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Abstract

We present a model where ω1 is inaccessible by reals, Silver measur-
ability holds for all sets but Miller and Lebesgue measurability fail for
some sets. This contributes to a line of research started by Shelah in the
1980s and more recently continued by Schrittesser and Friedman (see [7]),
regarding the separation of different notions of regularity properties of the
real line.
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1 Introduction

The Lebesgue measurability and the Baire property are certainly the most com-

mon notions of regularity of the reals. The following results concerning the 2nd

level of the projective hierarchy are nowadays part of the folklore.

Theorem 1 (Solovay,[11]).

(i) Σ1
2(Lebesgue) iff ∀x ∈ ωω(random reals over L[x] form a co-null set);

(ii) Σ1
2(Baire) iff ∀x ∈ ωω(Cohen reals over C(L[x]) form a comeager set).

Theorem 2 (Shelah-Judah,[10]).
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(i) ∆1
2(Lebesgue) iff ∀x ∈ ωω∃z ∈ 2ω(z random over L[x]);

(ii) ∆1
2(Baire) iff ∀x ∈ ωω∃z ∈ 2ω(z Cohen over L[x]).

Other important notions of regularity, which have been more recently stud-

ied by Brendle, Löwe and Halbeisen, are Sacks-, Miller-, Silver- and Laver-

measurability (we will denote such forcings with the usual letters S, M, V, L,

and they will be recalled in the next section).

Definition 3. Let P be one among S, M, V, L. A set of reals X is said to be

P-measurable iff

∀T ∈ P∃T ′ ≤ T, T ′ ∈ P([T ′] ⊆ X ∨ [T ′] ∩X = ∅).

We will often refer to such notions by saying Silver measurable, Miller measur-

able and so on.

A very detailed work concerning a general approach to these notions of regularity

may be found in [6], chapter 2, and [4]. For these properties, one can prove

characterizations like in theorem 1 and 2. The following results are due to

Brendle, Löwe and Halbeisen.

Theorem 4 (Brendle-Löwe, [2] and Brendle-Löwe-Halbeisen, [3]).

(i) ∆1
2(Sacks) iff Σ1

2(Sacks) iff ∀x ∈ ωω(ωω ∩ L[x] 6= ωω);

(ii) ∆1
2(Miller) iff Σ1

2(Miller) iff ∀x ∈ ωω(ωω ∩ L[x] is not dominating);

(iii) ∆1
2(Laver) iff Σ1

2(Laver) iff ∀x ∈ ωω(ωω ∩ L[x] is bounded);

(iv) ∆1
2(Silver) implies ∀x ∈ ωω∃z ∈ 2ω(z is splitting over L[x])

Σ1
2(Silver) implies ∀x ∈ ωω(ωω ∩ L[x] is not dominating).

In this paper we focus on Silver, Miller and Lebesgue measurability. In partic-

ular from (ii) and (iv) it follows Σ1
2(Silver)⇒ Σ1

2(Miller). This implication



has partially inspired the result of this paper, which we will present in section

4, where we will construct a model

N∗ |= all(Silver) ∧ ¬all(Miller) ∧ ¬all(Lebesgue) ∧ ∀x ∈ ωω(ω
L[x]
1 < ω1),

showing in particular that the above implication occurring for Σ1
2 sets does not

shift to the family of all sets of reals. The study of the behaviour of regularity

properties on large families of subsets of reals was initiated by Solovay ([11]), and

then continued along the years by Shelah ([8] and [9]), Friedman and Schrittesser

([7]). Another reason which inspired the work was to find a way to drop Lebesgue

measurability by iterating Shelah’s amalgamation and obtaining ω1 inaccessible

by reals. Note that, in the Cohen model (i.e., the extension via adding ω1-many

Cohen reals), Silver measurability holds for all projective sets, but it is unclear

how the Miller measurability behaves in this model. Moreover, our purpose was

also to have ω1 inaccessible by reals, so Cohen model was not of interest from

this point of view (in particular we wanted full-regularity on Σ1
2).

We conclude this introductory section with a schema of the article: in section

2 we review basic concepts and notation that we use throughout the paper; in

section 3 we introduce the tools we use later on: Shelah’s amalgamation, un-

reachability and amoeba for Silver; then, section 4 is devoted to prove the main

result mentioned above. A last section is finally devoted to some concluding

comments and possible further developments of the investigation.

2 Preliminaries

Our notation is rather standard. A tree T is a subset of 2<ω or ω<ω closed

under initial segments, i.e., for every t ∈ T , t�k ∈ T , for every k < |t|, where

|t| represents the length of t. We denote with Stem(T ) the longest element

t ∈ T compatible with every node of T , and we set k ∈ Succ(t, T ) iff tak ∈ T .

We use the notation t E t′ meaning that t is an initial segment of t′. For



every t ∈ T , we say that t is a splitting node whenever |Succ(t, T )| ≥ 2, and

we denote with Split(T ) the set of all splitting nodes. Moreover, for n ≥ 1,

we say t ∈ T is an nth splitting node iff t ∈ Split(T ) and n is maximal

such that there are k0 < · · · < kn−1 = |t| natural numbers such that t�kj ∈

Split(T ), for every j ≤ n−1, and we denote with Splitn(T ) the set consisting

of the nth splitting nodes (note that, under this notation, Stem(T ) is the 1st

splitting node, with k0 = |Stem(T )|). Furthermore, for every t ∈ T , the set

{s ∈ T : s is compatible with t} is denoted with Tt. When T is a finite tree,

Term(T ) denotes the set consisting of those t’s having no extension in T , and

ht(T ) := max{n : ∃t ∈ T, |t| = n} represents the height of T . Finally, the body

of T is defined by [T ] := {x : ∀n(x�n ∈ T )} and we say that F ⊆ T is a front iff

F is an antichain and for every x ∈ [T ] there exists t ∈ F such that tE x.

In this paper we deal with Sacks (or perfect) trees, i.e., trees such that each

node can be extended to a splitting node. In particular, we focus the attention

on some particular types of perfect trees:

• T ⊆ 2<ω is a Silver tree (or uniform tree) iff T is perfect and for every

s, t ∈ T , such that |s| = |t|, one has sa0 ∈ T ⇔ ta0 ∈ T and sa1 ∈ T ⇔

ta1 ∈ T .

• T ⊆ ω<ω is a Miller tree (or superperfect tree) iff T is perfect and for every

t ∈ Split(T ), one has |Succ(t, T )| = ω.

Clearly, Silver (Miller) forcing is the poset consisting of Silver (Miller) trees

ordered by inclusion. We denote these forcings by V and M, respectively.

Furthermore, if G is the V-generic filter over the ground model N, we call the

generic branch zG =
⋃
{Stem(T ) : T ∈ G} a Silver real (and analogously for

Miller). Other notions of forcing relevant to the topic of seperating regularities,

which can similarly be presented in terms of their associated trees include: Sacks,

Laver (mentioned in the introduction), Mathias, Heckler, eventually different



and Matet, but we will not deal with them in this paper. Other posets which

we will use throughout the paper will be the Cohen forcing C, consisting of

finite sequences of 0s and 1s, ordered by extension, and the random forcing B,

consisting of perfect trees T such that for every t ∈ T , µ([Tt]) > 0, ordered by

inclusion.

For the purpose of this paper we can use the following result as a definition of

P-measurability for a topologically reasonable pointclass Θ, i.e., a family of sets

closed under continuous preimages and intersections with closed sets.

Lemma 5 (Brendle-Löwe, [2], lemma 2.1). Let P ∈ {V,M} and let Θ be a

topologically reasonable family of sets of reals. Then Θ(P) ≡ “every set in Θ is

P-measurable” iff

∀X ∈ Θ, ∃T ∈ P([T ] ⊆ X ∨ [T ] ∩X = ∅).

Note that the family of projective sets, the family of Σ1
n-, ∆1

n-, Π1
n-sets are

topologically reasonable. Finally, also the family of all sets of reals, which we

denote by all, is trivially topologically reasonable.

We now prove a simple result, which gives us a direct implication between Baire

property and Silver measurability.

Fact 6. Any comeager set contains the body of a Silver tree.

Proof. Let Y ⊇
⋂
n∈ωDn, where all Dn’s are open dense. We use the following

notation: for every s, t ∈ 2<ω, put

t⊕ s := {t′ ∈ 2<ω : ∀n < |t|(t′(n) = t(n)) ∧ ∀n ≥ |t|(t′(n) = s(n))}.

Consider the following recursive construction:

• let t∅ ∈ 2<ω such that [t∅] ⊆ D0;

• Assume for every r ∈ 2n we have already defined tr such that [tr] ⊆ Dn.

Let {tj : j < 2n+1} be an enumaration of {trai : r ∈ 2n, i = 0, 1}. Then

consider the following construction along j < 2n+1:



for j = 0, pick s0 D t0 such that [s0] ⊆ Dn+1;

for j + 1, pick sj+1 D tj+1 ⊕ sj such that [sj+1] ⊆ Dn+1.

Then, for every r ∈ 2n and i = 0, 1, put trai = tj ⊕ s2
n+1−1, where

tj = tr
ai.

Finally, put R := {tr : r ∈ 2<ω, tr as defined in the construction} and T :=

{t ∈ 2<ω : ∃t′ ∈ R∃k ≤ |t′|(t′�k = t)} (i.e., T is the downward closure of R). It

is clear that T is a Silver tree such that for every z ∈ [T ], z ∈
⋂
n∈ωDn.

Corollary 7. If Θ is a topologically reasonable family, then Θ(Baire) ⇒

Θ(Silver).

Proof. Pick a set X ∈ Θ having the Baire property. Then, if X is not meager,

there exists s ∈ 2ω such that X is comeager in [s]. Hence, by fact 6, one can

find T ∈ V, with Stem(T ) = s, such that [T ] ⊆ X. In case X is meager, one

can analogously find a Silver tree contained in the complement of X. By lemma

5, that is sufficient to obtain Θ(Silver).

3 Shelah’s amalgamation and unreachability

In the construction of the model about Lebesgue measurability and Baire pro-

perty (see [11]), Solovay used a key property of the Lévy-collapsing algebra,

which we recall in the following definition.

Definition 8. A complete Boolean algebra B has the Solovay property if and

only if for any formula Φ with parameters in the ground model N and for any

B-name for a real ẋ, one has ‖Φ(ẋ)‖B ∈ Bẋ, where Bẋ is the complete Boolean

algebra generated by ẋ, i.e., Bẋ is generated by {‖sC ẋ‖B : s ∈ 2<ω}.

The meaning of the definition is that, to evaluate Φ(ẋ) in NB, it suffices to

know its value in a certain partial extension obtained from a subalgebra of B,

namely Bẋ. It is not hard to show that a particular family of complete Boolean



algebras, satisfying the Solovay property, is the class of strongly homogeneous

algebras, which we now define.

Definition 9. A complete Boolean algebra B is strongly homogeneous if and

only if for every pair of σ-generated complete subalgebras B1,B2 l B, every

isomorphism φ∗ : B1 → B2 can be extended to an automorphism φ : B→ B.

Lemma 9.8.3 in [1] shows that

if B is strongly homogeneous, then B satisfies the Solovay property. (1)

Note that the Lévy-collapsing algebra is strongly homogeneous. In [8], Shelah

introduced amalgamation, a general method to build Boolean algebras satisfying

a property related to strong homogeneity, and in effect providing us with a tool

to prove variations of Solovay’s result.

Shelah’s construction. We review Shelah’s amalgamation in as much detail

as we need for the present purpose and refer the reader to the splendid exposition

in [5] for details.

Definition 10. Let B be a complete Boolean algebra and B0 lB. The projec-

tion map π : B→ B0 is defined by π(b) =
∏
{b ≤ b0 : b0 ∈ B0}.

Definition 11. Let B be a complete Boolean algebra and B1,B2 two isomorphic

complete subalgebras of B and φ0 the isomorphism between them. One defines

the amalgamation of B over φ0, say Am(B, φ0), as follows: first, let

B×φ0 B := {(b′, b′′) ∈ B×B : φ0(π1(b′)) · π2(b′′) 6= 0},

where πj : B→ Bj is the projection, for j = 1, 2, and consider on such B×φ0
B

simply the product order. Then set Am(B, φ0) := B(B×φ0
B), i.e., the complete

Boolean algebra generated by B×φ0 B.

One can easily see that ej : B→ Am(B, φ0) such that

e1(b) = (b,1) and e2(b) = (1, b)



are both complete embeddings ([5], lemma 3.1). Further, for any b1 ∈ B1, one

can show that

(b1,1) is equivalent to (1, φ0(b1)). (2)

In fact, assume (a′, a′′) ≤ (b1,1) and (a′, a′′) incompatible with (1, φ0(b1)) (in

Am(B, φ0)). The former implies π1(a′) ≤ b1, while the latter implies π2(a′′) ·

φ0(b1) = 0, and hence one obtains φ0(π1(a′)) · π2(a′′) = 0, which means that

the pair (a′, a′′) does not belong to the amalgamation.

Moreover, if one considers f1 : e2[B] → e1[B] such that, for every b ∈ B,

f1(1, b) = (b,1), one obtains an isomorphism between two copies of B into

Am(B, φ0), such that f1 is an extension of φ0 (since for every b1 ∈ B1, by (2)

above, e1(b1) = (b1,1) = (1, φ0(b1)) = e2(φ0(b1)), which means e1�B1 = e2◦φ0).

Hence, if one considers e1[B], e2[B] as two isomorphic complete subalgebras of

Am(B, φ0), one can repeat the same procedure to construct

2-Am(B, φ0) := Am(Am(B, φ0), f1)

and f2 the isomorphism between two copies of Am(B, φ0) extending f1. It is

clear that one can continue such a construction, in order to define, for every

n ∈ ω,

n+ 1-Am(B, φ0) := Am(n-Am(B, φ0), fn)

and fn+1 the isomorphism between two copies of n-Am(B, φ0) extending fn.

Finally, putting

(i) ω-Am(B, φ0) = Boolean completion of direct limit of n-Am(B, φ0)’s, and

(ii) φ = limn∈ω fn (in the obvious sense),

one obtains B1,B2lω-Am(B, φ) and φ automorphism of ω-Am(B, φ0) extending

φ0.

We shall abuse terminology by referring to the Boolean completion of the direct

limit of a sequence of Boolean algebras simply as their direct limit (since only



complete Boolean algebras are of interest to us). We write limα<λBα for the

direct limit understood in this way.

We will iterate this construction (each time with a new pair of isomorphic sub-

algebras) as a method to obtain a Boolean algebra which satisfies a particular

variant of strong homogeneity.

Unreachability. A crucial ingredient to the present result is unreachability,

a property of reals which in a sense is preserved both by Silver forcing and by

amalgamation. A real is unreachable if it avoids every slalom of the ground

model.

• Γk = {σ ∈ HFω : ∀n ∈ (|σ(n)| ≤ 2kn)}} and Γ =
⋃
k∈ω Γk, where HF

denotes the hereditary finite sets;

• let g(n) = 2n and {In : n ∈ ω} be the partition of ω such that I0 = {0}

and In+1 =
[∑

j≤n g(j),
∑
j≤n+1 g(j)

)
, for every n ∈ ω;

• given x ∈ 2ω, define hx(n) = x�In.

Definition 12. One says that z ∈ 2ω is unreachable over N iff

∀σ ∈ Γ ∩N∃n ∈ ω(hz(n) /∈ σ(n)).

Remark 13. If z is random over N, then z is unreachable over N. To prove

that, assume towards a contradiction that there is σ ∈ Γk∩N such that for every

n ∈ ω, hz(n) ∈ σ(n). Consider the set B := {x ∈ 2ω : ∀n ∈ ω(hx(n) ∈ σ(n))},

which is in N by construction. Since limn∈ω
2kn

2g(n) = 0, we get that B has

measure zero. Hence z /∈ B, which is a contradiction.

Remark 14. If x is Cohen over N then x is unreachable over N. The proof

is similar to the above one, by noting that the set B is closed nowhere dense

too, simply bacause for every n ∈ ω, |σ(n)| < 2g(n) and so, given a sequence

s ∈ 2<ω, one can find an extension s′ such that [s′] ∩B = ∅.



Lemma 15. Let B,B1,B2, φ0, e1, e2 as above and ẋ a B-name for an element

of 2ω. If 
B “ ẋ is unreachable over NB1 and NB2 ”, then


Am(B,φ0
)“ e1(ẋ) is unreachable over Ne2[B] ”,

and analogously 
Am(B,φ0
)“ e2(ẋ) is unreachable over Ne1[B] ”.

Proof. It is proven in [5] that

Am(B, φ0)/B1 densely embeds into e1[B/B1]× e2[B/B2].

That roughly means that, in NB1 , the amalgamation (quotiented by B1) can be

seen as a product of the two copies of B. Hence, for our proof it suffices to show

that, if A0 and A1 are two complete Boolean algebras and ẋ is an A0-name for

an element in 2ω such that 
A0
“ ẋ is unreachable over N”, then


A0×A1 “ ẋ is unreachable over N[G] ”,

where G is A1-generic over N. In fact by considering A0 and A1 to be e1[B/B1]

and e2[B/B2], respectively (and NB1 as ground model), we obtain exactly the

conclusion of the lemma.

To reach a contradiction, assume there is σ ∈ Γk ∩N[G] and (a0, a1) ∈ A0×A1

such that (a0, a1) 
 ∀n ∈ ω(hx(n) ∈ σ(n)). For each n ∈ ω one can pick

bn ∈ A1, bn ≤ a1 and Wn ⊂ ω, with |Wn| ≤ 2kn, such that bn 
 σ(n) = Wn.

Furthermore, since the sequence 〈Wn : n ∈ ω〉 is in N, one can find a ∈ A0,

a ≤ a0 and j ∈ ω such that a 
 hx(j) /∈ Wj . Hence, we would get, on the one

hand (a, bj) ≤ (a0, a1) and so (a, bj) 
 ∀n ∈ ω(hx(n) ∈ σ(n)), but on the other

hand (a, bj) 
 hx(j) /∈Wj = σ(j).

Lemma 16. Assume x ∈ 2ω be unreachable over N. Then x remains unreach-

able over N[z], where z is a Silver real. In other words, the property of being

unreachable is preserved by Silver extensions.



Proof. It is a standard fusion argument. Given σ ∈ Γk ∩N[z] and a condition

T ∈ V, the idea is to construct a fusion sequence 〈Tn : n ∈ ω〉 and τ ∈ Γk+1∩N

such that the limit of the fusion T ′ 
 ∀n ∈ ω(σ(n) ⊆ τ(n)). The key-point of the

proof is that for every n ∈ ω, one only has 2n-many n+ 1st splitting nodes, and

therefore 2n-many possible decisions for σ(n). In this way, one can define τ(n) to

be the union of all these possibilities, in order to have |τ(n)| ≤ 2kn ·2n = 2(k+1)n,

which gives us τ ∈ Γk+1 ∩N.

More formally: Step 0: Let T 0 ≤ T such that T 0 
 σ(0) = τ(0), for some

sigleton τ(0) ⊂ ω. Step n + 1: Let {tj : j < 2n+1} be an enumeration of

the set {tmai : tm ∈ Splitn+1(Tn) ∧ i = 0, 1}. For any j < 2n+1, one can find

Tn+1
j ≤ Tntj and En+1

j of size ≤ 2k(n+1) such that Tn+1
j 
 σ(n+1) = En+1

j . Note

also that by using an argument as in the proof of lemma 18 one can uniformly

pick those Tn+1
j ’s, in order to obtain a Silver tree Tn+1 :=

⋃
{Tn+1

j : j < 2n+1}.

If we now put τ(n + 1) =
⋃
{En+1

j : j < 2n+1} we then get Tn+1 ≤n Tn,

|τ(n+1)| ≤ 2n+1 ·2k(n+1) = 2(k+1)(n+1) and Tn+1 
 σ(n+1) ⊆ τ(n+1) (where

S ≤n T means S ≤ T and Splitn+1(S) = Splitn+1(T ).)

Finally put T ′ =
⋂
n∈ω Tn, for every n ∈ ω. Hence τ ∈ Γk+1 ∩N, T ′ ≤ T and

T ′ 
 ∀n ∈ ω(σ(n) ⊆ τ(n)).

Amoeba for Silver. Proofs involving regularity properties need the right

notion of amoeba, i.e., a particular forcing notion to add a large set of generic

reals, where the precise meaning of the two italic-style words depend on the

notion of regularity we are dealing with.

Definition 17.

VT = {(p, T ) : T ∈ V and p = T �n, for some n ∈ ω},



ordered by

(p′, T ′) ≤ (p, T )⇔ T ′ ⊆ T ∧ T ′�ht(p) = T �ht(p).

We aim at showing that this forcing adds many Silver reals, more precisely,


VT ∀T ∈ V ∩N∃T ′ ⊆ T (T ′ ∈ V ∧ [T ′] ⊆ V(N)), (3)

where we remind that V(N) denotes the set of Silver reals over the ground

model N.

First of all, we prove the following preliminary fact.

Lemma 18. Let TG =
⋃
{p : ∃T ((p, T ) ∈ G)}, where G is VT-generic over the

ground model. Then N[G] |= [TG] ⊆ V(N).

Proof. Fix an open dense D ⊆ V and (p, T ) ∈ VT. First of all, let t0, t1, . . . , tk

be an enumeration of all terminal nodes in p. We use the following notation:

for any tree T and t ∈ 2<ω such that |t| ≤ |Stem(T )|,

t⊕ T := {t⊕ t′ : t′ ∈ T},

i.e., the tree obtained from T by chancing all nodes to begin as t. We aim at

uniformly shrinking T to some T ′ ∈ V so that (p, T ′) 
 ∀z ∈ [TG](Hz ∩D 6= ∅),

where Hz is defined by Hz = {S ∈ V ∩ N : z ∈ [S]}. Consider the following

construction:

• firstly, pick T 0
t0 ⊆ Tt0 in D and let T 0

t1 = t1 ⊕ T 0
t0 ;

• then, pick T 1
t1 ⊆ T 0

t1 in D and let T 1
t2 = t2 ⊕ T 1

t1 ; note that t0 ⊕ T 1
t1 ⊆ T 0

t0

and so t0 ⊕ T 1
t1 ∈ D as well;

• continue this construction for every j ≤ k and finally let T ′tj = tj ⊕ T ktk ,

for every j ≤ k.

It follows from the construction that T ′ :=
⋃
{T ′tj : j ≤ k} is a Silver tree and,

for any z ∈ [TG], one has Hz ∩ D 3 T ′tj , for the appropriate j ≤ k such that

tj C z. Hence, we have shown that for every branch z ∈ [TG], Hz ∩D 6= ∅.



It is left to show that the set Hz is a filter. Pick T1, T2 ∈ Hz incompatible (note

that by absoluteness they are incompatible in N as well). Hence, [T1] ∩ [T2] is

finite, i.e., [T1] ∩ [T2] = {xi : i ≤ n}. Then E := {T ∈ V : ∀i ≤ n(xi /∈ [T ])}

is open dense set in the ground model N, and so, by genericity, there is T ∈ E

such that z ∈ [T ], which contradicts T1, T2 ∈ Hz (and so z ∈ [T1]∩ [T2]). N.B.:

by absoluteness, this argument works when z belongs not only to N[G], but to

any ZFC-model M ⊇ N[G] (see also remark 19 coming).

Remark 19. The forcing we have just introduced is an amoeba in a strong

sense, which means that the tree added by VT is a Silver tree of Silver reals

in any ZFC-model M ⊇ N[G], where G is VT-generic over the ground model

N. The method for proving that is essentially the same used by Spinas in [12]

about an analogous result for an amoeba of Laver. In fact, if we look at the

proof of 18, we actually show that, for every open dense set D ⊆ V of the

ground model there exists a front F ⊆ TG such that for every t ∈ F , (TG)t ∈ D.

Since being a front is a Π1
1-property, by absoluteness, it exists in any ZFC-model

M ⊇ N[G]. It therefore follows that our argument works even if z ∈ [TG] comes

from any ZFC-model M ⊇ N[G]. In other words, for any ZFC-model M ⊇ N[G],

M |= [TG] ⊆ V(N).

It is left to show that this forcing actually adds such a generic Silver tree inside

any Silver tree of the ground model. To this aim, fix any S ∈ V ∩ N, and

consider the forcing VTS defined as VTS := {(p, T ) ∈ VT : T ⊆ S}, with

the analogous order. It is therefore clear that we can similarly show that any

branch through the generic TG added by VTS is Silver generic, and obviously

TG ⊆ S. Furthermore, by using the standard E-preserving bijection between

S and 2ω, one can easily note that VTS is forcing equivalent to VT, actually

really isomorphic, and therefore we obtain (3).



Finally remark 19 gives also the following corollary.

Corollary 20. For every ZFC-model M ⊇ N[G]

M |= ∀T ∈ V ∩N∃T ′ ⊆ T (T ′ ∈ V ∧ [T ′] ⊆ V(N)).

4 Silver without Miller and Lebesgue

We now have all needed tools to show the main results of the paper, that is to

provide a model

M |= all(Silver) ∧ ¬all(Miller) ∧ ¬all(Lebesgue) ∧ ∀x ∈ ωω(ω
L[x]
1 < ω1),

We remark that in our proof the use of unreachbility together with the amoeba

of Silver shows a new method for separating regularity properties using Shelah’s

amalgamation.

We start with an inaccessible κ and force to add a non-Miller measurable set Y

and a non-Lebesgue measurable set Z, and we simultaneously amalgamate over

Silver forcing V, with respect to such Y and Z. The construction will give us a

complete Boolean algebra Bκ forcing 1

“every set of reals in L(ωω, Y, Z) is Silver measurable,

Y is not Miller measurable, Z is not Lebesgue measurable, and

ω1 is inaccessible by reals ”.

Observe that we must show not only all sets in L(ωω) are regular, but all sets in

L(ωω, Y, Z). Furthermore, intuitively, since we want Silver measurability but not

Lebesgue and Miller measurability, one should ask a type of homogeneity involv-

ing Silver subalgebras of Bκ w.r.t. Ẏ and Ż, but not all σ-generated subalgebras

(since, e.g., fixing Ẏ by Cohen homogeneity would affect the unreachability).

More precisely, we want our amalgamation to catch all subalgebras generated

1Note that, following Solovay’s approach, we could equivalently pick HOD(Onω , Y, Z) as
inner model, i.e., the class of all sets that are hereditarily ordinal definable over Onω ∪ {Y } ∪
{Z}.



by A ∪ b, where AlBκ is isomorphic to the Silver algebra and b ∈ Bκ. In this

spirit, one introduces the following notion.

Definition 21. Let B be a complete Boolean algebra, Ẏ and Ż be B-names.

Let B+(V) denote a complete Boolean subalgebra generated by B(V) ∪ {b},

for some b ∈ B. One says that B is (V, Ẏ , Ż)-homogeneous if and only if for

any isomorphism φ0 between two complete subalgebras B′,B′′ of B, such that

B′ ≈ B′′ ≈ B+(V), there exists φ : B → B automorphism extending φ0 such

that 
B “ φ(Ẏ ) = Ẏ and φ(Ż) = Ż ”.

Remark 22. Note that for every b ∈ B, one can easily construct a dense em-

bedding between B(V) and B+(V), and so they give rise to the same extension.

So one starts from a ground model N containing an inaccessible cardinal κ.

Define a complete Boolean algebra Bκ as a direct limit of κ-many complete

Boolean algebras Bα’s of size < κ, such that for every α < γ < κ, BαlBγ , and

one simultaneously constructs two sets Ẏ and Ż of Bκ-names of reals. We now

see in detail such a construction.

• Firstly, to obtain the (V, Ẏ , Ż)-homogeneity, we use a standard book-

keeping argument as follows: whenever BαlB′lBκ and BαlB′′lBκ are

such that Bα forces (B′ : Bα) ≈ (B′′ : Bα) ≈ B+(V) and φ0 : B′ → B′′ an

isomorphism s.t. φ0 � Bα = IdBα , then there exists a sequence of functions

in order to extend the isomorphism φ0 to an automorphism φ : Bκ → Bκ,

i.e., ∃〈αη : η < κ〉 increasing, cofinal in κ, with α0 = α, and ∃〈φη : η < κ〉

such that

– for η > 0 successor ordinal, Bαη+1 = ω-Am(Bαη , φη−1), and φη is the

automorphism on Bαη+1 generated by the amalgamation;

– for η limit ordinal, let Bαη = limξ<η Bαξ and φη = limξ<η φξ, in the

obvious sense;



– for every η < κ, we have Bαη+1 lBαη+1
, i.e., αη + 1 < αη+1.

Moreover, since one needs to fix the set of names by each automorphism

φη, one puts

– successor case η > 0:

Ẏαη+1 := Ẏαη ∪ {φjη(ẏ), φ−jη (ẏ) : ẏ ∈ Ẏαη , j ∈ ω},

Żαη+1 := Żαη ∪ {φjη(ż), φ−jη (ż) : ż ∈ Żαη , j ∈ ω};

– limit case: Ẏαη :=
⋃
ξ<η Ẏαη , and Żαη :=

⋃
ξ<η Żαη .

• Secondly, to obtain the Silver measurability of all sets in L(ωω, Y, Z) to-

gether with Y non-Miller measurable and Z non-Lebesgue measurable,

one has to add the following operations into the construction of Bκ:

1. for cofinally many α’s,

Bα+1 = Bα ∗ V̇T.

In this case, put Ẏα+1 = Ẏα and Żα+1 = Żα.

2. for cofinally many α’s, Bα+1 = Bα ∗ Ṁ and

Ẏα+1 = Ẏα ∪ {ẏT : T ∈M},

where ẏT is a name for a Miller real over NBα through T ∈ NBα ,

3. for cofinally many α’s, Bα+1 = Bα ∗ Ḃ and

Żα+1 = Żα ∪ {żT : T ∈ B},

and zT is a name for a random real through the positive measure tree

T ∈ NBα .

4. for cofinally many α’s we collapse α to ω, i.e., Bα+1 = Bα∗Coll(ω, α),

and we let Ẏα+1 = Ẏα and Żα+1 = Żα;

• Finally, for any limit ordinal λ, Ẏλ =
⋃
α<λ Ẏα, Żλ =

⋃
α<λ Żα and Bλ =

limα<λBα.



Remark 23. Note that Bκ is a direct limit of complete Boolean algebras of

size < κ collapsing κ to ω1 and it is therefore trivially κ-cc. At this point the

reader could object that this algebra is nothing more than the Levy collapse,

and hence the extension we get is the same as Solovay’s. How can we then

separate regularity properties? The point is that, even if we get the same

forcing-extension obtained by Solovay, what we do is to look at a different

inner model; after collapsing the inaccessible to ω1, we pick the inner model

L(ωω, Z, Y ). So this method should be viewed as a technique for choosing the

“suitable” inner model of Solovay’s extension to obtain the required separation

of regularity properties. For further observations about that, we refer the reader

to the last section, questions 1, 3 and 6.

The proof of the main theorem splits into the following lemmata.

Lemma 24. Let G be Bκ-generic over N. Then

N[G] |= “every set of reals in L(ωω, Y, Z) is Silver measurable”.

Proof. Fix arbitrarily X ⊆ 2ω, Φ and r ∈ ωω such that X = {x ∈ 2ω :

Φ(x, r, Y, Z)}. 2 Let α < κ be such that r ∈ V[G�α+ 1] and Bα+1 = Bα ∗ V̇T.

Note that, because of the first point of the construction above,

N[G�α+ 1] |= “Bκ/G�α+ 1 is (V, Ẏ , Ż)-homogeneous”.

Let N∗ = N[G�α+ 1], B∗ = Bκ/G�α+ 1 and H be the tail of the generic filter

G, i.e., H is B∗-generic over N∗ and N∗[H] = N[G]. Since the parameter r has

been “absorbed” in the ground model, for notational simplicity, from now on

we will hide it, without indicating it explicitly within the formula. The next

step will be to prove the Solovay property for Φ over Silver reals, which is the

content of the next observation.

2Note that the argument works even if we start with r ∈ Onω . Hence, a similar proof
actually holds for X ∈ HOD(Onω , {Y }, {Z}), as mentioned before. Furthermore, we remark
that Φ will have (suppressed) ordinal parameters.



Fact 25. Let B∗ be (V, Ẏ , Ż)-homogeneous Boolean algebra, Φ(x, y, z) be a

formula with only parameters in the ground model and Y,Z as parameters, and

ẋ be a name for a Silver real. Then ‖Φ(ẋ, Ẏ , Ż)‖B∗ ∈ B∗ẋ.

Sketch of the proof. The proof is pretty standard and we give a sketch of it for

completeness. To reach a contradiction, assume ‖Φ(ẋ, Ẏ , Ż)‖B∗ /∈ B∗ẋ. Let A be

the complete Boolean algebra generated by B∗ẋ∪‖Φ(ẋ, Ẏ , Ż)‖B∗ . It is well-known

that there exists ρ : A → A automorphism such that ρ(‖Φ(ẋ, Ẏ , Ż)‖B∗) 6=

‖Φ(ẋ, Ẏ , Ż)‖B∗ and ρ is the identity over B∗ẋ. By (V, Ẏ , Ż)-homogeneity, there

exists φ : B∗ → B∗ automorphism extending ρ such that 
B∗ “ φ(Ẏ ) =

Ẏ and φ(Ż) = Ż ” . Hence, the following equalities yield a contradiction:

ρ(‖Φ(ẋ, Ẏ , Ż)‖B∗) = φ(‖Φ(ẋ, Ẏ , Ż)‖B∗)

= ‖Φ(φ(ẋ), φ(Ẏ ), φ(Ż))‖B∗

= ‖Φ(ẋ, Ẏ , Ż)‖B∗ .

Fact 26. Let ẋ be a B∗-name such that 
B∗ “ẋ is a Silver real over N∗”, and

assume for every b ∈ B(V), ‖ẋ ∈ b‖B∗ 6= 0. Then there exists an isomorphism

f : B(V)→ B∗ẋ, such that 
B∗ f(v̇) = ẋ,

where v̇ is the canonical name for the Silver real.

(Hint: choose f(b) = ‖ẋ ∈ b‖B∗ , for every b ∈ B(V)).

Now let ẋ0 be a name for a Silver real and assume A = ‖Φ(ẋ0, Ẏ , Ż)‖B∗ 6= 0.

Hence, because of 26, together with (V, Ẏ , Ż)-homogeneity, one can consider

b = f−1[A], with b ∈ B(V). The next observation is simply a version of Solovay’s

lemma, stated for Silver reals in place of Cohen reals (for a proof, see [1], lemma

9.8.5).

Fact 27. Suppose N∗[H] |= “x is a Silver real over N∗”. Then

N∗[H] |= “x ∈ b⇔ Φ(x, Y, Z)”.



By remark 19 and corollary 20, one can pick a Silver tree T ∈ N∗[H] such that

[T ] ⊆ b and every x ∈ [T ] is Silver over N∗. Hence, one obtains

N∗[H] |= ∀x ∈ [T ](Φ(x, Y, Z)),

which precisely means N[G] |= [T ] ⊆ X.

It is left to show the case ‖Φ(ẋ, Ẏ , Ż)‖B∗ = 0. In this case, ‖¬Φ(ẋ, Ẏ , Ż)‖B∗ 6= 0

and then, arguing in the same way, one gets a Silver tree T ∈ N∗[H] such that

N∗[H] |= ∀x ∈ [T ](¬Φ(x, Y, Z)), and therefore

N[G] |= [T ] ∩X = ∅.

Lemma 28. Let G be a Bκ-generic filter over N. Then

N[G] |= “ Z is not Lebesgue measurable ”.

Proof. In N[G], we aim at showing that for every tree S with positive measure,

both

Z ∩ [S] 6= ∅ and [S] * Z.

Let Ṡ be a Bκ-name. There is α < κ such that Ṡ is a Bα-name, Bα+1 = Bα ∗ Ḃ

and Żα+1 = Żα ∪ {żT : T ∈ B}. Consider żS name for a random real over

N[G�α+ 1] such that N[G] |= żGS ∈ [S]. Thus,

N[G] |= żGS ∈ Z ∩ [S].

On the other hand, there is also γ < κ, such that Ṡ is a Bγ-name, Bγ+1 =

Bγ ∗ Coll(ω, α) and Żγ+1 = Żγ . Let ġ be a name for a random real over

N[G�γ+1] (added by the Levy collapse) such that N[G] |= ġG ∈ [S]. Obviously,

N[G] |= ġG /∈ Zγ , since it is added at stage γ + 1, and thus,

N[G] |= ġG ∈ [S] \ ŻGγ+1,



since Żγ+1 = Żγ . It is left to show that N[G] |= ġG /∈ Z \ ŻGγ+1. This follows

from the following result.

Lemma 29. For every γ, β < κ, γ < β, and ẋ ∈ Żβ \ Żγ , one has

N[G] |= “ ẋG is unreacheable over N[G�γ + 1] ”.

Proof of lemma 29. The proof is by induction on β < κ.

Limit Case: if β is limit, then the result is completely trivial, since, given

ẋ ∈ Żβ \ Żγ , it follows that there exists β′ < β such that ẋ ∈ Żβ′ \ Żγ ,

and so one can simply apply the inductive hypothesis for β′ in order to get

N[G] |= “ẋG is unreachable over N[G�γ + 1]”.

Successor Case: β = γ + 1, i.e., ẋ ∈ Żγ+1 \ Żγ . Two cases are possible:

Subcase 1: Żγ+1 = Żγ ∪ {żS : S ∈ B}. In this case ẋ has to be a random real

over N[G�γ + 1] and therefore unreachable over it, because of remark 13.

Subcase 2: Żγ+1 = Żγ ∪ {φj(ż), φ−j(ż) : ż ∈ Żγ , j ∈ ω}, where γ = αη and

φ = φη, for η > 0. First note that we have the following result, which is analog

to lemma 3.4 in [5].

Fact 30. Let η > 0 be a successor ordinal. Let B′,B′′lBαη and ẋ ∈ NBαη ∩2ω

such that


Bαη
“ ẋ is unreachable over both NB′ and NB′′”,

and ψ : B′ → B′′ isomorphism.

Then, for every j ∈ ω,


Bαη+1 “ φjη(ẋ) and φ−jη (ẋ) are unreachable over NBαη ”.

where Bαη+1 = ω-Am(Bαη , ψ), and φη is the automorphism extending ψ, gen-

erated by the amalgamation.

Proof. The proof simply consists of a recursive application of lemma 15. For an

analogous case, one can see the proof of lemma 3.4 in [5].



Corollary 31. Let Bα0
lB′,B′′ lBα1

such that


Bα0
“ (B′ : Bα0) ≈ (B′′ : Bα0) ≈ B+(V)”

and φ0 : B′ → B′′ isomorphism such that φ0�Bα0 = IdBα0
. Then for every

ẋ ∈ NBα1 ∩2ω such that 
Bα1
“ẋ is unreachable over NBα0 ”, one has, for every

j ∈ ω,


Bα1+1
“ φj1(ẋ) and φ−j1 (ẋ) are unreachable over NBα1 ”.

(As usual, Bα1+1 is the ω-Am(Bα1
, φ0), and φ1 ⊇ φ0 the automorphism of

Bα1+1 generated by the amalgamation.)

Proof. First, note that Bα0
forces both (B′ : Bα0

) ≈ (B′′ : Bα0
) ≈ B+(V), and

then, by lemma 16 and remark 22, we obtain


Bα1
“ ẋ is unreachable over both NBα0

∗(B′:Bα0
) and NBα0

∗(B′′:Bα0
)”.

To finish the proof, one can then apply fact 30, for η = 1.

Going back to the proof of Subcase 2, we have two cases:

• η = 1, and so γ = α1: in such a case either ẋ = φj1(ż) or ẋ = φ−j1 (ż),

for some ż ∈ Żα1 and j ∈ ω. Hence, by inductive hypothesis, we have


Bα1
“ ż is unreachable over NBα0 ”, and therefore, by corollary 31, we

obtain


Bα1+1
“ ẋ is unreachable over NBα1 ”;

• η > 1 and so γ = αη: in such a case we do not have to use corollary 31, but

fact 30 is sufficient; in fact, in this case, we do not have the “intrusion” of

the two copies of the Silver+ algebra in the amalgamation. More precisely,

if ẋ = φjη(ż) for some ż ∈ Zαη , then one obtains


Bαη+1
“ ẋ is unreachable over NBαη ”,

since by inductive hypothesis 
Bαη
“ ẋ is unreachable over NBαη−1 ”.



By our previous comments, this concludes the proof to show Z not being

Lebesgue measurable.

Lemma 32. Let G be a Bκ-generic filter over N. Then

N[G] |= “ Y is not Miller measurable ”.

Proof. The proof is analogous to the one just given for showing Z not being

Lebesgue measurable. Here, instead of using random reals, we use Miller reals,

and instead of using the unreachability, we use the unboundedness. In fact an

analogous of fact 30 and corollary 31 can be proven if one replaces the word

“unreachable” with “unbounded” (see [5], lemma 3.4 and lemma 6.1). One

can then continue with a similar proof, by using the fact that Miller reals are

unbounded over the ground model and that Silver forcing is ωω-bounding.

Hence, if one considers the inner model L(ωω, Y, Z) of N[G], one obtains

L(ωω, Y, Z)N[G] |= all(Silver) ∧ ¬all(Lebesgue) ∧ ¬all(Miller) ∧

∀x ∈ ωω(ω
L[x]
1 < ω1),

Remark 33. Note that any comeager set contains the branches through a

Miller tree, and therefore all(Baire) ⇒ all(Miller), by lemma 5. Hence,

all(Baire) fails in our model, without displaying a concrete counterexample.

On the contrary, note that our method does not permit to construct a unique set

Y which is simultaneously non-Miller measurable and non-Lebesgue measurable.

In fact, on the one hand random reals are unreachable but not unbounded,

whereas on the other hand Miller reals are unbounded but not unreachable.

Final acknowledgement. I really would like to thank the anonymous referee

for the suggestions which have definitely made the exposition much clearer.



In particular, one of his/her observations has led to question 1 of the coming

section.

5 Concluding remarks and open questions

We conclude with some questions which we consider noteworthy and for which

further developments are expected.

(Q1) It would be interesting to understand the behaviour of the inaccessible κ

if we do not explicitely collapse it along the construction. In the model

presented by Shelah in [9], if we start from L as ground model and κ

being the least inaccessible, we know that κ collapses to ω1; in fact, ω1

has to be inaccessible by reals, as the latter is implied by Σ1
3(Lebesgue).

Nevertheless, in our case, we know that projective Silver measurability

has the consistency strength of ZFC, so we cannot use such an indirect

argument. We conjecture that the algebra Bκ will anyway collapse the

inaccessible to ω1, but we currently do not have a precise proof of that.

(Q2) In his PhD dissertation [7] written under the supervision of Sy Friedman,

David Schrittesser improved the amalgamation-method in order to get a

projective version of Shelah’s result, where all projective sets are Lebesgue

measurable and there exists a projective set without Baire property. So

a natural question is whether such a method can be useful to obtain the

projective version of the separation between Silver-, Miller- and Lebesgue-

measurability that we presented in this paper, and as usual requiring ω1

to be inaccessible by reals.

(Q3) The same method might be done to separate other two regularity prop-

erties: in our case, we used the fact that a random real is unreachable

over the ground model, and that the unreachability is somehow preserved

by amalgamation and Silver forcing. Obviously, in other cases, the trick



will be to find the right property of the generic real still preserved by the

amalgamation and simultaneously “respected” by the other forcing; for

example, if we want to get all(Sacks) ∧ ¬all(Silver) one should find a

particular feature of the Silver real which is preserved by amalgamation

and Sacks forcing in the sense of fact 30 and corollary 31.

(Q4) The previous results and observations point out that the nature of the

generic reals, and more generally of the forcing notions, is strictly related

to the behaviour of the regularity properties associated. Hence, a more

general and intriguing question could be to understand whether some spe-

cific relation between two tree-like forcings P, Q reflects on the relation

between all(P-measurability) and all(Q-measurability), where P-

measurability denotes the notion of regularity associated with P (see [4]

and [6], chapter 2). For example, we know that C l D (where the latter

is the Hechler forcing) and that all(Hechler)⇒ all(Baire); Can one ob-

tain a more general fact asserting that if PlQ then all(Q-measurability)

implies all(P-measurability)?

(Q5) Since any comeager set contains the branches through a Miller tree, it

follows that all(Baire) ⇒ all(Miller). Then it comes rather natural

to ask whether or not such an implication can be reversed. If we want

to apply the method presented in this paper to give a negative response,

we should find a property which is preserved via Miller extension, and

satisfied by Cohen reals. Note that the unreachability cannot help for

that, since Miller reals themselves are not unreachable.

(Q6) Starting from L and using Shelah’s machinery to obtain all(Baire) with-

out inaccessible, we get a model where even ∆1
2(Lebesgue) fails, since

by sweetness no random reals are added. Furthermore, in such a model

we obviously have ωL
1 = ω1. What about a model for all(Baire) ∧



¬all(Lebesgue) but in which ω1 is inaccessible by reals? The answer

is far from trivial, since Shelah’s method seems to have several difficulties

in that case; in fact, one should find a property of the random real which

is preserved by Cohen extension (and simultaneously by the amalgama-

tion), which appears really hard to obtain. So it seems that a completely

different method should be used, probably even another way to construct

homogeneous algebras.
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