, pseudonatural transformations of
those, and modifications of those. This already shows that we only have a chance to recover lo-
cally strict trihomomorphisms from pseudo algebras because a general trihomomorphism might
consist of nonstrict functors of 2-categories. This is in contrast to the two-dimensional context
where pseudo algebras correspond precisely to possibly nonstrict functors of 2-categories.

We now give a short overview of how this paper is organized. In Section 2, we describe the
symmetric monoidal closed category Gray and extend some elementary results on the corre-
spondence of cubical functors and strict functors on Gray products.

In Section 3, we reproduce Gurski’s definition of Ps-T -Alg and prove that two lax algebra
axioms are redundant for a pseudo algebra.

In Section 4, we introduce the monad T on [obP ,L] in 4.1 and describe it explicitly in 4.2. In
4.3 we expand on tensor products and derive the two rather involved Lemmata 11 and 12, which
play a critical role in the bulk of our technical calculations.

In Section 5, we explicitly identify the Eilenberg-Moore object [obP ,L]T in the general situ-
ation where V is a complete and cocomplete locally small symmetric monoidal closed category.

In Section 6, we establish the identification of Ps-T -Alg and Tricat ls(P ,L), on which we will
now comment in more detail. To characterize how Ps-T -Alg transforms under the adjunction
of the tensor product, in 6.1 we introduce the notion of homomorphisms of Gray-categories,
Gray transformations, Gray modifications, and Gray perturbations. With the help of Lemmata
11 and 12 from 4.3, these are seen to be exactly the transforms of pseudo algebras, pseudo
functors, transformations, and modifications respectively. This also equips the Gray data with
the structure of a Gray-category.

Elementary observations in 6.3 then give that a homomorphism of Gray-categories is the
same thing as a locally strict trihomomorphism, much like a Gray-category is the same thing as
a strict, cubical tricategory. Similarly, the notion of a Gray transformation corresponds exactly
to a tritransformation between locally strict functors, and Gray modifications and perturbations
correspond exactly to trimodifications and perturbations of those. This follows from the general
correspondence, mediated by Theorem 2 from 2.4, of data for the cubical composition functor
and the cartesian product on the hand and data for the composition law of the Gray-category and
the Gray product on the other hand. The only thing left to check is that the axioms correspond
to each other. Namely, the Gray notions being the transforms of the pseudo notions of three-
dimensional monad theory, the axioms are equations of modifications, while the axioms for
the tricategorical constructions are equations involving the components of modifications. That
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these coincide is mostly straightforward, less transparent is only the comparison of interchange
cells. Gurski’s coherence theorem then gives that the inclusion of the full sub-Gray-category
of Tricat (P ,L) determined by the locally strict functors, denoted by Tricat ls(P ,L), into the
functor Gray-category [P ,L] has a left adjoint and the components of the unit of this adjunction
are internal biequivalences.
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draft and Nick Gurski for very valuable discussions and comments on the draft. Thanks also
to Richard Garner for discussions on an extended version of this paper. Support by the Re-
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2 Preliminaries

We assume familiarity with enriched category theory. Regarding enriched category theory,
we stay notationally close to Kelly’s book [9], from which we shall cite freely. We also assume
a fair amount of bicategory theory, see for example [1] or the short [12]. Since the notions of
tricategory theory are intrinsically involved, and since we consider various slight variations of
these, we refrain from supplying all of them. The appropriate references are the original paper
by Gordon, Power, and Street [4], Gurski’s thesis [6], and his later book [7], which includes
much of the material first presented in [6]. Since this is also our primary reference for three-
dimensional monad theory, we will usually cite from [7]. In fact, the tricategories considered
are all Gray-categories, and we will describe them in terms of enriched notions to the extent
possible. We do supply definitions in terms of enriched notions that correspond precisely to
locally strict trihomomorphisms, tritransformations, trimodifications, and perturbations, but in
describing this correspondence we assume knowledge of the tricategorical definitions. As a
matter of fact the sheer amount of notational translation between the Gray-enriched and the
tricategorical context can be challenging at times.

Only basic knowledge of the general theory of monads in a 2-category is required cf. [17].
For monads in enriched category theory see also [3].

2.1 Conventions

Horizontal composition in a bicategory is generally denoted by the symbol ∗, while vertical
composition is denoted by the symbol �. We use the term functor for what is elsewhere called
pseudofunctor or weak functor or homomorphism of bicategories and shall indicate whether the
functor is strict where it is not clear from context. By an isomorphism we always mean an honest
isomorphism, e.g. an isomorphism on objects and hom objects in enriched category theory. The
symbol ⊗ is reserved both for a monoidal structure and tensor products in the sense of enriched
category theory. If not otherwise stated, V denotes a locally small symmetric monoidal closed
category with monoidal structure ⊗; associators and unitors a, l, and r; internal hom [−,−]; unit d
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and counit or evaluation e. We shall usually use the prefix V - to emphasize when the V -enriched
notions are meant, although this is occasionally dropped where it would otherwise seem overly
redundant. The composition law of a V -category K is denoted by MK . The unit at the object
K ∈ K is denoted by jK or occasionally 1K , for example when it shall be emphasized that it is
also the unit at K in the underlying category K0. The identification of V0(I, [X,Y]) and V0(X,Y)
induced from the closed structure for objects X,Y ∈ V of V is to be understood and usually
implicit. We use the terms indexed limit and indexed colimit for what is elsewhere also called
weighted limit and weighted colimit. The concepts of ordinary and extraordinary V -naturality
cf. [9, Ch. 1] and the corresponding composition calculus are to be understood, and we freely
use the underlying ordinary and extraordinary naturality too.

Composition in a monoidal category is generally denoted by juxtaposition. Composition of
V -functors is in general also denoted by juxtaposition. For cells of a Gray-category, juxtaposi-
tion is used as shorthand for the application of its composition law.

2.2 The category 2Cat

Let Cat denote the category of small categories and functors. It is well-known that Cat is
complete and cocomplete: it clearly has products and equalizers, thus is complete. Coprod-
ucts are given by disjoint union, and there is a construction for coequalizers in [5, I,1.3, p. 25]
(due to Wolff). In fact, the same strategy applies to the category of V -enriched categories and
V -functors in general, where V is a complete and cocomplete symmetric monoidal closed cat-
egory. Products are given by the cartesian product of the object sets and the cartesian product of
the hom objects. Equalizers of V -functors are given by the equalizer of the maps on objects and
the equalizer of the hom morphisms. Coproducts are given by the coproduct of the object sets
i.e. the disjoint union and by the coproduct of the hom objects. The construction of coequalizers
in [5, I,1.3, p. 25] can easily be transferred to this context. In particular, the category 2Cat of
small 2-categories and strict functors is complete and cocomplete.

2.3 The symmetric monoidal closed category Gray

We now describe the symmetric monoidal closed category in which we will usually enrich. Its
underlying category is 2Cat , which has a symmetric monoidal closed structure given by the
Gray product. We can only provide a brief description of the Gray product here. For details, the
reader is referred to [7, 3.1, p. 36ff.] and to [5, I,4.9, p. 73ff.] for a lax variant.

The Gray product of 2-categories X and Y is a 2-category denoted by X⊗Y . Rather than giving
a complete explicit description of the Gray product, we mention the following characterization
(see [7, Ch. 3]). Considering the sets of objects obX and obY as discrete 2-categories, we denote
by X @ Y the pushout in 2Cat of the diagram below, where × denotes the cartesian product of
2-categories, and where the morphisms are given by products of the inclusions obX → X and
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obY → Y and identity functors respectively.

obX × obY X × obY

obX × Y
(3)

By the universal property of the pushout, the products of the inclusions and identity functors,
obX × Y → X × Y and X × obY → X × Y , induce a strict functor j : X @ Y → X × Y .

It is well-known that there is an orthogonal factorization system on 2Cat with left class the
strict functors which are bijective on objects and 1-cells and right class the strict functors which
are locally fully faithful, see for example [7, Corr. 3.20, p. 51]. The Gray product X ⊗ Y may be
characterized by factorizing j with respect to this factorization system. More precisely, X ⊗ Y
is uniquely characterized (up to unique isomorphism in 2Cat ) by the fact that there is a strict
functor m : X @ Y → X ⊗ Y which is an isomorphism on the underlying categories i.e. bijective
on objects and 1-cells and a strict functor i : X ⊗ Y → X × Y which is locally fully faithful such
that j = im.

There is an obvious explicit description of X ⊗ Y in terms of generators and relations, which
can be used to construct a functor ⊗ : 2Cat ×2Cat → 2Cat . Clearly, X⊗Y has the same objects
as X×Y , and we have the images of the 1-cells and 2-cells from X×obY and obX×Y , for which
we use the same name in X ⊗ Y . That is, there are 1-cells ( f , 1) : (A, B) → (A′, B) for 1-cells
f : A → A′ in X and objects B in Y , and there are 1-cells (1, g) : (A, B) → (A, B′) for objects A
in X and 1-cells g : B→ B′ in Y . All 1-cells in X⊗Y are up to the obvious relations generated by
horizontal strings of those 1-cells, the identity 1-cell being (1, 1). Apart from the obvious 2-cells
(α, 1) : ( f , 1) ⇒ ( f ′, 1) : (A, B) → (A′, B) and (1, β) : (1, g) ⇒ (1, g′) : (A, B) → (A, B′), there
must be unique invertible interchange 2-cells Σ f ,g : ( f , 1) ∗ (1, g)⇒ (1, g) ∗ ( f , 1) mapping to the
identity of ( f , g) under j because the latter is fully faithful—domain and codomain cleary both
map to ( f , g) under j. In particular, by uniqueness i.e. because j is locally fully faithful, these
must be the identity if either f or g is the identity. There are various relations on horizontal and
vertical composites of those cells, all rather obvious from the characterization above. We omit
those as well as the details how equivalence classes and horizontal and vertical composition are
defined.

For functors F : X → X′ and G : Y → Y ′, it is not hard to give a functorial definition of the
functor F ⊗G : X ⊗Y → X′ ⊗Y ′. We confine ourselves with the observation that on interchange
2-cells,

(F ⊗G)(A,B),(A′B′)(Σ f ,g) = ΣFA,A′ ( f ),GB,B′ (g) . (4)

From the characterization above it is then clear how to define associators and unitors for ⊗.
We only mention here that

a(Σ f ,g, 1) = Σ f ,(g,1) (5)

and

a(Σ( f ,1),h) = Σ f ,(1,h) (6)
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and

a(Σ(1,g),h) = (1,Σg,h) . (7)

We omit the details that this gives a monoidal structure on 2Cat (pentagon and triangle identity
follow from pentagon and triangle identity for the cartesian product and @).

There is an obvious symmetry c for the Gray product, which on interchange cells is given by

c(Σ f ,g) = Σ−1
g, f . (8)

As for any two bicategories (by all means for small domain), there is a functor bicategory
Bicat (X,Y) given by functors of bicategories, pseudonatural transformations, and modifications.
As the codomain Y is a 2-category, this is in fact again a 2-category. We denote by [X,Y] the full
sub-2-category of Bicat (X,Y) given by the strict functors. One can show that this gives 2Cat
the structure of a symmetric monoidal closed category with internal hom [X,Y]:

Theorem 1. [7, Th. 3.16] The category 2Cat of small 2-categories and strict functors has
the structure of a symmetric monoidal closed category. As such, it is referred to as Gray . The
monoidal structure is given by the Gray product and the terminal 2-category as the unit object,
the internal hom is given by the functor 2-category of strict functors, pseudonatural transforma-
tions, and modifications.

Remark 1. In fact, we will not have to specify the closed structure of Gray apart from the fact
that its evaluation is (partly) given by taking components. This is because our ultimate goal is
to compare definitions from three-dimensional i.e. Gray-enriched monad theory to definitions
from the theory of tricategories, and we do so in the case where all tricategories are in fact Gray-
categories, that is, equivalently, strict, cubical tricategories. These definitions will only formally
involve the cubical composition functor, which relates to the composition law of the Gray-
category – we will usually not have to specify the composition. Of course, one can explicitly
identify the enriched notions, and then there are alternative explicit arguments. However, we
think that the formal argumentation is more adequate. The closed structure is worked out in [7,
3.3], and the enriched notions usually turn out to be just as one would expect. We spell out a few
explicit prescriptions below the following lemma, but in fact we just need a few consequences
of these, for example equation (10) below.

Next recall that a locally small symmetric monoidal closed category V can be considered as
a category enriched in itself i.e. as a V -category. Also recall that if the underlying category V0
of V is complete and cocomplete, V is complete and cocomplete considered as a V -category.
This means it has any small indexed limit and any small indexed colimit. For the concept of an
indexed limit see [9, Ch. 3]. In fact, completeness follows from the fact that a limit is given by
an end, and if the limit is small, this end exists and is given by an equalizer in V0 , see [9, (2.2)].
It is cocomplete because, V being complete, V op is tensored and thus also admits small conical
limits because V0 is cocomplete, hence V admits small coends because it is also tensored, but
then since by [9, (3.70)] any small colimit is given by a small coend over tensor products, it is
cocomplete.

Recall that the underlying category 2Cat of Gray is complete and cocomplete cf. 2.2. Thus
in particular, we have the following :
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Lemma 1. The Gray-category Gray is complete and cocomplete.

The composition law of the Gray-category Gray is given by strict functors [Y,Z] ⊗ [X,Y] →
[X,Y], where X,Y and Z are 2-categories . It is given on objects by composition of strict func-
tors. On 1-cells of the form (θ, 1) : (F,G) → (F′,G) it is given by the pseudonatural transfor-
mation denoted G∗θ with components θGx and naturality 2-cells θG f . On 1-cells of the form
(1, σ) : (F,G) → (F,G′) it is given by the pseudonatural transformation denoted F∗σ with
components FGx,G′x(σx) and naturality 2-cells FGx,G′x′(σ f ). Similarly, on 2-cells of the form
(Γ, 1) : (θ, 1)⇒ (θ′, 1) : (F,G)→ (F′,G) it is given by the modification denoted G∗Γ with com-
ponents ΓGx, and on 2-cells of the form (1,∆) : (1, σ)⇒ (1, σ′) : (F,G)→ (F,G′) it is given by
the modification denoted F∗∆ with components FGx,G′x(∆X). Finally, on interchange cells of the
form Σθ,σ, it is given by the naturality 2-cell θσx of θ at σx, hence,

(MGray (Σθ,σ))x = θσx : θG′x ∗ FGx,G′x(σx)⇒ F′Gx,G′x(σx) ∗ θGx . (9)

This follows from the general form of MV in enriched category theory by inspection of the
closed structure of Gray cf. [7, Prop. 3.10].

Also recall that there is a functor Ten: V ⊗V → V which is given on objects by the monoidal
structure. For V = Gray , its strict hom functor

Ten(X,X′),(Y,Y′) : [X, X′] ⊗ [Y,Y ′]→ [X ⊗ Y, X′ ⊗ Y ′]

sends an object (F,G) to the functor F ⊗G. It sends a transformation (θ, 1G) : (F,G) ⇒ (F′,G)
to the transformation with component the 1-cell (θx, 1Gy) in X′ ⊗ Y ′ at the object (x, y) in
X ⊗ Y; and naturality 2-cells (σ f , 1Gg) and Σθx,Gg at 1-cells ( f , 1y) and (1x, g) respectively.
Its effect on a transformation (1F , ι) : (F,G) ⇒ (F,G′) is analogous. It sends a modification
(Γ, 11G ) : (θ, 1G) V (θ′, 1G) to the modification with component the 2-cell (ΓX , 11Gy) in X′ ⊗ Y ′

at (x, y) in X ⊗ Y . Its effect on a modification (11F ,∆) : (1F , ι)V (1F , ι
′) is analogous. Finally, it

sends the interchange 2-cell Σθ,ι to the modification with component the interchange 2-cell Σθx,ιy ,
hence,

(Ten(X,X′),(Y,Y′)(Σθ,ι))x,y = Σθx,ιy . (10)

All of this again follows from inspection of the closed structure of Gray , cf. [7, Prop. 3.10]. See
also equation (58) below.

2.4 Cubical functors

Given 2-categories X,Y,Z, recall that a cubical functor in two variables is a functor F̂ : X×Y → Z
such that for all 1-cells ( f , g) in X × Y , the composition constraint

F̂(1,g),( f ,1) : F̂(1, g) ∗ F̂( f , 1)⇒ F̂( f , g) ,

is the identity 2-cell, and such that for all composable 1-cells ( f ′, 1), ( f , 1) in X × Y ,

F̂( f ′,1),( f ,1) : F̂( f ′, 1) ∗ F̂( f , 1)⇒ F̂( f ′ ∗ f , 1) ,
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is the identity 2-cell, and such that for all composable 1-cells (1, g′), (1, g) in X × Y ,

F̂(1,g′),(1,g) : F̂(1, g′) ∗ F̂(1, g)⇒ F̂(1, g′ ∗ g) ,

is the identity 2-cell. For composable (1, g′), ( f , g) and ( f ′, g′), ( f , 1), the constraint cells are
then automatically identities by compatibility of F̂ with associators i.e. a functor axiom for F̂;
it also automatically preserves identity 1-cells.

We start with the following elementary result, which extends the natural Set -isomorphism
in [7, Th. 3.7] to a Cat -isomorphism.

Proposition 1. Given 2-categories X,Y,Z, there is a universal cubical functor C : X × Y →
X ⊗ Y natural in X and Y such that precomposition with C induces a natural isomorphism of
2-categories (i.e. a Cat -isomorphism)

[X ⊗ Y,Z] � Bicat c(X,Y; Z) ,

where Bicat c(X,Y; Z) denotes the full sub-2-category of Bicat (X × Y,Z) determined by the cu-
bical functors.

Proof. The functor C is determined by the requirements that it be the identity on objects, that
C( f , 1) = ( f , 1), C(α, 1) = (α, 1), C(1, g) = (1, g), C(1, β) = (1, β), and that it be a cubical
functor. In particular, observe that this means that C( f , g) = (1, g) ∗ ( f , 1) and that the constraint
C( f ,1),(1,g) is given by the interchange cell Σ f ,g.

As for an arbitrary functor of bicategories, precomposition with C induces a strict functor

C∗ : Bicat (X ⊗ Y,Z)→ Bicat (X × Y,Z) .

It sends a functor G : X ⊗ Y → Z to the composite functor GC : X × Y → C. In fact, if
F is a strict functor X ⊗ Y → Z, recalling the definition of the composite of two functors of
bicategories, a moment’s reflection affirms that F̂ B FC is a cubical functor with constraint
F̂( f ,1),(1,g) = F(Σ f ,g). Thus by restriction, C∗ gives rise to a functor [X ⊗ Y,Z]→ Bicat c(X,Y; Z)
which we also denote by C∗.

If σ : F ⇒ G : X ⊗ Y → Z is a pseudonatural transformation, C∗σ : FC ⇒ GC is the
pseudonatural transformation with component

(C∗σ)(A,B) = σC(A,B) = σ(A,B)

at an object (A, B) ∈ X × Y , and naturality 2-cell

(C∗σ)( f ,g) = σC( f ,g) = σ( f ,1)∗(1,g) = (σ( f ,1) ∗ 1) � (1 ∗ σ(1,g))

at a 1-cell ( f , g) ∈ X × Y , where the last equation is by respect for composition of σ. If
σ is the identity pseudonatural transformation, it is immediate that the same applies to C∗σ.
Given another pseudonatural transformation of strict functors τ : G ⇒ H, we maintain that
(C∗τ) ∗ (C∗σ) = C∗(τ ∗ σ). It is manifest that the components coincide: both are given by
τ(A,B) ∗ σ(A,B) at the object (A, B) ∈ X × Y . That the naturality 2-cells at a 1-cell ( f , g) ∈ X × Y
coincide,

(τC( f ,g) ∗ 1) � (1 ∗ σC( f ,g)) = (τ ∗ σ)C( f ,g)
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is simply the defining equation for the naturality 2-cell of the horizontal composite τ ∗ σ.
If ∆ : σ V π is a modification of pseudonatural transformations F ⇒ G of strict functors

X ⊗ Y → Z, then C∗∆ is the modification C∗σV C∗π with component

(C∗∆)(A,B) = ∆C(A,B) = ∆(A,B)

at an object (A, B) ∈ X × Y , and this prescription clearly strictly preserves identities and vertical
composition of modifications. Given another modification Λ : τ V ρ : G ⇒ H where H is
strict, one readily checks that (C∗Λ) ∗ (C∗∆) = C∗(Λ ∗ ∆) both having component Λ(A,B) ∗ ∆(A,B)
at an object (A, B) ∈ X × Y . Thus, we have shown that C∗ is indeed a strict functor.

As a side note, we remark that because we only consider 2-categories, C∗ is the same as
the functor Bicat (C,Z) induced by the composition of the tricategory Tricat of bicategories,
functors, pseudonatural transformations, and modifications.

Let F̂ : X × Y → Z be an arbitrary cubical functor, then the prescriptions F( f , 1) = F̂( f , 1),
F(α, 1) = F̂(α, 1), F(1, g) = F̂(1, g), F(1, β) = F̂(1, β), and F(Σ f ,g) = F̂( f ,1),(1,g), provide a strict
functor F : X ⊗ Y → Z such that FC = F̂. The latter equation and the requirement that F be
strict, clearly determine F uniquely. That this is well-defined e.g. that it respects the various
relations for the interchange cells is by compatibility of F̂ with associators and naturality of

F̂(A,B),(A′,B′),(A′′,B′′) : ∗Z (F̂(A′,B′),(A′′,B′′) × F̂(A,B),(A′,B′))⇒ F̂(A,B),(A′′,B′′)∗X×Y , (11)

where ∗ denotes the corresponding horizontal composition functors. For example, for the rela-
tion

Σ f ′∗ f ,g ∼ (Σ f ′,g ∗ (1 f , 1)) � ((1 f ′ , 1) ∗ Σ f ,g) (12)

one has to use that axiom twice giving

F̂( f ′∗ f ,1),(1,g) = F̂( f ′,1)∗( f ,1),(1,g) = F̂( f ′,1),( f ,g) � (F̂(1 f ′ , 1) ∗ F̂( f ,1),(1,g))

and F̂( f ′,1),( f ,g) = F̂( f ′,1),(1,g)∗( f ,1) = F̂( f ′,1),(g,1) ∗ F̂(1 f , 1). Another way to see this, is to use
coherence for the functor F̂—then any relation in the Gray product must clearly be mapped to
an identity in Z because the constraints in FF̂Z are mapped to identities in F2CZ, where these
are the corresponding free constructions on the underlying category-enriched graphs cf. [7, 2.].

Now let σ̂ : F̂ ⇒ Ĝ be an arbitrary pseudonatural transformation of cubical functors. We
have already shown that F̂ and Ĝ have the form FC and GC respectively, where F and G were
determined above. We maintain that there is a unique pseudonatural transformation σ : F ⇒ G
such that σ̂ = C∗σ. By the above, the latter equation uniquely determines both the components,
σ(A,B) = σ̂(A,B), and the naturality 2-cells of σ, namely σ( f ,1) = σ̂( f ,1) and σ(1,g) = σ̂(1,g), and thus
σ is uniquely determined by respect for composition. That this is compatible with the relations
( f ′, 1)∗( f , 1) ∼ ( f ′∗ f , 1) and (1, g′)∗(1, g) ∼ (1, g′∗g) in the Gray product follows from the fact
that respect for composition is in this case tantamount to respect for composition of σ̂ because
the constraints are identities here due to the axioms for cubical functors. Hence, what is left to
prove is that this is indeed a pseudonatural transformation. First observe that the prescriptions
for σ have been determined by the requirement that it respects composition, and respect for units
is tantamount to respect for units of σ̂. Naturality with respect to 2-cells of the form (α, 1) and
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(1, β) is tantamount to the corresponding naturality condition for σ̂. Naturality with respect to
an interchange cell Σ f ,g, i.e.

(G(Σ f ,g) ∗ 1σ(A,B)) � σ( f ,1)∗(1,g) = σ(1,g)∗( f ,1) � (1σ(A′ ,B′) ∗ F(Σ f ,g))

is—by the requirement that σ respects composition:

σ( f ,1)∗(1,g) = (1G( f ,1) ∗ σ(1,g)) � (σ( f ,1) ∗ 1F(1,g)) = (1Ĝ( f ,1) ∗ σ̂(1,g)) � (σ̂( f ,1) ∗ 1F̂(1,g))

and by respect for composition of σ̂:

σ(1,g)∗( f ,1) = (1G(1,g) ∗ σ( f ,1)) � (σ(1,g) ∗ 1F( f ,1)) = (1Ĝ(1,g) ∗ σ̂( f ,1)) � (σ̂(1,g) ∗ 1F̂( f ,1)) = σ̂( f ,g)

(the constraints are trivial here)—tantamount to respect for composition of σ̂:

(Ĝ( f ,1),(1,g) ∗ 1σ̂(A,B)) � ((1Ĝ( f ,1) ∗ σ̂(1,g)) � (σ̂( f ,1) ∗ 1F̂(1,g))) = σ̂( f ,g) � (1σ̂(A′ ,B′) ∗ F̂( f ,1),(1,g)) .

Notice that in general, naturality with respect to a vertical composite is implied by naturality with
respect to the individual factors. Similarly, naturality with respect to a horizontal composite is
implied by functoriality of F,, and G,, (cf. (11)), respect for composition, and naturality with
respect to the individual factors.

Finally, let ∆̂ : C∗σ V C∗π : FC ⇒ GC be an arbitrary modification. Then we maintain that
there is a unique modification ∆ : σ ⇒ π such that ∆̂ = C∗∆. By the above, the latter equation
uniquely determines ∆’s components, ∆(A,B) = ∆̂(A,B) and thus ∆ itself, but we have to show
that ∆ exists i.e. that this gives ∆ the structure of a modification. The modification axiom for
1-cells of the form ( f , 1) is tantamount to the modification axiom for ∆̂ and the corresponding
1-cell in X × Y of the same name. The same applies to the modification axiom for 1-cells of the
form (1, g). This proves that σ is a modification because the modification axiom for a horizontal
composite is implied by respect for composition of σ and π, and the modification axiom for the
individual factors.

Given 2-categories X1, X2, X3, it is an easy observation that

a(C(C × 1)) = C(1 ×C)a× : X1 × X2 × X3 → X1 ⊗ (X2 ⊗ X3) , (13)

where a× is the associator of the cartesian product.
It is well-known that a strict, cubical tricategory is the same thing as a Gray-category. To

prove this, one has to replace the cubical composition functor by the composition law of a Gray-
category. This uses the underlying Set -isomorphism of Proposition 1. In the same fashion,
in order to compare locally strict trihomomorphisms between Gray-categories with Gray homo-
morphisms as it is done in Theorem 6 in 6.3 below, we need the following many-variable version
of Proposition 1 to replace adjoint equivalences and modifications of cubical functors by adjoint
equivalences and modifications of the corresponding strict functors on Gray products.

Theorem 2. Given a natural number n and 2-categories Z, X1, X2, ..., Xn, composition with

C(C(C(...) × 1Xn−1) × 1Xn) : X1 × X2 × ... × Xn → (...((X1 ⊗ X2) ⊗ X3) ⊗ ...) ⊗ Xn ,
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where C is the universal cubical functor, induces a natural isomorphism of 2-categories (i.e. a
Cat -isomorphism)

[(...((X1 ⊗ X2) ⊗ X3) ⊗ ...) ⊗ Xn,Z] � Bicat c(X1, X2, ..., Xn; Z) ,

where Bicat c(X1, X2, ..., Xn; Z) denotes the full sub-2-category of Bicat (X1 × X2 × ... × Xn,Z)
determined by the cubical functors in n variables. The same is of course true for any other
combination of universal cubical functors (mediated by the unique isomorphism in terms of
associators for the Gray product).

Proof. Recall that the composition (F ◦ (F1 × ... × Fk)) of cubical functors is again
a cubical functor. This shows that the restriction of (C(C(C(...) × 1Xn−1) × 1Xn))∗ to
[(...((X1 ⊗ X2) ⊗ X3) ⊗ ...) ⊗ Xn,Z] does indeed factorize through Bicat c(X1, X2, ..., Xn; Z). The
proof that this gives an isomorphism as wanted is then a straightforward extension of the two-
variable case. There are Gray product relations on combinations of interchange cells, which
correspond to relations for the constraints holding by coherence. Note that indeed any diagram
of interchange cells commutes because these map to identities in the cartesian product.

For example, a cubical functor in three variables is determined by compatible partial cubical
functors in two variables and a relation on their constraints cf. the diagram in [7, Prop. 3.3, p.
42]. This corresponds to a combination of the Gray product relation

Σ f ,g′∗g ∼ ((1g′ , 1) ∗ Σ f ,g) � (Σ f ,g′ ∗ (1, 1g)) (14)

for f = f1 and g′ = ( f2, 1) and g = (1, f3) and g′ = (1, f3) and g = ( f2, 1) respectively, and the
Gray product relation

((1, β) ∗ (α, 1)) � Σ f ,g ∼ Σ f ′,g′ � ((α, 1) ∗ (1, β))

for f = f1 = f ′, α = 1 f1 , g = ( f2, 1) ∗ (1, f3), g′ = (1, f3) ∗ ( f2, 1), and β = Σ f2, f3 , which reads

((1,Σ f2, f3) ∗ (1 f1 , 1)) � ((1( f2,1), 1) ∗ Σ f1,(1, f3)) � (Σ f1,( f2,1) ∗ (1, 1(1, f3)))

∼((1(1, f3), 1) ∗ Σ f1,( f2,1)) � (Σ f1,(1, f3) ∗ (1, 1( f2,1))) � ((1 f1 , 1) ∗ (1,Σ f2, f3)) .

For pseudonatural transformations and modifications, the arguments are entirely analogous to
the two-variable case.

2.5 V -enriched monad theory

Recall from enriched category theory that there is a V -functor HomL : Lop ⊗ L → V , which
sends and object (M,N) in the tensor product of V -categories Lop⊗L to the hom object L(M,N)
in V . As is common, the corresponding partial V -functors are denoted L(M,−) and L(−,N)
with hom morphisms determined by the equations

eL(M,N)
L(M,N′)(L(M,−)N,N′ ⊗ 1) = ML (15)

and

eL(M′,N)
L(M,N) (L(−,N)M,M′ ⊗ 1) = ML c . (16)
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For an element f : N → N′ in L(N,N′) i.e. a morphism in the underlying category of
L , we usually denote by L(M, f ) : L(M,N) → L(M,N′) the morphism in V corresponding
to the image of f under the underlying functor of L(M,−) with respect to the identification
V0(I, [X,Y]) � V0(X,Y) induced from the closed structure of V for objects X,Y ∈ V . Also note
that we will occasionally write L(1, f ) instead e.g. if the functoriality of

homL : Lop
0 × L0 −−−−−−→ (Lop ⊗ L)0

(HomL )0
−−−−−−→ V0 (17)

is to be emphasized, where the first arrow is the canonical comparison functor [9]. This notation
is obviously extended in the case that V = Gray , e.g. given a 1-cell α : f → g in the 2-category
L(N,N′) � [I,L(N,N′)], then L(M, α) denotes the pseudonatural transformation L(M, f ) ⇒
L(M, g) given by L(M,−)N,N′(α) i.e. the 1-cell in [L(M,N),L(M,N′)].

Recall that the 2-category V -CAT of V -categories, V -functors, and V -natural transforma-
tions is a symmetric monoidal 2-category with monoidal structure the tensor product of V -
categories and unit object the unit V -category I with a single object 0 and hom object I. Recall
that the 2-functor (−)0 = V -CAT (I,−) : V -CAT → CAT sends a V -category to its un-
derlying category, a V -functor to its underlying functor, and a V -natural transformation to its
underlying natural transformation.

Let T be a V -monad on a V -category M . Recall that this means that T is a monad in the
2-category V -CAT . Thus T is a V -functor M → M , and its multiplication and unit are
V -natural transformations µ : TT ⇒ T and η : 1M ⇒ T respectively such that

µ(µT ) = µ(Tµ) and µ(ηT ) = 1T = µ(Tη) , (18)

where µT and Tµ are as usual the V -natural transformations with component

µT M : I →M (TTT M,T M) and TTT M,MµM : I →M (TTT M,T M)

respectively at the object M ∈M , and similarly for ηT and Tη.
Under the assumption that V has equalizers e.g. if V is complete, the Eilenberg-Moore object

M T exists and has an explicit description, on which we expand below. For now, recall that the
Eilenberg-Moore object is formally characterized by the existence of an isomorphism

V -Cat (K ,M T ) � V -Cat (K ,M )T∗ (19)

of categories which is Cat -natural in K and where T∗ is the ordinary monad induced by com-
position with T .

In particular, putting K = I shows that the underlying category M T of the Eilenberg-Moore
object in V -CAT is isomorphic to the Eilenberg-Moore object for the underlying monad T0 on
the underlying category M0 of M .

Thus an object of M T i.e. a T -algebra is the same thing as a T0 algebra. This means, that it
is given by a pair (A, a) where A is an object of M and a is an element I →M (T A, A) such that
the two algebra axioms hold true:

MM (a,TT A,Aa) = MM (a, µA) and 1A = MM (a, ηA) . (20)

Here, the notation is already suggestive for the situation for V = Gray . Namely, (a,TT A,Aa)
is considered as an element of the underlying set V(M (T A, A) ⊗M (TT A,T A)), and we apply
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the underlying function V MM to this, where V is usually dropped because for V = Gray the
equations in (20) make sense as equations of the values of strict functors on objects in the Gray
product.

Given T -algebras (A, a) and (B, b), the hom object of M T is given by the following equalizer

M T ((A, a), (B, b)) M (A, B) M (T A, B)
(UT )(A,a),(B,b) M (a,1)

M (1,b)TA,B

. (21)

In fact, it is not hard to show that the composition law MM and the units jA of M induce a
V -category structure on M T such that UT is a faithful V -functor M T →M , which we call the
forgetful functor. The explicit arguments may be found in [13].

In the case that V = Gray and K is a Gray-category with a V -monad T on it, Gurski
identifies K T explicitly in [7, 13.1]. This is also what the equalizer description gives when it is
spelled out:

Proposition 2. The Gray-category of algebras for a Gray-monad T on a Gray-category K,
i.e. the Eilenberg-Moore object K T , can be described in the following way. Objects are T-
algebras: they are given by an object X in K and a 1-cell x : T X → X i.e. an object in
K (T X, X) satisfying MK (x,T x) = MK (x, µX) and 1X = MK (x, ηX). These algebra axioms are
abbreviated by xT x = xµX and 1X = xηX respectively.

An algebra 1-cell f : (X, x) → (Y, y) is given by a 1-cell f : X → Y i.e. an object in
K (X,Y) such that MK ( f , x) = MK (y,T f ), which is abbreviated by f x = yT f . An algebra
2-cell α : f ⇒ g : (X, x) → (Y, y) is given by a 2-cell α : f → g i.e. a 1-cell in K (X,Y)
such that MK (1y,Tα) = MK (α, 1x), which is abbreviated by 1yTα = α1x. An algebra 3-cell
Γ : α V β : f ⇒ g : (X, x) → (Y, y) is given by a 3-cell Γ : α V β i.e. a 2-cell in K (X,Y)
such that MK (11y ,TΓ) = MK (Γ, 11x), which is abbreviated 11yTΓ = Γ11x . The compositions are
induced from the Gray-category structure of K .

Observe here that the common notation xT x = xµX for equations of (composites of) mor-
phisms in the underlying categories has been obviously extended for V = Gray to 2-cells and
3-cells i.e. 1- and 2-cells in the hom 2-categories, where juxtaposition now denotes application
of the composition law of K , and the axioms for algebra 2- and 3-cells are whiskered equations
with respect to this composition on 2-cells and 3-cells in K .

3 The Gray-category Ps-T -Alg of pseudo algebras

Let again T be a Gray-monad on a Gray-category K . Since the underlying category 2Cat
of the Gray-category Gray is complete, it has equalizers in particular, so we have a convenient
description of the Gray-category K T of T -algebras in terms of equalizers as in 2.5.

Recall that for enrichment in Cat , there is a pseudo and a lax version of the 2-category of
algebras with obvious inclusions of the stricter into the laxer ones respectively. Under suitable
conditions on the monad and its (co)domain, there are two coherence results relating those dif-
ferent kinds of algebras. First, each of the inclusions has a left adjoint. Second, each component
of the unit of the adjunction is an internal equivalence. The primary references for these results
are [2] and [11]. In particular, in the second, Lack provides an analysis of the coherence problem



HOMOMORPHISMS OF GRAY-CATEGORIES AS PSEUDO ALGEBRAS 15

by use of codescent objects. In the case of enrichment in Gray , there are partial results along
these lines by Power [16], and a local version of the identification of pseudo notions for the
monad (1) from the Introduction with tricategorical structures is mentioned in [16, Ex. 3.5, p.
319]. A perspective similar to Lack’s treatment is given by Gurski in [7, Part III].

For a Gray-monad T on a Gray-category K , Gurski gives a definition of lax algebras, lax
functors of lax algebras, transformations of lax functors, and modifications of those, and shows
that these assemble into a Gray-category Lax-T -Alg. Further, he defines pseudo algebras,
pseudo functors of pseudo algebras, and shows that these, together with transformations of
pseudo functors and modifications of those, form a Gray-category Ps-T -Alg, which embeds
as a locally full sub-Gray-category in the Gray-category Lax-T -Alg of lax algebras. Finally,
there is an obvious 2-locally full inclusion of the Gray-category K T of algebras into Ps-T -Alg
and Lax-T -Alg.

3.1 Definitions and two identities

We reproduce here Gurski’s definition of Ps-T -Alg in equational form. In Section 6 we will
identify this Gray-category for a particular monad on the functor Gray-category [obP ,L] where
P is a small and L is a cocomplete Gray-category. Namely, we show that it is isomorphic as
a Gray-category to the full sub-Gray-category Tricat ls(P ,L) determined by the locally strict
trihomomorphisms.

Definition 1. [7, Def. 13.4, Def. 13.8] A pseudo T -algebra consists of

• an object X of K ;

• a 1-cell x : T X → X i.e. an object in K (T X, X);

• 2-cell adjoint equivalences1 (m,m•) : MK (x,T x) → MK (x, µX) or abbreviated
(m,m•) : xT x → xµX and (i, i•) : 1X → MK (x, ηX) or abbreviated (i, i•) : 1 → xηX i.e.
1-cells in K (T 2X, X) and K (X, X) respectively which are adjoint equivalences;

• and three invertible 3-cells π, λ, µ as in (PSA1)-(PSA3) subject to the four axioms
(LAA1)-(LAA4) of a lax T -algebra:

(PSA1) An invertible 3-cell π given by an invertible 2-cell in K (T 3X, X):

π : (m1µT X ) ∗ (m1T 2 x)⇒ (m1TµX ) ∗ (1xTm) ,

which is shorthand for

π : MK (m, 1µT X ) ∗ MK (m, 1T 2 x)⇒ MK (m, 1TµX ) ∗ MK (1x,Tm) ;

where the horizontal factors on the left compose due to Gray-naturality of µ and the codomains
match by the monad axiom µ(µT ) = µ(Tµ).
(PSA2) An invertible 3-cell λ given by an invertible 2-cell in K (T X, X):

λ : (m1ηT X ) ∗ (i1x)⇒ 1x ,

1For adjunctions in a 2-category see [10, §2.].
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which is shorthand for

λ : MK (m, 1ηT X ) ∗ MK (i, 1x)⇒ 1x ,

where the horizontal factors compose due to Gray-naturality of η and the codomains match by
the monad axiom µ(ηT ) = 1T .
(PSA3) An invertible 3-cell ρ given by an invertible 2-cell in K (T X, X):

ρ : (m1TηX ) ∗ (1xTi)⇒ 1x ,

which is shorthand for

ρ : MK (m, 1TηX ) ∗ MK (1x,Ti)⇒ 1x ,

where the codomains match by the monad axiom µ(Tη) = 1T .
The four lax algebra axioms are:

(LAA1) The following equation in K (T 4X, X) of vertical composites of whiskered 3-cells is
required:

((π1) ∗ 111T 2m) � (1m11 ∗ Σ−1
m,T 2m) � ((π1) ∗ 1m11)

= (1m11 ∗ (1Tπ)) � ((π1) ∗ 11Tm1) � (1m11 ∗ (π1)) ,

where Σ−1
m,T 2m

is shorthand for MK (Σ−1
m,T 2m

). A careful inspection shows that the horizontal and
vertical factors do indeed compose. Note that any mention of the object X has been omitted, e.g.
TµT stands for TµT X . We refer to this axiom as the pentagon-like axiom for π.
(LAA2) The following equation in K (T 2X, X) of vertical composites of whiskered 3-cells is
required:

((ρ1) ∗ 1m1) � (1m11 ∗ Σm,T 2i) = (1m11 ∗ (1xTρ)) � ((π1) ∗ 111T 2i) .

(LAA3) The following equation in K (T 2X, X) of vertical composites of whiskered 3-cells is
required:

1m11 ∗ (λ1) = ((λ1) ∗ 11m) � (1m11 ∗ Σ−1
i,m) � ((π1) ∗ 1i11) .

(LAA4) The following equation in K (T 4X, X) of vertical composites of whiskered 3-cells is
required:

(1m11 ∗ (1Tλ)) � ((π1) ∗ 11Ti1) = 1m11 ∗ (ρ1) .

We refer to this as the triangle-like axiom for λ, ρ, and π. Diagrams for these axioms may be
found in Gurski’s definition.

Remark 2. In the shorthand notation juxtaposition stands for an application of MK , an instance
of a power of T in an index refers to its effect on the object X, any other instance of a power of
T is shorthand for a hom 2-functor and only applies to the cell directly following it. Notice that
this notation is possible due to the functor axiom for T .
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This definition of a pseudo algebra is derived from the definition of a lax algebra by requiring
the 2-cells m and i to be adjoint equivalences and the 3-cells π, λ, ρ to be invertible. In fact,
under these circumstances we do not need all of the axioms. This is proved in the following
proposition, which is central for the comparison of trihomomorphisms of Gray-categories with
pseudo algebras. Namely, there are only two axioms for a trihomomorphism, while there are
four in the definition of a lax algebra. Proposition 3 shows that, in general, two of the axioms
suffice for a pseudo algebra.

Proposition 3. Given a pseudo T-algebra, the pentagon-like axiom (LAA1) and the triangle-
like axiom (LAA4) imply the other two axioms (LAA2)-(LAA3), i.e. these are redundant.

Proof. We proceed analogous to Kelly’s classical proof that the two corresponding axioms in
MacLane’s original definition of a monoidal category are redundant [8]. The associators and
unitors in Kelly’s proof here correspond to π, λ, and ρ. Commuting naturality squares for as-
sociators have to be replaced by instances of the middle four interchange law, and there is an
additional complication due to the appearance of interchange cells – these have no counterpart
in Kelly’s proof, so that it is gratifying that the strategy of the proof can still be applied. We only
show here the proof for the axiom (LAA3) involving π and λ, the one for the axiom (LAA2)
involving π and ρ is entirely analogous.

The general idea of the proof is to transform the equation of the axiom (LAA3) into an equiva-
lent form, namely (25) below, which we can manipulate by use of the pentagon-like and triangle-
like axiom. This is probably easier to see from the diagrammatic form of the axioms, where it
means that we adjoin

x1T xT 2x xT xTηT xT 2x

x1T xTµ xT xTηT xTµ

xT xTµTηT Tµ xT xTµT 2µTηT 2

1Ti11

11Tm 111Tm

1Ti11

1Tm11

⇓ Σ−1
1Ti,Tm

⇓ 1Tλ1

to the right hand side of some image of the pentagon-like axiom (LAA1), and then a diagram
equivalent to the right hand side of (LAA3) can be identified as a subdiagram of this.

Since i : 1X → xηX is an equivalence in L(X, X), and since

L(X′, 1X) : L(X′, X)→ L(X′, X)

is the identity for arbitrary X′ ∈ obL , we have that L(X′, xηX) is equivalent to the identity
functor. In particular, it is 2-locally fully faithful i.e. a bijection on the sets of 2-cells. On the
other hand, by naturality of η we have:

L(X′, xηX) = L(X′, x)L(X′, ηX) = L(X′, x)L(ηX′ ,T X)T, ,

where the subscript of T on the right indicates a hom morphism of T . This means that the
equation of (LAA3) is equivalent to its image under

L(T 2X, x)L(ηT 2X ,T X)T, = L(ηT 2X , X)L(T 3X, x)T, ,
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where we have used the underlying functoriality of homL . We will actually show that the image
of the equation under L(T 3X, x)T, holds, which of course implies that the image of the equation
under L(ηT 2X , X)L(T 3X, x)T, holds.

Applying L(T 3X, x)T, to the lax algebra axiom (LAA3) gives

11Tm11 ∗ (1Tλ1) = ((1Tλ1) ∗ 111Tm) � (11Tm11 ∗ (1TΣ−1
i,m)) � ((1Tπ1) ∗ 11Ti11) . (22)

Observe that since Σ−1
i,m is shorthand for ML (Σ−1

i,m), we have 1TΣ−1
i,m = 1Σ−1

Ti,Tm by the functor
axiom for T and equation (4) from 2.3, which is in fact shorthand for

ML ((1,ML (Σ−1
Ti,Tm))) = ML (ML ⊗ 1)(a−1(1,Σ−1

Ti,Tm)) (by a Gray-category axiom)

= ML (ML ⊗ 1)(Σ−1
(1,Ti),Tm) (by eq. (7) from 2.3)

= ML (Σ−1
1Ti,Tm) , (by eq. (4) from 2.3)

for which the corresponding shorthand is just Σ−1
1Ti,Tm.

Next, equation (22) is clearly equivalent to the one whiskered with m111 on the left because
m111 is an (adjoint) equivalence by the definition of m, i.e. to

1m111 ∗ 11Tm11 ∗ (1Tλ1)

= (1m111 ∗ (1Tλ1) ∗ 111Tm) � (1m111 ∗ 11Tm11 ∗ (Σ−1
1Ti,Tm)) � (1m111 ∗ (1Tπ1) ∗ 11Ti11) . (23)

Here we have used functoriality of ∗ i.e. the middle four interchange law, and it is understood
that because horizontal composition is associative, we can drop parentheses.

Now observe that 1m111∗(1Tπ1) is the image under L(TηT 2X , X) of the leftmost vertical factor
in the right hand side of the pentagon-like axiom (LAA1) for π. Namely, the image of (LAA1)
under L(TηT 2X , X) is

((π11) ∗ 111T 2m1) � (1m111 ∗ (Σ−1
m,T 2m1)) � ((π11) ∗ 1m111)

= (1m111 ∗ (1Tπ1)) � ((π11) ∗ 11Tm11) � (1m111 ∗ (π11)) ,

where Σ−1
m,T 2m

1 is shorthand for

ML (ML (Σ−1
m,T 2m), 1) = ML (ML ⊗ 1)(Σ−1

m,T 2m, 1) (by definition of (ML ⊗ 1))

= ML (1 ⊗ ML )a(Σ−1
m,T 2m, 1) (by a Gray-category axiom)

= ML (1 ⊗ ML )(Σ−1
m,(T 2m,1)) (by eq. (5) from 2.3)

= ML (Σ−1
m,T 2m1) , (by eq. (4) from 2.3)

for which the corresponding shorthand is just Σ−1
m,T 2m1.

In fact, we have that T 2m1 = 1Tm where on the left the identity is 1TηT2X
and on the right it

is 1TηX , thus this is simply naturality of Tη. Hence, Σ−1
m,T 2m1 = Σ−1

m,1Tm. In turn, this is shorthand
for

ML (1 ⊗ ML )(Σ−1
m,(1,Tm)) = ML (ML ⊗ 1)a−1(Σ−1

(m,(1,Tm))) (by a Gray-category axiom)

= ML (ML ⊗ 1)(Σ−1
(m,1),Tm) (by eq. (6) from 2.3)

= ML (Σ−1
m1,Tm) , (by eq. (4) from 2.3)
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for which the corresponding shorthand is just Σ−1
m1,Tm.

Implementing these transformations, the image of the pentagon-like axiom (LAA1) then has
the form

((π11) ∗ 1111Tm) � (1m111 ∗ Σ−1
m1,Tm) � ((π11) ∗ 1m111)

= (1m111 ∗ (1Tπ1)) � ((π11) ∗ 11Tm11) � (1m111 ∗ (π11)) . (24)

Since they are invertible, composing equation (23) with the other two factors from the pentagon-
like axiom for π whiskered with the (adjoint) equivalence 1Ti11 on the right, gives an equivalent
equation. Thus, our goal is now to prove the following equation:

(1m111 ∗ 11Tm11 ∗ (1Tλ1)) � ((π11) ∗ 11Tm11 ∗ 11Ti11) � (1m111 ∗ (π11) ∗ 11Ti11)

= (1m111 ∗ (1Tλ1) ∗ 111Tm) � (1m111 ∗ 11Tm11 ∗ (Σ−1
1Ti,Tm))

�
((

(1m111 ∗ (1Tπ1)) � ((π11) ∗ 11Tm11) � (1m111 ∗ (π11))
)
∗ 11Ti11

)
. (25)

This is proved by transforming the right hand side by use of the pentagon-like and triangle-like
axiom until we finally obtain the left hand side.

Namely, using the image of the pentagon-like axiom for π in the form (24) above, the right
hand side of (25) is equal to

(1m111 ∗ (1Tλ1) ∗ 111Tm) � (1m111 ∗ 11Tm11 ∗ (Σ−1
1Ti,Tm))

�
((

((π11) ∗ 1111Tm) � (1m111 ∗ Σ−1
m1,Tm) � ((π11) ∗ 1m111)

)
∗ 11Ti11

)
.

The diagrammatic form of this is drawn below.

x1T xT 2x xT xTηT xT 2x xµTηT xT 2x xT xµT T 3xTηT 2 xµµT T 3xTηT 2 xµTµT 3xTηT 2

x1T xTµ xT xTηT xTµ xµTηT xTµ xT xT 2xµT 2TηT 2 xµT 2µT 2TηT 2 xµT 2xTµT TηT 2

xT xTµTηT Tµ xT xTµT 2µTηT 2 xT xµT T 2µTηT 2 xT xTµµT 2TηT 2 xT xµTµT 2TηT 2 xT xµT TµT TηT 2

xµTµT 2µTηT 2 xµµT T 2µTηT 2 xµTµµT 2TηT 2 xµµTµT 2TηT 2 xµµT TµT TηT 2

1Ti11 m111 m111

11Tm 111Tm 111Tm

1Ti11

m111 m111

1Tm11 1Tm11

m111 m111 m111 m111 m111

⇓ π11 ⇓ π11

⇓ Σ−1
m1,Tm

= =

=

=

=

⇓ Σ−1
1Ti,Tm

⇓ 1Tλ1

The rectangle composed of the two interchange cells is shorthand for

ML ((1m1, 1) ∗ Σ−1
1Ti,Tm) � ML (Σ−1

m1,Tm ∗ (11Ti, 1)) = ML (Σ(m1)∗(1Ti),Tm) ,

for which the corresponding shorthand is just Σ(m1)∗(1Ti),Tm. Notice that we made use here of the
image under ML of the Gray product relation

(Σ f ′,g ∗ (1 f , 1)) � ((1 f ′ , 1) ∗ Σ f ,g) ∼ Σ f ′∗ f ,g .
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Next, the subdiagram formed by 1Tλ1 and π11 may be transformed by use of the image under
L(Tµ, X) of the triangle-like axiom (LAA3):

(1m111 ∗ (1Tλ1)) � ((π11) ∗ 11Ti1) = 1m111 ∗ (ρ11) .

Implementing these transformations in the diagram, gives the one drawn below.

x1T xT 2x xT xTηT xT 2x xµTηT xT 2x xT xµT T 3xTηT 2 xµµT T 3xTηT 2 xµTµT 3xTηT 2

x1T xTµ xT xTηT xTµ xµTηT xTµ xT xT 2xµT 2TηT 2 xµT 2µT 2TηT 2 xµT 2xTµT TηT 2

xT xTµTηT Tµ xT xTµT 2µTηT 2 xT xµT T 2µTηT 2 xT xTµµT 2TηT 2 xT xµTµT 2TηT 2 xT xµT TµT TηT 2

xµTµT 2µTηT 2 xµµT T 2µTηT 2 xµTµµT 2TηT 2 xµµTµT 2TηT 2 xµµT TµT TηT 2

1Ti11 m111 m111

11Tm 111Tm

1Ti11

m111 m111

1Tm11

m111 m111 m111 m111 m111

⇓ π11

= =

=

=

=

⇓ Σ−1
(m1)∗(1Ti),Tm

⇓ ρ11

=

The subdiagram formed by the interchange cell and ρ11 is

((ρ11) ∗ 111Tm) � Σ−1
(m1)∗(1Ti),Tm .

This is shorthand for

ML (((ρ, 1) ∗ (1, 1Tm)) � Σ−1
(m1)∗(1Ti),Tm) = ML (Σ−1

1,Tm � ((1, 1Tm) ∗ (ρ, 1))) = ML ((1, 1Tm) ∗ (ρ, 1))

or 1111Tm ∗ (ρ11), where we have used the relation

((1, β) ∗ (α, 1)) � Σ f ,g ∼ Σ f ′,g′ � ((α, 1) ∗ (1, β)) (26)

for interchange cells in the Gray product and the fact that Σ−1
1,Tm is the identity 2-cell cf. 2.3. This

means we now have the following diagram.

x1T xT 2x xT xTηT xT 2x xµTηT xT 2x xT xµT T 3xTηT 2 xµµT T 3xTηT 2 xµTµT 3xTηT 2

x1T xT 2x xµTηT xT 2x xT xT 2xµT 2TηT 2 xµT 2µT 2TηT 2 xµT 2xTµT TηT 2

x1T xTµ xµTηT xTµ xT xTµµT 2TηT 2 xT xµTµT 2TηT 2 xT xµT TµT TηT 2

xT xTµ xµTµ xµµT T 2µTηT 2 xµTµµT 2TηT 2 xµµTµT 2TηT 2 xµµT TµT TηT 2

1Ti11 m111 m111

m111

11Tm 111Tm 1Tm11

m111 m111 m111

m1

⇓ π11

= =

=

=

=

= (Σ−1
1,Tm = 1)

⇓ ρ11
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Slightly rewritten, this is the same as the diagram below.

x1T xT 2x xT xTηT xT 2x xµTηT xT 2x xT xµT T 3xTηT 2 xµµT T 3xTηT 2 xµT 2x

x1T xT 2x xµTηT xT 2x xT xT 2x xT xT 2xTµT TηT 2 xµT 2xTµT TηT 2

xT xTµTµT TηT 2 xT xµT TµT TηT 2

xµTµTµT TηT 2 xµµT TµT TηT 2

1Ti11 m111 m111

m111

1Tm11

m111 m111

==

⇓ π11

⇓ ρ11

For the upper right entry we have used another identity to make commutativity obvious. Finally,
by another instance of the triangle identity—in fact its image under L(T 2x, X)—we end up with
the diagram below. It is easily seen to be the diagrammatic form of the left hand side of (25), so
this ends the proof.

x1T xT 2x xT xTηT xT 2x xT xT 2xTηT T 2x xµT 2xTηT T 2x xT xµT TηT T 2x

x1T xT 2x xT xTµTηT T 2x xµTµTηT T 2x xµµT TηT T 2x

xT xT 2x xT xT 2xTµT TηT 2 xµT 2xTµT TηT 2

xT xTµTµT TηT 2 xT xµT TµT TηT 2

xµTµTµT TηT 2 xµµT TµT TηT 2

1Ti11 m111

1Tm11
m111

m111

m111

1Tm11

m111 m111

⇓ π11

⇓ π11

=

⇓ 1Tλ1

Definition 2. [7, Def. 13.6 and Def. 13.9] A pseudo T -functor

( f , F, h ,m) : (X, x,mX , iX , πX , λX , ρX)→ (Y, y,mY , iY , πY , λY , ρY )

consists of
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• a 1-cell f : X → Y in K i.e. an object of K (X,Y);

• a 2-cell adjoint equivalence (F, F•) : f x → yT f i.e. a 1-cell adjoint equivalence internal
to K (T X,Y) ;

• and two invertible 3-cells h ,m as in (PSF1)-(PSF2) subject to the three axioms (LFA1)-
(LFA3) of a lax T -functor:

(PSF1) An invertible 3-cell h given by an invertible 2-cell in K (X,Y):

h : (F1ηX ) ∗ (1 f iX)⇒ (iY1 f )

where the codomains match by Gray-naturality of η.
(PSF2) An invertible 3-cell m given by an invertible 2-cell in K (T 2X,Y):

m : (mY1T 2 f ) ∗ (1yT F) ∗ (F1x)⇒ (F1µ) ∗ (1 f m)

where the codomains match by Gray-naturality of µ.
The three lax T -functor axioms are:

(LFA1) The following equation in K (T 3X,Y) of vertical composites of whiskered 3-cells is
required:

(1F11 ∗ (1πX)) � ((m1) ∗ 11mX1) � (1mY 11 ∗ 111T 2F ∗ (m1)) � (1mY 11 ∗ ΣmY ,T 2F ∗ 11T F1 ∗ 1F11)

= ((m1) ∗ 111TmX ) � (1mY 11 ∗ 11T F1 ∗ Σ−1
F,TmX ) � (1Tm) � ((πY1) ∗ 111T 2F ∗ 1T F1 ∗ 1F11) .

(LFA2) The following equation in K (T X,Y) of vertical composites of whiskered 3-cells is
required:

((λY1) ∗ 11F) � (1mY 11 ∗ Σ−1
iY ,F) � (1mY 11 ∗ 111F ∗ (h1))

= (1F ∗ (1λY )) � ((m1) ∗ 11iX1) .

(LFA3) The following equation in K (T X,Y) of vertical composites of whiskered 3-cells is
required:

((ρY1) ∗ 1F1) � (1mY 11 ∗ (1Th) ∗ 1F1)

= (1F ∗ (1ρX)) � ((m1) ∗ 11TiX ) � (1mY 1 ∗ 11T F1 ∗ Σ−1
F,TiX ) .

A careful inspection shows that the horizontal and vertical factors do indeed compose in all of
these axioms. Diagrams may be found in Gurski’s definition.

Definition 3. [7, Def. 13.6 and Def. 13.10] A T -transformation

(α, A) : ( f , F, h f ,m f )⇒ (g,G, hg,mg) : (X, x,mX , iX , πX , λX , ρX)→ (Y, y,mY , iY , πY , λY , ρY )

consists of

• a 2-cell α : f ⇒ g i.e. an object of K (X,Y);
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• an invertible 3-cell A as in (T1) subject to the two axioms (LTA1)-(LTA2) of a lax
T -algebra:

(T1) An invertible 3-cell A given by an invertible 2-cell in K (T X,Y):

A : (1yTα) ∗ F ⇒ G ∗ (α1x) .

The two lax T -transformation axioms are:
(LTA1) The following equation in K (X,Y) of vertical composites of whiskered 3-cells is re-
quired:

(hg ∗ 1α1) � (1G1 ∗ Σα,iX ) � ((A1) ∗ 11iX ) = Σ−1
iY ,α � (11Tα1 ∗ h f ) .

(LTA2) The following equation in K (T 2X, X) of vertical composites of whiskered 3-cells is
required:

(mg ∗ 1α1) � (1mY 1 ∗ 11TG ∗ (A1)) � (1mY 1 ∗ (1T A) ∗ 1F1) � (Σ−1
mY ,T 2α

∗ 11T F ∗ 1F1)

= (1G1 ∗ Σα,mX ) � ((A1) ∗ 11mX ) � (11T 2α ∗ m f ) .

A careful inspection shows that the horizontal and vertical factors do indeed compose in the two
axioms. Diagrams may be found in Gurski’s definition.

Definition 4. A T -modification Γ : (α, A)V (β, B) of T -transformations

( f , F, h f ,m f )⇒ (g,G, hg,mg) : (X, x,mX , iX , πX , λX , ρX)→ (Y, y,mY , iY , πY , λY , ρY )

consists of a

• 3-cell Γ : αV β i.e. a 2-cell in K (X,Y);

• subject to one axiom (MA1):

(MA1) The following equation in K (T X,Y) of vertical composites of whiskered 3-cells is re-
quired:

B � ((1TΓ) ∗ 1F) = (1G ∗ (Γ1)) � A .

Finally, we provide the Gray-category structure of Ps-T -Alg. We begin with its hom
2-categories.

Definition 5. Given T -algebras (X, x,mX , iX , πX , λX , ρX) and (Y, y,mY , iY , πY , λY , ρY ), the pre-
scriptions below give the 2-globular set Ps-T -Alg(X,Y) whose objects are pseudo T -functors
from X to Y , whose 1-cells are T -transformations between pseudo T -functors, and whose 2-
cells are T -modifications between those, the structure of a 2-category [7, Prop. 13.11].

Given T -modifications Γ : (α, A)V (β, B) and ∆ : (β, B)V (ε, E) of T -transformations

( f , F, h f ,m f )⇒ (g,G, hg,mg) : (X, x,mX , iX , πX , λX , ρX)→ (Y, y,mY , iY , πY , λY , ρY ) ,

their vertical composite ∆ � Γ is defined by the vertical composite ∆ � Γ of 2-cells in K (X,Y).
The identity T -modification of (α, A) as above is defined by the 2-cell 1α in K (X,Y).
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Given T -transformations (α, A) : ( f , F, h f ,m f )⇒ (g,G, hg,mg) and (β, B) : (g,G, hg,mg)⇒
(h,H, hh,mh) of pseudo T -functors

(X, x,mX , iX , πX , λX , ρX)→ (Y, y,mY , iY , πY , λY , ρY ) ,

their horizontal composite (β, B) ∗ (α, A) is defined by

(β ∗ α, (B ∗ 1α1) � (11TβA)) .

The identity T -transformation of ( f , F, h f ,m f ) is defined by (1 f , 1F).
Given T -modifications Γ : (α, A) V (α′, A′) : ( f , F, h f ,m f ) ⇒ (g,G, hg,mg) and

∆ : (β, B)V (β′, B′) : (g,G, hg,mg)⇒ (h,H, hh,mh of pseudo T -functors

(X, x,mX , iX , πX , λX , ρX)→ (Y, y,mY , iY , πY , λY , ρY ) ,

their horizontal composite is defined by the horizontal composite ∆ ∗ Γ of 2-cells in K (X,Y).
We omit the proof that this is indeed a 2-category.

Definition 6. The prescriptions below give the set of pseudo T -algebras with the hom 2-
categories from the proposition above, the structure of a Gray-category denoted Ps-T -Alg,
see [7, Prop. 13.12 and Th. 13.13].

Given pseudo T -algebras (X, x,mX , iX , πX , λX , ρX), (Y, y,mY , iY , πY , λY , ρY ) and
(Z, z,mZ , iZ , πZ , λZ , ρZ), the composition law is defined by the strict functor

� : Ps-T -Alg(Y,Z) ⊗ Ps-T -Alg(X,Y)→ Ps-T -Alg(X,Z)

specified as follows.
On an object (g, f ) in Ps-T -Alg(Y,Z) ⊗ Ps-T -Alg(X,Y) i.e. on functors (g,G, hg,mg) and

( f , F, h f ,m f ), � is defined by(
g f , (G1T f ) ∗ (1gF), (hg1) � (1G11 ∗ (1h f )),

(1G11 ∗ (1m f )) � ((mg1) ∗ 111T F ∗ 1G11 ∗ 11F1) � (1mY 11 ∗ 11TG1 ∗ Σ−1
G,T F ∗ 11F1)

)
,

which we denote by g � f .
On a generating 1-cell of the form ((α, A), 1) : (g, f ) → (g′, f ) in the Gray product

Ps-T -Alg(Y,Z) ⊗ Ps-T -Alg(X,Y), where (α, A) is a T -transformation

(g,G, hg,mg)⇒ (g′,G′, hg′ ,mg′),

and f is as above, � is defined by

(α1 f , (1G′1 ∗ Σα,F) � ((A1) ∗ 11F))

and denoted α � 1 f .
Similarly, on a generating 1-cell of the form (1, (β, B)) : (g, f ) → (g, f ′) in the Gray product

Ps-T -Alg(Y,Z) ⊗ Ps-T -Alg(X,Y), where (β, B) is a T -transformation

( f , F, h f ,m f )⇒ ( f ′, F′, h f ′ ,m f ′),
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and g is as above, � is defined by

(1gβ, (1G1 ∗ (1B)) � (Σ−1
G,β ∗ 11F))

and denoted α � 1 f .
On a generating 2-cell of the form (Γ, 1) : ((α, A), 1) V ((α′, A′), 1), � is defined by the

underlying 2-cell Γ1 f in K (X,Y) and denoted by Γ � 1, and similarly for 2-cells of the form
(1,∆) : (1, (β, B))V (1, (β′, B′)).

Finally, on an interchange cell Σ(α,A),(β,B) in Ps-T -Alg(Y,Z) ⊗ Ps-T -Alg(X,Y), � is defined by
the 2-cell MK (Σα,β), the shorthand of which is Σα,β.

The unit at an object (X, x,m, i, π, λ, ρ), that is, the functor jX : I → Ps-T -Alg(X, X) is deter-
mined by strictness and the requirement that it sends the unique object ∗ of I to the T -functor
(1X , 1x, 1i, 1m).

We omit the proof that this is well-defined and that Ps-T -Alg is indeed a Gray-category.

3.2 Coherence via codescent

Recall from [9, 3.1] that given a complete and cocomplete locally small symmetric monoidal
closed category V , V -categories K and B , and V -functors F : K op → V and G : K →

B , the colimit of G indexed by F is a representation (F ∗ G, ν) of the V -functor
[K op,V ](F−,B(G−, ?)) : B → V (where this is assumed to exist) with representing object
F∗G in B and unit ν : F → B(G−, F∗G). For the concept of representable functors see [9, 1.10].
In particular, there is a V -natural (in B) isomorphism

B(F ∗G, B)
�

−−−−−−→ [K op,V ](F,B(G−, B)) , (27)

and the unit is obtained by Yoneda when this is composed with the unit jF∗G of the V -category
B at the object F ∗G.

Definition 7. A V -functor T : B → C preserves the colimit of G : K → B indexed by
F : K op → V if when (F ∗G, ν) exists, the composite

TG−,Bν : F → B(G−, F ∗G)→ L(TG−,T {F,G})

exhibits T (F∗G) as the colimit of TG indexed by F i.e. the composite corresponds under Yoneda
to an isomorphism as in (27) with TG instead of G.

Now let again K be a Gray-category and T be a Gray-monad on it. Below we will make
use of the following corollary of the central coherence theorem from three-dimensional monad
theory [7, Corr. 15.14].

Theorem 3 (Gurski’s coherence theorem). Assume that K has codescent objects of codescent
diagrams, and that T preserves them. Then the inclusion i : K T ↪→ Ps-T -Alg has a left adjoint
L : Ps-T -Alg → K T and each component ηX : X → iLX of the unit of this adjunction is a
biequivalence in Ps-T -Alg.
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Remark 3. Codescent objects are certain indexed colimits, see [7, 12.3]. In fact, they are built
from co-2-inserters, co-3-inserters and coequifiers. These are classes of indexed colimits where
each of these classes is determined separately by considering all indexed colimits F ∗ G with
a particular fixed Gray-functor F : K op → V . Thus there is no other restriction on G apart
from the fact that it must have the same domain as F. In particular, if T is a Gray-monad and T
preserves co-2-inserters, co-3-inserters and coequifiers, then also TT preserves co-2-inserters,
co-3-inserters and coequifiers because G and TG have the same domain. This is used in the
proof of the theorem to show that the Eilenberg-Moore object K T has codescent objects and
that they are preserved by the forgetful Gray-functor K T → K . Namely, in enriched monad
theory one can show that the forgetful functor K T → K creates any colimit that is preserved by
T and TT , just as in ordinary monad theory.

For any of the classes of indexed colimits above, the domain of F is small, so codescent
objects are small indexed colimits. Hence, if K is cocomplete, it has codescent objects of
codescent diagrams in particular. This observation gives the following corollary.

Corollary 1. Let K be cocomplete and let T be a monad on K that preserves small indexed
colimits. Then the inclusion i : K T ↪→ Ps-T -Alg has a left adjoint L : Ps-T -Alg → K T and
each component ηX : X → iLX of the unit of the adjunction is an internal biequivalence in
Ps-T -Alg.

4 The monad of the Kan adjunction

4.1 A V -monad on [obP ,L]

Let V be a complete and cocomplete symmetric monoidal closed category such that the un-
derlying category V0 is locally small. By cocompleteness we have an initial object which we
denote by ∅. Let P be a small V -category and let L be a cocomplete V -category. In this general
situation, we now describe in more detail a V -monad corresponding to the Kan adjunction with
left adjoint left Kan extension LanH along a particular V -functor H and right adjoint the functor
[H, 1] from enriched category theory. For V = Gray , this is the Gray-monad mentioned in
the introduction, for which the pseudo algebras shall be compared to locally strict trihomomor-
phisms.

First, observe that the set obP of the objects of P may be considered as a discrete V -category.
More precisely, there is a V -category structure on obP such that for objects P,Q ∈ P the hom
object (obP )(P,Q) is given by I if P = Q and by ∅ otherwise and such that the nontrivial
hom morphisms are given by lI = rI . The V -functor H is defined to be the unique V -functor
obP → P such that the underlying map on objects is the identity.

Since P is small and since V0 is complete, the functor category [P ,L] exists. For two
V -functors A, B : P → L the hom object [P ,L](A, B) is the end∫

P∈obP
L(AP, BP) ,
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which is given by an equalizer∫
P∈obP

L(AP, BP)
∏

P∈obP
L(AP, BP)

∏
P,Q∈obP

[P (P,Q),L(AP, BQ)]
ρ

σ (28)

in V0, see [9, (2.2), p. 27], where—if we denote by π the cartesian projections— ρ and σ are
determined by requiring πP,Qρ and πP,Qσ to be πP composed with the transform of L(AP, B−)PQ

and πQ composed with the transform of L(A−, BQ)QP respectively.
Now let M be another small V -category and K : M → P be a V -functor , e.g. K = H. The

V -functor K induces a V -functor

[K, 1] : [P ,L]→ [M ,L] ,

which sends a V -functor A : P → L to the composite V -functor AK, cf. [9, (2.26)], and its
hom morphisms are determined by the universal property of the end and commutativity of the
following diagram

[P ,L](A, B) [M ,L](AK, BK)

L(AKM, BKM) L(AKM, BKM)

EMEKM

[K,1]A,B

.

(29)

Left Kan extension LanK : [M ,L] → [P ,L] along K provides a left adjoint to [K, 1]: this is
the usual Theorem of Kan adjoints as given in [9, Th. 4.50, p. 67], and it applies since M and
P are small and since L is cocomplete. In particular, we have a hom V -adjunction

[P ,L](LanK A, S ) � [M ,L](A, [K, 1](S )) , (30)

cf. [9, (4.39)], which is V -natural in A ∈ [M ,L] and S ∈ [P ,L]. Thus we have a monad

T = [H, 1]LanK : [M ,L]→ [M ,L] (31)

on [M ,L], which we call the monad of the Kan adjunction. The unit η : 1 ⇒ T of T is given
by the unit η of the adjunction (30), while the multiplication µ : TT ⇒ T , is given by

[H, 1]εLanH : [H, 1]LanH[H, 1]LanH ⇒ [H, 1]LanH

where ε is the counit of the adjunction (30).
We now come back to the special case that M = obP and K = H. Since P is small, we may

identify a functor obP → L with its family of values in L i.e. the set of functors is identified
with the (small) limit in Set given by the product

∏
obP obL .

In fact, the equalizer (28) is trivial for [obP ,L], so for two functors A, B : obP → L , the hom
object [obP ,L](A, B) is given by the (small) limit in V0 given by the product

∏
P∈obP L(AP, BP).

Namely, ρ and σ are equal in (28): Denoting by π the projections of the cartesian products,
πP,Qρ = ρP,QπP equals πP,Qσ = σP,QπQ because for P , Q, the two morphisms∏

P∈obP
L(AP, BP)→ [∅,L(AP, BQ)]
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must both be the transform of the unique morphism

∅ → [
∏

P∈obP
L(AP, BP),L(AP, BQ)] ;

and for P = Q, we have ρP,P = σP,P because these are the transforms of L(AP, B−)PP and
L(A−, BP)PP, which are both equal to

jL(AP,BP) : I = (obP )(P, P)→ [L(AP, BP),L(AP, BP)]

by the unit axioms for the V -functors A, B, L(AP,−), and L(−, BP). To see this, note that
jP : I → I is the identity functor, so L(AP, B−)PP = L(AP, B−)PP jP and L(A−, BP)PP =

L(A−, BP)PP jp.
From diagram (29), we see that

[H, 1]A,B : [P ,L](A, B)→ [obP ,L](AH, BH)

is given by the strict functor of the equalizer (28),∫
P∈obP

L(AP, BP)→
∏

P∈obP
L(AP, BP) ,

that is, the strict functor into the product induced by the family of evaluation functors EP where
P runs through the objects of P .

Lemma 2. Let {F,G} be a pointwise limit, then any representation is pointwise.

Proof. Let (B, µ) be a pointwise representation and let (B′, µ′) be any other representation. By
Yoneda, µ′ has the form [P ,L](α,G−)µ for a unique isomorphism α : B′ ⇒ B. It follows that

EPµ
′ = EP[P ,L](α,G−)µ = L(αP, EPG−)EPµ

and by extraordinary naturality this induces

L(L, B′P)
L(L,αP)
−−−−−−→ L(L, BP)

β
−→ [K ,V ](F,L(L, (G−)P))

where β is the isomorphism induced by EPµ, and this is an isomorphism that is V -natural in L
and P because (B, µ) is pointwise and αP is an isomorphism that is V -natural in P. This proves
that (B′, µ′) is a pointwise limit.

The following is the usual non-invariant notion of limit creation as in MacLane’s book [14, p.
108] adapted to the enriched context:

Definition 8. A V -functor T : B → C creates F ∗G or creates colimits of G : K → B indexed
by F : K op → V if (i) for every (C, ν) where ν : F → C (TG−,C) exhibits the object C ∈ C as
the colimit F ∗ (TG), there is a unique (B, ξ) consisting of an object B ∈ B with T B = C and a
V -natural transformation ξ : F → B(G−, B) with TG−,Bξ = ν, and if, moreover; (ii) ξ exhibits
B as the colimit F ∗G. There is a dual notion for creation of limits.
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In particular, a colimit F ∗G created by the V -functor T is also preserved by T .

Lemma 3. The functor [H, 1] creates arbitrary pointwise (co)limits.

Proof. We only prove the colimit case, the proof for limits is analogous. If the colimit (C, ν) =

(F ∗ [H, 1]G, ν) exists pointwise, we have

CP = (F ∗ [H, 1]G)P = F ∗ ([H, 1](G−)P) = F ∗ (G−)HP = F ∗ (G−)P ,

which means that the value of C at P is a colimit (CP, νP) of (G−)P indexed by F. In fact, this
determines the V -functor C uniquely since the domain obP is discrete. Further, it implies that
the colimit (F ∗G, ξ) exists pointwise because F ∗ (G−)P exists as (CP, νP), and this means that
the functoriality of F ∗G is induced from the pointwise representation and that EPξ = νP. Now
since

([H, 1](F ∗G))P = (F ∗G)HP = (F ∗G)P = F ∗ (G−)P = CP ,

the two functors [H, 1](F ∗ G) and F ∗ ([H, 1]G) coincide pointwise, and this means that they
must also coincide as functors obP → L , i.e. [H, 1](F ∗ G) = F ∗ ([H, 1]G). Moreover, since
the units coincide pointwise, EPξ = νP, we must have [H, 1]G−,Aξ = ν = ΠPν

P.
This proves the existence of a (B, ξ) as in Definition 8. Suppose there would be another

(B′, ξ′) with [H, 1]B′ = C and [H, 1]G−,B′ξ
′ = ν. Then B and B′ would coincide pointwise i.e.

BP = BP′ for any object P ∈ P , and via ξ and ξ′ would both give rise to the same representation
isomorphism—by the fact that [H, 1]G−,Aξ

′ = ν = [H, 1]G−,Aξ and thus EPξ
′ = Ep[H, 1]G−,Aξ

′ =

EPν = EP[H, 1]G−,Aξ = EPξ— and this representation isomomorphism is V -natural in P as well
as in L:

L(BP, L) � [K op,V ](F,L((G−)P, L)) . (32)

But for such a representation isomorphism there is a unique way of making B a V -functor
P → L such that the representation isomorphism is V -natural in P as well as in L, see for ex-
ample [9, 1.10], so B and B′ have to coincide as V -functors. Clearly, by Yoneda, also ξ = ξ′ then
as the representations of (B, ξ) and (B, ξ′) coincide because the pointwise representations (32)
do, cf. [9, 3.3]. Note here that (B′, ξ′) must be a pointwise colimit too because by assumption,
it is preserved by [H, 1] and (C, ν) is preserved by any EP, so (B′, ξ′) is preserved by any EP

and thus it is a pointwise colimit. On the other hand, this is just the general fact that if a colimit
exists pointwise, then any representation must in fact be pointwise, see Lemma 2 above.

Corollary 2. The functor [H, 1] preserves any limit and any pointwise colimit that exists.

Proof. This follows from the lemma above and the fact that [H, 1] is a right adjoint.

Remark 4. In case that [H, 1] is also a left adjoint, it in fact preserves any colimit that exists.
This is for example the case when the target L is complete, where the right adjoint is given
by right Kan extension RanH along H, which exists because L and obP were assumed to be
complete and small respectively. In particular, this applies in the situation that L = V .
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Corollary 3. Let P be a small and L be a cocomplete Gray-category, and let T be the monad
[H, 1]LanH on [obP ,L] given by the Kan adjunction. Then the inclusion i : [P ,L] ↪→ Ps-T -Alg
has a left adjoint L : Ps-T -Alg → [P ,L] and each component ηA : A → iLA of the unit of the
adjunction is an internal biequivalence in Ps-T -Alg.

Proof. We aim at applying Corollary 1 of Gurski’s coherence theorem. Thus, we have to show
that T = [H, 1]LanH preserves small colimits. Since LanH is a left adjoint, it preserves any
colimit that exists. Since this limit is again a small limit and since, L being complete, small
limits are pointwise limits (cf. Lemma 2), Lemma 3 implies that it is preserved by [H, 1]. This
proves that any small limit is preserved by T .

4.2 Explicit description of the monad

In this paragraph, we will give an explicit description of the monad from 4.1 in terms of a coend
over tensor products. As a matter of fact, the explicit identification of the monad structure is
involved, and an alternative economical strategy adequate for the purpose of this paper, would
be to take the description in terms of coends and tensor products as a definition. By functoriality
of the colimit it is then readily shown that this gives a monad on [obP ,L] as required, but one
has to show that it preserves pointwise (and thus small) colimits in order to apply Corollary 1
from 3.2. This follows from an appropriate form of the interchange of colimits theorem. For this
reason, we will be short on proofs below.

First, we recall the notions of tensor products and coends to present the well-known Kan ex-
tension formula (38) below. Then we determine the monad structure µ : TT ⇒ T and η : 1⇒ T
for the monad from 4.1. Given an object X ∈ V and an object L ∈ L , recall that the tensor
product X ⊗ L is defined as the colimit X ∗ L where X and L are considered as objects i.e. as
V -functors in the underlying categories V0 = V -CAT (Iop,V ) and L0 = V -CAT (I,L) where
I is the unit V -category. With the identification [I,L] � L , the corresponding contravariant
representation (27) from 3.2 has the form

n : L(X ⊗ L,M) � [X,L(L,M)] , (33)

and this is V -natural in all variables by functoriality of the colimit cf. [9, (3.11)]. This means
that tensor products are in fact V -adjunctions, and we will dwell on this in the next paragraph
4.3. Because L is assumed to be cocomplete, tensor products indeed exist.

Next, recall that for a V -functor G : Aop ⊗ A → L , the coend∫ A
G(A, A) (34)

is defined as the colimit Homop
A ∗G. The corresponding representation (27) from 3.2 transforms

under the extra-variable enriched Yoneda lemma cf. [9, (2.38)] into the following characteristic
isomorphism of the coend:

β : L(
∫ A

G(A, A), L) �
∫

A
L(G(A, A), L) , (35)
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which is V -natural in L and where on the right we have an end in the ordinary sense cf. [9, 2.1].
The unit of Homop

A ∗G corresponds to a V -natural family

κA = λAβ j∫ A
G(A,A)

: G(A, A)→
∫ A

G(A, A) , (36)

where λA is the counit of the end, and (35) induces the following universal property of κP:

L0(
∫ A

G(A, A), L) � V -nat(G(A, A), L) . (37)

This is a bijection of sets and it is given by precomposition with κA, which proves that κA is the
universal V -natural family with domain G(A, A). Since L was assumed to be cocomplete, small
coends in L do in fact exist.

We are now ready to present the explicit description of left Kan extension and thus of the
monad from 4.1. Since L admits tensor products and since P was assumed to be small, left Kan
extension along the functor H : obP → P from 4.1 is given by the following small coend:

LanHA �

∫ P
P (P,−) ⊗ AP (38)

cf. [9, (4.25)].

Example. In case that L = V , the coend in (34) is given by a coproduct in V0: Indeed obP
is the free V -category ((obP )0)V where the set of objects of P is considered as the ordinary
discrete category (obP )0, and Homop

obP = (Homop
(obP )0

)V is the V -functor corresponding to the
ordinary hom functor Homop

(obP )0
under the identification

((obP )0 × (obP )0)V � obP ⊗ obP ,

where we have dropped the superfluous superscript op. Thus, Homop
obP ∗ G(A, A) reduces to a

conical colimit in V , which, V being cotensored, coincides with the ordinary colimit, hence the
coproduct.

Next one observes that tensor products in V are given by the monoidal structure as is easily
seen from (33) cf. (45) in 4.3. Therefore, (38) reduces to the coproduct

LanHA �
∑

P∈obP
P (P,−) ⊗ AP . (39)

Now let M be another small V -category and K : M → P be a V -functor. Then left Kan
extension along K exists in the form of

LanK A �

∫ M
P (KM,−) ⊗ AM , (40)

the relevant functor categories exist, and we again have the Kan adjunction LanK a [K, 1].
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Lemma 4. The component at A ∈ [P ,L] of the counit ε : LanK[K, 1]⇒ 1[P ,L] of the adjunction
LanK a [K, 1] has component

εA,Q :
∫ M

P (KM,Q) ⊗ AKM → AQ

at Q ∈ P induced from the V -natural transform

P (KM,Q) ⊗ AKM → AQ

of the hom morphism

AKM,Q : P (KM,Q)→ L(AKM, AQ)

under the adjunction (33) of the tensor product.

Proof. The component at A is obtained by composing the unit

jAK : I → [obP ,L](AK, AK)

with the inverse of the V -natural isomorphism of the Kan adjunction (30). The lemma then
follows from inspection of the proof of the theorem of Kan adjoints [9, Th. 4.38]. In particular,
the transform of the V -natural L(AKM,−)AKM,AQAKM,Q, which gives rise to the extra-variable
Yoneda isomorphism [9, (2.33)], enters in the inverse of (30), and this is the point where the
hom morphism AKM,Q shows up.

We will show in the next paragraph 4.3 that there are obvious left unitors λ and associators
α for the tensor products. These already show up in the following two lemmata, but since we
mostly omit the proofs, it seems more stringent to state the lemmata here in order to have the
explicit description of T at one place.

Lemma 5. The component at A ∈ [M ,L] of the unit of the adjunction LanK a [K, 1] and
the corresponding monad T = LanK a [K, 1] on [M ,L], i.e. the V -natural transformation
η : 1[M ,L] ⇒ [K, 1]LanK has component

ηA,M : AM
λ−1

AM
−−−→ I ⊗ AM

jKM⊗1
−−−−−→ P (KM,KM) ⊗ AM

κM,KM
−−−−→

∫ O
P (KO,KM) ⊗ AO

at M in M where λ−1
AM is the unitor of the tensor product cf. 4.3.

Proof. Note that we have stressed in the statement that the unit of the monad T is exactly given
by the unit of the adjunction LanK a [K, 1]. Hence, its component at A ∈ [M ,L] is given by
composing the V -natural isomorphism of the Kan adjunction (30) with the unit

jLanK A : I → [P ,L](LanK A,LanK A) .

This gives an element I → [obP ,L](A, [K, 1](LanK A)), that is, a V -natural transformation
A⇒ [K, 1](LanK A) = T A cf. (30). Since the inverse of the extra-variable enriched Yoneda
isomorphism [9, (2.33)] takes part in (30), this is converse to the situation in Lemma 5. Cor-
respondingly, one has to consider the transform of L(AO, (LanK A)−)O,KM, although one does
not have to determine ((LanK A)−)O,KM in the argument as one only uses the unit axiom for a
V -functor.
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Lemma 6. The hom morphism of LanK A =
∫ M P (KM,−) ⊗ AM,

(LanK A)Q,R : P (Q,R)→ L(
∫ M

P (KM,Q) ⊗ AM,
∫ M

P (KM,R) ⊗ AM)

corresponds to the V -natural family (in M ∈M and also in Q ∈ P but Q is held constant here)

κM,R(MP ⊗ 1)α−1 (41)

under (33), exchange of the colimits P (Q,R) ⊗ − and
∫ M

, and (37).

Proof. A neat way of proving this is by showing that the prescription in the statement of the
lemma gives rise to the correct unit of the representation for left Kan adjunction along K via

P (KM,R)
(LanK )KM,R
−−−−−−−−→ L((LanK A)KM, (LanK A)R)

L(ηA,M ,1)
−−−−−−−→ L(AM, (LanK A)R) (42)

cf. [9, dual of Th. 4.6 (ii)], where ηA,M was determined in Lemma 5, and the unit of the repre-
sentation of the left Kan extension as a colimit in the form of (40) is quickly determined to be
L(1, κM,R)ηAM

P (KM,R). Namely, the unit of (35) is κM,R, then n is applied to this, which by (57) in
4.3 below gives

n(κM,R) = [ηAM
P (KM,R), 1]L(AM,−)P (KM,R)⊗AM,

∫ M P (KM,R)⊗AM
(κM,R)

or [ηAM
P (KM,R), 1]L(AM, κM,R), where η is the counit of the adjunction of the tensor product cf.

(33). Thus this is the counit in question and it can be identified with L(AM, κQ)ηAM
P (KM,R). One

then proves that (42) in fact has exactly this form:

Denoting by x exchange of the tensor product and the coend
∫ M

, the relevant calculation is
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displayed below.

L(ηA,M, 1)L(1, (Vβ)−1(κM,R(MP
KM,KM,R ⊗ 1AM)α−1)x)η

∫ M P (KM,KM)⊗AM
P (KM,R)

=L(κM,KM( jKM ⊗ 1)λ−1
AM, 1)L(1, (Vβ)−1(κM,R(MP

KM,KM,R ⊗ 1AM)α−1)x)η
∫ M P (KM,KM)⊗AM
P (KM,R)

(by Lemma 5)

=L(( jKM ⊗ 1)λ−1
AM, 1)L(1, (Vβ)−1(κM,R(MP

KM,KM,R ⊗ 1AM)α−1)x)L(κM,KM, 1)η
∫ M P (KM,KM)⊗AM
P (KM,R)

(functoriality of homL )

=L(( jKM ⊗ 1)λ−1
AM, 1)L(1, (Vβ)−1(κM,R(MP

KM,KM,R ⊗ 1AM)α−1)x)L(1, 1 ⊗ κM)ηP (KM,KM)⊗AM
P (KM,R)

(naturality of η)

=L(( jKM ⊗ 1)λ−1
AM, 1)L(1, (Vβ)−1(κM,R(MP

KM,KM,R ⊗ 1AM)α−1)κM)ηP (KM,KM)⊗AM
P (KM,R)

(exchange of colimits is induced by an isomorphism of represented functors: x(1 ⊗ κM) = κM)

=L(( jKM ⊗ 1)λ−1
AM, 1)L(1, κM,R(MP

KM,KM,R ⊗ 1AM)α−1)ηP (KM,KM)⊗AM
P (KM,R) (since (Vβ) = V[κM, 1])

=L(λ−1
AM, 1)L(1, κM,R(MP

KM,KM,R ⊗ 1AM)a−1(1 ⊗ ( jKM ⊗ 1)))ηI⊗AM
P (KM,R) (functoriality of homL )

=L(λ−1
AM, 1)L(1, κM,R(MP

KM,KM,R(1 ⊗ jKM) ⊗ 1AM)α−1)ηI⊗AM
P (KM,R) (by naturality of α)

=L(λ−1
AM, 1)L(1, κM,R(rP (KM,R) ⊗ 1AM)α−1)ηI⊗AM

P (KM,R) (by a V -category axiom)

=L(λ−1
AM, 1)L(1, κM,R(1 ⊗ λAM))ηI⊗AM

P (KM,R) (by the triangle identity (54))

=L(λAMλ
−1
AM, 1)L(1, κM,R)ηAM

P (KM,R) (by naturality of η)

=L(1, κM,R)ηAM
P (KM,R) = [ηAM

P (KM,R), 1]L(AM, κM,R)

Thus the prescription (41) leads to the right counit, but this means that the hom morphism
(LanK)Q,R must have precisely the claimed form since LanK A is uniquely functorial such that
the representation, which is induced from this counit, is appropriately natural cf. [9, 1.10] (and
indeed this is how the functoriality of (40) is defined).

Corollary 4. Let T = [K, 1]LanK be the monad of the Kan adjunction from 4.1. The component
at A ∈ [M ,L] of the V -natural transformation µ : TT ⇒ T has component corresponding to
the V -natural (in M,N ∈M ) family

κM,R(MP ⊗ 1)α−1 (43)

under exchange of colimits, Fubini, and (37), where α is the associator of the tensor product cf.
4.3.

Proof. The V -natural transformation µ of the monad is determined by the counit ε of the ad-
junction LanH a [H, 1]. Namely, it is given by the V -natural transformation denoted

[H, 1]εLanH : [H, 1]LanH[H, 1]LanH ⇒ [H, 1]LanH

with component

[H, 1]LanH((LanH A)H),LanH AεLanH A : I → [obP ,L]((LanH((LanHA)H))H, (LanHA)H)



HOMOMORPHISMS OF GRAY-CATEGORIES AS PSEUDO ALGEBRAS 35

at A ∈ [obP ,L]. Since EP factorizes through [H, 1] and πP, the component at Q ∈ P of µA

is simply given by the component of εLanH A at Q. According to Lemma 4, the component of
εLanH A at Q ∈ P is induced from the transform of (LanHA)P,Q, and by Lemma 6, this transform
is precisely given by (43).

4.3 Some properties of tensor products

It is clear from the defining representation isomorphism (33) from 4.2 of the tensor product and
its naturality in X,L, and M that tensor products, for any object L in a tensored V -category L ,
give an adjunction of V -categories as below

(− ⊗ L : V → L) a (L(L,−) : L → V ) . (44)

Because the representation isomorphism is also V -natural in L, it is a consequence of the extra-
variable Yoneda lemma [9, 1.9] that the unit and counit of this adjunction are also extraordinarily
V -natural in L:

Lemma 7. The unit ηL
X : X → L(L, X⊗L) and counit εL

M : L(L,M)⊗L→ M of these adjunctions
are extraordinarily V -natural in L (and ordinarily V -natural in X and M).

Recall that there is a natural (in X,Y,Z ∈ V ) isomorphism

p : [X ⊗ Y,Z] � [X, [Y,Z]] , (45)

which is induced from the closed structure of V via the ordinary Yoneda lemma cf. [9, 1.5].
From p and the hom V -adjunction (33) of the tensor product, we construct a V -natural isomor-
phism

n−1
X,Y⊗L,M[X, n−1

Y,L,M]pnX⊗Y,L,M : L((X ⊗ Y) ⊗ L,M)→ L(X ⊗ (Y ⊗ L),M) , (46)

which, by Yoneda, must be of the form L(α−1
X,Y,L, 1) for a unique V -natural (in X,Y, L) isomor-

phism

α−1
X,Y,L : X ⊗ (Y ⊗ L) � (X ⊗ Y) ⊗ L . (47)

The natural isomorphism (47) is called the associator for the tensor product. Since tensor prod-
ucts reduce to the monoidal structure if L = V , the natural isomorphism (47) is in this special
case, by uniqueness, given by the associator a−1 for the monoidal structure of V .

In fact, there is a pentagon identity in terms of associators α and associators a:

Lemma 8. Given objects W, X, and Y in V , and an object L in a tensored V -category L , the
associators α and a satisfy the pentagon identity

αW,X,Y⊗LαW⊗X,Y,L = (1W ⊗ αX,Y,L)αW,X⊗Y,Z(aW,X,Z ⊗ 1Z) , (48)

which is an identity of isomorphisms

((W ⊗ X) ⊗ Y) ⊗ L→ W ⊗ (X ⊗ (Y ⊗ L)) .
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Proof. The corresponding identity for the inverses is proved by showing that the corresponding
V -natural isomorphisms

L(((W ⊗ X) ⊗ Y) ⊗ L,M) � L(W ⊗ (X ⊗ (Y ⊗ L)),M)

coincide. The V -natural isomorphism corresponding to the inverse of the left hand side of (48)
is readily seen to be given by

n−1
W,X⊗(Y⊗L),M[W, n−1

X,Y⊗L,M[X, n−1
Y,L,M]]ppn(W⊗X)⊗Y,L,M

cf. (46), where we have used naturality of p and cancelled out two factors. Similarly, the
V -natural isomorphism corresponding to the inverse of the right hand side of (48) is given by

n−1
W,X⊗(Y⊗L),M[W, n−1

X,Y⊗L,M[X, [n−1
Y,L,M]]][W, p]p[α−1,L(L,M)]n(W⊗X)⊗Y,L,M .

Thus, the identity (48) is proved as soon as we show that

pp = [W, p]p[a−1,L(L,M)] .

In fact, this last equation reduces to the pentagon identity for a since p is defined via Yoneda by

V0(W, p) = ππV0(a, 1)π−1 ,

where π is the hom Set -adjunction of the closed structure. Namely, one observes that on the one
hand,

V0(V, pp) = V0(V, p)V0(V, p) = ππV0(a, 1)π−1ππV0(a, 1)π−1 = ππV0(a, 1)πV0(a, 1)π−1

= πππV0(a ⊗ 1, 1)V0(a, 1)π−1

= πππV0(a(a ⊗ 1), 1)π−1 ,

and on the other hand,

V0(V, [W, p]p[a−1,L(L,M)]) = V0(V, [W, p])ππV0(a−1, 1)π−1πV0(1 ⊗ a−1, 1)π−1

= V0(V, [W, p])ππV0(a, 1)V0(1 ⊗ a−1, 1)π−1

= πV0(V ⊗W, p)π−1ππV0(a, 1)V0(1 ⊗ a−1, 1)π−1

= πππV0(a, 1)V0(a, 1)V0(1 ⊗ a−1, 1)π−1

= πππV0((1 ⊗ a−1)aa, 1)π−1 .

Similarly, recall that there is a natural (in Z ∈ V ) isomorphism

i : Z � [I,Z] (49)

which is defined via Yoneda by

[X, i−1] = [r−1
X , 1]p−1 : [X, [I,Z]] � [X ⊗ I,Z] � [X,Z] . (50)
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Thus from i and the hom V -adjunction n of the tensor product, we construct a V -natural (in
L,M) isomorphism

n−1
I,L,Mi : L(L,M) � [I,L(L,M)] � L(I ⊗ L,M) . (51)

By Yoneda, (51) must be of the form L(λL, 1) for a unique isomorphism

λL : I ⊗ L→ L , (52)

which must moreover be V -natural in L.
For M = I ⊗ L, composing the inverse of the isomorphism (51) above with jI⊗L,

I → L(I ⊗ L, I ⊗ L) � [I,L(L, I ⊗ L)] � L(L, I ⊗ L) ,

must give λ−1
L —since this is how we get hold of the counit of such a natural transforma-

tion in general—and it is of course also the map corresponding to ηL
I under the isomorphism

[I,L(L, I ⊗ L)] � L(L, I ⊗ L) —because this is exactly the inverse of the first isomorphism in
(51). Conversely, composing (51) for M = L with jM must give λL.

For Y = I, consider the composition of the representation isomorphism (46) i.e.

L(α−1, 1) = n−1
X,I⊗L,M[X, n−1

I,L,M]pnX⊗I,L,M , (53)

with L(rX ⊗ 1, 1). By naturality of n, functoriality of [−,−], and the definition of i via Yoneda
cf. (50), we have the following chain of equations:

L((rX ⊗ 1)α−1, 1) = n−1
X,I⊗L,M[X, n−1

I,L,M]pnX⊗I,L,ML(rX ⊗ 1, 1)

= n−1
X,I⊗L,M[X, n−1

I,L,M]p[rX , 1]nX,L,M

= n−1
X,I⊗L,M[X, n−1

I,L,M][X, i]nX,L,M

= n−1
X,I⊗L,M[X,L(λL, 1)]nX,L,M

= L(1 ⊗ λL, 1) .

Hence, by Yoneda, we have proved the following lemma.

Lemma 9. Given an objects X in V and an object L in a tensored V -category L , there is a
triangle identity for r, λ, and α,

(rX ⊗ 1L)α−1
X,I,L = 1X ⊗ λL , (54)

which is an identity of isomorphisms

X ⊗ (I ⊗ L)→ X ⊗ L .

Lemma 10. Let L,M,N be objects in a tensored V -category L . Then

ML : L(M,N) ⊗ L(L,M)→ L(L,N)

can be identified in terms of the associator α for tensor products and units η and counits ε of the
tensor product adjunctions:

ML = L(L, εM
N (1 ⊗ εL

M)α)ηL
L(M,N)⊗L(L,M) .
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Proof. First, recall that as for any V -adjunction, Yoneda implies the identity L(L,−)MN =

nL(εL
M, 1) cf. [9, (1.53), p. 24], and thus ML = eL(L,M)

L(L,N) (nL(εL
M, 1) ⊗ 1L(L,M)) cf. (15) in 2.5.

The lemma is now proved by the following chain of equations

ML = eL(L,M)
L(L,N) (nL(εL

M, 1) ⊗ 1L(L,M))

= L(1L, ε
L
N)ηL

L(L,N)e
L(L,M)
L(L,N) (nL(εL

M, 1) ⊗ 1L(L,M))

(by a triangle identity for unit and counit of the adjunction (44))

= L(1L, ε
L
N)L(1L, (e

L(L,M)
L(L,N) (nL(εL

M, 1) ⊗ 1L(L,M))) ⊗ 1L)ηL
L(M,N)⊗L(L,M)

(by ordinary naturality of ηL
X in X)

= L(1L, ε
L(L,M)⊗L
N α((L(εL

M, 1) ⊗ 1L(L,M)) ⊗ 1L))ηL
L(M,N)⊗L(L,M)

(see below (∗), by functoriality and the identity ε = ε((e(n ⊗ 1)) ⊗ 1)α−1)

= L(1L, ε
L(L,M)⊗L
N (L(εL

M, 1) ⊗ (1L(L,M) ⊗ 1L))α)ηL
L(M,N)⊗L(L,M)

(by ordinary naturality of α)

= L(1L, ε
M
N (1 ⊗ εL

M)α)ηL
L(M,N)⊗L(L,M)

(by extraordinary naturality of εL
M in L)

To prove the identity used in (∗) consider the morphism

[L(L(L,M) ⊗ L,N),L(L(L,M) ⊗ L,N)]→ L(L(L(L,M) ⊗ L,N) ⊗ (L(L,M) ⊗ L),N)

given by the composite

L(α,N)L((nL(L,M),L,N ⊗ 1) ⊗ 1,N)n−1
[L(L,M),L(L,N)]⊗L(L,M),L,N p−1[n−1

L(M,N),L,N , nL(M,N),L,N] (55)

in V0, where p : [X ⊗ Y,Z] � [X, [Y,Z]] is again the natural isomorphism (45) induced from the
closed structure of V , and where we have added subscripts such that the hom V -adjunction (33)
from 4.2 is now denoted by nX,L,M. If L(α,N) is spelled out in terms of hom V -adjunctions n
and p according to (46), then it is seen by naturality that (55) is in fact the same as

n−1
L(L(L,M)⊗L,N),L(L,M)⊗L,N . (56)

In particular, it is an isomorphism (although this is also clear because each factor is an iso-
morphism) and appropriately V -natural (and this follows from the composition calculus respec-
tively). We now want to show that the unit of this natural isomorphism is given by

εL
N((eL(L,M)

L(L,N) (nL(M,N),L,N ⊗ 1)) ⊗ 1)α−1

because then, by Yoneda, this must be the same as εL(L,M)⊗L
N since this is by definition the unit

of (56).
The unit is obtained by applying (55) (or rather V of it) to 1L(L(L,M)⊗L,N), and we do this

factor-by-factor. First, note that

[n−1
L(M,N),L,N , nL(M,N),L,N](1L(L(L,M)⊗L,N)) = 1[L(L,M),L(L,N)] ,
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and

p(1[L(L,M),L(L,N)]) = eL(L,M)
L(L,N)

because p is the hom V -adjunction with underlying adjunction −⊗Y a [Y,−] given by the closed
structure i.e. V p = π.

Now note that by ordinary naturality of n, we have

[eL(L,M)
L(L,N) , 1] = n[L(L,M),L(L,N)]⊗L(L,M),L,NL(eL(L,M)

L(L,N) ⊗ 1L, 1)n−1
L(L,N),L,N .

Thus because [eL(L,M)
L(L,N) , 1](1L(L,N)) = eL(L,M)

L(L,N) , we may compute n[L(L,M),L(L,N)]⊗L(L,M),L,N(eL(L,M)
L(L,N) )

by applying L(eL(L,M)
L(L,N) ⊗1L, 1)n−1

L(L,N),L,N to 1L(L,N), the result of which is εL
N(eL(L,M)

L(L,N) ⊗1). Finally,
applying the remaining factors L((nL(L,M),L,N ⊗ 1) ⊗ 1,N) and L(α,N) indeed gives (55).

Remark 5. A different strategy for the proof of the lemma, is to first observe that the right
hand side just as ML is ordinarily V -natural in L and N and extraordinarily V -natural in M by
Lemma 7, naturality of α, and the composition calculus. Then the identity in the lemma can be
proved variable-by-variable by use of the Yoneda lemma where one considers the transforms in
the case of the variable M.

For an object X ∈ V and objects L,M ∈ L , recall that the hom V -adjunction (33) from 4.2 of
the tensor product has the following description in terms of the unit and the strict hom functor
of the right adjoint L(L,−),

n = [ηL
X , 1]L(L,−)X⊗L,M : L(X ⊗ L,M)→ [X,L(L,M)] . (57)

With this description of n we are able to derive two important identities for n stated in the
two lemmata below. These are in fact the main technical tools that we employ to achieve the
promised identification of Ps-T -Alg. Recall that there is a V -functor Ten: V ⊗V → V which
is given on objects by sending (X,Y) ∈ obV × obV to their product X ⊗ Y ∈ obV and whose
hom morphism Ten(X,X′),(Y,Y′) : [X, X′] ⊗ [Y,Y ′]→ [X ⊗ Y, X′ ⊗ Y ′] is such that

eX⊗Y
X′⊗Y′(Ten(X,X′),(Y,Y′) ⊗ 1X⊗Y ) = (eX

X′ ⊗ eY
Y′)m (58)

where e denotes evaluation i.e. the counits of the adjunctions comprising the closed structure of
V and where m denotes interchange in V .

The two lemmata specify how n behaves with respect to Ten: V ⊗ V → V and ML in two
specific situations that we will constantly face below.

Lemma 11 (First Transformation Lemma). Given objects X,Y in V , and objects L,M,N in L ,
the following equality of V -morphisms L(X ⊗ M,N) ⊗ L(Y ⊗ L,M)→ [X ⊗ Y,L(L,N)] holds.

[ηL
X⊗Y , 1]L(L,−)(X⊗Y)⊗L,NL(α, 1)ML (1L(X⊗M,N) ⊗ (X ⊗ −)Y⊗L,M)

= [1,ML ]Ten(X,Y),(L(M,N),L(Y⊗L,M))(([ηM
X , 1]L(M,−)X⊗M,N) ⊗ ([ηL

Y , 1]L(L,−)Y⊗L,M))

In terms of the hom V -adjunction (33) from 4.2, this means that

nL(α, 1)ML (Ten(L(X ⊗ M,N),−)X⊗(X⊗L),X⊗M(X ⊗ −)Y⊗L,M) = [1,ML ]Ten(X,Y),(L(M,N),L(L,M))(n ⊗ n) .
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Proof. This is proved by the following chain of equations.

[ηL
X⊗Y , 1]L(L,−)(X⊗Y)⊗L,NL(α, 1)ML (1L(X⊗M,N) ⊗ (X ⊗ −)Y⊗L,M)

= [L(L, α)ηL
X⊗Y , 1]L(L,−)X⊗(Y⊗L),N ML (1L(X⊗M,N) ⊗ (X ⊗ −)Y⊗L,M)

(by the functor axiom for L(L,−) or ordinary V -naturality of L(L,−)M,N in M)

= [L(L, α)ηL
X⊗Y , 1]MV (L(L,−)X⊗M,N ⊗ (L(L,−)X⊗(Y⊗L),X⊗M(X ⊗ −)Y⊗L,M))

(by the functor axiom for L(L,−) )

= MV (L(L,−)X⊗M,N ⊗ ([L(L, α)ηL
X⊗Y , 1]L(L,−)X⊗(Y⊗L),X⊗M(X ⊗ −)Y⊗L,M))

(by ordinary V -naturality of MV or a V -category axiom if spelled out)

= MV (L(L,−)X⊗M,N ⊗ ([L(L, (1X ⊗ ε
L
Y⊗L)α)ηL

X⊗L(L,Y⊗L)(X ⊗ η
L
Y ), 1]L(L,−)X⊗(Y⊗L),X⊗M(X ⊗ −)Y⊗L,M))

(see below (A), by a triangle identity and naturality)

= MV (L(L,−)X⊗M,N ⊗ ([(X ⊗ ηL
Y ),L(L, (1X ⊗ ε

L
M)α)ηL

X⊗L(L,M)]Ten(X,−)L(L,Y⊗L),L(L,M)L(L,−)Y⊗L,M))

(see below (C), by ordinary V -naturality of L(L, (1X ⊗ ε
L
K)α)ηL

X⊗L(L,K) in K)

= MV (L(L,−)X⊗M,N ⊗ ([1,L(L, (1X ⊗ ε
L
M)α)ηL

X⊗L(L,M)](Ten(X,−)Y,L(L,M)[ηL
Y , 1]L(L,−)Y⊗L,M)))

(ordinary V -naturality of Ten(X,−)V,Z in V)

= MV (([L(L, (1X ⊗ ε
L
M)α)ηL

X⊗L(L,M), 1]L(L,−)X⊗M,N) ⊗ (Ten(X,−)Y,L(L,M)[ηL
Y , 1]L(L,−)Y⊗L,M))

(extraordinary V -naturality of MV )

= MV (([ML (ηM
X ⊗ 1L(L,M)), 1]L(L,−)X⊗M,N) ⊗ (Ten(X,−)Y,L(L,M)[ηL

Y , 1]L(L,−)Y⊗L,M))

(see below (B), by a triangle identity, naturality, and Lemma 10)

= MV (([(ηM
X ⊗ 1L(L,M)),ML ]Ten(−,L(L,M))L(M,X⊗M),L(M,N)L(M,−)X⊗M,N)⊗

(Ten(X,−)Y,L(L,M)[ηL
Y , 1]L(L,−)Y⊗L,M))

(see below (D), by ordinary V -naturality of ML )

= MV (([1,ML ]Ten(−,L(L,M))X,L(M,N)[ηM
X , 1]L(M,−)X⊗M,N) ⊗ (Ten(X,−)Y,L(L,M)[ηL

Y , 1]L(L,−)Y⊗L,M))

(ordinary V -naturality of Ten(−,Z)U,W in U)

= [1,ML ]MV ((Ten(−,L(L,M))X,L(M,N)[ηM
X , 1]L(M,−)X⊗M,N) ⊗ (Ten(X,−)Y,L(L,M)[ηL

Y , 1]L(L,−)Y⊗L,M))

(ordinary V -naturality of MV )

= [1,ML ]Ten(X,Y),(L(M,N),L(L,M))(MV ⊗V

(((([ηM
X , 1]L(M,−)X⊗M,N) ⊗ jVL(L,M))r

−1
L(X⊗M,N)) ⊗ (( jVX ⊗ ([ηL

Y , 1]L(L,−)Y⊗L,M))l−1
L(Y⊗L,M))))

(functor axiom for Ten (partial functors spelled out))

= [1,ML ]Ten(X,Y),(L(M,N),L(L,M))

((MV (([ηM
X , 1]L(M,−)X⊗M,N) ⊗ jVX )r−1

L(X⊗M,N)) ⊗ (MV ( jVL(L,M) ⊗ ([ηL
Y , 1]L(L,−)Y⊗L,M))l−1

L(Y⊗L,M)))

(by MV ⊗V = (MV ⊗ MV )m where m is interchange, naturality of m, and m(r−1 ⊗ l−1) = r−1 ⊗ l−1)

= [1,ML ]Ten(X,Y),(L(M,N),L(L,M))(([ηM
X , 1]L(M,−)X⊗M,N) ⊗ ([ηL

Y , 1]L(L,−)Y⊗L,M))

(V -category axioms for V )
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In (A) and (B) we have used the following identities of V -morphisms. For (A), observe that

L(L, α)ηL
X⊗Y = L(L, (1X ⊗ (εL

Y⊗L(ηL
Y ⊗ 1L)))α)ηL

X⊗Y

(by a triangle identity)

= L(L, (1X ⊗ ε
L
Y⊗L)(1X ⊗ (ηL

Y ⊗ 1L))α)ηL
X⊗Y

(by functoriality of X ⊗ −)

= L(L, (1X ⊗ ε
L
Y⊗L)α((1X ⊗ η

L
Y ) ⊗ 1L))ηL

X⊗Y

(by ordinary V -naturality of α)

= L(L, (1X ⊗ ε
L
Y⊗L)α)ηL

X⊗L(L,Y⊗L)(1X ⊗ η
L
Y )

(by ordinary V -naturality of η)

= L(L, (1X ⊗ ε
L
Y⊗L)α)ηL

X⊗L(L,Y⊗L)(X ⊗ η
L
Y )

= L(L, (1X ⊗ ε
L
Y⊗L)α)ηL

X⊗L(L,Y⊗L)Ten(X, ηL
Y ) .

Similarly, for (B) observe that

L(L, (1X ⊗ ε
L
M)α)ηL

X⊗L(L,M) = L(L, εM
X⊗M(ηM

X ⊗ 1M)(1X ⊗ ε
L
M)α)ηL

X⊗L(L,M)

(by a triangle identity)

= L(L, εM
X⊗M(1L(M,X⊗M) ⊗ ε

L
M)(ηM

X ⊗ 1L(L,M)⊗L)α)ηL
X⊗L(L,M)

(by underlying functoriality of the functor ⊗ )

= L(L, εM
X⊗M(1L(M,X⊗M) ⊗ ε

L
M)α((ηM

X ⊗ 1L(L,M)) ⊗ 1L))ηL
X⊗L(L,M)

(by underlying functoriality of ⊗, 1L(L,M)⊗L = 1L(L,M) ⊗ 1L,

and by ordinary V -naturality of α )

= L(L, εM
X⊗M(1L(M,X⊗M) ⊗ ε

L
M)α)ηL

L(M,X⊗M)⊗L(L,M)(η
M
X ⊗ 1L(L,M))

(by ordinary V -naturality of η)

= ML (ηM
X ⊗ 1L(L,M))

(by the identification of ML in Lemma 10 above)

= ML (ηM
X ⊗ L(L,M)) = ML Ten(ηM

X ,L(L,M)) .

Finally, we comment on the V -naturality used in (C) and (D):
For (C) recall that ηL

J is V -natural in J. Then so is ηL
X⊗L(L,K) because this is ηL

PK for P =

L(L,−)(X ⊗ −). Next, recall that α is ordinarily V -natural in all of its variables, and that εL
K

is ordinarily V -natural in K. Then so is 1X ⊗ ε
L
K because this is Q0(εL

K) for Q = (X ⊗ −), and
thus the composite (1X ⊗ ε

L
K)α is ordinarily V -natural in K. From this it follows that L(L, (1X ⊗

εL
K)α) is ordinarily V -natural in K because this is Q0((1X ⊗ ε

L
K)α) for Q = L(L,−). Hence, we

conclude that the composite family L(L, (1X ⊗ ε
L
K)α)ηL

X⊗L(L,K) is ordinarily V -natural in K. That
is, L(L, (1X ⊗ ε

L
K)α)ηL

X⊗L(L,K) is the component at K ∈ L of a V -natural transformation

Ten(X,−)L(L,−)⇒ L(L,−)(X ⊗ −)

where X and L are held constant, and where X ⊗ − : L → L is the partial functor of the tensor
product in contrast to the partial functor Ten(X,−) : V → V induced by the Gray product.
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For (D) recall that ML : L(M,K)⊗L(L,M)→ L(L,K) is V -natural. Since V -naturality may
be verified variable-by-variable, ML is in particular ordinarily V -natural in K. That is, it is the
component at K ∈ L of a V -natural transformation

Ten(−,L(L,M))L(M,−)⇒ L(L,−)

where L and M are held constant.

Lemma 12 (Second Transformation Lemma). Given an object X in V , and objects L,M,N in
L , the following equality of V -morphisms L(X ⊗M,N)⊗L(L,M)→ [X,L(L,N)] holds, where
c is the symmetry of V .

[ηL
X , 1]L(L,−)X⊗L,N ML (1L(X⊗M,N) ⊗ (X ⊗ −)L,M)

= MV ((L(−,N)M,N) ⊗ ([ηM
X , 1]L(M,−)(X⊗M,N))c

In terms of the hom V -adjunction (33) from 4.2, this means that

nML Ten(L(X ⊗ M,N),−)X⊗L,X⊗M(X ⊗ −)L,M = MV (L(−,N)L,M ⊗ n)c

Proof. This is proved by the following chain of equations.

[ηL
X , 1]L(L,−)X⊗L,N ML (1L(X⊗M,N) ⊗ (X ⊗ −)L,M)

= [ηL
X , 1]MV (L(L,−)X⊗M,N ⊗ (L(L,−)X⊗L,X⊗M(X ⊗ −)L,M))

(functor axiom for L(L,−))

= MV (L(L,−)X⊗M,N ⊗ ([ηL
X , 1]L(L,−)X⊗L,X⊗M(X ⊗ −)L,M))

(ordinary V -naturality of MV )

= MV (L(L,−)X⊗M,N ⊗ ([ηL
X , 1]L(−, X ⊗ M)L,M))

(extraordinary V -naturality of ηL
X in L)

= [ηL
X , 1]MV (L(L,−)X⊗M,N ⊗ L(−, X ⊗ M)L,M)

(by ordinary V -naturality of MV )

= [ηM
X , 1]MV ((L(−,N)L,M) ⊗ L(M,−)X⊗M,N)c

(see below, by extraordinary V -naturality of L(L,−)M,N in L )

= MV ((L(−,N)L,M) ⊗ ([ηM
X , 1]L(M,−)X⊗M,N))c

(by ordinary V -naturality of MV )

For the last equation, recall that L(L,−)M,N : L(M,N) → [L(L,M),L(L,N)] is extraordi-
narily V -natural in L when M and N are held constant. That is, L(L,−)M,N has the form
I → [L(M,N),T (A, A)] for the V -functor T = HomV (L(−,M)op ⊗ L(−,N))c : Lop ⊗ L → V ,
where c : Lop⊗L � L⊗Lop is the V -functor mediating the symmetry of the 2-category V -CAT
of V -categories, which is locally given by c, and the corresponding naturality equation is

[L(L,−)X⊗M,N , 1]HomV (−,L(L,N))L(M,X⊗M),L(L,X⊗M)L(−, X ⊗ M)L,M

= [L(M,−)X⊗M,N , 1]HomV (L(M, X ⊗ M),−)L(M,N),L(L,N)L(−,N)L,M .
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This is an equation of V -morphisms L(L,M)→ [L(X ⊗M,N), [L(M, X ⊗M),L(L,N)]], and it
corresponds to an equation of V -morphisms L(L,M)⊗L(X⊗M,N)→ [L(M, X⊗M),L(L,N)]
under the adjunction of the closed structure, which in turn corresponds to an equation of
V -morphisms L(X ⊗ M,N) ⊗ L(L,M)→ [L(M, X ⊗ M),L(L,N)] by composition with c.

Recall that HomV (L(M, X ⊗ M,−),−)L(M,N),L(L,N) corresponds to MV under the adjunction,
while HomV (−,L(L,N))L(M,X⊗M),L(L,X⊗M) corresponds to MV c. The correspondence is given
by application of −⊗L(X⊗M,N) and composition with eL(X⊗M,N)

[L(M,X⊗M),L(L,N)] (and we also compose
with c).

Then the transform of the left hand side of the naturality condition is:

eL(X⊗M,N)
[L(M,X⊗M),L(L,N)]

(([L(L,−)X⊗M,N , 1]HomV (−,L(L,N))L(M,X⊗M),L(L,X⊗M)L(−, X ⊗ M)L,M) ⊗ 1L(X⊗M,N))c

= e[L(L,X⊗M),L(L,N)]
[L(M,X⊗M),L(L,N)]((HomV (−,L(L,N))L(M,X⊗M),L(L,X⊗M)L(−, X ⊗ M)L,M) ⊗ L(L,−)X⊗M,N)c

(by extraordinary V -naturality of e)

= MV c(L(−, X ⊗ M)L,M ⊗ L(L,−)X⊗M,N)c

= MV (L(L,−)X⊗M,N ⊗ L(−, X ⊗ M)L,M)

(by naturality of c and c2 = 1) .

Similarly, the transform of the right hand side of the naturality condition is:

eL(X⊗M,N)
[L(M,X⊗M),L(L,N)]

(([L(M,−)X⊗M,N , 1]HomV (L(M, X ⊗ M),−)L(M,N),L(L,N)L(−,N)L,M) ⊗ 1L(X⊗M,N))c

= e[L(M,X⊗M),L(M,N)]
[L(M,X⊗M),L(L,N)] ((HomV (L(M, X ⊗ M),−)L(M,N),L(L,N)L(−,N)L,M) ⊗ L(M,−)X⊗M,N)c

(by extraordinary V -naturality of e)

= MV (L(−,N)L,M ⊗ L(M,−)X⊗M,N)c .

This proves the missing equation used in the chain of equations above, and thus ends the proof.

5 Identification of the V -category of T -algebras

Let V be complete and cocomplete. Let P be a small and L be a cocomplete V -category,
and denote again by T the V -monad LanH[H, 1] : [obP ,L] → [obP ,L] from 4.1 given by the
Kan adjunction LanH a [H, 1]. Recall that we denote by [obP ,L]T the Eilenberg-Moore object
i.e. the V -category of T -algebras, which we described in Proposition 2 from 2.5 explicitly in
the special case that V = Gray .

We are now going to show that T -Alg is isomorphic as a V -category to the functor V -category
[P ,L] i.e. that [H, 1] is strictly monadic, which is the content of Theorem 4 below.

Lemma 13. Let (A, a) be a T-algebra cf. 2.5. Then A : obP → L and the transforms APQ B

n(aPQ) : P (P,Q)→ L under the adjunction (33) from 4.2 of the components aPQ of a at objects
P,Q ∈ P have the structure of a V -functor. Conversely, if A : P → L is a V -functor, then the
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function on objects considered as a functor A : obP → L and the transformation a induced by
the transforms n−1(APQ) of the strict hom functors are the underlying data of a T-algebra.

Proof. The 1-cell a : T A→ A has component

aQ : (T A)Q =

∫ P∈obP
P (P,Q) ⊗ AP→ AQ

at the object Q ∈ P , and this is in turn induced from the V -natural family of components

aPQ : P (P,Q) ⊗ AP→ AQ .

These are elements of L(P (P,Q) ⊗ AP, AQ). Under the hom V -adjunction (33) from 4.2 of the
tensor product, these correspond to elements of the internal hom [P (P,Q),L(AP, AQ)], i.e.

APQ : P (P,Q)→ L(AP, AQ) .

We now have to examine how the algebra axiom cf. 2.5

M[obP ,L](a,Ta) = M[obP ,L](a, µA)

transforms under the adjunction.
This is an equation of morphisms in [obP ,L]0, which is equivalent to the equations

ML (aQR,P (Q,R) ⊗ aPQ) = ML (aPR, (MP ⊗ 1AP)α−1)

of elements in L(P (Q,R) ⊗ (P (P,Q) ⊗ AP), AR) where P,Q,R run through the objects in P . To
apply the hom V -adjunction (33) from 4.2 for X = P (Q,R)⊗P (P,Q) and L = AP and M = AQ,
we consider the equivalent equations

ML (aQR, (P (Q,R) ⊗ aPQ)α) = ML (aPR,MP ⊗ 1AP) . (59)

Applying Lemma 11 from 4.3 to the left hand side shows that its transform is given by2

ML (AQR ⊗ APQ) .

On the other hand, the image of the right hand side under (57) from 4.3 is determined by the

2In fact, we do not need the full strength of Lemma 11 here, and one could do with more elementary considerations
if one was merely concerned with the identification of algebras.
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following elementary transformations 3.

([ηAP
P (Q,R)⊗P (P,Q), 1]L(L,−)(P (Q,R)⊗P (P,Q))⊗AP,ARML )(aPR,MP ⊗ 1AP)

= [ηAP
P (Q,R)⊗P (P,Q), 1](MV (L(AP,−)P (P,R)⊗AP,AR(aPR),

L(AP,−)(P (Q,R)⊗P (P,Q))⊗AP,P (P,R)⊗AR(MP ⊗ 1AP)))

(by the functor axiom for L(AP,−))

= MV (L(AP,−)P (P,R)⊗AP,AR(aPR),

[ηAP
P (Q,R)⊗P (P,Q), 1](L(AP,−)(P (Q,R)⊗P (P,Q))⊗AP,P (P,R)⊗AR(MP ⊗ 1AP)))

(by ordinary V -naturality of MV )

= MV (L(AP,−)P (P,R)⊗AP,AR(aPR), [1, ηAP
P (P,R)](MP ))

(by ordinary V -naturality of η)

= MV (([ηAP
P (P,R), 1]L(AP,−)P (P,R)⊗AP,AR)(aPR),MP )

(by extraordinary V -naturality of MV )

= MV (APR,MP ) = APRMP

Hence, the algebra axiom is equivalent to the equation

ML (AQR ⊗ APQ) = APQMP , (60)

and this is exactly one of the two axioms for a V -functor.
Now we want to determine the transform of the other axiom of a T -algebra:

1A = M[obP ,L](a, ηA) .

First note that this equation is equivalent to the equations

1AP = ML (aPP, ( jP ⊗ 1)λ−1
AP)

on objects in L(AP, AP) where P runs through the objects of P . In turn, these are equivalent to
the equations

λAP = ML (aPP, jP ⊗ 1) .

By definition of the unitor for the tensor product, the transform of the left hand side is given by
the unit jAP : I → L(AP, AP) of the V -category at AP (under the identification of elements of
the internal hom and morphisms in V ). On the other hand, it is routine to identify the transform
of the right hand side as APP jP. Thus the second axiom of a T -algebra is equivalent to

jAP = APP jP , (61)

and this is exactly the other axiom of a V -functor.

3We will be short on such routine transformations below. The computation here should serve as an example for
basic naturality transformations of the same kind. One could subsume this into another more elementary lemma.
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Recall that the hom object of [obP ,L]T at algebras (A, a) and (B, b) is given by the equalizer

[obP ,L]T (A, B) [obP ,L](A, B) [obP ,L](T A, B)
[obP ,L](a,1)

[obP ,L](1,b)TA,B

.

Spelling out the hom objects of [obP ,L] as in 4.1, this is the same as the following equalizer

[obP ,L]T (A, B) ΠP∈obP L(AP, BP) ΠP∈obP L(
∫ R∈obP P (R, P) ⊗ AR, BP)

ΠL(aP,1)

ΠL(1,bP)(TA,B)P

where EPTA,B = (TA,B)PEP for a unique V -morphism (TA,B)P : L(AP, BP) → L(T AP,T BP).
By (35) and the universal property of the end, this equalizer is the same as the equalizer of the
compositions with ΠP∈obP L(κRP, 1) (by definition (36) of κ and by Yoneda), and since

n : L(P (R, P) ⊗ AR, BP) � [P (R, P),L(AR, BP)] ,

this is in turn the same as the following equalizer

[obP ,L]T (A, B)) ΠP∈obP L(AP, BP) ΠR,P∈obP [P (R, P),L(AR, BP)]
ΠnL(aRP,1)

ΠnL(1,bRP)(P (R,P)⊗−)AR,BR

.

(where we have used that aPκR,P = aRP for the first morphism of the equalizer, and where
we have used that L(κA

R,P, 1)(EP)T A,T BTA,B = L(1, κB
R,P)(P (R, P) ⊗ −)AR,BR(ER)A,B by ordinary

V -naturality of κA
R,P in A and that bPκR,P = bRP for the second morphism of the equalizer).

One can now use the Yoneda lemma to show that this is exactly the equalizer (28) from 4.1
which defines the hom object of the functor V -category: one checks that both the first morphism
given here and the transform of L(A−, AR)RP map the identity at AP to ARP, and both the second
here and the transform of L(AP, B−)PR map the identity at BR to BRP.

Finally, note that the composition law of [obP ,L]T is induced from the composition law of
the functor category [obP ,L], which in turn, is induced from the composition law of L .

Likewise, the composition law of the functor category [P ,L] is induced via the evaluation
functors from the composition law in L , and since the evaluation functors EP : [P ,L] →
L where P ∈ obP factorize through [H, 1] and EP : [obP ,L] → L , this means that
[H, 1] : ob[P ,L] → ob[obP ,L]T and the V -isomorphisms on the hom objects induced from
the comparison of equalizers above satisfy the V -functor axiom.

Similarly, this data is shown to satisfy the unit axiom for a V -functor. This proves the follow-
ing theorem.

Theorem 4. Given a small V -category P and a cocomplete V -category L , then the functor
[H, 1] : [P ,L] → [obP ,L] induced by the inclusion H : obP → L is strictly monadic for the
V -monad T = [H, 1]LanH given by the Kan adjunction LanH a [H, 1]. In particular, the functor
V -category [P ,L] is isomorphic as a V -category to the Eilenberg-Moore object [obP ,L]T in
V -CAT .
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Remark 6. An alternative strategy to achieve this result is to use an enriched version of Beck’s
monadicity theorem (see for example [3, Th. II.2.1]). The Kan adjunction meets the conditions
of such a theorem because [H, 1] creates pointwise colimits, cf. Lemma 3 from 4.1.

Yet another strategy for specific V where an identification of the functor V -category is
known, is to be completely explicit: For example, if V = Gray , the functor category can be
explicitly identified (cf. [7, Prop. 12.2]). With the help of the two Transformation Lemmata 11
and 12 from 4.3 it is then straightforward to identify the algebra 1-cells, algebra 2-cells, and
algebra 3-cells from Proposition 2 from 2.5 explicitly as we have done it for algebras above.

6 Identification of the Gray-category Ps-T -Alg of pseudo
T -algebras

The Gray-category Tricat (P ,L) of trihomomorphisms P → L , tritransformations, trimodi-
fications, and perturbations has been described by Gurski [7, Th. 9.4]. The basic definitions of
the objects and the 2-globular data of the local hom 2-categories, i.e. trihomomorphisms, tri-
transformations, trimodifications, and perturbations may be found in [7, 4.]. These are of course
definitions for the general case that domain and codomain are honest tricategories. In our case,
they simplify considerably because domain and codomain are always Gray-categories.

Let again T = [H, 1]LanH be the Gray-monad on [obP ,L] from 4.1 corresponding to the Kan
adjunction LanH a [H, 1], where P is small and L is cocomplete. The aim of this section is to
prove Theorem 6 below, which states that Ps-T -Alg is isomorphic to the full sub-Gray-category
of Tricat (P ,L) determined by the locally strict trihomomorphisms.

The general idea of the proof is to identify how the pseudo data and axioms transform under
the adjunction (33) from 4.2 of the tensor product. The main technical tools employed are
the two Transformation Lemmata 11 and 12 from 4.3, and elementary identities involving the
associators and unitors a, l, r, α, λ, and ρ, which are implied by the pentagon and triangle identity
as presented in 4.3.

6.1 Homomorphisms of Gray-categories

To characterize how Ps-T -Alg transforms under the adjunction of the tensor product, we now
introduce the notions of Gray homomorphisms between Gray-categories, say P and L , Gray
transformations, Gray modifications, and Gray perturbations in Definitions 9-12. In fact, by ref-
erence to Ps-T -Alg, we show that these form a Gray-category Gray(P ,L). On the other hand,
we maintain that this is in fact the natural notion of a (locally strict) trihomomorphism when
domain and target are Gray-categories, and when the definitions are to be given on Gray prod-
ucts and in terms of their composition laws, say MP and ML , rather than on cartesian products
and in terms of the corresponding cubical composition functors. Thus, the definitions below are
easily seen to be mild context-related modifications of the definitions of (locally strict) triho-
momorphisms between Gray-categories, tritransformations, trimodifications, and perturbations
cf. [7, 4.].

Definition 9. A Gray homomorphism A : P → L consists of
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• a function on the objects P 7→ AP denoted by the same letter as the trihomomorphism
itself;

• for objects P,Q ∈ P , a strict functor APQ : P (P,Q)→ L(AP, AQ);

• for objects P,Q,R ∈ P , an adjoint equivalence

(χ, χ•) : ML (AQR ⊗ APQ)⇒ APRMP : P (Q,R) ⊗ P (P,Q)→ L(AP, AR) ;

• for each object P ∈ P , an adjoint equivalence

(ι, ι•) : jAP ⇒ APP jP : I → L(AP, AP) ;

• and three families of invertible modifications (GHM1)-(GHM3) which are subject to two
axioms (GHA1)-(GHA2):

(GHM1) For objects P,Q,R, S ∈ P , an invertible modification

ωPQRS : [(MP ⊗ 1)a−1, 1](χPQS ) ∗ [a−1,ML ](Ten(χQRS , 1APQ))

V [1 ⊗ MP , 1](χPRS ) ∗ [1,ML ](Ten(1ARS , χPQR))

of pseudonatural transformations

ML (1 ⊗ ML )(ARS ⊗ (AQR ⊗ APQ))⇒ APS (1 ⊗ MP (1 ⊗ MP ))

of strict functors

P (R, S ) ⊗ (P (Q,R) ⊗ P (P,Q))→ L(AP, AS ) .

(GHM2) For objects P,Q ∈ P , an invertible modification

γPQ : [( jQ ⊗ 1)l−1
P (P,Q), 1](χPQQ) ∗ [l−1

P (P,Q),ML ](Ten(ιQ, 1APQ))V 1APQ

of pseudonatural transformations APQ ⇒ APQ : P (P,Q)→ L(AP, AQ) .
(GHM3) For objects P,Q ∈ P , an invertible modification

δPQ : 1APQ V [(1 ⊗ jP)r−1
P (P,Q), 1](χPPQ) ∗ [r−1

P (P,Q),ML ](Ten(1APQ , ιP))

of pseudonatural transformations APQ ⇒ APQ : P (P,Q)→ L(AP, AQ) .
(GHA1) For objects P,Q,R, S ,T ∈ P , the following equation of vertical composites of
whiskered modifications is required:

[1 ⊗ (1 ⊗ MP ), 1](ω) ∗ 1[ML (1⊗ML )](Ten(1,Ten(1,χ)))

� 1[(MP⊗MP )a−1,1](χ) ∗ [a−1,ML ](Ten(Σχ,χ))

� [(MP ⊗ 1)a−1, 1](ω) ∗ 1[a−1a−1,ML (ML⊗1)](Ten(Ten(χ,1),1))

= 1[1⊗(MP (1⊗MP )),1](χ) ∗ [1,ML ](Ten(1, ω))

� [1 ⊗ ((MP ⊗ 1)a−1), 1](ω) ∗ 1[a−1(1⊗a−1),ML (ML⊗1)](Ten(Ten(1,χ),1))

� 1[(MP (1⊗MP )a)⊗1,1](χ) ∗ [(a ⊗ 1)a−1a−1,ML ](Ten(ω, 1))
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To save space, we here employed the notation that vertical composition binds less strictly than
horizontal composition ∗, which is also indicated by a line break. Also Ten always denotes the
corresponding strict hom functor of the Gray-functor Ten: Gray ⊗ Gray → Gray cf. eq. (58)
from 4.3 above. It is to be noted that in each vertical factor there appears only one nontrivial
horizontal factor, and this applies generally to the following definitions.

The axiom is an equation of 2-cells i.e. modifications

[((MP (MP ⊗ 1)) ⊗ 1)a−1a−1, 1](χPQT )

∗ [((MP ⊗ 1) ⊗ 1)a−1a−1,ML ](Ten(χQRT , 1))

∗ [a−1a−1,ML (ML ⊗ 1)](Ten(Ten(χRS T , 1), 1))

V [1 ⊗ (MP (1 ⊗ MP )), 1](χPS T )

∗ [1 ⊗ (1 ⊗ MP ),ML ](Ten(1, χPRS ))

∗ [1,ML (1 ⊗ ML )](Ten(1,Ten(1, χPQR)))

between 1-cells i.e. pseudonatural transformations

ML (1 ⊗ (ML (1 ⊗ ML )))(AS T ⊗ (ARS ⊗ (AQR ⊗ APQ)))⇒ APT MP (1 ⊗ (MP (1 ⊗ MP )))

of strict functors

P (S ,T ) ⊗ (P (R, S ) ⊗ (P (Q,R) ⊗ P (P,Q)))→ L(AP, AT ) .

We remark that we chose another bracketing than in the definition of a trihomomorphism in the
references [7] and [4]. The difference is of course not substantive.
(GHA2) For objects P,Q,R ∈ P , the following equation of modifications is required:

1χ ∗ [1,ML ](Ten(11AQR
, γPQ))

� [1 ⊗ (( jQ ⊗ 1)l−1
P (P,Q)), 1](ωPQQR) ∗ 1[r−1

P (Q,R)⊗1,ML (ML⊗1)](Ten(Ten(1,ι),1))

= 1[((1⊗ j)r−1)⊗1](χ) ∗ [1,ML ](Ten(δ−1
QR, 11APQ

))

This is an equation of 2-cells i.e. modifications

χPQR V χPQR : ML (AQR ⊗ APQ)⇒ APRML : P (Q,R) ⊗ P (P,Q)→ L(AP, AR) .

Definition 10. Let A, B : P → L be homomorphisms of Gray-categories. A Gray transforma-
tion f : A⇒ B consists of

• a family ( fp)P∈obP of objects fP : AP→ BP in L(AP, BP) ;

• for objects P,Q ∈ P , an adjoint equivalence

( fPQ, f •PQ) : L(AP, fQ)APQ ⇒ L( fP, BQ)BPQ : P (P,Q)→ L(AP, BQ) ;

• and two families of invertible modifications (GTM1)-(GTM2) which are subject to three
axioms (GTA1)-(GTA3):
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(GTM1) For objects P,Q,R ∈ P , an invertible modification

ΠPQR : [1,L( fP, BR)](χB
PQR) ∗ [1,ML ](Ten(1BQR , fPQ)) ∗ [1,ML ](Ten( fQR, 1APQ))

V [MP , 1]( fPR) ∗ [1,L(AP, fR)](χA
PQR)

of pseudonatural transformations ML ((L(AQ, fR)AQR) ⊗ APQ) ⇒ L( fP, BR)BPRMP of strict
functors P (Q,R) ⊗ P (P,Q)→ L(AP, BR) ;
(GTM1) For each object P ∈ P , an invertible modification

MP : [ jP, 1]( fPP) ∗ [1,L(AP, fP)](ιAP)V [1,L( fP, BP)](ιBP)

of pseudonatural transformations fP ⇒ L( fp, BP)BPP jP : I → L(AP, BP) .
(GTA1) For objects P,Q,R, S ∈ P , the following equation of vertical composites of whiskered
modifications is required:

1[MP (1⊗MP ),1]( fPS ) ∗ [1,L(AP, fS )](ωA)

� [(MP ⊗ 1)a−1, 1](Π) ∗ 1[1⊗a−1,ML (1⊗ML )](Ten(Ten(1,χA),1))

� 1[(MP⊗1)a−1,L( fP,BS )](χB) ∗ 1[(MP⊗1)a−1,ML ]Ten(1, fPQ) ∗ [a−1,ML ](Ten(Π, 11APQ
))

� 1[(MP⊗1)a−1,L( fP,BS )](χB) ∗ [a−1,ML ](Ten(ΣχB, fPQ))

∗ 1[a−1,ML (ML⊗1)]Ten(Ten(1, fQR),1) ∗ 1[a−1,ML (ML⊗1)]Ten(Ten( fRS ,1),1)

= [1 ⊗ MP , 1](Π) ∗ 1[1,L(AP, fS )ML ]Ten(1,χA)

� 1[1⊗MP ,L( fP,BS )](χB) ∗ 1[1⊗MP,ML ]Ten(1, fPR) ∗ [1,ML ](Ten(Σ−1
fRS ,χA))

� 1[1⊗MP ,L( fP,BS )](χB) ∗ [1,ML ](Ten(11BRS
,Π)) ∗ 1[a−1,ML (ML⊗1)]Ten(Ten( fRS ,1),1)

� [1,L( fP, BS )](ωB) ∗ 1[1,ML (ML⊗1)](Ten(1,Ten(1, fPQ)))

∗ 1[a−1,ML (ML⊗1)]Ten(Ten(1, fQR),1) ∗ 1[a−1,ML (ML⊗1)]Ten(Ten( fRS ,1),1)

This is an equation of modifications

∗ [(MP ⊗ 1)a−1,L( fP, BS )](χB)

∗ [a−1,L( fP, BS )ML ](Ten(χB, 1))

∗ [1,ML (ML ⊗ 1)](Ten(1,Ten(1, fPQ)))

∗ [a−1,ML (ML ⊗ 1)]Ten(Ten(1, fQR), 1)

∗ [a−1,ML (ML ⊗ 1)]Ten(Ten( fRS , 1), 1)

V [MP (1 ⊗ MP ), 1] fPS

∗ [1 ⊗ MP ,L(1, fS )](χA)

∗ [1,L(1, fS )ML ]Ten(1, χA)

of pseudonatural transformations

L(AR, fS )ML (1 ⊗ ML )(ARS ⊗ (AQR ⊗ APQ))⇒ L( fP, BS )BPS MP (1 ⊗ MP )
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of strict functors

P (R, S ) ⊗ (P (Q,R) ⊗ P (P,Q))→ L(AP, BS ) .

(GTA2) For objects P,Q ∈ P , the following equation of vertical composites of whiskered
modifications is required:

1 fPQ ∗ [1,L(AP, fQ)](γA
PQ)

� [( jQ ⊗ 1)l−1
P (P,Q), 1](ΠPQQ) ∗ 1[l−1

P (P,Q),ML ](Ten([1,L(1, fQ)](ιAQ),1APQ ))

= [1,L( fP, BQ)](γB
PQ) ∗ 1 fPQ

� 1[( jQ⊗1)l−1
P (P,Q),L( fP,1)](χB

PQQ) ∗ [l−1
P (P,Q),ML ](Ten(Σ−1

ιBQ, fPQ
))

� 1[( jQ⊗1)l−1
P (P,Q),L( fP,1)](χB

PQQ) ∗ 1[((BQQ jQ)⊗1)l−1
P (P,Q),ML ](Ten(1, fPQ)) ∗ [l−1

P (P,Q),ML ](Ten(MQ, 11APQ
))

This is an equation of modifications

[( jQ ⊗ 1)l−1
P (P,Q),L( fP, BQ)](χPQQ) ∗ [((BQQ jQ) ⊗ 1)l−1

P (P,Q),ML ](Ten(1, fPQ))

∗ [(( jQ ⊗ 1)l−1
P (P,Q),ML ](Ten( fQQ, 1)) ∗ [l−1

P (P,Q),L(AP, fQ)](ιQ)

V fPQ .

(GTA3) For objects P,Q ∈ P , the following equation of vertical composites of whiskered
modifications is required:

[1,L( fP, BQ)]((δB)−1
PQ) ∗ 1 fPQ

� 1[(1⊗ jP)r−1
P (P,Q),L( fP,BQ)](χB

PPQ) ∗ [r−1
P (P,Q),ML ](Ten(11BPQ

,MP)) ∗ 1 fPQ

= 1 fPQ ∗ [1,L(AP, fQ)]((δA)−1
PQ)

� [(1 ⊗ jP)r−1
P (P,Q), 1](ΠPPQ) ∗ 1[r−1

P (P,Q),ML ](Ten(1L(AP, fQ)APQ ,ι
A
P))

� 1[(1⊗ jP)r−1
P (P,Q),L( fP,BQ)](χB

PPQ) ∗ 1[(1⊗ jP)r−1
P (P,Q),ML ](Ten(1BPQ , fPP)) ∗ [r−1

P (P,Q),ML ](Ten(Σ−1
fPQ,ι

A
P
))

This is an equation of modifications

[(1 ⊗ jP)r−1
P (P,Q),L( fP, BQ)](χB

PPQ) ∗ [(1 ⊗ jP)r−1,ML ](Ten(1BPQ , fPP))

∗ [r−1
P (P,Q),ML ](Ten(1BPQ , [1,L(AP, fP)](ιP))) ∗ fPQ

V fPQ .

Definition 11. Let f , g : A ⇒ B : P → L be Gray transformations. A Gray modification
α : f V g consists of

• a family (αP)P∈obP of 1-cells αP : fP → gP in L(AP, BP) ;

• and one family of invertible modifications (GMM1) which is subject to two axioms
(GMA1)-(GMA2):
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(GMM1) For objects P,Q ∈ P , an invertible modification

αPQ : [BPQ, 1](L(αP, BQ)) ∗ fPQ V gPQ ∗ [APQ, 1](L(AP, αQ))

of pseudonatural transformations

L(AP, fQ)APQ ⇒ L(gP, BQ)BPQ : P (P,Q)→ L(AP, BQ) .

(GMA1) For objects P,Q,R ∈ P , the following equation of vertical composites of whiskered
modifications is required:

Πg ∗ 1[1,ML ](Ten([AQR,1](L(AQ,αR)),1))

� 1MGray (1,χB
PQR) ∗ 1[1,ML ](Ten(1,gPQ)) ∗ [1,ML ](Ten(αQR, 11APQ

))

� 1MGray (1,χB
PQR) ∗ [1,ML ](Ten(11BQR

, αPQ)) ∗ 1[1,ML ](Ten( fQR,1APQ ))

� MGray (ΣL(αP,BR),χB
PQR

) ∗ 1[1,ML ](Ten(1BQR , fPQ)) ∗ 1[1,ML ](Ten( fQR,1APQ ))

= 1[MP ,1](αPR) ∗ MGray (ΣL(AP,αP),χA
PQR

)

� [MP , 1](αPR) ∗ 1MGray (1,χA
PQR)

� 1[BPR MP ,1](L(αP,BR)) ∗ Π f

This is an equation of modifications

[BPRMP , 1](L(αP, BR))

∗ 1MGray (1,χB
PQR)

∗ [1,ML ](Ten(1BQR , fPQ))

∗ [1,ML ](Ten( fQR, 1APQ))

V [MP , 1](gPR)

∗ MGray (1, χA
PQR)

∗ [1,ML ](Ten([AQR, 1](L(AQ, αR)), 1))

of pseudonatural transformations

ML ((L(AQ, fR)AQR) ⊗ APQ)⇒ L(gP, BR)BPRMP .

(GMA2) For an object P ∈ P , the following equation of vertical composites of whiskered
modifications is required:

Mg ∗ 1αP

� 1[ jP,1](gPP) ∗ MGray (ΣL(AP,αP),ιAP
)

� [ jP, 1](αPP) ∗ 1[1,L(AP, fP)](ιAP)

= MGray (ΣL(αP,BP),ιBP
)

� 1[l−1
I ,ML ](Ten(1GPP jP ,αP)) ∗ M f
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This is an equation of modifications

[l−1
I ,ML ](Ten(1GPP jP , αP)) ∗ fPP ∗ [l−1

I ,ML ](Ten(1 fP , ι
A
P))V [l−1

I ,ML ](Ten(ιGP , 1gP)) ∗ αP

of pseudonatural transformations

fP ⇒ ML ((GPP jP) ⊗ gP)l−1
I : I → L(AP, BP) .

Definition 12. Let α, β : f V g : A⇒ B : P → L be Gray modifications. A Gray perturbation
Γ : α β consists of

• a family of 2-cells ΓP : αP ⇒ βP in L(AP, BP);

• subject to one axiom (GPA1):

(GPA1) For objects P,Q ∈ P the following equation of vertical composites of whiskered mod-
ifications is required:

αPQ � ([BPQ, 1](L(ΓP, BP)) ∗ 1 fPQ) = (1gPQ ∗ [APQ, 1](L(AP,ΓQ))) � βPQ

This is an equation of modifications

[BPQ, 1](L(αP, BP)) ∗ fPQ ⇒ [APQ, 1](L(AP, βQ)) .

6.2 The correspondence of Gray homomorphisms and pseudo algebras

The following theorem is one of the main results, and forms the first part of the promised corre-
spondence of pseudo algebras and locally strict trihomomorphisms.

Theorem 5. Let P be a small Gray-category and L be a cocomplete Gray-category, and let T
be the monad corresponding to the Kan adjunction. Then the notions of Gray homomorphism,
Gray transformation, Gray modification, and Gray perturbation are precisely the transforms
of the notions of a pseudo algebra, a pseudo functor, a pseudo transformation, and a pseudo
modification respectively for the monad T = [H, 1]LanH on [obP ,L].

We only present parts of the proof explicitly. The proof involves the determination of trans-
forms under the hom Gray-adjunction (33) from 4.2. These determinations involve the pentagon
identity (48) and triangle identity (54) from 4.3 for associators and unitors both of the tensor
products and of the monoidal category Gray . We also need naturality of these associators and
unitors as presented in the same paragraph. On the other hand, there are elementary identities
due to naturality, which are similar to the one we displayed for the transform of the right hand
side of the algebra axiom (59) above in 5., and then there is heavy use of the two technical
Transformation Lemmata 11 and 12 from 4.3. In pursuing the proof, one quickly notices that
many of the determinations of transforms are similar to each other. While we cannot display all
of the computations, it is our aim to at least characterize the arguments needed for these different
classes of transforms. Thus, in the lemmata below we provide examples that should serve as a
complete guideline for the rest of the proof.
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Lemma 14. Taking transforms under the adjunction (33) of the tensor product from 4.2 induces
a one-to-one correspondence of Gray homomorphisms P → L and pseudo algebras for the
monad T = [H, 1]LanH on [obP ,L].

Proof. Let (A, a,m, i, π, λ, ρ) be a pseudo T -algebra. From the identification of algebras we
know that the components aPQ of the 1-cell a : T A → A transform into strict functors
APQ : P (P,Q) → L(AP, AQ) under the hom Gray-adjunction (33) from 4.2 of the tensor prod-
uct.

Since the adjoint equivalences m and i replace the two algebra axioms, we define adjoint
equivalences (χPQR, χ

•
PQR) B (nL(α, 1))(mPQR,m•PQR) for objects P,Q,R ∈ P and (ιP, ι•P) B

(nL(λ, 1))(iP, i•P) for an object P ∈ P . We have already determined domain and codomain
of these transforms in the identification of the algebra axiom, and the adjoint equivalences in
Definition 9 from 6.1 do indeed replace the axioms of a Gray-functor cf. (60) and (61) in 5.
above.

Next we have to show that the transforms of the components of the invertible 3-cells π, λ, and
ρ correspond to the invertible modifications ωPQRS , γPQ, and δPQ in the definition of a Gray
homomorphism.

The components of π at objects P,Q,R, S ∈ P are invertible 3-cells in L . We apply the
invertible strict functor L((1 ⊗ α)α, 1) to bring them into a form where we can apply the hom
Gray-adjunction (33) from 4.2. We then obtain invertible 3-cells L((1 ⊗ α)α, 1)(πPQRS ) of the
form

ML (mPQS , 1α(((MP⊗1)a−1)⊗1)) ∗ ML (mQRS , 1(1P (R,S )⊗P (Q,R)⊗aPQ)α(a−1⊗1))

V ML (mPRS , 1(P (R,S )⊗((MP⊗1AP)α−1))) ∗ ML (1aRS ,L(α, 1)(P (R, S ) ⊗ mPQR)) ,

where we have already used the pentagon identity (48) from 4.3 for α and a.
The computations below then determine the transforms of the horizontal factors and show that

these coincide precisely with the horizontal factors in the domain and codomain of the invertible
modification ωPQRS in Definition 9 from 6.1. For brevity we have suppressed many indices e.g.
those of hom morphisms where we leave a comma as a subscript to indicate that they are hom
morphisms.

Transform of the right hand factor of the domain:

([η, 1]L(AP,−),)(ML (mQRS , 1(1P (R,S )⊗P (Q,R)⊗aPQ)α(a−1⊗1)))

=([a−1, 1][η, 1]L(AP,−),L(α, 1)ML (1 ⊗ ((P (R, S ) ⊗ P (Q,R)) ⊗ −),))(mQRS , 1aPQ)

(by naturality)

=[a−1,ML ]Ten,(χQRS , 1APQ)

(by Lemma 11 from 4.3)

Transform of the left hand factor of the domain:

([η, 1]L(AP,−),)(ML (mPQS , 1α(((MP⊗1)a−1)⊗1)))

=([(MP ⊗ 1)a−1, 1][η, 1]L(AP,−),L(α, 1))(mPQS )

(by naturality)

=[(MP ⊗ 1)a−1, 1](χPQS )
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Transform of the right hand factor of the codomain:

([η, 1]L(AP,−),)(ML (1aRS ,L(a, 1)(P (R, S ) ⊗ mPQR)))

=[1,ML ]Ten,(1ARS , χPQR)

(by Lemma 11 from 4.3 )

Transform of the left hand factor of the codomain:

([η, 1]L(AP,−),)(ML (mPRS , 1(P (R,S )⊗((MP⊗1AP)α−1)))))

=[1 ⊗ MP , 1](χPRS )

(by naturality)

Thus we may define ωPQRS as the transform (nL((1 ⊗ α)α, 1)(πPQRS ).
Similarly, it is shown that γPQ and δPQ may be defined as the transforms of λPQ and ρPQ

(where one has to use the first Transformation Lemma and the triangle identity).
Finally we have to show that the axioms of a Gray homomorphism are precisely the transforms

of the axioms of a pseudo algebra. Observe that because there are only two axioms in the
definition of a pseudo algebra, it is crucial that by Proposition 3 from 3.1 two of the lax algebra
axioms are redundant for a pseudo algebra4.

Now consider the pentagon-like axiom. The corresponding Gray homomorphism axiom and
the pseudo algebra axiom are both composed out of three vertical factors on each side of the
axiom. Each of the vertical factors is the horizontal composition of a nontrivial 2-cell and an
identity 2-cell. Since the hom Gray-adjunction (33) of the tensor product from 4.2 is given by
strict functors, it preserves vertical and horizontal composition and it preserves identity 2-cells.
It follows that we only have to show that the nontrivial 2-cells in each vertical factor match. In
diagrammatic language this means that we only have to compare the nontrivial subdiagrams.

In fact, the determination of the transforms of the nontrivial 2-cells of the pseudo algebra
axiom is perfectly straightforward and similar to the identification of the transforms of πPQRS ’s
domain and codomain above. For example, the transform of the interchange cell is:

([η, 1]L(AP,−),ML )(ΣmRS T ,L(α(a−1⊗1),1)(P (R,S )⊗−),(mPQR))

=([η, 1]L(AP,−),ML (1 ⊗ (L(α(a−1 ⊗ 1), 1)(P (R, S ) ⊗ −),)))(ΣmRS T ,mPQR)

(by equation (4) from 2.3)

=([a−1, 1][η, 1]L(AP,−),L(α, 1)ML (1 ⊗ (P (R, S ) ⊗ −),))(ΣmRS T ,mPQR)

(by naturality of ML , L(AP,−),, and η)

=[a−1,ML ]Ten,(ΣχRS T ,χPQR)

(by Lemma 11 from 4.3)

This is exactly the interchange cell appearing in the pentagon-like axiom of a Gray homomor-
phism.

4We show below that Gray homomorphisms correspond to locally strict trihomomorphisms. The two redundant
axioms correspond to two equations for a trihomomorphism that hold generally: This can be shown because they
hold for strict trihomomorphisms by the left and right normalization axiom of a tricategory, and then they hold
for a general trihomomorphism by coherence.
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Notice that the proof above only involved the first Transformation Lemma from 4.3, namely
Lemma 11. To show how the second Transformation Lemma i.e. Lemma 12 from 4.3 enters
in the proof of Theorem 5, we provide the following lemma regarding the first axiom of a T -
transformation. In fact, one has to employ Lemma 12 already in the proof of the correspondence
for pseudo T -functors, but only for the axioms of a T -transformation, there appears a new class
of interchange cells. Thus we skip the proof for the correspondence of pseudo T -functors and
Gray transformations, and for the correspondence of the data of a T -transformation and the data
of a Gray modification.

Lemma 15. The transform of the first axiom (LTA1) of a T-transformation α : f → g : A→ B
is precisely the second axiom (GMA2) of a Gray modification.

Proof. First note that the T -transformation axiom (LTA1) cf. Definition 3 from 3.1 is equivalent
to the equations

(hg
P ∗ 1) � (1 ∗ ML (ΣαP,iAP

)) � (ML (APP, 1( jP⊗1)λ−1
AP

) ∗ 1)

= ML (Σ−1
iB
P,αP

) � (1 ∗ h f
P) .

where P runs through the objects of P . We apply the invertible strict functor L(λAP, 1) to these
equations, which gives the following equivalent equations:

(L(λAP, 1)(hg
P) ∗ 1) � (1 ∗ ML (ΣαP,L(λAP,1)(iAP))) � (ML (APP, 1 jP⊗1) ∗ 1)

= ML (Σ−1
iB
P,L(λAP,1)(αP)) � (1 ∗ L(λAP, 1)(h f

P)) .

Here we have used naturality of ML and equation (4) from 2.3 for the manipulation of the
interchange cells. As above we only have to compare the transforms of the nontrivial 2-cells.
The transforms of L(λAP, 1)(hg

P) and L(λAP, 1)(h f
p ) are by definition the modifications Mg and

M f of the Gray transformation corresponding to the pseudo T -functors f and g. The transform
of ML (APP, 1 jP⊗1) is by naturality [ jP, 1](αPP).

The transform of the interchange cell ML (ΣαP,L(λAP,1)iAP
) is determined as follows:

([ηAP
I , 1]L(AP,−)I⊗AP,BP)(ML (ΣαP,L(λAP,1)iAP

))

=MGray (L(AP,−)AP,BP ⊗ ([ηAP
I , 1]L(AP,−)I⊗AP,AP))(ΣαP,(L(λAP,1)(iAP)))

(by the functor axiom for L(AP,−) and naturality of MGray )

=MGray (ΣL(AP,αP),[ηAP
I ,1]L(AP,−)I⊗AP,AP(L(λAP,1)(iAP)))

(by equation (4) from 2.3)

=MGray (ΣL(AP,αP),ιAP
)
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The transform of the interchange cell left is:

([ηAP
I , 1]L(AP,−)I⊗AP,BP)(ML (Σ−1

iB
P,L(λAP,1)(αP)))

=([ηAP
I , 1]L(AP,−)I⊗AP,BP)((ML (1 ⊗ (I ⊗ −),))(Σ−1

L(λAP,1)(iB
P),αP

))

(by naturality of λ, equation (4) from 2.3, and extraordinary naturality of MGray )

=(MGray ((L(−, BP)AP,BP) ⊗ ([ηAP
I , 1]L(AP,−)(I⊗AP,AP))c)(Σ−1

L(λAP,1)(iB
P),αP

))

(by Lemma 12 from 4.3)

=(MGray ((L(−, BP)AP,BP) ⊗ ([ηAP
I , 1]L(AP,−)(I⊗AP,AP)))(ΣαP,L(λAP,1)(iB

P)))

(by equation (8) from 2.3)

=MGray (ΣL(αP,BP),ιBP
)

(by equation (4) from 2.3)

This finishes our exhibition of the proof of Theorem 5, and we end this paragraph with the
following trivial corollary of Theorem 5:

Corollary 5. Given Gray-categories P and L , there is a Gray-category Gray(P ,L) with objects
Gray homomorphisms, 1-cells Gray transformations, 2-cells Gray modifications, and 3-cells
Gray perturbations. If P is small and L is cocomplete, Gray(P ,L) is uniquely characterized by
the requirement that the correspondence from Theorem 5 induces an isomorphism

Ps-T -Alg � Gray(P ,L)

of Gray-categories for T = [H, 1]LanH : [obP ,L]→ [obP ,L].

Remark 7. Strictly speaking, Gray(P ,L) can of course only inherit the Gray-category structure
from Ps-T -Alg in the situation that the left Kan extension LanH along H : obP → P exists
and has the explicit description from 4.2, e.g. if P is small and L is cocomplete, but in fact
the prescriptions obtained in this case for the local 2-category structure and the Gray-category
structure of Gray(P ,L) are also valid if we are not in this situation i.e. if there are no restrictions
on P and L cf. Theorem 6 below.

6.3 The correspondence with locally strict trihomomorphisms

The next theorem forms the second part of the promised correspondence of pseudo algebras and
locally strict trihomomorphisms, which is then proved in Theorem 7 below.

Theorem 6. Given Gray-categories P and L , the Gray-category Gray(P ,L) is isomorphic as
a Gray-category to the full sub-Gray-category Tricat ls(P ,L) of Tricat (P ,L) determined by the
locally strict trihomomorphisms.

Again, we just indicate how the proof works, but we want to stress that the steps of the
proof not displayed have been explicitly checked and they are indeed entirely analogous to the
situations we discuss in the lemmata below.



58 HOMOMORPHISMS OF GRAY-CATEGORIES AS PSEUDO ALGEBRAS

Lemma 16. Given Gray-categories P and L , there is a one-to-one correspondence between
locally strict trihomomorphisms P → L and Gray homomorphisms P → L .

Proof. Comparing the definitions, the first thing to be noticed is that Definitions 9-12 from 6.1
involve considerably less cell data than the tricategorical definitions cf. [7, 4.3]. Since P and L
are Gray-categories, these supernumerary cells are all trivial.

Consider, for example, a locally strict trihomomorphism A : P → L . Recall that this is
given by (i) a function on the objects P 7→ AP; (ii) for objects P,Q ∈ P , a strict functor
APQ : P (P,Q)→ L(AP, AQ); (iii) for objects P,Q,R ∈ P , an adjoint equivalence

(χPQR, χ
•
PQR) : MLC(AQR × APQ)⇒ APRMP C ,

where C is again the universal cubical functor, and an adjoint equivalence

(ιP, ι•P) : jAP ⇒ APP jP

if P = Q = R; (iv) and three families ω, γ, δ of invertible modifications subject to two axioms.
Up to this point, this looks very similar to Definition 9 from 6.1, the difference being in the
form of domain and codomain of the adjoint equivalence (χPQR, χ

•
PQR). However, observing that

C(AQR×APQ) = (AQR⊗APQ)C by naturality of C, it is clear from Proposition 1 from 2.4 that this
corresponds to an adjoint equivalence (χ̂PQR, χ̂

•
PQR) as in the definition of a Gray homomorphism

such that C∗(χ̂PQR, χ̂
•
PQR) = (χPQR, χ

•
PQR).

Next, given objects P,Q,R, S ∈ P , the modification ωPQRS has the form5

ωPQRS : (((MP C) × 1)a−1
× )∗(χPQS ) ∗ (a−1

× )∗(MLC)∗(χQRS × 1APQ)

V (1 × (MP C))∗(χPRS ) ∗ (MLC)∗(1ARS × χPQR)

where we used strictness of the local functors, and where we made the monoidal structure of the
cartesian product explicit, e.g. a× denotes the corresponding associator.

This is the same as

ωPQRS : (C(1 ×C))∗([(MP ⊗ 1)a−1, 1](χ̂PQS ) ∗ [a−1,ML ](Ten(χ̂QRS , 1APQ)))

V (C(1 ×C))∗([1 ⊗ MP , 1](χ̂PRS ) ∗ [1,ML ](Ten(1ARS , χ̂PQR))) .

Here we have used that aC(C × 1)a−1
× = C(1 × C) on the left hand side, that C commutes with

the hom functors of Ten and × i.e.

C∗×(X,Y),(X′,Y′) = C∗Ten(X,Y),(X′,Y′)C : [X, X′] × [Y,Y ′]→ [X × Y, X′ ⊗ Y ′]

where ×(X,Y),(X′,Y′) : [X, X′] × [Y,Y ′]→ [X × Y, X′ × Y ′] (on objects, this is naturality of C), that
(FG)∗ = F∗G∗ and (FG)∗ = G∗F∗, that (C(1 × C))∗ is strict, that (−)∗ and (−)∗ coincide with
the partial functors of [−,−] for strict functors, and that apart from the cubical functor C, all
functors are strict.

By Theorem 2 from 2.4, ωPQRS corresponds to an invertible modification ω̂PQRS as in the
definition of a Gray homomorphism such that (C(1 ×C))∗ω̂PQRS = ωPQRS .

5We again remark that we here and in fact always use a different bracketing than the one employed in [7]. Thus,
specifying a modification as the one displayed is equivalent to specifying a modification as in [7].
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Given objects P,Q ∈ P , the modifications γPQ and δPQ are of the same form as in the defi-
nition of a Gray homomorphism: Using strictness of the local functors, γPQ is seen to be of the
form

γPQ : (( jQ × 1)l−1
× )∗(χPQQ) ∗ (l−1

× )∗(MLC)∗(ιQ × 1APQ)V 1APQ ,

and this is clearly the same as

γPQ : [( jQ ⊗ 1)l−1
P (P,Q), 1](χ̂PQQ) ∗ [l−1

P (P,Q),ML ](Ten(ιQ, 1APQ))V 1APQ .

Similarly, it is shown that δPQ is of the form required in the definition of a Gray homomorphism.
Finally, we have to compare the axioms. By Theorem 2 from 2.4, the axioms of a trihomo-

morphism correspond to equations involving the components of the modifications ω̂PQRS , γPQ,
and δPQ. On the other hand, the axioms of a Gray homomorphism are equations for the modi-
fications ω̂PQRS , γPQ, and δPQ themselves (involving an interchange modification in the case of
the pentagon-like axiom). In fact, apart from the interchange cell in the pentagon-like axiom,
it is obvious that the components of the nontrivial modifications in the Gray homomorphism
axioms are precisely the nontrivial 2-cells in the axioms of the corresponding trihomomorphism
axioms. Note here that the correspondence of Theorem 2 from 2.4 is trivial on components.

Recall that the interchange cell in the pentagon-like axiom of a Gray-homomorphism is given
by [a−1,ML ]Ten,(ΣχRS T ,χPQR). We maintain that at the object

(g, (h, (i, j))) ∈ P (S ,T ) ⊗ (P (R, S ) ⊗ (P (Q,R) ⊗ P (P,Q))) ,

the component ([a−1,ML ]Ten,(ΣχRS T ,χPQR))ghi j is given by ML (Σ−1
χgh,χi j

). This is because evalua-
tion in Gray is in this case given by taking components and now equation (58) from 4.3 for the
strict hom functor Ten, implies that

([a−1,ML ]Ten,(ΣχRS T ,χPQR))g(h(i j)) = ML (Ten,(ΣχRS T ,χPQR))(gh)(i j) = ML (Σχgh,χi j) .

This is exactly the interchange cell on the right hand side of the corresponding axiom for a
trihomomorphism, cf. [7, p. 68].

As noted above, in the proof of Theorem 6, there appear additional classes of interchange
cells of which the components have to be compared to the interchange cells appearing in the
definitions of the data and the Gray-category structure of Tricat (P ,L). To give examples for
these classes, we skip the proof for the correspondence of Gray transformations and tritransfor-
mations and for the correspondence of the data of Gray modifications and trimodifications, and
we come back to the second axiom of a Gray modification cf. Lemma 15 from 6.2:

Lemma 17. The components of the interchange cells in the second axiom of a Gray modification
correspond precisely to the interchange cells appearing in the second axiom of a trimodification.

Proof. The interchange cell appearing on the left hand side of the Gray modification axiom
(GMA2) is MGray (ΣL(AP,αP),ιAP

). Note that ΣL(AP,αP),ιAP
is an interchange 2-cell in the Gray product

[L(AP, AP),L(AP, BP)] ⊗ [I,L(AP, AP)] ,



60 HOMOMORPHISMS OF GRAY-CATEGORIES AS PSEUDO ALGEBRAS

and now we have to determine how MGray acts on such an interchange cell. Recall that
MGray : [Y,Z] ⊗ [X,Y]→ [X,Z] is defined by

eX
Z (MGray ⊗ 1X) = eY

Z (1 ⊗ eX
Y )a−1 .

For the component of MGray (ΣL(AP,αP),ιAP
) at the single object ∗ ∈ I this implies that

(MGray ΣL(AP,αP),ιAP
)∗ = (eL(AP,AP)

L(AP,BP)(L(AP,−)AP,BP ⊗ 1))(ΣαP,(ιAP)∗)

(by equation (4) from 2.3)

= ML (ΣαP,(ιAP)∗)

(by definition of L(AP,−) see (15) from 2.5)

In fact, this is exactly the interchange cell for the left hand side of the axiom in [7, p. 77 ].
Similarly, the component of the interchange 2-cell MGray (ΣL(αP,BP),ιBP

) at the single object
∗ ∈ I, is given by

(MGray (ΣL(αP,BP),ιBP
))∗ = eL(BP,BP)

L(AP,BP)(L(−, BP)AP,BP ⊗ 1)(ΣαP,(ιBP)∗)

= ML c(ΣαP,(ιBP)∗)

(by definition of L(−BP) see (16) from 2.5)

= ML (Σ−1
(ιBP)∗,αP

)

(by equation (8) from 2.3) .

In fact, this is exactly the interchange cell for the right hand side of the axiom in [7, p. 77].

Remark 8. It is entirely analogous to show that the composition laws as given in [7, Th. 9.1
and 9.3] and Definitions 5 and 6 from 3.1 of the two Gray-categories coincide under the cor-
respondence. This concludes our exhibition of the critical ingredients of the proof of Theorem
6.

Combining Corollary 5 from 6.2 and Theorem 6, we have proved our main theorem:

Theorem 7. Let P be a small Gray-category and L be a cocomplete Gray-category, and let
T be the monad corresponding to the Kan adjunction. Then the Gray-category Ps-T -Alg is
isomorphic to the full sub-Gray-category of Tricat (P ,L) determined by the locally strict triho-
momorphisms.

The identification of the functor category [P ,L] with [obP ,L]T in Theorem 4 from 5., and the
coherence result for Ps-T -Alg given in Corollary 3 from 4.1, then prove the following coherence
theorem for Tricat ls(P ,L):

Theorem 8. Let P be a small Gray-category and L be a cocomplete Gray-category. Then the in-
clusion i : [P ,L]→ Tricat ls(P ,L) of the functor Gray-category [P ,L] into the Gray-category
Tricat ls(P ,L) of locally strict trihomomorphisms has a left adjoint such that the components
ηA : A→ iLA for objects A ∈ Tricat ls(P ,L) of the unit of this adjunction are internal biequiva-
lences.
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Example. Let P be a small Gray-category. Recall that Gray considered as a Gray-category is
complete and cocomplete cf. Lemma 1 from 2.3. Thus Theorem 8 applies for L = Gray . As a
consequence, a locally strict trihomomorphism P → Gray which is nothing else than a locally
strict Gray-valued presheaf is biequivalent to a Gray-functor P → L .

In particular, let P be a category C considered as a discrete Gray-category. Then locally strict
trihomomorphisms C → L are the homomorphisms of interest, and we have proved that any
such homomorphism is biequivalent to a Gray-functor C → L .
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