Topological infinite gammoids, And A new Menger-Type theorem for infinite GRAPHS

Johannes Carmesin

April 2, 2014

Abstract

Answering a question of Diestel, we develop a topological notion of gammoids in infinite graphs which, unlike traditional infinite gammoids, always define a matroid.

As our main tool, we prove for any infinite graph G with vertex sets A and B that if every finite subset of A is linked to B by disjoint paths, then the whole of A can be linked to the closure of B by disjoint paths or rays in a natural topology on G and its ends.

This latter theorem re-proves and strengthens the infinite Menger theorem of Aharoni and Berger for 'well-separated' sets A and B. It also implies the topological Menger theorem of Diestel for locally finite graphs.

1 Introduction

Unlike finite gammoids, traditional infinite gammoids do not necessarily define a matroid. Diestel [9] asked whether a suitable topological notion of infinite gammoid might mend this, so that gammoids always give rise to a matroid. We answer this in the positive by developing such a topological notion of infinite gammoid. Our main tool is a new topological variant of Menger's theorem for infinite graphs, which is also interesting in its own right.

Given a directed graph G with a set $B \subseteq V(G)$ of vertices, the set $\mathcal{L}(G, B)$ contains all vertex sets I that can be linked by vertex-disjoint directed paths ${ }^{1}$ to B. If G is finite, $\mathcal{L}(G, B)$ is the set of independent sets

[^0]of a matroid, called the gammoid of G with respect to B. If G is infinite, $\mathcal{L}(G, B)$ does not always define a matroid (1).

In 1968, Perfect [11] looked at the question of when $\mathcal{L}(G, B)$ is a matroid. As usual at that time, she restricted her attention to matroids with every circuit finite, now called finitary matroids. In [5], Bruhn et al found a more general notion of infinite matroids, which are closed under duality and need not be finitary. Afzali, Law and Müller [1] study infinite gammoids in this more general setting and find conditions under which $\mathcal{L}(G, B)$ is a matroid. In this paper, we introduce a topological notion of gammoids in infinite graphs that always define a matroid.

These gammoids can be defined formally without any reference to topology, as follows. A ray R in G dominates B if G contains infinitely many vertex-disjoint directed paths from R to B. A vertex v dominates B if there are infinitely many directed paths from v to B that are vertex-disjoint except in v. A path dominates B if its last vertex dominates B. A domination linkage from A to B is a family of vertex-disjoint directed paths or rays ($Q_{a} \mid a \in A$) where Q_{a} starts in a and either ends in some vertex of B or else dominates B. A vertex set I is in $\mathcal{L}_{T}(G, B)$ if there is a domination linkage from I to B. We offer the following solution to Diestel's question:

Theorem 1.1. $\mathcal{L}_{T}(G, B)$ is a finitary matroid.
When G is undirected ${ }^{2}$, Theorem 1.1 has the following topological interpretation. On G and its ends consider the topology whose basic open sets are the components C of $G \backslash X$ where X is a finite set of inner points of edges, together with the ends that have rays in C. The closure of $B \subseteq V(G)$ consists of B, the vertices dominating B, and the ends ω whose rays $R \in \omega$ dominate B. Thus $I \in \mathcal{L}_{T}(G, B)$ if and only if the whole of I can be linked to the closure of B by vertex-disjoint paths or rays 3^{3} We shall not need this topological interpretation:

Theorem 1.1 can be used to prove that under certain conditions the naive, non-topological, gammoid $\mathcal{L}(G, B)$ is a matroid, too:

Corollary 1.2. Let G be a digraph with a set B of vertices such that there are neither infinitely many vertex-disjoint rays dominating B nor infinitely many vertices dominating B. Then $\mathcal{L}(G, B)$ is a matroid.

[^1]Corollary 1.2 does not follow from the existence criterion of Afzali, Law and Müller for non-topological gammoids. Also its converse is not true, see Section 5 for details.

The main tool in our proof of Theorem 1.1 is a purely graph-theoretic Menger-type theorem, which seems to be interesting in its own right. It is not difficult to show that if there is a domination linkage from A to B, then there is a linkage from every finite subset of A to B. Our theorem says that the converse is also true:

Theorem 1.3. (i) In any infinite digraph with vertex sets A and B, there is a domination linkage from A to B if and only if every finite subset of A can be linked to B by vertex-disjoint directed paths.
(ii) In any infinite undirected graph G, a set A of vertices can be linked by disjoint paths and rays to the closure of another vertex set B if and only if every finite subset can be linked to B by vertex-disjoint paths.

We remark that the proof of Theorem 2.1 is non-trivial and not merely a compactness result. Applying compactness, one would get a topological linkage from A to the closure of B by arbitrary topological arcs, not necessarily paths and rays. Our graph-theoretical version of Theorem 2.1 is considerably stronger than this purely topological variant.

In Section 4 we study the relationship between Theorem 1.3 and existing Menger-type theorems for infinite graphs: the Aharoni-Berger theorem [3] and the topological Menger theorem for arbitrary infinite graphs. The latter was proved by Bruhn, Diestel and Stein [6], extending an earlier result of Diestel [8] for countable graphs. For infinite graphs with 'well-separated' sets A and B (defined in Section 4), Theorem 1.3 implies and strengthens the Aharoni-Berger theorem. This in turn allows us to give a proof of the topological Menger theorem for locally finite graphs which, unlike the earlier proofs, does not rely on the (countable) Aharoni-Berger theorem (which was proved earlier by Aharoni [2]).

The paper is organised as follows. After a short preliminary section we prove in Section 3 the directed edge version of Theorem 1.3. In Section 4 we sketch how this variant implies Theorem 1.3, and how Theorem 1.3 implies the Aharoni-Berger theorem for 'well-separated' sets A and B, and the topological Menger theorem for locally finite graphs. In Section 5 we summarise some basics about infinite matroids, and prove Theorem 1.1 and Corollary 1.2

2 Preliminaries

Throughout, notation and terminology for graphs are that of 7]. In this paper, we will mainly be concerned with sets of edge-disjoint directed paths. Thus, we abbreviate edge-disjoint by disjoint, edge-separator by separator and directed path by path. Given a digraph G and $A, B \subseteq V(G)$, a linkage from A to B is a set of disjoint paths from the whole of A to B. We update the definitions of when a ray dominates B, a vertex dominates B, a path dominates B, and what a domination linkage is: these are the definitions made in the Introduction with "vertex-disjoint" replaced by "edge-disjoint". The proof of the following theorem takes the whole of Section 3.

Theorem 2.1. Let G be a digraph and $b \in V(G)$, and $I \subseteq V(G)-b$. There is a domination linkage from I to $\{b\}$ if and only if every finite subset of I has a linkage into b.

We delay the proof that Theorem 2.1 implies Theorem 1.3 until Section 4. In a slight abuse of notion, we shall suppress the set brackets of $\{b\}$ and just talk about "domination linkages from I to b ". One implication of Theorem 2.1 is indeed easy:

Lemma 2.2. If there is a domination linkage from I to b, then every finite subset S of I has a linkage into b.

Proof. For $s \in S$, let P_{s} be the path or ray from the domination linkage starting in s. Suppose for a contradiction, there is no linkage from S into b. Then by Menger's theorem, there is a set F of at most $|S|-1$ edges such that after its removal there is no directed path from S to b.

Suppose for a contradiction that there is some P_{s} not containing an edge of F. Then P_{s} cannot end at b. So P_{s} dominates b, and thus there is some P_{s}-b-path avoiding F, contradicting the fact that F was an edge-separator. Thus each P_{s} contains an edge of F. As the P_{s} are edge-disjoint, $|F| \geq|S|$, which is the desired contradiction.

3 Proof of Theorem 2.1

The proof of Theorem 2.1 takes the whole of this section.

3.1 Exact graphs

The core of the proof of Theorem 2.1 is the special case where G is exact (defined below). In this subsection, we show that the special case of Theo-
rem 2.1 where G is exact implies the general theorem. More precisely, we prove that the Lemma 3.1 below implies Theorem 2.1.

Given a vertex set D, an edge is D-crossing (or crossing for D) if its starting vertex is in D and the endvertex is outside. We abbreviate $V(G) \backslash D$ by D^{\complement}. The order of D is the number of D-crossing edges. The vertex set D is exact (for some set $I \subseteq V(G)$ and $b \in V(G)$) if $b \notin D$ and the order of D is finite and equal to $|D \cap I|$. A graph is exact (for b and I) if for every $v \in V(G)-b$, there is an exact set D containing v.

Lemma 3.1. Let G be an exact digraph and $b \in V(G)$. Let $I \subseteq V(G)-b$ such that every finite subset of I has a linkage into b. Then there is a domination linkage from I to b.

First we need some preparation. Let G be a graph and let $b \in V(G)$. Let \mathcal{I} be the set of all sets $I \subseteq V(G)-b$ such that every finite subset of I has a linkage into b. The following is an easy consequence of Zorn's lemma.

Remark 3.2. Let $I \in \mathcal{I}$, and $X \subseteq E(G)$, then there is $J \in \mathcal{I}$ maximal with $I \subseteq J \subseteq X$.

Lemma 3.3. Let G be a directed graph, and let $I \subseteq V(G)-b$ be maximal with the property that every finite subset of I has a linkage into b. Let $v \in(V(G)-b) \backslash I$. Then there is an exact D containing v.

Proof. By the maximality of I, there is a finite subset I^{\prime} of I such that $I^{\prime}+v$ cannot be linked to b. By Menger's theorem, there is a set D of order at most $\left|I^{\prime}\right|$ not containing b but containing $I^{\prime}+v \subseteq D$. The order must be precisely $\left|I^{\prime}\right|$ since I^{\prime} can be linked to b. Thus D is exact, which completes the proof.

Proof that Lemma 3.1 implies Theorem 2.1. By Lemma 2.2, it suffices to prove the "if"-implication. Let G, b, I be as in Theorem 2.1. We obtain the graph H_{1} from G by identifying b with all vertices v such that there are infinitely many edge-disjoint v - b-paths. Note that in H_{1} every vertex $v \neq b$ can be separated from b by a finite separator.

It suffices to prove the theorem for H_{1} since then the set of dominating paths and rays we get for H_{1} extends to a set of dominating paths and rays for G by adding a singleton path for every vertex in I that is identified with b in H_{1}.

We build an exact graph H_{2} that has H_{1} as a subgraph. Let $v \in V\left(H_{1}\right)-$ b. Let k_{v} be the smallest order of some vertex set D containing D and not containing b. By construction of H_{1}, the number k_{v} is finite.

We obtain H_{2} from H_{1} by for each $v \in V\left(H_{1}\right)-b$ adding k_{v}-many vertices whose forward neighbourhood is that of v and that do not have any incoming edges. We shall refer to these newly added vertices for the vertex v as the clones of v.

Now we extend I to a maximal set $I_{2} \subseteq V\left(H_{2}\right)-b$ such that every finite subset of I_{2} has a linkage into b. This is possible by Remark 3.2.

Next we show that H_{2} is exact with respect to I_{2}. Suppose for a contradiction that there is some $v \in I_{2}$ such that there is no exact D containing v. First we consider the case that $v \in V\left(H_{1}\right)$. Since v together with all its clones cannot be linked to b, there is a clone w of v that is not in I_{2}. Since $w \notin I_{2}$, there must be some exact D^{\prime} containing w by Lemma 3.3. If $v \in D^{\prime}$, we are done, otherwise we get a contradiction since there is no linkage from $\left(\left(I \cap D^{\prime}\right)+v\right)$ to b. The case that $v \notin V\left(H_{1}\right)$ is similar.

Having shown that H_{2} is exact, we now use the assumption that Lemma 3.1 is true for H_{2} and I_{2} : We get for each $v \in I$ some path or ray that dominates b in H_{2}. This path or ray also dominates in H_{1} because a clone-vertex cannot be an interior vertex of any directed path or ray. And it also dominates in G, which completes the proof that Lemma 3.1 implies Theorem 2.1.

3.2 Exact vertex sets

In this subsection, we prove some lemmas needed in the proof of Lemma 3.1.
Until the end of the proof of Theorem 2.1, we shall fix a graph G that is exact with respect to a fixed vertex b and some set $I \subseteq V(G)-b$. We further assume that every finite subset of I has a linkage into b. First we shall prove some lemmas about exact vertex sets.

Lemma 3.4. Let D be exact and let $P_{1}, \ldots P_{n}$ be a linkage from $I \cap D$ to b. Then each P_{i} contains precisely one D-crossing edge, and each D-crossing edge is contained in one P_{i}.

Proof. Clearly, each P_{i} contains an D-crossing edge. Since the P_{i} are edgedisjoint no two of them contain the same crossing edge. Since D is exact, there are precisely $n D$-crossing edges, and thus there is precisely one on each P_{i}.

Lemma 3.5. Let $D, D^{\prime} \subseteq V(G)$ such that $D^{\prime} \subseteq D$, and D^{\prime} is exact. Let \mathcal{L} be a linkage from $(I \cap D)$ to b. If some $P \in \mathcal{L}$ starts at a vertex in $D \backslash D^{\prime}$, then no vertex of P lies in D^{\prime}.

Proof. Since D^{\prime} is exact, each D^{\prime}-crossing edge lies on some path of \mathcal{L}. On the other hand $\left|I \cap D^{\prime}\right|$ of the paths start in D^{\prime}, and thus contain an D^{\prime} crossing edge. So P cannot contain any D^{\prime}-crossing edge. If P meets D^{\prime}, then it would meet D^{\prime} in a last vertex, and the edge pointing away from this vertex would be an D^{\prime}-crossing edge. Hence P does not meet D^{\prime}, which completes the proof.

Lemma 3.6. Let D and D^{\prime} be exact.
(I) Then $D \cup D^{\prime}$ is exact.
(II) Then $D \cap D^{\prime}$ is exact.
(III) Then there does not exist an edge from $D \backslash D^{\prime}$ to $D^{\prime} \backslash D$.

Proof. Let \mathcal{L} be a linkage from $I \cap\left(D \cup D^{\prime}\right)$ to b. For $X \subseteq D \cup D^{\prime}$, let $\mathcal{L}(X)$ denote the set of those paths in \mathcal{L} that have their starting vertex in X. For $X \subseteq V(G)$, let $\mathcal{C}(X)$ denote the set of X-crossing edges. It is immediate that.

$$
\begin{equation*}
\left|\mathcal{L}\left(D \cap D^{\prime}\right)\right|+\left|\mathcal{L}\left(D \cup D^{\prime}\right)\right|=|\mathcal{L}(D)|+\left|\mathcal{L}\left(D^{\prime}\right)\right| \tag{1}
\end{equation*}
$$

Since D and D^{\prime} are exact, (1) gives the following:

$$
\begin{equation*}
\left|\mathcal{L}\left(D \cap D^{\prime}\right)\right|+\left|\mathcal{L}\left(D \cup D^{\prime}\right)\right|=|\mathcal{C}(D)|+\left|\mathcal{C}\left(D^{\prime}\right)\right| \tag{2}
\end{equation*}
$$

Next, we prove the following.

$$
\begin{equation*}
\left|\mathcal{C}\left(D \cap D^{\prime}\right)\right|+\left|\mathcal{C}\left(D \cup D^{\prime}\right)\right| \leq|\mathcal{C}(D)|+\left|\mathcal{C}\left(D^{\prime}\right)\right| \tag{3}
\end{equation*}
$$

Each edge in both $\mathcal{C}\left(D \cap D^{\prime}\right)$ and $\mathcal{C}\left(D \cup D^{\prime}\right)$ points from $D \cap D^{\prime}$ to $D^{\complement} \cap D^{\prime \complement}$, and hence is in both $\mathcal{C}(D)$ and $\mathcal{C}\left(D^{\prime}\right)$. Each edge in $\mathcal{C}\left(D \cap D^{\prime}\right)$ is in either $\mathcal{C}(D)$ or $\mathcal{C}\left(D^{\prime}\right)$. Similarly, each edge in $\mathcal{C}\left(D \cup D^{\prime}\right)$ is in either $\mathcal{C}(D)$ or $\mathcal{C}\left(D^{\prime}\right)$. This proves inequation (3). Note that if we have equality, we cannot have an edge from $D \backslash D^{\prime}$ to $D^{\prime} \backslash D$.

In order to prove (II) and (III), it suffices to show that $\left|\mathcal{L}\left(D \cup D^{\prime}\right)\right|=$ $\left|\mathcal{C}\left(D \cup D^{\prime}\right)\right|$ and that $\left|\mathcal{L}\left(D \cap D^{\prime}\right)\right|=\left|\mathcal{C}\left(D \cap D^{\prime}\right)\right|$. Since $\mathcal{L}\left(D \cup D^{\prime}\right)$ and $\mathcal{L}\left(D \cap D^{\prime}\right)$ are sets of edge-disjoint paths, that each contain at least one crossing edge, it must be that $\left|\mathcal{L}\left(D \cup D^{\prime}\right)\right| \leq\left|\mathcal{C}\left(D \cup D^{\prime}\right)\right|$ and that $\left|\mathcal{L}\left(D \cap D^{\prime}\right)\right| \leq\left|\mathcal{C}\left(D \cap D^{\prime}\right)\right|$.

By equations (3) and (2), we get that

$$
\begin{equation*}
\left|\mathcal{C}\left(D \cap D^{\prime}\right)\right|+\left|\mathcal{C}\left(D \cup D^{\prime}\right)\right| \leq\left|\mathcal{L}\left(D \cap D^{\prime}\right)\right|+\left|\mathcal{L}\left(D \cup D^{\prime}\right)\right| \tag{4}
\end{equation*}
$$

Combining this with the two inequalities before, we must have that $\left|\mathcal{L}\left(D \cup D^{\prime}\right)\right|=\left|\mathcal{C}\left(D \cup D^{\prime}\right)\right|$ and $\left|\mathcal{L}\left(D \cap D^{\prime}\right)\right|=\left|\mathcal{C}\left(D \cap D^{\prime}\right)\right|$, which proves (I) and (II).

Now it must be that we must have equality in (3). So there cannot be an edge from $D \backslash D^{\prime}$ to $D^{\prime} \backslash D$, which proves (III). This completes the proof.

Lemma 3.7. Let G be an exact graph, and F be a finite set of vertices. Then there is an exact D with $F-b \subseteq D$.

Proof. For each $v \in F-b$, there is an exact D_{v} containing v by exactness of G. Then $\bigcup_{v \in F-b} D_{v}$ is exact, which can easily be proved by induction over $|F-b|$, using (II) of Lemma 3.6 in the induction step.

Let D be exact and let \mathcal{L} be a linkage from $D \cap I$ to b. Then D^{\prime} is called a forwarder of D with respect to \mathcal{L} if D^{\prime} is exact and $\cup \mathcal{L}-b \subseteq D^{\prime}$ and $D \subseteq D^{\prime}$.

Lemma 3.8. Let G be an exact graph. Then each exact D has an forwarder with respect to each linkage \mathcal{L} from some subset of $D \cap I$ to b.

Proof. Apply Lemma 3.7 to the set of all vertices in $\bigcup \mathcal{L}$ to get a D^{\prime} with all those vertices in $D^{\prime}+b$. The desired forwarder is then $D \cup D^{\prime}$.

The hull \hat{D} of a vertex set D consists of those vertices that are separated by the D-crossing edges from b. Note that $D \subseteq \hat{D}$ and that D^{\complement} consists of those vertices v such that there is a v - b-path all of whose internal vertices are outside D. Since every vertex on such a path is in \hat{D}^{\complement}, the hull of any hull \hat{D} is \hat{D} itself.

We say that two vertex sets D and D^{\prime} are equivalent if they have the same hull. This clearly defines an equivalence relation, which we shall call \sim. Note that $D \sim D^{\prime}$ if and only if D and D^{\prime} have the same crossing edges.
Remark 3.9. Let F, F^{\prime}, \tilde{F} and \tilde{F}^{\prime} be exact with $\tilde{F} \sim F$ and $\tilde{F}^{\prime} \sim F^{\prime}$. Then $F \cup F^{\prime} \sim \tilde{F} \cup \tilde{F}^{\prime}$.

Proof. Clearly, the set of $\left(F \cup F^{\prime}\right)$-crossing edges is equal to the set of $\left(\tilde{F} \cup \tilde{F}^{\prime}\right)$ crossing edges, which gives the desired result.

Lemma 3.10. For any exact D, the hull \hat{D} is exact.
Proof. It suffices to show that $I \cap \hat{D}=I \cap D$. Since $\hat{D} \supseteq D$, clearly $I \cap \hat{D} \supseteq$ $I \cap D$. In order to prove the other inclusion, suppose for a contradiction that there is some $v \in I \cap(\hat{D} \backslash D)$. Since $(I \cap D)+v$ is finite, there is some linkage \mathcal{L} from $((I \cap D)+v)$ to b. Let P be the path from that linkage that starts in v. By Lemma 3.5, the path P avoids D. So P witnesses that $v \notin \hat{D}$. This is a contradiction, thus $I \cap \hat{D}=I \cap D$.

3.3 Good functions

We define what a good function is and prove that the existence of a good function in every exact graph implies Lemma 3.1.

First, we fix some notation. Let \mathcal{E} be the set of exact vertex sets D, and let $\overline{\mathcal{L}}$ be the set of linkages from finite subsets of I to b. For a vertex set D, the set $N(D)$ consists of D together with all endvertices of D-crossing edges.

For $v \in I$ and some linkage \mathcal{L}, let $Q_{v}(\mathcal{L})$ denote the path in \mathcal{L} starting from v. For every exact D, the edges of $Q_{v}(\mathcal{L})$ contained in $G[N(D)]$ are the edges of some initial path of $Q_{v}(\mathcal{L})$. We call this initial path $P_{v}(D ; \mathcal{L})$. We follow the convention that $P_{v}(D ; \mathcal{L})$ is empty if $v \notin D$.

A function $f: \mathcal{E} \rightarrow \overline{\mathcal{L}}$ is good if it satisfies the following:
(i) $f(F)$ is a linkage from $I \cap F$ to b.
(ii) If $v \in I$ and $F, F^{\prime} \in \operatorname{dom}(f)$ with $F^{\prime} \subseteq F$, then $P_{v}\left(F^{\prime} ; f\left(F^{\prime}\right)\right)=$ $P_{v}\left(F^{\prime} ; f(F)\right)$.
(iii) If $\bigcup P_{v}(F ; f(F))$ is a ray, then it dominates b. Here the union ranges over all exact F.

Before proving that there is a good function, we first show how to deduce Theorem 2.1 from that. Let us abbreviate $P_{v}(D ; f(D))$ by $P_{v}(D ; f)$. If it is clear by the context, which function f we mean, we even just write $P_{v}(D)$.

Lemma 3.11. Let $f: \mathcal{E} \rightarrow \overline{\mathcal{L}}$ be a partial function satisfying (i) and (iii). Further assume that for any two exact F and F^{\prime} with $F^{\prime} \subseteq F$ and $F \in$ $\operatorname{dom}(f)$, also $F^{\prime} \in \operatorname{dom}(f)$.

Let $v \in I$, and let $D, D^{\prime} \in \operatorname{dom}(f)$ be exact with $v \in D \cap D^{\prime}$. Then $P_{v}(D) \subseteq P_{v}\left(D^{\prime}\right)$, or $P_{v}\left(D^{\prime}\right) \subseteq P_{v}(D)$.

Proof. $D \cap D^{\prime}$ is exact by Lemma 3.6 and in the domain of f. Since f satisfies (iii), we get that $P_{v}\left(D \cap D^{\prime}\right)$ is a subpath of both $P_{v}(D)$ and $P_{v}\left(D^{\prime}\right)$. Let e be the last edge of $P_{v}\left(D \cap D^{\prime}\right)$, and x be its endpoint in $D^{\complement} \cup D^{\prime}$.

Now we distinguish three cases. If $x \in D^{\complement} \cap D^{\prime \complement}$, the edge e is crossing for both D and D^{\prime}, and thus is the last edge of both $P_{v}(D)$ and $P_{v}\left(D^{\prime}\right)$. So $P_{v}(D)=P_{v}\left(D^{\prime}\right)$, so the lemma is true in this case.

If $x \in D^{\complement} \cap D^{\prime}$, then e is the last edge of $P_{v}(D)$. So $P_{v}(D)=P_{v}\left(D \cap D^{\prime}\right) \subseteq$ $P_{v}\left(D^{\prime}\right)$, so the lemma is true in this case.

The case $x \in D^{\complement} \cap D$ is similar to the last case. This completes the proof.

For the remainder of this subsection, let us fix a good function f. The last Lemma motivates the following definition. For $v \in I$, let P_{v} be the union of all the paths $P_{v}(D)$ over all exact D containing v. By the last Lemma P_{v} is either a path or a ray.

Lemma 3.12. If P_{v} and P_{w} share an edge, then $v=w$.
Proof. Let e be an edge in both P_{v} and P_{w}. Let D_{v} be exact with $e \in P_{v}\left(D_{v}\right)$. Similarly, let D_{w} be exact with $e \in P_{w}\left(D_{w}\right)$.

By (I) of Lemma 3.6, we get that $D_{v} \cup D_{w}$ is exact. Since f is good, we have that $P_{v}\left(D_{v} \cup D_{w}\right)$ includes $P_{v}\left(D_{v}\right)$, and that $P_{w}\left(D_{v} \cup D_{w}\right)$ includes $P_{w}\left(D_{w}\right)$. Since $P_{v}\left(D_{v} \cup D_{w}\right)$ and $P_{w}\left(D_{v} \cup D_{w}\right)$ share the edge e, we must have that $v=w$, which completes the proof.

Lemma 3.13. If P_{v} is a path, then it ends at b.
Proof. Suppose for a contradiction that P_{v} does not end at b. Then P_{v} does not contain b.

Then by Lemma 3.7, there is an exact D with $P_{v} \subseteq D$. Then $P_{v}(D)$ contains some D-crossing edge whose endvertex does not lie on P_{v}, which gives a contradiction to the construction of P_{v}.

The following lemma tells us that to prove Theorem 2.1, it remains to show that every exact graph has a good function.

Lemma 3.14. Let G be an exact digraph that has a good function. Let $b \in V(G)$. Let $I \subseteq V(G)-b$ such that every finite subset of I has a linkage into b. Then there is a domination linkage from I to b.

Proof. Each P_{v} dominates b : If P_{v} is a path, this is shown in Lemma 3.13. If P_{v} is a ray, this follows from the fact that f is good. By Lemma 3.12 all the P_{v} are edge-disjoint, which completes the proof.

3.4 Intermezzo: The countable case

The purpose of this subsection is to prove that there is a good function under the assumption that G is countable. This case is easier than the general case and some of the ideas can already be seen in this special case. However, in the general case we do not rely on the countable case. At the end of this subsection, we tell why this proof does not extend to the general case. We think that this helps to get a better understanding of the general case.

Lemma 3.15. Let G be an exact graph with $V=\left\{v_{0}=b, v_{1}, v_{2}, \ldots\right\}$ countable. Then there is a sequence of exact hulls D_{n} and linkages \mathcal{L}_{n} from $I \cap D_{n}$ to b satisfying the following.

1. $D_{n} \subseteq D_{n+1}$;
2. $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq D_{n}$;
3. $P_{v}\left(D_{n} ; \mathcal{L}_{n}\right)=P_{v}\left(D_{n} ; \mathcal{L}_{n+1}\right)$ for any $v \in I$;
4. D_{n+1} is a forwarder of D_{n} with respect to \mathcal{L}_{n}.

Proof. Assume that for all $i \leq n$, we already constructed exact hulls D_{i} and linkages \mathcal{L}_{i} satisfying 1-4.

Next, we define D_{n+1}. By Lemma 3.7, there is an exact F_{n} containing v_{n+1}. By Lemma 3.6, $D_{n} \cup F_{n}$ is exact. Let D_{n+1}^{\prime} be a forwarder of $D_{n} \cup F_{n}$ with respect to the linkage \mathcal{L}_{n}, which exists by Lemma 3.8. Let D_{n+1} be the hull of D_{n+1}^{\prime}, which is exact by Lemma 3.10 .

It remains to construct \mathcal{L}_{n+1} so as to make 3 true. Let \mathcal{L} be some linkage from $I \cap D_{n+1}$ to b. By Lemma 3.4, for each D_{n}-crossing edge e there is precisely one $P_{e} \in \mathcal{L}_{n}$ that contains e, and precisely one $Q_{e} \in \mathcal{L}$ that contains e. Let $R_{e}=P_{e} e Q_{e} b$. Since $P_{e} e \subseteq D_{n}+e$ and $e Q_{e} b \subseteq D_{n}^{\complement}+e$, the R_{e} are edge-disjoint. For \mathcal{L}_{n+1} we pick the set of the R_{e} together with all $Q \in \mathcal{L}$ that do not contain any D_{n}-crossing edge. Clearly \mathcal{L}_{n+1} is an linkage from $I \cap D_{n+1}$ to b. And 3 is true by construction. This completes the construction.

Lemma 3.16. Every countable exact graph G has a good function f.
Proof. Let D_{n} and \mathcal{L}_{n} as in Lemma 3.15. We let $f\left(D_{n}\right)=\mathcal{L}_{n}$. Next, we define f at all other exact D. Since there are only finitely many D-crossing edges, there is a large number m such that all these crossing edges are in $N\left(D_{m}\right)$. Then $D \subseteq D_{m}$ as for each $v \notin D_{m}$ there is a v - b-path included avoiding D_{m}. Now we let $f(D)$ consist of those paths in $f\left(D_{m}\right)$ that start in D. We remark that this definition does not depend on the choice of m.

Having defined f, it remains to check that it is good: clearly it satisfies (i) and (ii), and it just remains to verify (iii). So assume that for some $v \in I$, the union $R=\bigcup_{F \in \mathcal{E}} P_{v}(F ; f(F))$ is a ray. Then $R=\bigcup_{n \in \mathbb{N}} P_{v}\left(D_{n} ; \mathcal{L}_{n}\right)$. Let e_{v}^{n} be the unique D_{n}-crossing edge on $Q_{v}\left(\mathcal{L}_{n}\right)$. Since D_{n+1} is a forwarder of D_{n}, the path $R_{v}^{n}=e_{v}^{n} Q_{v}\left(\mathcal{L}_{n}\right)$ is contained in $D_{n}+b$ and avoids D_{n+1}. Thus the paths R_{v}^{n} are edge-disjoint and witness that R dominates b. So f is good, which completes the proof.

Remark 3.17. Our proof above heavily relies on the fact that we can find a nested set of exact vertex sets D_{n} indexed with the natural numbers that exhaust the graph (compare 2 in Lemma 3.15). However if we can find such a nested set, then I must be countable since each D_{n} contains only finitely many vertices of I. Thus this proof does not extend to the general case.

3.5 Infinite sequences of exact vertex sets

The purpose of this subsection is to prove some lemmas that help proving that there is a good function in every exact graph. These lemmas are about infinite sequences of exact vertex sets.

Lemma 3.18. There does not exist a sequence $\left(D_{n} \mid n \in \mathbb{N}\right)$ with $D_{n} \subsetneq D_{n+1}$ of exact hulls that all have bounded order.

Proof. Suppose for a contradiction that there is a such sequence $\left(D_{n} \mid n \in \mathbb{N}\right)$. By taking a subsequence if necessary, we may assume that all D_{n} have the same order. Since any two D_{n} are exact and have the same order, we must have $I \cap D_{1}=I \cap D_{n}$ for every n. Let \mathcal{L} be some linkage from $\left(D_{1} \cap I\right)$ to b. Any $P \in \mathcal{L}$ contains a unique D_{n}-crossing edge for every n by Lemma 3.4. Since $D_{n} \subseteq D_{n+1}$, there is a large number n_{P} such that for all $n \geq n_{P}$ it is the same crossing edge. Let m be the maximum of the numbers n_{P} over all $P \in \mathcal{L}$. Then for all $n \geq m$, the D_{n} have the same crossing edges and thus are equivalent. This is a contradiction, completing the proof.

Lemma 3.19. Let D be exact and let \mathcal{X} be a nonempty set of exact $D^{\prime} \subseteq D$ that is closed under \sim and taking unions. Then there is some $D^{\prime \prime} \in \mathcal{X}$ including all $D^{\prime} \in \mathcal{X}$.

Proof. Suppose for a contradiction that there is no such $D^{\prime \prime} \in \mathcal{X}$. We shall construct an infinite sequence ($D_{n} \mid n \in \mathbb{N}$) as in Lemma 3.18.

Let $D_{1} \in \mathcal{X}$ be arbitrary. Since \mathcal{X} is \sim-closed, we may assume that D_{1} is its hull. Now assume that D_{n} is already constructed. By assumption, there is $D_{n}^{\prime} \in \mathcal{X}$ with $D_{n}^{\prime} \nsubseteq D_{n}$. Let $D_{n}^{\prime \prime}=D_{n} \cup D_{n}^{\prime}$. Let D_{n+1} be the hull of $D_{n}^{\prime \prime}$. Then $D_{n+1} \in \mathcal{X}$, and $D_{n} \subsetneq D_{n+1}$. This completes the construction of the infinite sequence ($D_{n} \mid n \in \mathbb{N}$), which contradicts Lemma 3.18 and hence completes the proof.

3.6 Existence of good functions

The purpose of this subsection is to prove that every exact graph has a good function, which implies Theorem 2.1 by Lemma 3.14. Next we shall
define when a partial function is good for the following reason. In order to construct a good function f defined on the whole of \mathcal{E} we shall construct an ordinal indexed family of good partial functions f_{α} such that if $\alpha>\beta$, then the domain of f_{α} includes that of f_{β} and agrees with f_{β} on the domain of f_{β}. Eventually some f_{α} will be defined on the whole of \mathcal{E} and will be the desired good function.

The domain of a partial function f is denoted by $\operatorname{dom}(f)$. A partial function $f: \mathcal{E} \rightarrow \overline{\mathcal{L}}$ is good if it satisfies the following:
(i) $f(F)$ is a linkage from $I \cap F$ to b.
(ii) If $v \in I$ and $F, F^{\prime} \in \operatorname{dom}(f)$ with $F^{\prime} \subseteq F$, then $P_{v}\left(F^{\prime} ; f\left(F^{\prime}\right)\right)=$ $P_{v}\left(F^{\prime} ; f(F)\right)$.
(iii) If $\bigcup P_{v}(F ; f(F))$ is a ray, then it dominates b. Here the union ranges over all $F \in \operatorname{dom}(f)$.
(iv) Let F and F^{\prime} be exact with $F^{\prime} \subseteq F$. If F is in the domain of f, then so is F^{\prime}.
(v) If F and F^{\prime} are in the domain of f, then so is $F \cup F^{\prime}$.
(vi) $\operatorname{dom}(f)$ is closed under \sim.

Note that if $F, F^{\prime} \in \operatorname{dom}(f)$, then so is $F \cap F^{\prime}$ by (iv). Note that each good partial function defined on the whole of \mathcal{E} is a good function.

Lemma 3.20. Let f be a partial function with domain X that satisfies (i)(v). Then there is a good partial function \hat{f} whose domain is the \sim-closure \hat{X} of X such that $\hat{f} \upharpoonright_{X}=f$.

Proof. For each $F \in \hat{X}$, there is some $\tilde{F} \in X$ such that $F \sim \tilde{F}$. We let $\hat{f}(F)=f(\tilde{F})$. Clearly, \hat{f} satisfies (i), (iii) and vi). Since f satisfies (v) and by Remark 3.9, \hat{f} satisfies (v).

To see that \hat{f} satisfies (咅), let $v \in I$ and $F, F^{\prime} \in \operatorname{dom}(\hat{f})$ with $F^{\prime} \subseteq F$. Then $P_{v}\left(F^{\prime} ; \hat{f}\left(F^{\prime}\right)\right)=P_{v}\left(F^{\prime} ; \hat{f}(F)\right)$ as $P_{v}\left(\tilde{F}^{\prime} ; f\left(\tilde{F}^{\prime}\right)=P_{v}\left(\tilde{F}^{\prime} ; f(\tilde{F})\right.\right.$.

To see that \hat{f} satisfies (iv), let F and F^{\prime} be exact with $F^{\prime} \subseteq F$ and $F \in \hat{X}$. Then $F^{\prime} \cap \tilde{F}$ is exact, and since f satisfies (iv), it must be in X. Since $F^{\prime} \cap \tilde{F}$ and F^{\prime} have the same crossing edges, they are equivalent. So $F^{\prime} \in \hat{X}$. So \hat{f} satisfies (iv). This completes the proof.

For $S \subseteq \mathcal{E}$, let $S(\boxed{i v}) \subseteq \mathcal{E}$ denote the smallest set including S that satisfies (iv). Similarly, let $S(v) \subseteq \mathcal{E}$ denote the smallest set including S that satisfies (v).

Lemma 3.21. $[S(\overline{i v}]](\sqrt{v})=[S(v)]](\sqrt[i v)]{ }$ for any set S.
In particular, $[S(\overline{i v)}] \sqrt[v]{v}$ is the smallest set included in \mathcal{E} satisfying (iv) and (2).

Proof. First let $D \in[S(\sqrt[i v]{ })](\sqrt[v]{ })$. Then there are $F_{1}, F_{2} \in S(\sqrt[i v)]{ }$ such that $D=F_{1} \cup F_{2}$. Then there are $F_{1}^{\prime}, F_{2}^{\prime} \in S$ such that $F_{1} \subseteq F_{1}^{\prime}$ and $F_{2} \subseteq F_{2}^{\prime}$. Then $F_{1}^{\prime} \cup F_{2}^{\prime} \in S(\sqrt[v]{ })$ by (II) of Lemma 3.6. Since $F_{1} \cup F_{2} \subseteq F_{1}^{\prime} \cup F_{2}^{\prime}$, we deduce that $D \in[S(v)](i v)$. So $[S(i v)](v) \subseteq[S(v v](i v)$.

The proof that $[S(v)](i v) \subseteq[S(i v)](v)$ is similar: Now let $D \in[S(v)]$ iv . Then there is $D^{\prime} \in S(v)$ with $D \subseteq D^{\prime}$. Then there are $F_{1}, F_{2} \in S$ such that $D^{\prime}=F_{1} \cup F_{2}$. Then $F_{i} \cap D \in S(\sqrt[i v)]{ }$ for $i=1,2$ by (II) of Lemma 3.6. Since $D \subseteq F_{1} \cup F_{2}$, we deduce that $\left.D \in[S(\overline{i v})] \sqrt[v]{v}\right)$. This completes the proof.

Let $X \subseteq \mathcal{E}$, and D be exact. Then $X[D]$ denotes the smallest set including $X+D$ that satisfies (iv) and (v).

3.6.1 Extending good partial functions

The aim of this subsubsection is to prove the following lemma that helps us building a good function in that it allows us to extend a good partial function a little bit.

Lemma 3.22. Let f be a good partial function, and let D be exact. Then there is a good partial function g whose domain consists of the \sim-closure of $\operatorname{dom}(f)[D]$, and that agrees with f at each point in $\operatorname{dom}(f)$.

If $D \in \operatorname{dom}(f)$, then we just take $g=f$. So we may assume that $D \notin \operatorname{dom}(f)$. Before we define g, we define auxiliary functions g_{1}, g_{2} and g_{3} with domains X_{1}, X_{2} and X_{3}, respectively, such that $\operatorname{dom}(f) \subseteq X_{1} \subseteq X_{2} \subseteq$ $X_{3} \subseteq \operatorname{dom}(g)$, and g will be defined such that $g \upharpoonright_{X_{1}}=g_{1}, g \upharpoonright_{X_{2}}=g_{2}$, and $g \upharpoonright_{X_{3}}=g_{3}$. We let $X_{1}=\operatorname{dom}(f)+D$.

For all $D^{\prime} \in \operatorname{dom}(f)$, we let $g_{1}\left(D^{\prime}\right)=f\left(D^{\prime}\right)$. Next we define $g_{1}(D)$. Since $I \cap D$ is finite, there is some linkage from $I \cap D$ into b. Let $P_{1}, P_{2}, \ldots P_{n}$ be such a linkage. By Lemma 3.19, there is some $D^{\prime \prime} \in \operatorname{dom}(f)$ with $D^{\prime \prime} \subseteq D$ such that $D^{\prime} \subseteq D^{\prime \prime}$ for all $D^{\prime} \in \operatorname{dom}(f)$ with $D^{\prime} \subseteq D$. Since $D^{\prime \prime}$ is exact, each $D^{\prime \prime}$-crossing edge lies on one of the P_{i} by Lemma 3.4 ,

We define $g_{1}(D)$ as follows. If no $D^{\prime \prime}$-crossing edge lies on P_{i}, then we put P_{i} into $g_{1}(D)$. If some $D^{\prime \prime}$-crossing edge, say e_{i}, lies on P_{i}, we take the path Q_{i} from the linkage $f\left(D^{\prime \prime}\right)$ that contains e_{i}, and put the path $Q_{i} e_{i} P_{i}$ into $g_{1}(D)$. This completes the definition of $g_{1}(D)$, and so of g_{1}.

Sublemma 3.23. g_{1} satisfies (iī).

Proof. Let $F, F^{\prime} \in X_{1}$ with $F^{\prime} \subseteq F$. If F is not D, then $P_{v}\left(F^{\prime} ; f\left(F^{\prime}\right)\right)=$ $P_{v}\left(F^{\prime} ; f(F)\right)$ since f satisfies (ii) and (iv).

So we may assume that $F=D$. Then $F^{\prime} \subseteq D^{\prime \prime} \subseteq D$. So $P_{v}\left(F^{\prime} ; f\left(F^{\prime}\right)\right)=$ $P_{v}\left(F^{\prime} ; f\left(D^{\prime \prime}\right)\right)=P_{v}\left(F^{\prime} ; f(D)\right)$, which completes the proof.

Having defined X_{1} and g_{1}, we now define X_{2} and g_{2}. We let $X_{2}=X_{1}(i v)$. For each $F \in X_{2}$ there is some $F^{\prime} \in X_{1}$ such that $F \subseteq F^{\prime}$. We let $g_{2}(F)$ to consists of those paths from $g_{1}\left(F^{\prime}\right)$ that start in F. By construction, g_{2} satisfies (ii) and (iv). By Lemma 3.6 III), $P_{v}\left(F, g_{2}(F)\right)=P_{v}\left(F, g_{1}\left(F^{\prime}\right)\right)$ for all $v \in I$. Thus g_{2} satisfies (ii) as g_{1} does.

Having defined g_{2}, we now define g_{3}. We let X_{3} be $X_{2}(v)$, which is equal to $\operatorname{dom}(f)[D]$. We let $P_{v}=P_{v}\left(F ; g_{2}\right) \cup P_{v}\left(F^{\prime} ; g_{2}\right)$. By Lemma 3.11, it must be that $P_{v}=P_{v}\left(F ; g_{2}\right)$ or $P_{v}=P_{v}\left(F^{\prime} ; g_{2}\right)$. Since g_{2} satisfies (ii), no vertex of $P_{v}\left(F ; g_{2}\right)$ that is not on $P_{v}\left(F^{\prime} ; g_{2}\right)$ can be in $F \cap F^{\prime}$. By (III) of Lemma 3.6, it must be that every vertex of $P_{v}\left(F ; g_{2}\right)$ that is not on $P_{v}\left(F^{\prime} ; g_{2}\right)$ is in $F \backslash F^{\prime}$. Hence the P_{v} are edge-disjoint.

By (III) of Lemma 3.6, each P_{v} contains some $\left(F \cup F^{\prime}\right)$-crossing edge e_{v}. Let \mathcal{L} be some linkage from $I \cap\left(F \cup F^{\prime}\right)$ to b. Let Q_{v} be the path in \mathcal{L} that contains e_{v}. We define $g_{3}\left(F \cup F^{\prime}\right)$ to consist of the paths $P_{v} e_{v} Q_{v}$. Clearly, $g_{3}\left(F \cup F^{\prime}\right)$ is a linkage from $I \cap\left(F \cup F^{\prime}\right)$ to b.

By Lemma 3.21, g_{3} satisfies not only (v) but also (iv).
Sublemma 3.24. g_{3} satisfies (ii).
Proof. Let $v \in I$ and $F, F^{\prime} \in \operatorname{dom}(f)$ with $F^{\prime} \subseteq F$. Our aim is to prove that $P_{v}\left(F^{\prime} ; g_{3}\left(F^{\prime}\right)\right)=P_{v}\left(F^{\prime} ; g_{3}(F)\right)$. In the definition of g_{3} at F, we have picked F_{1} and F_{2} in X_{2} such that $F=F_{1} \cup F_{2}$ in order to define $g_{3}(F)$. Similarly, we have picked F_{1}^{\prime} and F_{2}^{\prime} in X_{2} such that with $F^{\prime}=F_{1}^{\prime} \cup F_{2}^{\prime}$ to define $g_{3}\left(F^{\prime}\right)$. It suffices to show that $P_{v}\left(X_{i j} ; g_{3}\left(F^{\prime}\right)\right)=P_{v}\left(X_{i j} ; g_{3}(F)\right)$ where $X_{i j}=F_{j}^{\prime} \cap F_{i}$ and $(i, j) \in\{1,2\} \times\{1,2\}$.

By the definition of g_{3}, we get the following two equations.

$$
\begin{gather*}
P_{v}\left(F^{\prime} ; g_{3}\left(F^{\prime}\right)\right)=P_{v}\left(F_{1}^{\prime} ; g_{2}\right) \cup P_{v}\left(F_{2}^{\prime} ; g_{2}\right) \tag{5}\\
P_{v}\left(F^{\prime} ; g_{3}(F)\right)=P_{v}\left(F^{\prime} \cap F_{1} ; g_{2}\left(F_{1}\right)\right) \cup P_{v}\left(F^{\prime} \cap F_{2} ; g_{2}\left(F_{2}\right)\right) \tag{6}
\end{gather*}
$$

Since g_{2} satisfies (iii), these two equations give the desired result when restricted to $X_{i j}$.

Sublemma 3.25. g_{3} satisfies (iii).

Proof. For each $v \in I$, we compare the sets $\bigcup P_{v}(F ; f(F))$ where first the union ranges over all $F \in \operatorname{dom}(f)$ and second it ranges over all $F \in \operatorname{dom}\left(g_{3}\right)$. The second set is a superset of the first and all its additional elements are in $P_{v}\left(D, g_{3}\right)$, which is finite. In particular, if the second set is a ray, then so is the first set by Lemma 3.11. In this case, the first set dominates b since f satisfies (iii), so the second set also dominates b. This completes the proof.

Having defined g_{3}, we let $g=\hat{g}_{3}$ as in Lemma 3.20. Since g_{3} satisfies (i) -(V), g is good by Lemma 3.20. This completes the proof of Lemma 3.22.

3.6.2 Construction of a good function

In this subsubsection, we construct a good function in every exact graph, which is the last step in the proof of Theorem 2.1. Each ordinal α has a unique representation $\alpha=\beta+n$ where β is the largest limit ordinal smaller than α, and n is a natural number. We say that α is odd if n is odd. Otherwise it is even.

Lemma 3.26. Let G be an exact graph. Then there is a good function f defined on the whole of \mathcal{E}.

Proof. In order to construct f we shall construct an ordinal indexed family of good partial functions f_{α} such that if $\alpha>\beta$, then the domain of f_{α} includes that of f_{β} and agrees with f_{β} on the domain of f_{β}. Eventually some f_{α} will be defined on the whole of \mathcal{E} and will be the desired good function.

Assume that f_{β} is already defined for all $\beta<\alpha$. First we consider the case that $\alpha=\beta+1$ is a successor ordinal. If f_{β} is defined on the whole of \mathcal{E}, we stop. Otherwise, we shall find some exact F_{α}. Then we let f_{α} be the partial function g given to us from Lemma 3.22 applied to f_{β} and F_{α}.

How we find F_{α} depends on whether α is an odd or an even successor ordinal. If α is odd, then we pick some $D \in \mathcal{E} \backslash \operatorname{dom}\left(f_{\beta}\right)$, and let $F_{\alpha}=D$.

If α is even, say $\alpha=\delta+2 n$, where δ is the largest limit ordinal less than α, then for F_{α} we pick the forwarder of $F_{\delta+n}$ with respect to the linkage $f\left(F_{\delta+n}\right)$, which exists by Lemma 3.8.

Having considered the case where α is a successor ordinal, we now consider the case where α is a limit ordinal. For the domain of f_{α} we take the union of the domains of all f_{β} with $\beta<\alpha$, and we let $f_{\alpha}(D)=f_{\beta}(D)$ for some β where this is defined. It is clear that f_{α} satisfies (ii), (iii), (iv), (v), (vi),
so it remains to show that f satisfies (iiii). So let $v \in I$ such that $R=$ $\bigcup P_{v}\left(D ; f_{\alpha}\right)$ is a ray. Here the union ranges over all D in the domain of f_{α}.

Let \mathcal{O} be the set of ordinals $\beta<\alpha$ such that there is some $D \in \operatorname{dom}\left(f_{\beta}\right)$ with $v \in D . \mathcal{O}$ is nonempty, so it must contain a smallest ordinal ϵ. Note that ϵ is a successor ordinal. Let ϵ^{-}be such that $\epsilon=\epsilon^{-}+1$.

We shall prove that $v \in F_{\epsilon}$. Suppose not for a contradiction, then $v \notin D$ for all $D \in \operatorname{dom}\left(f_{\epsilon^{-}}\right)+F_{\epsilon}$. So $v \notin D$ for all $D \in\left[\operatorname{dom}\left(f_{\epsilon^{-}}\right)+F_{\epsilon}\right]$ ivv , and hence also $v \notin D$ for all $D \in \operatorname{dom}\left(f_{\epsilon^{-}}\right)\left[F_{\epsilon}\right]$ by Lemma 3.21. By Lemma 3.10 and since $v \in I$, also $v \notin D$ for all D in the \sim-closure of $\operatorname{dom}\left(f_{\epsilon^{-}}\right)\left[F_{\epsilon}\right]$. This contradicts the choice of ϵ. Hence $v \in F_{\epsilon}$. Let x be the unique F_{ϵ}-crossing edge contained in $P_{v}\left(F_{\epsilon} ; f_{\alpha}\right)$.

We have a representation $\epsilon=\delta+k$ where δ is the largest limit ordinal less than ϵ. By construction, the $F_{\epsilon(l)}$ with $\epsilon(l)=\delta+2^{l} \cdot k$ are nested with each other. To prove that R dominates b, it will suffice just to investigate the $F_{\epsilon(l)}$.

The paths $P_{v}(l)=Q_{v}\left(f_{\alpha}\left(F_{\epsilon(l)}\right)\right)$ are contained in $F_{\epsilon(l+1)}+b$. By Lemma 3.4 there is a unique $F_{\epsilon(l)}$-crossing edge a_{l} on $P_{v}(l)$. The paths $a_{l} P_{v}(l)$ meet $F_{\epsilon(l)}$ only in their starting vertex. Thus the paths $a_{l} P_{v}(l)$ are edge disjoint. Since a_{l} is on $P_{v}\left(F_{\epsilon(l)} ; f_{\alpha}\right)$, it is on R. Hence the paths $a_{l} P_{v}(l)$ witness that R dominates b. So f_{α} is good.

There must be some successor step $\alpha=\beta+1$ at which we stop. Then f_{β} is a good function defined on the whole of \mathcal{E}. This completes the proof.

Proof of Theorem 2.1. Recall that the easy implication is already proved in Lemma 2.2. For the other implication, combine Lemma 3.26 with Lemma 3.14 to get a proof of Lemma 3.1. Then remember that Lemma 3.1 implies Theorem 2.1.

4 Graph-theoretic applications of Theorem 2.1

In this section, we show how Theorem 2.1 implies Theorem 1.3 and how Theorem 1.3 implies the Aharoni-Berger theorem for 'well-separated' sets A and B, and the topological Menger theorem for locally finite graphs.

4.1 Variants of Theorem 2.1

In this subsection, we explain how Theorem 2.1 implies Theorem 1.3. Theorem 2.1 is equivalent to the following.

Theorem 4.1. There is a domination linkage from A to B if and only if every finite subset of A can be linked to B.

Menger's theorem comes in four different versions: the directed edge version, the undirected edge version, the directed vertex version and the undirected vertex version. Depending on the version, we have different notions of path, separator and disjointness. Taking these different notions instead, we know in each of these 4 versions what it means that a ray dominates B, a vertex dominates B, a path dominates B, and what a domination linkage is, and what a linkage is.

The purpose of this subsection is to explain how Theorem 4.1 implies its undirected-edge-version, directed-vertex-version and undirected-vertexversion. These versions are like Theorem 4.1 but with the appropriate notions of domination linkage and linkage. The proof is done in the same way how one shows that the directed-edge-version of Menger's theorem for finite graphs implies all the other versions.

Starting with the sketch, one first shows that the directed-edge-version implies the directed-vertex-version for every graph G. For this one considers the auxiliary digraph H of G with $V(H)=V(G) \times\{i n, o u t\}$. The edges of H are of two types: For each $v \in V(G)$, we add an edge pointing from $(v$, in $)$ to $(v, o u t)$. For each edge of H pointing from v to w, we add an edge pointing from $(v, o u t)$ to $(w, i n)$. Then the directed-vertex-version for G is equivalent to the directed-edge-version for H.

Next one shows that the directed-vertex-version implies the undirected-vertex-version for every graph G. For this, one considers the directed graph H obtained from G by replacing each edge by two edges in parallel pointing in different directions. Then the undirected-vertex-version for G is equivalent to the directed-vertex-version for H.

Finally, one shows that the undirected-vertex-version implies the undirected-edge-version for every graph G. For this, one considers the line graph H of G. Then the undirected-edge-version for G is equivalent to the undirected-vertex-version for H.

It is clear that the directed vertex version of Theorem 4.1 is just Theorem 1.3 (i). We call domination linkages in the undirected vertex version vertex-domination linkages. Similarly, we define vertex-linkages. The undirected vertex version of Theorem 4.1 is the following.

Corollary 4.2. Let G be a graph and $A, B \subseteq V(G)$. There is a vertexdomination linkage from A to B if and only if every finite subset of A has a vertex-linkage into B.

Corollary 4.2 is a reformulation of Theorem 1.3 (ii).

4.2 Well-separatedness

In this subsection, we prove Corollary 4.3 below, which is used to deduce the Aharoni-Berger theorem for 'well-separated' sets A and B, and the topological Menger theorem for locally finite graphs.

A pair (A, B) of vertex sets is well-separated if every vertex or end can be separated from one of A or B by removing finitely many vertices.

Corollary 4.3. (undirected vertex version) Let (A, B) be a well-separated pair of vertex sets. Then there is a vertex-linkage from the whole of A to B if and only if every finite subset of A has a vertex-linkage to B.

Our next aim is to deduce Corollary 4.3 from Corollary 4.2. First we need some lemmas. For this, we fix a graph G and a well-separated pair (A, B) of vertex sets. Let $\left(P_{a} \mid a \in A\right)$ be a vertex-domination linkage from A to B. Let ω be an end that cannot be separated from B by removing finitely many vertices. Let A_{ω} be the set of those $a \in A$ such that P_{a} is a ray and belongs to ω.

Lemma 4.4. There is a vertex-linkage $\left(Q_{a} \mid a \in A_{\omega}\right)$ from A_{ω} to B such that Q_{a} and P_{x} are vertex-disjoint for all $a \in A_{\omega}$ and all $x \in A \backslash A_{\omega}$.

Proof. For a finite vertex set S, we denote by $C(S, \omega)$ the component of $G \backslash S$ that contains ω.

As (A, B) is well-separated, there is a finite set of vertices S that separates ω from A. So the set Z of those $a \in A$ such that P_{a} meets $C(S, \omega) \cup S$ is finite. As $A_{\omega} \subseteq Z$, the set A_{ω} must be finite. Furthermore there is a finite set T such that $C(T, \omega)$ meets precisely those P_{a} with $a \in A_{\omega}$. For $a \in A_{\omega}$, let t_{a} be first vertex on P_{a} such that $t_{a} P_{a}$ is contained in $C(T, \omega)$, which exist as these P_{a} are eventually contained in $C(T, \omega)$. The $\left(t_{a} P_{a} \mid a \in A_{\omega}\right)$ form a vertex-domination linkage from $\left(t_{a} \mid a \in A_{\omega}\right)$ to B in G^{\prime}, where G^{\prime} is obtained from $G[C(T, \omega)]$ by deleting all edges on the paths $P_{a} t_{a}$ with $a \in A_{\omega}$. By the easy implication of Corollary 4.2 applied to G^{\prime}, we get a vertex-linkage $\left(K_{a} \mid a \in A_{\omega}\right)$ from $\left(t_{a} \mid a \in A_{\omega}\right)$ to B. Each walk $P_{a} t_{a} K_{a}$ includes a path Q_{a} from a to B. From the construction, it is clear, that the Q_{a} form a vertex-linkage from A_{ω} to B and that Q_{a} and P_{x} are vertex-disjoint for all $a \in A_{\omega}$ and all $x \in A \backslash A_{\omega}$.

Lemma 4.5. There is a vertex-domination linkage $\left(R_{a} \mid a \in A\right)$ from A to B such that each R_{a} is a path.

Proof. We shall construct $\left(R_{a} \mid a \in A\right)$ by transfinite recursion. First we wellorder the set Ω of ends: $\Omega=\left\{\omega_{\alpha} \mid \alpha \in \kappa\right\}$ for $\kappa=|\Omega|$. At each step β we have
a current set of vertex-disjoint A - B-paths \mathcal{Q}_{β}. The set A_{β} of start vertices of paths in \mathcal{Q}_{β} consists of those $a \in A$ such that P_{a} is a ray and belongs to some end ω_{α} with $\alpha<\beta$. We shall also ensure that $\mathcal{R}_{\beta}=\mathcal{Q}_{\beta} \cup\left\{P_{a} \mid a \notin A_{\beta}\right\}$ is a vertex-domination linkage from A to B.

If β is a limit ordinal, we just set $\mathcal{Q}_{\beta}=\bigcup_{\alpha<\beta} \mathcal{Q}_{\alpha}$. It is immediate that \mathcal{Q}_{β} has the desired property assuming that the \mathcal{Q}_{α} with $\alpha<\beta$ have the property. If $\beta=\alpha+1$ is a successor ordinal, we apply Lemma 4.4 to the vertex-domination linkage \mathcal{R}_{α}. Then we let $\mathcal{Q}_{\alpha+1}=\mathcal{Q}_{\alpha} \cup\left\{Q_{a} \mid a \in A_{\omega_{\alpha+1}}\right\}$. It is clear from that lemma that $\mathcal{Q}_{\alpha+1}$ has the desired property.

This completes the recursive construction. It is clear that $\mathcal{R}_{\kappa}=\mathcal{Q}_{\kappa} \cup$ $\left\{P_{a} \mid a \notin A_{\kappa}\right\}$ is the desired vertex-domination linkage.

Proof that Corollary 4.2 implies Corollary 4.3. Let (A, B) be well-separated such that from every finite subset of A there is a vertex-linkage to B. By Corollary 4.2, there is a vertex-domination linkage $\left(P_{a} \mid a \in A\right)$ from the whole of A to B. By Lemma 4.5, we may assume that each P_{a} is a path. However, $\left(P_{a} \mid a \in A\right)$ may still contain a path P_{u} that does not end in B. Then P_{u} has to contain a vertex ω that cannot be separated from B by removing finitely many vertices. An argument as in the proof of Lemma 4.4, shows that there is a path Q_{u} from u to some vertex in B such that $\left(P_{a} \mid a \in A-u\right)$ together with Q_{u} is a vertex-domination linkage from A to B. Similar as in the proof of Lemma 4.5, we can now apply transfinite induction to replace each P_{u} one by one by such a path Q_{u}. The final vertex-domination linkage is then a vertex-linkage, which completes the proof.

4.3 Existing Menger-type theorems

In this subsection, we show how Corollary 4.3 implies the Aharoni-Berger theorem for 'well-separated' sets A and B, and the topological Menger theorem for locally finite graphs.

The Aharoni-Berger theorem [3] says that for every graph G with vertex sets A and B, there is a set of vertex-disjoint A - B-paths together with an A - B-separator consisting of precisely one vertex from each of these paths.

At first glance, it might seem that the Aharoni-Berger theorem does not tell under which conditions there is a linkage from A to B - but actually it does. To explain this, we need a definition. A wave is a set of vertex-disjoint paths from a subset of A to some A - B-separator C. It is not difficult to show that the Aharoni-Berger theorem is equivalent to the following: The whole of A can be linked to B if and only if for every wave there is a linkage from A to its separator set C. Thus Corollary 4.3 implies the Aharoni-Berger theorem
for well-separated sets A and B. We remark that neither Corollary 4.3 nor Theorem 2.1 follows from the Aharoni-Berger theorem.

Using this implication, we get the first proof of the topological MengerTheorem of Diestel [8] for locally finite graphs that does not rely on the Aharoni-Berger theorem. Indeed, the argument of Diestel only relies on the Aharoni-Berger theorem for vertex sets A and B that have disjoint closure in $|G|$, which is equivalent to being well-separated if G is locally finite.

5 Infinite gammoids

In this section, we use Theorem 1.3 to prove Theorem 1.1 and Corollary 1.2, Throughout, notation and terminology for matroids are that of [10, 5]. M always denotes a matroid and $E(M)$ and $\mathcal{I}(M)$ denote its ground set and its sets of independent sets, respectively.

Recall that the set $\mathcal{I}(M)$ is required to satisfy the following independence axioms [5]:
(I1) $\emptyset \in \mathcal{I}(M)$.
(I2) $\mathcal{I}(M)$ is closed under taking subsets.
(I3) Whenever $I, I^{\prime} \in \mathcal{I}(M)$ with I^{\prime} maximal and I not maximal, there exists an $x \in I^{\prime} \backslash I$ such that $I+x \in \mathcal{I}(M)$.
(IM) Whenever $I \subseteq X \subseteq E$ and $I \in \mathcal{I}(M)$, the set $\left\{I^{\prime} \in \mathcal{I}(M) \mid I \subseteq I^{\prime} \subseteq\right.$ $X\}$ has a maximal element.

An \mathcal{I}-circuit is a set minimal with the property that it is not in \mathcal{I}. The following is true in any matroid.
$(+)$ For any two finite \mathcal{I}-circuits o_{1} and o_{2} and any $x \in o_{1} \cap o_{2}$, there is some \mathcal{I}-circuit included in $\left(o_{1} \cup o_{2}\right)-x$.

Given $\mathcal{I} \subseteq \mathcal{P}(E)$, its finitarization $\mathcal{I}^{\text {fin }}$ consists of those sets J all of whose finite subsets are in \mathcal{I}. Usually, it is made a requirement that \mathcal{I} is the set of independent sets of a matroid [4]. Then $\mathcal{I}^{\text {fin }}$ is the set of independent sets of a finitary matroid, called $M^{\text {fin }}$ [4]. We shall need the following slight strengthening of this fact.

Lemma 5.1. If \mathcal{I} satisfies (I1), (I2) and (+), then $\mathcal{I}^{\text {fin }}$ is the set of independent sets of a finitary matroid.

Proof. Clearly $\mathcal{I}^{\text {fin }}$ satisfies (I1) and (I2), and it satisfies (IM) by Zorn's Lemma. Thus it remains to check (I3). So let $I, I^{\prime} \in \mathcal{I}^{\text {fin }}$ with I^{\prime} maximal and I not maximal. So there is some $y \notin I$ with $I+y \in \mathcal{I}$. We may assume that $y \notin I^{\prime}$ since otherwise we are done. Thus there is some finite \mathcal{I}-circuit o with $y \in o \subseteq I^{\prime}+y$. Suppose for a contradiction that for each $x \in o \backslash(I+y)$, there is some finite \mathcal{I}-circuit o_{x} with $x \in o_{x} \subseteq I+x$. Applying $(+)$ successively to o and the o_{x}, we obtain a finite \mathcal{I}-circuit o^{\prime} included in $I+y$, which contradicts the assumption that $I+y \in \mathcal{I}^{\text {fin }}$. Thus there is some $x \in o \backslash(I+y)$ such that $I+x \in \mathcal{I}^{\text {fin }}$, which completes the proof.

We shall also need the following slight variation of (I3).
(*) For all $I, J \in \mathcal{I}$ and all $y \in I \backslash J$ with $J+y \notin \mathcal{I}$ there exists $x \in J \backslash I$ such that $(J+y)-x \in \mathcal{I}$.

A matroid N is nearly finitary if for every base B of N there is a base B^{\prime} of $N^{f i n}$ such that $B \subseteq B^{\prime}$ and $\left|B^{\prime} \backslash B\right|$ is finite. It is not difficult to show that N is nearly finitary if and only if for every base B^{\prime} of $N^{f i n}$ there is a base B of N such that $B \subseteq B^{\prime}$ and $\left|B^{\prime} \backslash B\right|$ is finite. The proof of Lemma 4.15 in [4] actually proves the following strengthening of itself.

Lemma 5.2. Let $M=(E, \mathcal{J})$ be a matroid with ground set E. Let $\mathcal{I} \subseteq \mathcal{J}$ satisfying (I1), (I2) (I3), (*) such that for any $J \in \mathcal{J}$ there is some $I \in \mathcal{I}$ such that $|J \backslash I|$ is finite. Then $N=(\mathcal{I}, E)$ is a matroid.

In the special case where M is finitary, N is nearly finitary.
Next, we shall summarise the results from [1] that are relevant to this paper.

Lemma 5.3 (Afzali, Law, Müller [1, Lemma 2.2]). For any digraph G and $B \subseteq V(G)$, the system $\mathcal{L}(G, B)$ satisfies (I3).

Lemma 5.4 (Afzali, Law, Müller [1, Lemma 2.7]). For any digraph G and $B \subseteq V(G)$, the system $\mathcal{L}(G, B)$ satisfies (${ }^{*}$).

Let $B_{A C}=\left\{b_{0}, b_{1}, \ldots\right\}$. Let $V_{A C}=B_{A C} \cup V^{1} \cup V^{2}$, where $V^{i}=$ $\left\{v_{0}^{i}, v_{1}^{i}, \ldots\right\}$. The digraph $G_{A C}$ has vertex set $V_{A C}$ and three types of edges: For $j \in \mathbb{N}$ it has an edge from v_{j}^{1} to b_{j}. For each $j \in \mathbb{N}$, it has two edges, both start at v_{j}^{2}, and end at v_{j}^{1} and v_{j+1}^{1}. The pair $\left(G_{A C}, B_{A C}\right)$ is called an alternating comb ($A C$). A subdivision of AC is drawn in Figure 1. Formally, a subdivision of $A C$ is a pair $\left(H_{A C}, B_{A C}\right)$ where $H_{A C}$ is obtained from $G_{A C}$ by replacing each directed edge $x y$ by a directed path from x to y that is internally disjoint from all other such paths. Here edges from V_{2} to V_{1} are not
allowed to be replaced by a trivial path ${ }^{4}$ but the edges $v_{j}^{1} b_{j}$ are allowed to be replaced by a trivial path. A pair (G, B) has a subdivision of $A C$ if there is a subgraph $H_{A C}$ of G and $B_{A C} \subseteq B \cap V\left(H_{A C}\right)$ such that $\left(H_{A C}, B_{A C}\right)$ is isomorphic to a subdivision of $A C$.

Theorem 5.5 (Afzali, Law, Müller [1, Theorem 2.6]). Let G be a digraph and $B \subseteq V(G)$ such that (G, B) has no a subdivision of $A C$. Then $\mathcal{L}(G, B)$ is a matroid.

For the remainder of this section, let G denote a digraph and $B \subseteq V(G)$. In the following, we shall explore for which digraphs G and sets B the system $\mathcal{L}_{T}(G, B)$ is the set of independent sets of a matroid, and how $\mathcal{L}_{T}(G, B)$ relates to $\mathcal{L}(G, B)$. If G is finite $\mathcal{L}(G, B)$ is a matroid and thus satisfies (+). The latter easily extends to infinite graphs G.

Lemma 5.6. $\mathcal{L}(G, B)$ satisfies (+).
Sketch of the proof. Given two finite $\mathcal{L}(G, B)$-circuits o_{1} and o_{2} intersecting in some vertex x, there are separations $\left(A_{i}, B_{i}\right)$ with $o_{i} \subseteq A_{i}$ and $B \subseteq B_{i}$ of order at most $\left|o_{i}\right|-1$. Then with a lemma like Lemma 3.6, one shows that either $\left(A_{1} \cup A_{2}, B_{1} \cap B_{2}\right)$ or ($A_{1} \cap A_{2}, B_{1} \cup B_{2}$) separates some $\mathcal{L}(G, B)$-circuit $o \subseteq\left(o_{1} \cup o_{2}\right)-x$ from B.

Using Theorem 1.3, we can prove the following slight extension of Theorem 1.1

Corollary 5.7. $\mathcal{L}_{T}(G, B)=\mathcal{L}(G, B)^{\text {fin }}$ for any digraph G and $B \subseteq V(G)$.
Moreover, $\mathcal{L}_{T}(G, B)$ is a finitary matroid.
Proof. By Theorem 1.3, $\mathcal{L}_{T}(G, B)$ consists of those sets I all of whose finite subsets can be linked to B by vertex-disjoint directed paths, and thus $\mathcal{L}_{T}(G, B)=\mathcal{L}(G, B)^{f i n}$. As $\mathcal{L}(G, B)$ satisfies (I1), (I2) and (+), $\mathcal{L}_{T}(G, B)$ is a finitary matroid by Lemma 5.1.

Next we prove the following slight strengthening of Corollary 1.2 from the Introduction. Below we shall refer to the definition of dominating as defined in the Introduction.

Corollary 5.8. Let G be a digraph with a set B of vertices. Then $\mathcal{L}(G, B)$ is a nearly finitary matroid if and only if there are neither infinitely many vertex-disjoint rays dominating B nor infinitely many vertices dominating B.

[^2]Proof. Clearly, if $\mathcal{L}(G, B)$ is nearly finitary, there are neither infinitely many vertex-disjoint rays dominating B nor infinitely many vertices dominating B. Conversely, assume that there are neither infinitely many vertex-disjoint rays dominating B nor infinitely many vertices dominating $B . \quad \mathcal{L}(G, B)$ clearly satisfies (I1) and (I2), and it satisfies (I3) and (*) by Lemma 5.3 and Lemma 5.4. Let $J \in \mathcal{L}_{T}(G, B)$. By Theorem 1.3, we get for each $v \in J$ a ray or path P_{v} starting at v such that all these P_{v} are vertex-disjoint. Moreover each such P_{v} either ends in B or is a ray dominating B or its last vertex dominates B. Let I be the set of those v such that P_{v} ends in B. By assumption $J \backslash I$ is finite. So by Corollary 5.7, we can apply Lemma 5.2 with $\mathcal{J}=\mathcal{L}_{T}(G, B)$ to deduce that $\mathcal{L}(G, B)$ satisfies (IM), and thus is a nearly-finitary matroid.

A natural question that comes up is to ask how Theorem 5.5 and Corollary 5.8 relate to each other. In [1], Afzali, Law and Müller construct a pair (G, B) without AC such that $\mathcal{L}(G, B)$ is not nearly finitary. They also do it in a way to make $\mathcal{L}(G, B) 3$-connected. Thus Corollary 5.8 does not imply Theorem 5.5.

To see that Theorem 5.5 does not imply Corollary 5.8, let G be the 3 by \mathbb{Z} grid, formally: $V(G)=\{1,2,3\} \times \mathbb{Z}$, see Figure 1. In G, there is a directed

Figure 1: The graph G is depicted in gray. The vertices of B are squares. (G, B) has a subdivision of AC. One is indicated in this figure: The vertices of V^{1} and V^{2} are black crosses and the subdivided edges are drawn dotted.
edge from (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ if and only if either $x=x^{\prime}$ and $y^{\prime}=y+1$ or $y=y^{\prime}$ and $x^{\prime}=x+1$. Let: $B=\{3\} \times \mathbb{Z}$. Then it is easy to see that no vertex of G dominates B and there are not infinitely many vertex-disjoint rays dominating B. However (G, B) has a subdivision of AC, which is indicated in Figure 1. Thus, there arises the question if there is a nontrivial common generalization of Corollary 5.8 and Theorem 5.5 .

During this whole section, we have only considered the directed-vertexversion. Of course, similar results are true if we consider the undirected-vertex-version, the directed-edge-version or the undirected-edge-version instead.

6 Acknowledgements

I am grateful to Hadi Afzali, Hiu Fai Law and Malte Müller for explaining me many things about infinite gammoids.

References

[1] Afzali, Fai, and Müller. Infinite gammoids. Preprint 2013, current version available at http://www.math.unihamburg.de/spag/dm/papers/InfiniteGammoids.pdf.
[2] R. Aharoni. Menger's theorem for countable graphs. J. Combin. Theory (Series B), 43:303-313, 1987.
[3] R. Aharoni and E. Berger. Menger's theorem for infinite graphs. Invent. math., 176:1-62, 2009.
[4] E. Aigner-Horev, J. Carmesin, and J. Fröhlich. Infinite matroid union. Preprint (2011), current version available at http://arxiv.org/abs/1111.0602.
[5] H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh, and P. Wollan. Axioms for infinite matroids. Advances in Mathematics, to appear; arXiv:1003.3919 [math.CO].
[6] H. Bruhn, R. Diestel, and M. Stein. Menger's theorem for infinite graphs with ends. J. Graph Theory, 50:199-211, 2005.
[7] R. Diestel. Graph Theory (4th edition). Springer-Verlag, 2010.
Electronic edition available at:
http://diestel-graph-theory.com/index.html.
[8] Reinhard Diestel. The countable Erdős-Menger conjecture with ends. J. Combin. Theory Ser. B, 87(1):145-161, 2003. Dedicated to Crispin St. J. A. Nash-Williams.
[9] Workshop on Infinite Matroids. Sprötze, 2012.
[10] J. Oxley. Matroid Theory. Oxford University Press, 1992.
[11] Hazel Perfect. Applications of Menger's graph theorem. J. Math. Anal. Appl., 22:96-111, 1968.

[^0]: ${ }^{1}$ In this paper, paths are always finite.

[^1]: ${ }^{2}$ Formally, we consider those directed graphs G obtained from an undirected graph by replacing each edge by two parallel edges directed both ways.
 ${ }^{3}$ Instead of just taking paths and rays, one might want to take all 'topological arcs'. However, this would result in a weaker theorem.

[^2]: ${ }^{4}$ A trivial path consists of a single vertex only.

