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Abstract

1 We present some results about the burgeoning research area concern-
ing set theory of the “κ-reals”. We focus on some notions of measurability
coming from generalizations of Silver and Miller trees. We present analo-
gies and mostly differences from the classical setting.

1 Introduction and basic definitions

The study of the generalized version of the Baire space κκ and Cantor space

2κ, for κ uncountable regular cardinal, is a burgeoning research area, which

intersects both the generalized descriptive set theory and the set theory of the

“κ-reals”, where we refer to the elements of κκ and 2κ as κ-reals.

Basic Notation. The dramatis personae of our work are the so-called tree-like

forcings. A tree T is a subset of either 2<κ or κ<κ, closed under initial segments.

Stem(T ) denotes the longest node of T compatible with all the other nodes of

T ; Succ(t, T ) := {ξ < κ : taξ ∈ T}; Split(T) is the set of splitting nodes of T ;

we put ht(T ) := sup{α : ∃t ∈ T (|t| = α)}, while Term(T ) denotes the terminal

nodes of T . For α < κ, T �α := {t ∈ T : |t| < α}. A branch through T is the

limit of an increasing cofinal sequence {tξ : ξ < κ} of nodes in T , and [T ] will

denote the set of all branches of T . Moreover we will assume κ<κ = κ and that

κ is regular. Note that we will use the usual letters for denoting forcing notions
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like Sacks, Silver, Miller and Cohen, omitting the symbol κ, as it is clear that,

in this paper, we will always deal with some generalized version.

Our attention will be particularly focused on the following types of trees:

• T ⊆ 2<κ is called Sacks iff ∀t ∈ T∃t′ ∈ T (t ⊆ t′∧ t′ ∈ Split(T )) (we write

T ∈ S);

• T ⊆ 2<κ is club Sacks iff it is Sacks and for every x ∈ [S] we have

{α < κ : x�α ∈ Split(T )} is closed unbounded (we write T ∈ Sclub);

analogously we define Sstat by requiring {α < κ : x�α ∈ Split(T )} to be

stationary;

• T ⊆ 2<κ is Silver iff it is Sacks and moreover for every s, t ∈ T such that

|s| = |t| one has sai⇔ tai, for i ∈ {0, 1} (we write T ∈ V);

• T ⊆ 2<κ is club Silver iff it is Silver and Lev(T ) := {α < κ : ∃t ∈ T (t ∈

Split(T ))} is closed unbounded (we write T ∈ Vclub); analogously for

Vstat;

• T ⊆ κ<κ is called Miller iff ∀t ∈ T∃t′ ∈ T (t ⊆ t′ ∧ t′ ∈ Split(T ) ∧

|Succ(t, T )| = κ) (we write T ∈M);

• T ⊆ κ<κ is called club Miller (T ∈Mclub) iff it is Miller and the following

hold:

– for every x ∈ [T ] one has {α < κ : x�α ∈ Split(T )} is closed

unbounded,

– for every t ∈ Split(T ) one has {α < κ : taα ∈ T} is closed un-

bounded.

• T ⊆ κ<κ is called full Miller (T ∈ Mfull) iff it is Miller and for every

t ∈ Split(T ) for every α < κ, one has taα ∈ T .



The associated forcing notions are ordered by inclusion. We remark that a

stronger version of Mclub has been introduced by Friedman and Zdomskyy in

[2], where they proved that such a version, combined with club Sacks, preserves

κ+ via < κ-support iteration.

For our tree-forcings P, one can introduce a corresponding notion of regularity

as follows.

Definition 1. A set X of κ-reals is said to be:

- P-measurable iff

∀T ∈ P∃T ′ ∈ P, T ′ ⊆ T ([T ′] ⊆ X ∨ [T ′] ∩X = ∅).

- weakly-P-measurable iff

∃T ∈ P([T ] ⊆ X ∨ [T ] ∩X = ∅).

When P is one of our tree forcings, we may also use the notation “Sacks mea-

surable”, “Miller measurable” and so on.

In [3], the authors show that the following generalization from the classical

setting holds true: if Θ is a family of sets of κ-reals closed under intersection

with closed sets and continuous pre-images, then

∀X ∈ Θ(X is weakly-P-measurable)⇔ ∀X ∈ Θ(X is P-measurable).

Hence, when one investigates the validity of P-measurability for all sets in Θ, it

is actually sufficient to investigate the weak-P-measurability on Θ.

There are essentially two main reasons for which the investigation of regularity

properties in κκ is interesting and more involved than the classical setting:

1. the club filter is a Σ1
1 set without the Baire property, as was proved by

Halko and Shelah in [4];



2. there is not an analogue of the factoring lemma for the Levy collapse

Coll(κ,< λ), for κ > ω and λ inaccessible. More precisely, there are

x ∈ κκ such that Coll(κ,< λ)/x is not equivalent to Coll(κ,< λ).

We will call such reals bad, while on the opposite side, the good reals will be

those having quotients equivalent to the Levy collapse.

Actually 2 is true even for the κ-Cohen forcing C, as it is well-know that one

can pick a Cohen κ-real x and then a forcing P shooting a club through the

complement of x, and this two step iteration is equivalent to C. Hence, both C

and Coll(κ,< λ) are not strongly homogeneous, unlike their counterparts in the

standard setting.

Nevertheless, even if one cannot hope for a full factoring lemma, in [10] Philipp

Schlicht has shown that one can recover a partial version. Indeed, he has proven

that when forcing with Coll(κ,< λ), one can obtain perfectly many good reals,

in a sense, in order to use the usual Solovay’s argument and obtain that all Onκ-

definable subsets of 2κ have the perfect set property. Inspired by his method,

we prove some variants that will allow us to get the following two results:

(?) for κ inaccessible, a κ+-iteration of C with < κ-support forces all Onκ-

definable sets to be Vstat-measurable;

(??) for λ inaccessible, Coll(κ,< λ) forces all Onκ-definable sets to be Mfull-

measurable;

Furthermore, we will also prove that (?) is no longer true when one replaces

Vstat with Vclub. We conclude this introductory section with a schema of the

paper: in section 2 we show some interesting construction involving Sacks trees

and Miller trees, marking some difference from the standard setting; in section

3 we present some results concerning adding perfect trees of Cohen branches; in

section 4 we build the model to get all Onκ-definable subsets of 2κ to be Vstat-

measurable; in section 5, we prove that Coll(κ,< λ) forces all Onκ-definable



subsets of κκ to be Mfull-measurable; a concluding section is finally devoted to

discussing some further potential developments.

2 Some basic differences from the classical set-
ting

This section may be read independently from the rest of the paper. It is devoted

to analyzing some basic differences from the standard setting. Throughout this

section, we assume that κ is a regular successor. Let Γ := {λα : α < κ} be

such that λ0 = 0 and {λα : 1 ≤ α < κ} enumerates the limit ordinals < κ such

that 2λα = κ. For t ∈ 2λα and α < κ, let π(t, α + 1) := {t′ ∈ 2λα+1 : t′ ⊇ t}.

Furthermore, fix a well-ordering W (t, α+ 1) = {tα+1
ξ : ξ < κ} of π(t, α+ 1).

In the standard case when κ = ω, we know that 2ω and ωω are not homeo-

morphic, even if they are connected via a Borel isomorphism. The following

simple remark shows that the situation is different, when κ > ω is a successor.

The following result was proved in [5]. We give a sketch of the proof, since the

construction is needed later.

Remark 2. 2κ and κκ are homeomorphic. Moreover, there are many such

homeomorphisms. Indeed, let f : κ<κ → 2<κ be defined recursively as follows:

- f(∅) = ∅

- f(〈ξ〉) is the ξth element of the well-ordering W (∅, 1)

- if t ∈ κα and ξ < κ, f(taξ) is the ξth element in the well-ordering

W (f(t), α+ 1).

- given {tα : α < γ} increasing sequence, γ limit ordinal, put f(limα<γ tα) =

limα<γ f(tα).

Notice that the range of f is not 2<κ, but it is a strict subset of it, namely⋃
{t ∈ 2λα : λα ∈ Γ}. This f provides a bijection h : κκ → 2κ in the natural



way, that is h(x) = limα<κ f(x�α), for every x ∈ κκ. It easily follows from the

definition that h is a homeomorphism.

The homeomorphism obviously depends on the well-orderings of W (t, α), and

so it is far from being uniquely determined. We now want to use these home-

omorphisms between κκ and 2κ to exhibit some particular situations which do

not occur in the standard setting.

Fact 3. For every club Miller tree T ⊆ κ<κ with the property that for every

t ∈ T , |{ξ : taξ /∈ T}| = κ, there exists a homeomorphism h such that h′′[T ]

does not contain the branches of a club Sacks tree.

Proof. Let T ⊆ κ<κ be a club Miller tree. Instead of h, we actually define the

function f : κ<κ → 2<κ, from which we will naturally obtain the desired h. For

every club splitting node t ∈ T we define f satisfying the following requirement:

let Ct ⊆ κ denote the club set of successors of t, then ξ ∈ Ct ⇒ f(taξ) ⊇ f(t)a1.

It is then clear that, for every limit ordinal α and every t ∈ f ′′T with length

λα, we get that f(t) cannot be a splitting node. Hence, f ′′T cannot contain a

club Sacks subtree.

Lemma 4. There exist a homeomorphism h : κκ → 2κ and Y ⊆ κκ such that Y

is weakly club Miller measurable but h′′Y is not weakly club Sacks measurable.

Proof. Consider f , h and T as in Fact 3. Note that, for every club Sacks tree

S, [S] \ h′′[T ] has cardinality 2κ. This follows easily from Fact 3, since there

is α ∈ κ and t ∈ 2λα such that ta0 ∈ S ∧ f−1(ta0) /∈ T (actually there are

cofinally many such α’s).

Let {Sξ : ξ < 2κ} be an enumeration of all club Sacks trees. Now we construct

{Yξ : ξ < 2κ} and {Zξ : ξ < 2κ} recursively as follows:

- Step −1: Y0 = [T ] and Z0 = ∅;



- Step ξ successor or ξ = 0: pick yξ ∈ h−1[Sξ] \
⋃
ι≤ξ Yι and put Yξ+1 =

Yξ ∪ {yξ}. Then pick zξ ∈ h−1[Sξ] \
⋃
ι≤ξ Zι such that zξ /∈ Yξ+1, and put

Zξ+1 = Zξ ∪ {zξ}. Note that the choice of yξ can be done, since by Fact

3 any club Sacks set contains 2κ many branches which are not in h′′[T ].

- Step ξ limit: put Yξ =
⋃
ι<ξ Yι and Zξ =

⋃
ι<ξ Zι.

Finally put Y =
⋃
ξ<2κ Yξ and Z =

⋃
ξ<2κ Zξ. Then for all club Sacks tree S

both h′′Y ∩ [S] 6= ∅ and [S] * h′′Y (the latter because Z ∩ Y = ∅.)

On the opposite side, we have the following.

Lemma 5. Assume f : κ<κ → 2<κ is a map as above and satisfying the

following further property: for every α < κ and every t ∈ 2λα ,

(†) f−1{t′ ∈ 2λα+1 : ta0 ⊂ t′}, f−1{t′ ∈ 2λα+1 : ta1 ⊂ t′} are stationary.

Then for every club Miller tree T we have that f ′′T contains a club Sacks tree.

Proof. Indeed, we are going to prove the following stronger conclusion: let S∗,club

be the version of club Sacks forcing obtained by replacing 2<κ with κ<κ, i.e.,

S∗,club consists of 2-branching trees in κ<κ with club splitting. Then we are going

to prove that for every T ∈ Mclub there exists T0 ⊂ T in S∗,club and S ∈ Sclub

such that f ′′T0 = S. We recursively construct T0 as follows.

Step 0. Let t∅ = Stem(T ) and put α∅ = |t∅|. Then pick ξ0, ξ1 ∈ Succ(t∅) such

that f(t∅
aξ0) ⊃ f(t∅)

a0 and f(t∅
aξ1) ⊃ f(t∅)

a1; note that this can be done

by (†), since Succ(t∅, T ) is club. Further, for i ∈ {0, 1}, let t〈i〉 be the least

splitting node in Tta∅ i
:= {s ∈ T : s ⊆ t∅ai ∨ s ⊇ t∅ai}.

Successor step. Assume the construction done for all σ ∈ 2β . For every σ ∈ 2β ,

we use the same idea as step 0, and we pick ξ0, ξ1 ∈ Succ(tσ) such that, for

i ∈ {0, 1}, f(tσ
aξi) ⊃ f(tσ)ai. Analogously, tσai is the least splitting node in

Ttaσ i.



Limit step. For σ ∈ 2δ such that, for all β < δ, tσ�β is already constructed, put

tσ :=
⋃
β<δ tσ�β .

Finally let T0 be the downward closure of
⋃
σ∈2<κ tσ and S := f ′′T0. By con-

struction, T0 and S have the required properties.

Remark 6. In a sense, the situation occurring in Lemma 4 is very unpleasant,

as we would like to generally view Miller trees as particular kind of Sacks trees,

and moreover that this fact is preserved under homeomorphism. Hence, Lemma

4 and 5 may be understood as a way of separating good homeomorphisms from

bad ones.

3 Generic trees of Cohen branches

We present some results about adding certain types of generic perfect trees. In

section 4 and 5, it will be crucial to use specific kinds of perfect trees such that

each of their branches is Cohen over the ground model. We refer to such generic

trees by saying “perfect trees of Cohen branches”.

Lemma 7. Let κ be inaccessible. Let VT := {p : ∃T ∈ V∃α ∈ κ(p = T �α)},

ordered by end-extension, i.e., p′ ≤ p iff p ⊆ p′∧∀t ∈ p′ \p∃s ∈ Term(p)(s ⊆ t).

Let TG :=
⋃
{p : p ∈ G}, with G being VT-generic filter over the ground model

N. Then

N[G] |= TG ∈ V ∧ ∀x ∈ [TG](x is Cohen over N)

∧ Lev(TG) is stationary and co-stationary,

where Lev(TG) denotes the set of splitting levels of TG. Moreover, VT is a

forcing of size κ and is < κ-closed. So it is actually equivalent to κ-Cohen

forcing.

Proof. Fix p ∈ VT and D ⊆ C open dense and let {tα : α < δ < κ}, enumerate

all terminal nodes of p (w.l.o.g. assume δ is a limit ordinal). We use the following



notation: for every s, t ∈ 2<κ, put

t⊕ s := {t′ ∈ 2<κ : ∀α < |t|(t′(α) = t(α)) ∧ ∀α ≥ |t|(t′(α) = s(α))}.

Then consider the following recursive construction:

- pick s0 ⊇ t0 such that s0 ∈ D;

- for α+ 1, pick sα+1 ⊇ tα+1 ⊕ sα such that sα+1 ∈ D.

- for α limit, put s′α =
⋃
ξ<α sξ and pick sα ⊇ tα ⊕ s′α such that sα ∈ D.

- once the procedure has been done for every α < δ, we put sδ :=
⋃
α<δ t0⊕

sα and then t′α := tα ⊕ sδ.

Note that to make sure that tα ⊕ sδ ∈ 2<κ we need to use the assumption

that κ is inaccessible. Finally, let p′ be the downward closure of
⋃
α<δ t

′
α. By

construction, p′ ∈ VT, p′ ≤ p and for every terminal node t ∈ p′, we get t ∈ D.

Hence p′ 
 ∀x ∈ [TG](Hx ∩D 6= ∅), where Hx := {s ∈ C : s ⊂ x}.

We now want to further extend p′ in order to catch the second property as well,

i.e., Lev(TG) is both stationary and co-stationary. So fix Ċ name for a club

of κ. Build sequences {qn : n ∈ ω} and {ξn : n ∈ ω} such that: q0 = p′, and

qn+1 ≤ qn such that qn+1 
 ξn ∈ Ċ and ξn > ht(qn) and ht(qn+1) > ξn. Finally

put ξω = limn<ω ξn, qω :=
⋃
n∈ω qn, and then

p∗ := qω ∪
⋃
{tai : t ∈ Term(qω) ∧ i ∈ {0, 1}}.

Hence p∗ 
 ∀n(ξn ∈ Ċ), and then p∗ 
 ξω ∈ Ċ. But ξω = ht(qω), since the

ξn’s and the |ht(qn)|’s are mutually cofinal, and hence p∗ 
 ξω ∈ Lev(TG) ∩ Ċ.

This shows that Lev(TG) is stationary. For proving that it is co-stationary

as well, we can further extend p∗, by using the same procedure, in order to

find {q′n : n ∈ ω} and {ξ′n : n ∈ ω} as above and then p∗∗ ≤ q′ω such that

p∗∗ := q′ω ∪
⋃
{ta0 : t ∈ Term(q′ω)}. Hence

p∗∗ 
 ξω ∈ Lev(TG) ∩ Ċ ∧ ξ′ω /∈ Lev(TG) ∩ Ċ,



which completes the proof.

About generic Miller trees of Cohen branches the situation is very different,

since the above argument does not seem to work. The next method shows a

simple different way to add a tree T ∈Mfull of Cohen branches, which we will use

in section 5. On the opposite side, Lemma 10 marks a necessary condition for

adding a tree T ∈ Mclub of Cohen branches, generalizing some results obtained

by Spinas and Brendle in the classical setting (see [11] and [1]).

We use the following notation: given a tree T ⊆ κ<κ,

- Splitα(T ) is recursively defined as:

Split0(T ) = {Stem(T )};

t ∈ Splitα(T ) iff t ∈ Split(T ) and for every β < α there exists tβ ⊂ t

such that tβ ∈ Splitβ(T ).

- T [α] := {s ∈ T : ∃t ∈ Splitα(T )∃i < κ(tai ∈ T ∧ s ⊆ tai)}.

Lemma 8. Define the forcing MT := {p : ∃T ∈ Mfull∃α < κ(p w T [α])},

ordered by end-extension. Then MT adds a full Miller tree of Cohen branches.

Proof. Let D ⊆ C be open dense and p ∈ MT. Pick φ : Term(p) → κ<κ such

that φ(t) ∈ D and φ(t) ⊇ t, and then define p′ ≤ p as the downward closure of⋃
{φ(t)aξ : t ∈ Term(p) ∧ ξ ∈ κ}. Then p′ 
 ∀x ∈ [TG](Hx ∩ D 6= ∅), where

Hx := {s ∈ C : s ⊂ x}.

Remark 9. Note that in the proof of both Lemma 7 and Lemma 8, we have

proved that one can add a certain type of generic tree whose branches are Cohen

in the extension N[G], where G is VT- and MT-generic over N, respectively. In

the application that we will see in the next sections, we actually need something

stronger, i.e., that all branches of the generic tree have to be Cohen in any

extension M ⊇ N[G] via a < κ-closed forcing. But, this is actually implicit in



our proof. Indeed, in Lemma 8 we have proven that, for every D ⊆ C open

dense in N,

N[G] |= ϕ :≡ ∃F ⊆ κ<κ∀x ∈ κκ(x ∈ [TG]⇒ ∃t ∈ F (t ⊂ x ∧ t ∈ D)),

and analogously for Lemma 7 with 2κ in place of κκ. Note that this formula ϕ is

Σ1
2(κκ). Hence, it is upward absolute between N[G] and any extension M via <

κ-closed forcing (this to ensure (κ<κ)M = (κ<κ)N[G] and then Σ1
1-absoluteness).

Hence, we get M |= ϕ, which means M |= ∀x ∈ [TG](Hx ∩ D 6= ∅). Since

D ∈ N was arbitrarily chosen, we have obtained: for every D ⊆ C∩N, for every

x ∈ [TG]M, one has Hx ∩D 6= ∅. Hence, M |= ∀x ∈ [TG](x is Cohen over N).

Lemma 10. Let M be a ZFC-model extending the ground model N. If for all

x ∈ κκ ∩M there exists y ∈ κκ ∩ N such that ∀α < κ∃β ≥ α(x(β) < y(β)),

then in M there is no club Miller tree of Cohen branches. In other words, If one

adds a club Miller tree of Cohen branches, then one necessarily adds dominating

κ-reals over the ground model.

Proof. Let T ∈Mclub and t ∈ Split(T ). Define

ht(α) := min{|t′| : ∃ξ ≥ α(t′ ∈ Split(T ) ∧ t′ ⊇ taξ)}+ 1.

Further, given z ∈ κ↑κ ∩N, define B(z) := {x ∈ κκ : ∀µ∀α ≤ µ(z(x(α)) ≥ µ)}.

Claim 11. B(z) is closed nowhere dense.

Proof of Claim. To see that B(z) is nowhere dense, fix s ∈ κ<κ. Then let

s′ = sa0β , where 0β is the sequence of 0s of length β, and β is sufficiently large

that |s′| > sup{z(s(α)) : α < |s|}. Hence [s′] ∩B(z) = ∅.

Let T ∈ Mclub ∩M be a tree of Cohen branches over N. Pick h ∈ κκ such

that ∀t ∈ Split(T )∃α < κ∀ξ ≥ α(ht(ξ) < h(ξ)). To show that h is dominating

over N, we argue by contradiction; pick z ∈ κ↑κ ∩ N which is not eventually



dominated by h, and with the further property that z(0) > |Stem(T )|. Let us

construct {tξ : ξ < κ} recursively as follows:

• t0 = Stem(T ) and for λ limit ordinal let tλ =
⋃
ξ<λ tξ.

• Assume tξ already defined. By the choice of z, there exists β ∈ κ such

that h(β) < z(β). We distinguish two cases:

– if tξ
aβ ∈ T , then simply put tξ+1 be the least splitting node extend-

ing tξ
aβ;

– if tξ
aβ /∈ T , then let γξ := min{γ : γ > β ∧ tξaγ ∈ T}. By construc-

tion, h(γξ) = h(β) and so h(γξ) < z(β) ≤ z(γξ), since z is increasing.

Then let tξ+1 be the least splitting node of T extending tξ
aγξ.

Note that when ξ is limit, by recursive construction, tξ ∈ Split(T ), as

tξ is a limit of splitting nodes in T . Hence the construction works even

for ξ successor of a limit ordinal. Finally let x =
⋃
ξ<κ tξ. It is left to

show that x ∈ [T ] ∩ B(z), which will give us x ∈ [T ] not Cohen over N,

since B(z) ∈ N is nowhere dense. Clearly x ∈ [T ], since the construction

explicitely gives us cofinally many α < κ such that x�α ∈ T . To show

that x ∈ B(z), we argue as follows: for every α < κ, pick the least ξ < κ

such that α < |tξ|. By induction over ξ < κ:

– ξ = 0: for every α < |Stem(T )|, we have z(x(α)) > |Stem(T )|;

– ξ limit ordinal: trivial;

– ξ + 1: if α < |tξ| use inductive hypothesis. If |tξ| ≤ α < |tξ+1|, then

x(|tξ|) = tξ+1(|tξ|) = γξ, and so by choice of γξ, it follows that for

every α < |tξ+1|, z(x(α)) ≥ z(γξ) > |tξ+1|, since z is increasing.

Corollary 12. C does not add a generic T ∈Mclub of Cohen branches.



4 Stationary-Silver vs club-Silver

Silver forcing may be introduced by using partial functions f : κ → 2, ordered

by extension; simply identify such an f with the tree Tf := {x ∈ 2κ : ∀α ∈

dom(f)(f(α) = x(α))}. We will use T and fT interchangeably, depending on

the situation. Throughout this section, Tf will denote the tree associated with

a given f , and vice versa, fT will denote the partial function associated with a

given T . Note that dom(f) = κ \ Lev(TG).

In this section we want to investigate the family of Vclub-measurable and Vstat-

measurable sets.

Lemma 13. There exists a Σ1
1 set which is not Vclub-measurable (i.e., the club

filter Cub).

Lemma 14. Assume κ be inaccessible. Let Cκ+ be a κ+-iteration of κ-Cohen

forcing with < κ support, and let G be the Cκ+-generic filter over N. Then

N[G] |= “ all Onκ-definable sets in 2κ are Vstat-measurable. ”

Notation: we will abuse notation by saying that “x ∈ 2κ is in Cub”, instead of

the more correct “{α < κ : x(α) = 1} is in Cub”.

We start with the proof of the easier of the two lemmata.

Proof of Lemma 13. We will show that for every T ∈ Vclub,

∃x ∈ 2κ(x ∈ Cub ∩ [T ]) ∧ ∃y ∈ 2κ(y ∈ NS ∩ [T ]),

where NS is the ideal of non-stationary subsets of κ. Define x ∈ 2κ as follows:

x(α) :=

{
fT (α) if α ∈ dom(fT ),

1 otherwise.

Then obviously x ⊇ Lev(T ) and so x ∈ Cub ∩ [T ]. Analogously, we can define

y(α) :=

{
fT (α) if α ∈ dom(fT ),

0 otherwise.

Hence, y ∈ NS ∩ [T ].



The rest of this section is devoted to prove Lemma 14. We use a variant of

Schlicht’s method to only work with branches having good quotient. We need

the following key lemma. Hereafter, VTα denotes the < κ-support α-iteration

of VT, introduced in section 3.

Lemma 15. Let α < κ+. Let Ṫ be the canonical VT0-name for the generic

Silver tree added by VT0, and ẋ be a VTα-name for a Cohen branch through

Ṫ . Let G be the VTα-generic filter over N and z = ẋG. Then VTα/ẋ=z is

equivalent to VTα.

Note that, unlike Schlicht’s work, here the name for a branch comes from a

“larger” forcing than the one adding the generic tree. So we need a slight

generalization of his argument.

Notation: from now on, ẋ, Ṫ , G will be as in the statement of Lemma 15, while

xp will denote the initial segment of ẋ decided by p := 〈ṗ(ξ) : ξ < α〉 ∈ VTα.

We prove some preliminary results.

Claim 16. VT∗α := {p ∈ VTα : |xp| ≥ ht(p(0))} is dense in VTα.

Proof. Given p ∈ VTα we have to find p′ ≤ p in VT∗α. Start with p0 := p

and then, for every n ∈ ω, pick pn+1 ≤ pn such that |xpn+1 | > ht(pn(0)). Let

pω :=
⋃
n∈ω pn and w :=

⋃
n∈ω xpn . Then w ⊆ xpω and |w| = ht(pω(0)). Hence

p′ := pω has the required property.

In the following two claims, we need to work with conditions forcing ẋ ∈ Ṫ .

Note that, for every p0 ∈ VT∗α we can always find p ≤ p0 such that p 
 ẋ ∈ Ṫ .

Hence, from now on, we will always consider conditions p sufficiently strong to

force ẋ ∈ Ṫ .

Claim 17. For every p ∈ VT∗α we have |xp| = ht(p(0)).

Proof. Note that p 
 ẋ ∈ Ṫ ∧ p(0) @ Ṫ , where @ means “initial segment”;

hence, there exists t ∈ Term(p(0)) such that p 
 t ⊂ ẋ. By contradiction,



assume xp = tas, for some t ∈ Term(p(0)) and non-empty s ∈ 2<κ. Let S be

the downward closure of
⋃
{t ⊕ t′ : t ∈ Term(p(0))}, for some t′ ⊥ tas with

t′ ⊃ t. Let p′ ∈ VTα be defined as

p′(ι) :=

{
S if ι = 0,

ṗ(ι) if ι > 0.

Then pick p∗ ≤ p′ such that p∗ ∈ VT∗α. Since p∗ 
 S @ Ṫ and |xp∗ | ≥ ht(S), it

follows that t′ ⊆ xp∗ and so xp∗ ⊥ xp, contradicting p∗ ≤ p.

Claim 18.

∀p ∈ VT∗α∀s ∈ 2<κ(xp ⊆ s⇒ ∃p∗ ∈ VT∗α(s ⊆ xp∗)).

Proof. The argument is very similar to the one above. Note that for every

p ∈ VT∗α, there exists t0 ∈ Term(p(0)) such that t0 = xp. Pick s ∈ 2<κ such

that xp ⊆ s. Let S be the downward closure of
⋃
{t ⊕ s : t ∈ Term(p(0))}.

Define p′ ∈ VTα as follows :

p′(ι) :=

{
S if ι = 0,

ṗ(ι) if ι > 0.

Then pick p∗ ∈ VT∗α such that p∗ ≤ p′. Since p∗ 
 S @ Ṫ and |xp∗ | ≥ ht(S), it

follows that s ⊆ xp′ ⊆ xp∗ .

Corollary 19. Let D ⊆ VT∗α be open dense. Then Wq := {xp ∈ 2<κ : p ∈

D ∧ p ≤ q} is dense in C below xq.

Proof of Lemma 15. The proof is completely analogous to the one of Schlicht for

C. We give it for completeness and because we actually deal with VTα-names

for branches in Ṫ instead of VT-names only.

We will prove the lemma for VT∗α, but since it is forcing equivalent to VTα, the

same will hold true for the latter as well (and then even for Cα). It is well-

known that VT∗α/ẋ=z = VT∗α \
⋃
β<γ Aβ , where the elements of this union are



recursively defined in N[z] as follows:

A0 := {p ∈ VT∗α : ∃ξ < κ(p 
 ẋ(ξ) 6= z(ξ))}.

Aβ+1 := {p ∈ VT∗α : ∃D ⊆ Aβ open dense below p ,D ∈ N}.

Aλ :=
⋃
β<λ

Aβ , for λ limit ordinal,

and finally γ is chosen so that Aγ = Aγ+1.

Note that γ = 0; by contradiction, pick p ∈ A1 \ A0. Since p ∈ A1, it follows

that there exists D ⊆ A0 such that D ∈ N and D is dense below p. Then the

set Wp := {xp′ ∈ 2<κ : p′ ∈ D∧p′ ≤ p} is dense in C below xp, by Corollary 19,

and so there exists p′ ∈ D such that xp′ ⊂ z, as z is Cohen over N (and xp ⊂ z,

by p /∈ A0). Also since D ⊆ A0, it follows p′ ∈ A0. But, by definition,

p′ ∈ A0 ⇔ p′ 
 ẋ(ξ) 6= z(ξ), for some ξ < κ

⇔ xp′ 6⊂ z,

providing us with a contradiction. Hence we get

VT∗α/ẋ=z = {p ∈ VT∗α : ∀ξ < κ(p 6
 ẋ(ξ) 6= z(ξ))} = {p ∈ VT∗α : xp ⊂ z},

which is a < κ-closed subset of a forcing equivalent to C, and so it is in turn

equivalent to C.

We now have all tools needed for proving the main lemma of this section.

Proof of Lemma 14. Let X ⊆ 2κ be a set defined by some formula ϕ with

ordinal parameters and v ∈ Onκ, which we may assume to be absorbed into the

ground model, by the κ+-cc. Also, for any x ∈ [TG0
]N[G], there is α < κ+ and

a Cα-name ẋ for such x. Note that, by Remark 9, x is Cohen over N, and by

Lemma 15, ẋ has good quotient in Cα, and hence in Cκ+ as well. Indeed, Cκ+

can be viewed as Qẋ ∗ Ṙ0 ∗ Ṙ1, where Qẋ is the forcing generated by ẋ (and so

it is equivalent to C as x is Cohen over N), while 
Qẋ Ṙ0
∼= Cα (that means,

N[x] |= Ṙx0
∼= Cα), since x has good quotient, and finally Ṙ1 is just a “tail” of



Cκ+ , and so it is equivalent to Cκ+ itself. So let us put Ṙ = Ṙ0 ∗ Ṙ1, so to have

N[x] |= Ṙx ∼= Cκ+ .

Let x be Cohen over N with good quotient. Then

N[x] |= “ 
Ṙx ϕ(x)” or N[x] |= “ 6
Ṙx ϕ(x)”.

Assume the former, and put θ(x) := “ 
Ṙx ϕ(x)” Then there exists s ∈ C such

that s 
 θ(ẋ). Pick T stationary-Silver tree of good Cohen branches over N

such that Stem(T ) = s. Hence, for every z ∈ [T ], we have N[z] |= θ(z), and so

N[z] |= “ 
Ṙz ϕ(z) ”.

Since any z has good quotient, it follows that Ṙz is Cκ+ . That means that there

exists H filter Ṙz-generic (i.e., Cκ+ -generic) over N[z] such that N[z][H] = N[G].

Hence N[G] |= ϕ(z), that gives us N[G] |= [T ] ⊆ X.

For the case N[x] |= “ 6
Ṙx ϕ(x)”, simply note that “ 6
Ṙx ϕ(x)” is equivalent

to “ 
Ṙx ¬ϕ(x)”, by weak homogeneity. Hence, a specular argument provides

us with T ∈ Vstat such that N[G] |= [T ] ∩X = ∅.

Remark 20. Note that Lev(T ) is both stationary and co-stationary. As a

consequence, [T ] is completely disjoint both from Cub and from NS, and so

there is no contradiction with Lemma 13.

A word about the Silver game. In the classical setting one can uniformly

introduce an unfolding game associated with any notion of regularity coming

from a certain tree forcing (see [8]). Here, we focus on the unfolding game

connected to the Silver measurability. To this aim we need to introduce the

ideal IV of Silver small sets.

Definition 21. X ⊆ 2κ is said to be V-null iff for all T ∈ V there exists

T ′ ≤ T , T ′ ∈ V such that [T ′] ∩X = ∅. Further, we define IV as the κ+-ideal

κ+-generated by the V-null sets.



For emulating the classical unfolding game, we need to satisfy, for every X ⊆ 2κ,

(*) if II has a winning strategy in G(X) then X ∈ IV;

(**) if I has a winning strategy in G(X) then there exists T ∈ V such that

[T ] ⊆ X.

Nevertheless, in the context of 2κ the situation seems to be less clear. In our

generalized setting, the output of the game has to be a κ-real, and so we consider

games of length κ. The basic idea is the same as the standard case, i.e., player

I and II play conditions such that each is stronger than the previous one. But

what should the rule be at limit steps? First of all, note that at limits it is

natural to pick the intersection of all previous moves, and hence we want the

forcing to be < κ-closed. This forces us to work with Vclub. We essentially have

two choices, depending on who chooses first at limit steps.

Definition 22. We use the following notation:

T ′ � T iff T ′ ≤ T and |Stem(T ′)| > |Stem(T )|.

Given X ⊆ 2κ, we define two games G1(X) and G2(X) of length κ as follows:

for n < ω, player I chooses T 1
n � T 2

n−1, and player II chooses T 2
n � T 1

n . From

the first limit ordinal, G1(X) and G2(X) are defined differently:

- in G1(X) player I chooses first, i.e., player I first chooses T 1
ω �

⋂
ξ<ω T

2
ξ ;

then player II chooses T 2
ω � T 1

ω . Then the game continues by following

this order of choice (so in particular, at any limit λ, I chooses first).

- in G2(X) the situation is reversed: player II first chooses T 2
ω �

⋂
ξ<ω T

2
ξ ;

then player I chooses T 1
ω � T 2

ω . Then the game continues by following this

order of choice (so in particular, at any limit λ, II chooses first).

The output of the game will then be x such that {x} :=
⋂
ξ[T

1
ξ ], and we will

say that I wins iff x ∈ X, otherwise II wins.



Unfortunately, both fail to have the desired properties (*) and (**) mentioned

above. In fact, the reason for that is strictly connected to the bad behaviour of

Vclub-measurability.

Lemma 23. Player II has a winning strategy in G2(Cub), while player I has

a winning strategy in G1(Cub).

Proof. We recursively construct the winning strategy of II in G2(Cub) as fol-

lows: we only take care of limit steps λ: if 〈T 1
ξ , T

2
ξ : ξ < λ〉 is the partial play,

then II chooses T 2
λ �

⋂
ξ<λ T

2
ξ so that for αλ := |Stem

(⋂
ξ<λ Tξ

)
|, one has

|Stem(T 2
λ)| > αλ ∧ Stem(T 2

λ)(αλ) = 0. (1)

Note that one can make such a choice since Stem(
⋂
ξ<κ Tξ) is a splitting node.

Let us call σ such a strategy for player II. For every T 1
∗ := 〈T 1

ξ : ξ < κ〉 play

of I, one has that the output produced by σ(T 1
∗ ) is not in Cub, since the set of

{αλ : λ < κ limit ordinal} is closed unbounded.

To check the second assertion, we can analogously build the winning strategy τ

for player I in G1(Cub). Player I chooses first at limit steps λ, and so, in (1), we

can freely choose Stem(T 1
λ)(αλ) = 1. In such a way, for every T 2

∗ := 〈T 2
ξ : ξ < κ〉

play of II, one has the output produced by τ(T 2
∗ ) is in Cub.

An interesting issue might be to switch the point of view in the following sense.

Define X ⊆ 2κ to be Gi-measurable iff Gi(X) is determined. By Lemma 23, the

club filter Cub is measurable in both cases.

Question. Can we force all Onκ-definable sets to be Gi-measurable? Or,

in other words, can one find a model where Gi’s are determined for all

Onκ-definable sets?



5 Full-Miller measurability

In this section, we prove that Coll(κ,< λ) forces that all Onκ-definable subsets

of κκ are Mfull-measurable. We assume 2κ = κ+. Consider the forcing MT

introduced in section 3, for adding a full-Miller tree of Cohen reals.

Claim 24. MT is forcing-equivalent to Coll(κ, 2κ).

Proof. MT is clearly < κ-closed and has size 2κ. Moreover, MT collapses 2κ to

κ; in fact, for every A := {aξ : ξ < κ} ⊆ κ of size κ, A ∈ N, the set

DA := {σ ∈MT : ∃t ∈ Split(σ)∀ξ < κ(taξaaξ ∈ σ)}

is open dense. Hence the function H : Split(TG)→ 2κ ∩N defined by H(t) :=

{α : ∃ξ < κ(taξaα)} is surjective, and so 2κ ∩N collapses to κ.

MT is then < κ-closed, of size 2κ, collapsing 2κ to κ, and hence equivalent to

Coll(κ, 2κ).

Claim 25. Let Q = Coll(κ,< λ), and let Ṫ , ẋ be MT ∗ Q-names for the full-

Miller generic tree added by G(0) and a branch of [Ṫ ], respectively. There exists

MT0 ∗ P ⊆ MT ∗ Q dense subposet such that for every (σ, ṗ) ∈ MT0 ∗ P there

exists t ∈ Term(σ) such that x(σ,ṗ) = t, where x(σ,ṗ) is the initial segment of ẋ

decided by (σ, ṗ).

Proof. First of all, we want to prove an analogue of Claim 16. More precisely, we

want to prove that the set of conditions (σ, ṗ) for which there exists t ∈ Term(σ)

such that t ⊆ x(σ,ṗ) is dense in MT ∗Q. To this aim, we start from a condition

(σ0, ṗ0) and we inductively build (σn+1, ṗn+1) ≤ (σn, ṗn) such that there exists

tn ∈ Term(σn) such that x(σn+1,ṗn+1) ⊇ tn. Then put σ =
⋃
n∈ω σn, pick ṗ

such that σ 
 ṗ ≤ ṗn for all n ∈ ω, and put w =
⋃
n∈ω tn. By construction,

w ∈ Term(σ) and x(σ,ṗ) ⊇ w, as (σ, ṗ) ≤ (σn, ṗn), for all n ∈ ω.

The second part is an analogue of the proof of Claim 17, i.e., we want to show

that if x(σ,ṗ) ⊇ t, for some t ∈ Term(σ), none of the extensions of t can be



ruled out, and so t = x(σ,ṗ). By contradiction, assume x(σ,p) = tas, for some

t ∈ Term(σ) and non-empty s ∈ 2<κ. Let σ′ be the downward closure of

σ ∪
⋃
{t0aξ : ξ ∈ κ}, for some t0 ⊥ tas with t0 ⊃ t. Then pick (σ′′, q̇) ≤ (σ′, ṗ)

such that there exists t1 ∈ Term(σ′′) such that t1 ⊆ x(σ′′,q̇). Hence, one has

x(σ′′,q̇) ⊇ t1 ⊇ t0 ⊥ x(σ,ṗ), contradicting (σ′′, q̇) ≤ (σ, ṗ).

With a similar construction, we can get an analogue of Claim 18 and Corollary

19 as well.

Claim 26. Let G be MT0 ∗ P-generic over N. Let Ṫ be the canonical name for

the generic Miller tree added by G(0), ẋ an MT0 ∗ P-name for a branch in Ṫ ,

and z = ẋG. Then MT0 ∗ P/ẋ = z is forcing-equivalent to MT0 ∗ P (and hence

to Coll(κ,< λ)).

Proof. Use the notation (MT0 ∗P)z := MT0 ∗P/ẋ = z. Claim 25, together with

the analogues of Claim 18 and Corollary 19, gives the same argument as in the

proof of Lemma 15, and so we can obtain

(MT0 ∗ P)z = {(σ, ṗ) ∈MT0 ∗ P : x(σ,ṗ) ⊂ z}.

We work in N[z]. Note that

(MT0 ∗ P)z = {(σ, ṗ) ∈MT0 ∗ P : ∃t ∈ Term(σ)(t ⊂ z ∧ x(σ,ṗ) = t)}.

⊆: clearly, if ∀t ∈ Term(σ)(t 6⊂ z), then (σ, ṗ) /∈ (MT0 ∗ P)z, as (σ, ṗ) 
 σ @ Ṫ .

⊇: if there exists t ∈ Term(σ) such that t ⊂ z, then x(σ,ṗ) = t ⊂ z.

First, we prove that

P0 := {σ ∈MT0 : ∃t ∈ Term(σ)∃ṗ ∈ P(t ⊂ z ∧ x(σ,ṗ) = t)} (2)

is < κ-closed and collapses 2κ to κ, and so it is equivalent to MT0. Let {σα : α <

δ}, for δ < κ, be a decreasing sequence of conditions in P0, and for every α < δ,

let tα ∈ Term(σα) be such that tα ⊂ z and ṗα ∈ P such that x(σα,ṗα) = tα.



Then put σδ =
⋃
α<δ σα, tδ =

⋃
α<δ tα and pick ṗδ ∈ P such that σδ 
 ∀α <

δ(ṗδ ≤ ṗα). Hence, tδ ∈ Term(σδ), tδ ⊂ z and tδ = x(σδ,ṗδ), which means

σδ ∈ P0. Hence, the poset is < κ-closed. The proof that it also collapses 2κ to κ

is the same as the one given for Claim 24, since the sets DA’s are dense in P0 as

well; simply, for every σ ∈ P0, pick t ∈ Term(σ) such that t ⊥ x(σ,ṗ), for some

ṗ ∈ P, and then let σ′ ≤ σ be the downward closure of σ ∪
⋃
{taξaaξ : ξ ∈ κ},

where A := {aξ : ξ ∈ κ}.

Secondly, define

Ṗ1 := {ṗ ∈ P : ∃σ ∈MT0((σ, ṗ) ∈ (MT0 ∗ P)z)}. (3)

Let H be an arbitrary MT0-generic filter over N[z]. Work in N[z][H]. Then

Coll(κ,< λ) is equivalent to P1. Indeed, first note that, the argument used in

the second part of the proof of Claim 25 actually gives the following: if ṗ, q̇ ∈ P

are such that σ 
 q̇ ≤ ṗ and (σ, ṗ) ∈ (MT0 ∗ P)z, then x(σ,ṗ) = x(σ,q̇), and so

(σ, q̇) ∈ (MT0 ∗ P)z as well. (if we drop the assumption σ 
 q̇ ≤ ṗ, the only

thing that we can say in general is that ∃t0 ∈ Term(σ) such that x(σ,ṗ) = t0

and ∃t1 ∈ Term(σ) such that x(σ,q̇) = t1, but t0 and t1 might be different).

Furthermore, let {pξ : ξ < δ}, for δ ≤ λ, be the set of minimal conditions in P1

(i.e., there is no q ≥ pξ and q 6= pξ such that q ∈ P1); we can build a partial

function e : Coll(κ,< λ)→ Coll(κ,< λ), satisfying:

• for every ξ < δ, for all α0 ∈ λ and β0, µ0 ∈ κ, there are α′0 ∈ λ and

β′0, µ
′
0 ∈ κ such that,

e(pξ ∪ {((α0, β0), µ0)}) = {((α′0, β′0), µ′0)};

• for all α′0 ∈ λ and β′0, µ
′
0 ∈ κ, there are ξ0 < δ, α0 ∈ λ and β0, µ0 ∈ κ such

that

e(pξ ∪ {((α0, β0), µ0)}) = {((α′0, β′0), µ′0)};



• let q0 := pξ0 ∪ {((α0, β0), µ0) and q1 := pξ1 ∪ {((α1, β1), µ1). Then q1 ≤

q0 ⇒ e(q1) ≤ e(q0) and q1 ⊥ q0 ⇒ e(q0) ⊥ e(q1);

• let P2 := P1 \ {pξ : ξ < δ}; then e|P2 : P2 → Coll(κ,< λ) is a dense

embedding.

This e can be constructed by a pretty standard argument, simply by following a

bijection δ×λ×κ×κ↔ λ×κ×κ, and by using the homogeneity of Coll(κ,< λ).

Hence, (2) and (3) give: (MT0 ∗ P)z ∼= P0 ∗ Ṗ1
∼= Coll(κ,< λ).

Lemma 27. Let λ be inaccessible greater than κ, and let G be Coll(κ,< λ)-

generic over N. Then

N[G] |= “ all Onκ-definable subsets of κκ are Mfull-measurable ”.

Proof. The argument is in strict analogy to the one of Lemma 14, and we just

give a sketch. Let X ⊆ κκ be defined via some formula ϕ whose parameters can

be absorbed into the ground model N, by λ-cc. Let T0 be the generic tree in

Mfull added by the first step, i.e., T0 is associated with G0 := G ∩ Coll(κ, κ+).

By Claim 26, we know that each branch x ∈ [T0]∩N[G] has good quotient, and

so Coll(κ,< λ) can be viewed as Q̇x ∗ Ṙ, where Q̇x is the poset generated by x

and N[x] |= Ṙx ∼= Coll(κ,< λ).

Let x be Cohen over N with good quotient and assume N[x] |= “ 
Ṙx ϕ(x)”.

Work into N[x]; pick s ∈ κ<κ such that s 
 “ 
Ṙx ϕ(x)” (here we are using C ∼=

(κ<κ,⊂)). Pick T full-Miller tree of good Cohen branches with Stem(T ) = s.

Then proceed as in Lemma 14: for every z ∈ [T ], N[z] |= “ 
Ṙz ϕ(z)”, which

implies there exists a Coll(κ,< λ)-generic filter H over N[z] with N[z][H] =

N[G], and so N[G] |= ϕ(z), as Ṙz ∼= Coll(κ,< λ). The case N[x] |= “ 6
Ṙx ϕ(x)”

is analogous.

Remark 28. Our result cannot be improved by replacing T ∈ Mfull with trees

having branches z satisfying {α < κ : y�α is splitting} being club. Indeed,



a similar argument to the one presented in Lemma 13 shows that Cub is not

Mclub-measurable (see also [3, Thm 2.12] for a more general approach). However

it remains open whether one can get Mstat
full -measurability for all Onκ-definable

subsets of κκ.

Remark 29. In [9], the authors investigate two properties related to the Miller

measurability: the Hurewicz dichotomy and a strengthening called the Miller

tree Hurewicz dichotomy. These notions are related to the Miller measurability,

but they are not in general equivalent. The authors of [9] prove that Coll(κ,< λ)

forces all Onκ-definable sets to have the Hurewicz dichotomy. Furthermore, they

prove that if κ is not weakly compact, then the Miller tree Hurewicz dichotomy

fails for closed sets, whereas that cannot be true for the Miller measurability

because of Lemma 27. On the contrary, for κ weakly compact, they prove that

the two dichotomies are equivalent and they both imply the Miller measura-

bility pointwise, but it is not clear which is the relation with the full-Miller

measurability.

6 Open questions

In section 4 we have proved that Cκ+ forces all Onκ-definable sets to be stationary-

Silver measurable, for κ inaccessible. The latter assumption was essential in our

proof to show that C adds a stationary Silver tree of Cohen branches. Therefore,

the following question arises naturally.

Q.1 Can one force all Onκ-definable sets to be stationary-Silver measurable,

for κ successor?

Even if not strictly necessary for a positive answer to Q.1, another issue strictly

related is the following.

Q.2 Does C add a stationary Silver tree of Cohen branches even for κ successor?



About Q.2, my intuition inclines to a negative answer.

Another interesting issue is the role of the inaccessible λ concerning full-Miller

measurability and Miller measurability.

Q.3 Can one force all Onκ-definable sets to be Miller measurable without using

inaccessible cardinals?

Q.4 What about the same question for full-Miller measurability instead?

The key point here is that we do not have an analogous study in the classical

setting; indeed, in the standard case, projective Baire property implies projec-

tive Miller measurability (and even projective full-Miller measurability) and so

Shelah’s amalgamation and sweetness provide us with a model for those notions

of regularity without any need of an inaccessible. But, in our generalized con-

text, the Baire property fails for Σ1
1, and hence we really need a direct method

to get Miller measurability. A possible solution might be to consider an amoeba

forcing adding a Miller tree of Cohen branches in a gentler way than Coll(κ, 2κ),

in order to get: 1) κ+ will not be collapsed, and 2) one could obtain sufficiently

many good Cohen branches.

The issue of separating different regularities classwise has been developed in the

classical setting: in particular a method for separating Silver and Miller on all

sets has been presented in [6]. A similar questions arises here.

Q.5 Can one force all sets to be Silver measurable but there exists a non-Miller

measurable set?

Finally, a last important research branch regards the ∆1
1-level. In fact, because

of the ∆1
1-well ordering of (κκ)L, one obtains ∆1

1 non-regular sets in L. As

a consequence, some arguments used in the standard setting for ∆1
2 sets hold

true for ∆1
1 in the generalized context. The investigation of this topic has been

initiated by Friedman, Khomskii and Kulikov in [3]. We also believe that this



topic be strictly connected to the study of cardinal characteristics associated

with the ideals generated by tree-forcings, and hence a careful study of the

amoeba forcings is necessary. In the standard setting, amoeba forcings have

been studied in [11] and [7], where the authors have presented some applications

to regularity properties and cardinal characteristics. In the generalized setting

such a topic has not been suitably developed yet, and we aim at extending such

an investigation.
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