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Abstract

In this article we endow the group of bisections of a Lie groupoid with compact base with a natural

locally convex Lie group structure. Moreover, we develop thoroughly the connection to the algebra of

sections of the associated Lie algebroid and show for a large class of Lie groupoids that their groups of

bisections are regular in the sense of Milnor.
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Introduction

Infinite-dimensional and higher structures are amongst the important concepts in modern Lie theory. This
comprises homotopical and higher Lie algebras (L∞-algebras) and Lie groups (group stacks and Kan simplicial
manifolds), Lie algebroids, Lie groupoids and generalisations thereof (e.g., Courant algebroids) and infinite-
dimensional locally convex Lie groups and Lie algebras. This paper is a contribution to the heart of Lie theory
in the sense that is connects two regimes, namely the theory of Lie groupoids, Lie algebroids and infinite-
dimensional Lie groups and Lie algebras. This connection is established by associating to a Lie groupoid its
group of bisections and establishing a locally convex Lie group structure on this group.
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The underlying idea is not new per se, statements like “...the group of (local) bisections is a (local) Lie
group whose Lie algebra is given by the sections of the associated Lie algebroid...” can be found at many
places in the literature. In fact it depends on the setting of generalised manifolds that one uses, whether or
not this statement is a triviality or a theorem. For instance, if the category of smooth spaces in which one
works is cartesian closed and has finite limits, then the bisections are automatically a group object in this
category and the only difficulty might be to calculate its Lie algebra. This applies for instance to diffeological
spaces, where it follows from elementary theory that the bisections of a diffeological groupoid are naturally a
diffeological group1. Another such setting comes from (higher) smooth topoi. See for instance [Sch13, FRS13a]
for a generalisation of bisections to higher groupoids and [FRS13b] for a construction of the corresponding
infinitesimal L∞-algebra. Moreover, in synthetic differential geometry the derivation of the Lie algebra of the
group of bisections can also be done formally [Nis06].

What we aim for in this paper is a natural locally convex Lie group structure on the group of bisections,
which is not covered by the settings and approaches mentioned above. What comes closest to this aim are
the results from [Ryb02], where a group structure in the “convenient setting of global analysis” is established.
However, the results of the present paper are much stronger and more general than the ones from [Ryb02]
in various respects, which we now line out. First of all, we work throughout in the locally convex setting
[Nee06, Glö02, Mil84] for infinite-dimensional manifolds. The locally convex setting has the advantage that it
is compatible with the underlying topological framework. In particular, smooth maps and differentials of those
are automatically continuous. This will become important in the geometric applications that we have in mind
(work in progress). Secondly, we not only construct a Lie group structure on the bisections, but also relate it
to (and in fact derive it from) the canonical smooth structure on manifolds of mappings. Thus one is able to
identify many naturally occurring maps as smooth maps. For instance, the natural action of the bisections on
the arrow manifold is smooth, which allows for an elegant identification of the Lie bracket on the associated
Lie algebra. The latter then gives rise to a natural isomorphism between the functors that naturally arise in
this context, namely the (bi)section functors and the Lie functors. This is the third important feature of this
paper. The last contribution of this paper is that we prove that the bisections are in fact a regular Lie group
for all Banach-Lie groupoids.

On the debit side, one should say that the exhaustive usage of smooth structures on mapping spaces forces
us to work throughout with locally metrisable manifolds and over compact bases, although parts of our results
should be valid in greater generality. Moreover, the proof of regularity is quite technical, which is the reason
for deferring several details of it to a separate section. To say it once more, the results are not surprising in
any respect, it is the coherence of all these concepts that is the biggest value of the paper.

We now go into some more detail and explain the main results. Suppose G = (G⇒ M) is a Lie groupoid.
This means that G,M are smooth manifolds, equipped with submersions α, β : G→M and an associative and
smooth multiplication G×α,β G→ G that admits a smooth identity map 1: M → G and a smooth inversion
ι : G→ G. Then the bisections Bis(G) of G are the sections σ : M → G of α such that β ◦σ is a diffeomorphism
of M . This becomes a group with respect to

(σ ⋆ τ)(x) := σ((β ◦ τ)(x))τ(x) for x ∈M.

Our main tool to construct a Lie group structure on the group of bisections are certain local additions on the
space of arrows G. This is generally the tool one needs on the target manifold to understand smooth structures
on mapping spaces (see [Mic80, KM97, Woc13] or Appendix A). We require that the local addition on G is
adapted to the source projection α, i.e. it restricts to a local addition on each fibre α−1(x) for x ∈ M . If the
groupoid G admits such an addition, we deduce the following (Theorem 2.8):

Theorem A. Suppose G = (G⇒M) is a locally convex and locally metrisable Lie groupoid with M compact.
If G admits an adapted local addition, then the group Bis(G) is a submanifold of C∞(M,G). With this structure,
Bis(G) is a locally convex Lie group modelled on a metrisable space.

1A natural diffeology on the bisections of a diffeological groupoid would be the subspace diffeology of the functional diffeology
on the space of smooth maps from the objects to the arrows.
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After having constructed the Lie group structure on Bis(G) we show that a large variety of Lie groupoids
admit adapted local additions, including all finite-dimensional Lie groupoids, all Banach Lie-groupoids with
smoothly paracompact M and all locally trivial Lie groupoids with locally exponential vertex group.

We then determine the Lie algebra associated to Bis(G). Our investigation shows that the Lie algebra
is closely connected to the Lie algebroid associated to the Lie groupoid. Explicitly, Theorem 3.4 may be
subsumed as follows.

Theorem B. Suppose G is a Lie groupoid which satisfies the assumptions of Theorem A. Then the Lie algebra
of the Lie group Bis(G) is naturally isomorphic (as a topological Lie algebra) to the Lie algebra of sections of
the Lie algebroid associated to G, endowed with the negative of the usual bracket.

After this we briefly discuss some perspectives for further research. We then investigate regularity properties
of the Lie group Bis(G). To this end, recall the notion of regularity for Lie groups:

Let H be a Lie group modelled on a locally convex space, with identity element 1, and r ∈ N0 ∪ {∞}. We
use the tangent map of the right translation ρh : H → H , x 7→ xh by h ∈ H to define v.h := T1ρh(v) ∈ ThH
for v ∈ T1(H) =: L(H). Following [Dah12] and [Glö12], H is called Cr-regular if for each Cr-curve γ : [0, 1]→
L(H) the initial value problem {

η′(t) = γ(t).η(t)

η(0) = 1
(1)

has a (necessarily unique) Cr+1-solution Evol(γ) := η : [0, 1]→ H , and the map

evol: Cr([0, 1], L(H))→ H, γ 7→ Evol(γ)(1)

is smooth. If H is Cr-regular and r ≤ s, then H is also Cs-regular. A C∞-regular Lie group H is called
regular (in the sense of Milnor) – a property first defined in [Mil84]. Every finite dimensional Lie group is
C0-regular (cf. [Nee06]). Several important results in infinite-dimensional Lie theory are only available for
regular Lie groups (see [Mil84], [Nee06], [Glö12], cf. also [KM97] and the references therein). We prove the
following result (Theorems 4.1 and 4.5):

Theorem C. Let G = (G ⇒ M) be a Lie groupoid that admits a local addition and has compact space of
objects M . Suppose either that G is a Banach-manifold or that G is locally trivial with locally exponential and
Ck-regular vertex group. Then the Lie group Bis(G) is Ck-regular for each k ∈ N0 ∪ {∞}. In particular, the
group Bis(G) is regular in the sense of Milnor.

Note that all assumptions that we will impose throughout this paper are satisfied for finite-dimensional Lie
groupoids over compact manifolds. For this case, the above theorems may be subsumed as follows:

Theorem D. If G = (G ⇒ M) is a finite-dimensional Lie groupoid with compact M , then Bis(G) is a
regular Fréchet-Lie group modelled on the space of sections Γ(L(G)) of the Lie algebroid L(G). Moreover,
the Lie bracket on Γ(L(G)) induced from the Lie group structure on Bis(G) is the negative of the Lie bracket
underlying L(G).

1 Locally convex Lie groupoids and Lie groups

In this section we recall the Lie theoretic notions and conventions that we are using in this paper. We refer to
[Mac05] for an introduction to (finite-dimensional) Lie groupoids and the associated group of bisections. The
notation for Lie groupoids and their structural maps also follows [Mac05]. However, we do not restrict our
attention to finite dimensional Lie groupoids. Hence, we have to augment the usual definitions with several
comments. Note that we will work all the time over a fixed base manifold M .

1.1. Let G = (G ⇒ M) be a groupoid over M with source projection α : G → M and target projection
β : G→M . Then G is a (locally convex and locally metrisable) Lie groupoid over M2 if

2See Appendix A for references on differential calculus in locally convex spaces.
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• the objects M and the arrows G are locally convex and locally metrisable manifolds,

• the smooth structure turns α and β into surjective submersions, i.e., they are locally projections3

• the partial multiplication m : G×α,βG→ G, the object inclusion 1: M → G and the inversion ι : G→ G
are smooth.

The group of bisections Bis(G) of G is given as the set of sections σ : M → G of α such that β ◦ σ : M →M is
a diffeomorphism. This is a group with respect to

(σ ⋆ τ)(x) := σ((β ◦ τ)(x))τ(x) for x ∈M. (2)

The object inclusion 1: M → G is then the neutral element and the inverse element of σ is

σ−1(x) := ι(σ((β ◦ σ)−1(x))) for x ∈M. (3)

Remark 1.2. a) The definition of bisection is not symmetric with respect to α and β. This lack of symme-
try can be avoided by defining a bisection as a set (see [Mac05, p. 23]). This point of view is important
for instance in Poisson geometry, where one wants to restrict the image of bisection to be Lagrangian
submanifolds in a symplectic groupoid [Ryb01, Xu97]. However, we will not need this point of view in
the present article.

b) Each bisection σ gives rise to a left-translation Lσ : G→ G, g 7→ σ(β(g))g. The map

(Bis(G), ⋆)→ (Diff(G), ◦), σ 7→ Lσ

induces a group isomorphism onto the subgroup of all left translations (cf. [Mac05, p. 22]). Similarly we
could identify the bisections with right translations on G

c) The group of bisections naturally acts on the arrows by

γ : Bis(G)×G→ G, (ψ, g) 7→ Lψ(g) = ψ(β(g))g

(in fact, the group structure on Bis(G) is derived from this action, see [Mac05, §1.4] or [SW99, §15.3]).
This action will play an important rôle when computing the Lie algebra of the Lie group of bisections in
Section 3.

d) The group Bis(G) depends functorially on G in the following way. Suppose H = (H ⇒M) is another Lie
groupoid over M and that f : G → H is a morphism of Lie groupoids over M , i.e., it is a smooth functor
f : G→ H which is the identity on the objects f ◦ 1G = 1H. Then there is an induced morphism of the
groups of bisections

Bis(f) : Bis(G)→ Bis(H), σ 7→ f ◦ σ.

If K is another Lie groupoid overM and g : H → K another morphism, then we clearly have Bis(g ◦ f) =
Bis(g) ◦ Bis(f). Lie groupoids over M , together with their morphisms form a category LieGroupoidsM .
We can thus interpret Bis as a functor

Bis : LieGroupoidsM → Groups. (4)

e) From G = (G ⇒ M) we can construct a new Lie groupoid TG := (TG ⇒ TM). This has the surjective
submersions Tα and Tβ as source and target projections, T 1 as object inclusion and T ι as inversion.

In order to define the multiplication we first have to identify T (G ×α,β G) with TG×Tα,Tβ G. To this
end we first recall that G×α,β G is the submanifold {(a, b) ∈ G ×G | α(a) = β(b)} of G ×G. We may

3This implies in particular that the occurring fibre-products are submanifolds of the direct products, see [Woc13, Appendix
C].
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thus identify T (G×α,β G) via the isomorphism T (G×G) ∼= TG× TG with a subset of TG× TG. Now
we claim that

T (G×α,β G) = {(x, y) ∈ TG× TG | Tα(x) = Tβ(y)} = TG×Tα,Tβ TG (5)

as subsets (and thus as submanifolds) of TG×TG. Note that the statement is a local one (we just have
to find representing smooth curves), meaning that we may assume G and M to be diffeomorphic to open
subsets U ⊆◦ X and V ⊆◦ Y for locally convex spaces X and Y . Since α and β are submersions we can
also assume that X = Z × Y , that U = W × V , that α = β = pr2 and that there are diffeomorphisms
ϕ : W × V →W × V and ψ : V → V that make

G

α

��

∼= // W × V
ϕ

//

pr2

��

W × V

pr2

��

G
∼=oo

β

��

M
∼=

// V
ψ

// V M
∼=

oo

commute. In particular, we have ϕ(w, v) = (ϕ1(w, v), ψ(v)). By composing ϕ with the diffeomorphism
(x, y) 7→ (x, ψ−1(y)) we may assume that ψ is the identity. For the inner square we then have

T (W × V ×pr2,pr2 W × V ) = {((w, z, v, y), (w′, z′, v′, y′)) ∈ (W × Z × V × Y )2 | v = v′ and y = y′}.

Since T pr2 = pr2× pr2 one sees that for the inner square we also have

T (W ×V )×T pr2,T pr2 T (W ×V ) = {((w, z, v, y), (w′, z′, v′, y′)) ∈ (W ×Z×V ×Y )2 | v = v′ and y = y′}.

This shows that both sides in (5) are actually the same. We thus may set

Tµ : TG×Tα,Tβ TG→ G

with respect this identification. One can easily check that yields in fact a new Lie groupoid TG.

We now recall the construction of the Lie algebroid associated to a Lie groupoid.

1.3. We consider the subset TαG =
⋃
g∈G Tgα

−1α(g) of TG. Note that for all x ∈ Tαg G the definition implies
Tα(x) = 0α(g) ∈ Tα(g)M , i.e. fibre-wise we have Tαg G = kerTgα. Since α is a submersion, the same is true
for Tα. Computing in submersion charts, the kernel of Tgα is a direct summand of the model space of TG.
Furthermore, the submersion charts of Tα yield submanifold charts for TαG whence TαG becomes a split
submanifold of TG. Restricting the projection of TG, we thus obtain a subbundle πα : T

αG → G of the
tangent bundle TG.

1.4. We now recall the construction of the Lie algebroid L(G) associated to a Lie groupoid G. The vector
bundle underlying L(G) is the pullback 1∗TαG of the bundle TαG via the embedding 1: M → G. We denote
this bundle also by L(G)→M . The anchor aL(G) : L(G)→ TM is the composite of the morphisms

L(G)→ TαG
⊆
−→ TG

Tβ
−−→ TM

To describe the Lie bracket on Γ(L(G)) we need some notation: Let g be an element of G. We define the
smooth map Rg : α

−1(β(g)) → G, h 7→ hg. A vertical vector field Y ∈ Γ(TαG) is called right-invariant if for
all (h, g) ∈ G ×α,β G the equation Y (hg) = Th(Rg)(Y (h)) holds. We denote the Lie subalgebra of all right
invariant vector fields on G by Γρ(TαG). Then [Mac05, Corollary 3.5.4] shows that the assignment

Γ(L(G))→ Γρ(TαG), X 7→
−→
X, with

−→
X (g) = T (Rg)(X(β(g))) (6)

is an isomorphism of C∞(G)-modules. Its inverse is given by Γρ(TαG)→ Γ(L(G)), X 7→ X ◦1. Now we define
the Lie bracket on Γ(L(G)) via

[X,Y ] :=
[−→
X,
−→
Y
]
◦ 1. (7)

Then the Lie algebroid L(G) of G is the vector bundle L(G)→M together with the bracket [ · , · ] from (7) and
the anchor aL(G).
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1.5. To fully describe the Lie functor on Lie groupoids, suppose that H = (H ⇒M) is another Lie groupoid
over M and that f : G → H is a smooth functor satisfying f ◦ 1G = 1H. Then Tf(TαG) ⊆ TαH and from
f ◦ 1G = 1H it follows that Tf induces a morphism 1∗GT

αG→ 1∗HT
αH of vector bundles. This morphism is in

fact a morphism of Lie algebroids [Mac05, Proposition 3.5.10], which we denote by L(f) : L(G) → L(H). In
total, this defines the Lie functor

L : LieGroupoidsM → LieAlgebroidsM .

We now turn to the Lie functor defined on the category of locally convex Lie groups (cf. [Nee06, Mil84]).

1.6. Let H be a locally convex Lie group, i.e., a locally convex manifold which is a group such that the group
operations are smooth. The Lie algebra L(H) of H is the tangent space T1H endowed with a suitable Lie
bracket [ · , · ] (cf. [Nee06, Definition II1.5], [Mil84, §5]). To obtain the bracket, we identify T1H with the Lie
algebra of left invariant vector fields Γλ(H). Each element X ∈ T1H extends to a (unique) left invariant vector
field

Xλ ∈ Γ(TH) via Xλ(h) = T1λh(X).

Here λh is the left translation in H by the element h. Similarly, to X there corresponds a unique right invariant
vector field Xρ. Since the bracket of left invariant vector fields is left invariant and the bracket of right invariant
vector fields is right invariant there are now two ways of endowing T1H with a Lie bracket. The convention
here is to define the bracket T1H via left invariant vector field. Thus X 7→ Xλ becomes an isomorphism of
Lie algebras and X 7→ Xρ becomes an anti-isomorphism of Lie algebras, i.e., we have −[X,Y ]ρ = [Xρ, Y ρ]
([Mil84, Assertion 5.6]).

1.7. Suppose H,H ′ are locally convex Lie groups and f : H → H ′ is a smooth group homomorphism. Then
T1f : T1H → T1H

′ is a continuous and linear map which preserves the Lie bracket. This defines the morphism
L(f) : L(H)→ L(H ′) of topological Lie algebras associated to f . In total, we obtain this way the Lie functor

L : LieGroups→ LieAlgebras.

Warning. Each Lie group H gives rise to a Lie groupoid (H ⇒ ∗) over the point ∗ and each Lie algebra h

gives rise to a Lie algebroid h → ∗. However, with the above convention the Lie algebroid L(H) → ∗ is not
isomorphic to the Lie algebroid L(H ⇒ ∗). It rather is anti isomorphic. This is an annoying but unavoidable
fact if one wants to stick to the usual and natural conventions.

We will now line out one main example that will be developed throughout the text to illustrate our results.

Example 1.8. Let π : P → M be a principal H-bundle. Then the gauge groupoid P×P
H

⇒ M is defined as
follows. The manifold of objects is M and the manifold of arrows is the quotient of P × P by the diagonal
action of H . We denote by 〈p, q〉 the equivalence class of (p, q) in (P × P )/H .

For later reference we recall the construction of charts for P×P
H

. In order to obtain manifold charts for
(P × P )/H , let (Ui)i∈I be an open cover of M such that there exist smooth local sections σi : Ui → P of π.
This yields an atlas (Ui, κi)i∈I of local trivialisations of the bundle π : P →M which are given by

κi : π
−1(Ui)→ Ui ×H, p 7→ (π(p), δ(σi(π(p)), p))

with δ : P ×π P → H , (p, q) 7→ p−1 · q. Here we use p−1 · q as the suggestive notation for the element in h ∈ H
that satisfies p.h = q (whereas p−1 alone has in general no meaning).

The local trivialisations commute with the right H-action on P since

κi(p.h) = (π(p.h), δ(σi(π(p.h)), p.h) = (π(p), δ(σi(π(p)), p) · h.

In particular, the trivialisations descent to manifold charts for the arrow manifold of the gauge groupoid:

Kij :
π−1(Ui)× π−1(Uj)

H
→ Ui × Uj ×H, 〈p1, p2〉 7→ (π(p1), π(p2), δ(σi(π(p1)), p1)δ(σj(π(p2)), p2)

−1).
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One then easily checks that α(〈p, q〉) := π(p), β(〈p, q〉) := π(q), 1(x) = 〈σi(x), σi(x〉) if x ∈ Ui and

m(〈p, q〉, 〈v, w〉) := 〈p, w · δ(v, q)〉

complete the definition of a Lie groupoid.
The associated Lie algebroid is naturally isomorphic to the Atiyah algebroid TP/H → M . If we identify

sections of TP/H →M with right-invariant vector fields on P , then the bracket is the usual bracket of vector
fields on P and the anchor is induced by Tπ. To see that this is naturally isomorphic to L(P×P

H
⇒M) it is a

little more convenient to identify M with the submanifold ∆P
H

via the diffeomorphism ∆P
H
∼= P

H
∼= M . Here,

∆P denotes the diagonal ∆P ⊆ P × P . Then we have α(〈p, q〉) = 〈p, p〉, β(〈p, q〉) = 〈q, q〉. Consequently,
Tα P×P

H
= 0P×TP

H
and thus we have the natural isomorphism

L

(
P × P

H

)
= Tα

P × P

H

∣∣∣∣
∆P
H

=
0P × TP

H

∣∣∣∣
∆P
H

∼= TP/H

of vector bundles over M . One easily checks that this is in fact a morphism of Lie algebroids.

2 The Lie group structure on the bisections

It is the task of this section to lift the functor from (4) to a functor that takes values in locally convex Lie
groups. Our main technical tool for understanding the Lie group structure on Bis(G) will be local additions
(cf. Definition A.4) which respect to the fibres of a submersion. This is an adaptation of the construction of
manifold structures on mapping spaces [Woc13, KM97, Mic80] (see also Appendix A). In particular, special
cases of our constructions are covered by [Mic80, Chapter 10], but we aim here at a greater generality. In the
end, we will have to restrict the functor from (4) to those Lie groupoids that admit such a local addition.

Definition 2.1. (cf. [Mic80, 10.6]) Let s : Q → N be a surjective submersion. Then a local addition adapted
to s is a local addition Σ: U ⊆◦ TQ→ Q such that the fibres of s are additively closed with respect to Σ, i.e.
Σ(vq) ∈ s−1(s(q)) for all q ∈ Q and vq ∈ Tqs−1(s(q)) (note that s−1(s(q)) is a submanifold of Q).

We will mostly be interested in local addition which respect the source projection of a Lie groupoid.

Lemma 2.2. If G = (G⇒M) is a Lie groupoid with a local addition adapted to the source projection α, then
there exists a local addition adapted to the target projection β.

Proof. Let Σ: U ⊆◦ TG → G be a local addition adapted to α. Recall that the inversion map ι : G → G
is a diffeomorphism. Hence the tangent T ι is a diffeomorphism mapping the zero-section in TG to itself. In
particular, T ι(U) is an open neighbourhood of the zero-section in TG. Define Σop : T ι(U) ⊆◦ TG → G via
Σop = ι ◦ Σ ◦T ι and observe that Σop(0g) = g holds for all g ∈ G. Now Σ being a local addition implies that
(π|Tι(U),Σ

op) : T ι(U) ⊆◦ TG→ G×G induces a diffeomorphism onto an open neighbourhood of the diagonal,
whence Σop is a local addition. To prove that Σop is adapted to β we use that ι intertwines α and β, i.e.
β = α◦ ι. Thus ι maps each submanifold β−1(β(g)) to α−1(β(g)) and thus T ι(Tgβ

−1(β(g))) = Tg−1α−1(β(g)).
As Σ is adapted to α, we can deduce easily from these facts that Σop is adapted to β.

Remark 2.3. Exchanging the rôle of α and β in the proof of Lemma 2.2, we see that a local addition adapted
to the source projection exists if and only if a local addition adapted to the target projection exists.

Definition 2.4. We say that that a Lie groupoid G = (G⇒M) admits an adapted local addition if G admits
a local addition which is adapted to the source projection α (or, equivalently, to the target projection β). We
denote the full subcategory of LieGroupoidsM of Lie groupoids over M that admit an adapted local addition
by LieGroupoidsΣM .

In the following, all manifolds of smooth mappings are endowed with the smooth compact-open topology
from A.6 and the manifold structure from Theorem A.8. If a Lie groupoid admits an adapted local addition,
then we can prove the following result. Note that if the manifold G × G admits tubular neighbourhoods for
embedded submanifolds, then the assertion of the next lemma is a special case of [Mic80, Proposition 10.8].
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Lemma 2.5. Suppose K is a compact manifold and G = (G⇒M) is a Lie groupoid which admits an adapted
local addition Σ. Then C∞(K,G×α,β G) is a submanifold of C∞(K,G×G).

Proof. Since α is a submersion the fibre product G×α,β G is a split submanifold of G×G. By Lemma 2.2 G
admits a local addition Σ adapted to α and a local addition Σop adapted to β. We will identify T (G×α,β G)

with TG ×Tα,Tβ TG as in Remark 1.2 e). Then we obtain a local addition Σprod := Σ×Σop on T (G × G).

Since Σ is adapted to α and Σop is adapted to β, the local addition Σprod restricts to a local addition on the
submanifold G×α,β G (i.e. the submanifold is additively closed).

Now let g ∈ C∞(K,G×α,β G) ⊆ C∞(K,G×G). We consider the chart (Og , ϕg) for g on C∞(K,G×G)

which is induced by Σprod. As G×α,β G is additively closed with respect to Σprod we derive the condition:

f ∈ C∞(K,G×α,β G) ∩Og ⇔ ϕg(f) = (πT (G×G),Σ
prod)−1(g, f) ∈ Γ(g∗T (G×α,β G))

Notice that the linear subspace Γ(g∗T (G ×α,β G)) is closed. This follows from the continuity of the point
evaluations evx : Γ(g

∗T (G×G))→ T (G×G), f 7→ f(x) (cf. [AS12, Proposition 3.20]): As the vector subspace
Ty(G ×α,β G) is complemented (thus closed) for all y ∈ G ×α,β G, we can write Γ(g∗T (G ×α,β G)) as an
intersection of closed subspaces

⋂
x∈K((π∗

TG×Gg) ◦ evx)
−1(Tg(x)G×α,β G). Thus the canonical chart restricts

to a submanifold chart ϕg : Og ∩ C∞(K,G×α,β G)→ Γ(g∗T (G×α,β G)) ⊆ Γ(g∗T (G×G)).

We now use adapted local additions to endow the sections of a submersion with a smooth manifold struc-
ture.

Proposition 2.6. Let N be a locally convex and locally metrisable manifold and K be a compact manifold.
Furthermore, let s : N → K be a submersion. If there exists a local addition Σ: U ⊆◦ TN → N adapted to s,
then the set

Γ(K
s
←− N) := {σ ∈ C∞(K,N) | s ◦ σ = idK}

is a submanifold of C∞(K,N). Furthermore, the model space of an open neighbourhood of σ ∈ Γ(K
s
←− N) is

the closed subspace
Eσ := {γ ∈ Γ(σ∗TN) | ∀x ∈ K, γ(x) ∈ Tσ(x)s

−1(x)}

of all vertical sections in Γ(σ∗TN).

Proof. Endow C∞(K,N) with the manifold structure from Theorem A.8.b) constructed with respect to the
local addition Σ that is adapted to s. We claim that for a section σ of the submersion s the canonical charts
(ϕσ, Oσ) of C

∞(K,N) from A.8.a) define submanifold charts for Γ(K
s
←− N). To see this, consider g ∈ Oσ and

recall ϕσ(g) = (πTN ,Σ)
−1 ◦ (σ, g). Since the local addition Σ is adapted to s, the formula for ϕσ shows that

g ∈ Γ(K
s
←− N) ∩Oσ ⇔ ϕσ(g) ∈ Eσ ∩ C

∞(K,U),

where U ⊆◦ TN is as is Theorem A.8. For x ∈ K we define the evaluation map evx : Γ(σ
∗TN)→ TN, f 7→ f(x).

It is easy to see that the evaluation maps are continuous, since they are continuous in each chart (cf. [AS12,
Proposition 3.20]). The vector subspace Eσ ⊆ Γ(σ∗TN) is thus closed as an intersection of closed subspaces
Eσ =

⋂
x∈K((π∗

TNσ)◦evx)
−1(Tf(x)s

−1(x)). In particular, ϕσ is a submanifold chart and the assertion follows.

Remark 2.7. In certain cases the submanifold Γ(K
s
←− N) constructed in Proposition 2.6 will be a split

submanifold of C∞(K,N). For example this will happen if N is a finite dimensional manifold (see [Mic80,
Proposition 10.10]). The same proof carries over to the following slightly more general setting: If N is
a manifold such that for each embedded submanifold Y ⊆ N there exists a tubular neighbourhood, then
Γ(K

s
←− N) is a split submanifold of C∞(K,N).

Using this manifold structure we can finally prove the first main result of this paper.
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Theorem 2.8. Suppose M is compact and G = (G ⇒ M) is a locally convex and locally metrisable Lie
groupoid over M which admits an adapted local addition. Then Bis(G) is a submanifold of C∞(M,G) (with the
manifold structure from Theorem A.8). Moreover, the induced manifold structure and the group multiplication

(σ ⋆ τ)(x) := σ((β ◦ τ)(x))τ(x) for x ∈M

turn Bis(G) into a Lie group modelled on

E1 := {γ ∈ C∞(M,TG) | ∀x ∈M, γ(x) ∈ T1xs
−1(x)}.

Note that E1 is in fact isomorphic to the space of sections of the Lie algebroid L(G) associated to G. It
will be the content of Section 3 to analyse this isomorphism and show that it is natural and respects the Lie
bracket (up to a sign).

Proof (of Theorem 2.8). In Proposition 2.6 we endowed the space of sections Γ(M
α
←− G) with the structure

of a submanifold of C∞(M,G). Observe that by Theorem A.8 e) the map

C∞(M,G)→ C∞(M,M), f 7→ β ◦ f

is smooth, and so is its restriction β∗ to Γ(M
α
←− G). Recall from [Mic80, Corollary 5.7] that the subset of all

diffeomorphisms Diff(M) ⊆ C∞(M,M) is open. By construction Bis(G) = (β∗)
−1(Diff(M)) is thus an open

submanifold of Γ(M
α
←− G), and thus also a submanifold of C∞(M,G).

As Γ(M
α
←− G) is locally metrisable by Proposition 2.6, so is Bis(G). Thus all we have to show is that the

group operations (2) and (3) of the group of bisections are smooth with respect to the submanifold structure.
We begin with the group multiplication.

By Theorem A.8 e) the maps β∗ : Bis(G)→ Diff(M) and m∗ : C
∞(M,G×α,βG)→ C∞(M,G) are smooth.

Furthermore, by Theorem A.8 f) the composition Comp: C∞(M,G) × C∞(M,M) → C∞(M,G) is smooth.
Hence for σ, τ ∈ Bis(G) the map

µ : Bis(G)2 → C∞(M,G)2, (σ, τ) 7→ (σ ◦ β ◦ τ, τ) = (Comp(σ, β∗(τ)), τ)

is smooth. Let ∆: M →M ×M be the diagonal map. The canonical identification

h : C∞(M,G)2 → C∞(M,G×G), (f, g) 7→ (f, g) ◦∆.

is a diffeomorphism by an argument analogous to [Mic80, Proposition 10.5]. Indeed, the proof carries over
verbatim to our setting of infinite dimensional locally convex manifolds since G admits a local addition.
Observe that the map h ◦ µ takes its image in the submanifold C∞(M,G×α,β G) (cf. Lemma 2.5). Hence we
can rewrite the multiplication formula (2) for σ, τ ∈ Bis(G) as a composition of smooth maps:

σ ⋆ τ = (σ ◦ β ◦ τ) · τ = m∗ ◦ h ◦ µ(σ, τ).

In conclusion the group multiplication is smooth with respect to the manifold structure on Bis(G).
We are left to prove that inversion in Bis(G) is smooth. To this end let us recall the formula (3) for the

inverse of σ ∈ Bis(G):
σ−1 = (σ ◦ (β ◦ σ)−1)−1 = ι∗ Comp(σ, (β∗(σ))

−1)

Here ι : G → G is the inversion in the groupoid, whence ι∗ : C
∞(M,G) → C∞(M,G) is smooth by Theorem

A.8 e). Furthermore, β∗ maps Bis(G) into the open submanifold Diff(M). Inversion of β∗(σ) in (3) is thus
inversion in the group Diff(M). The group Diff(M) is a Lie group with respect to the open submanifold
structure induced by C∞(M,M) (see [Mic80, Theorem 11.11]). We conclude from (3) that inversion in the
group Bis(G) is smooth and thus Bis(G) is a Lie group.

Proposition 2.9. Suppose G = (G ⇒ M) and H = (H ⇒ M) are Lie groupoids over the compact manifold
M and that G and H admit an adapted local addition. If then f : G → H is a morphism of Lie groupoids over
M , then

Bis(f) : Bis(G)→ Bis(H), σ 7→ f ◦ σ

is a smooth morphism of Lie groups.
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Proof. The map f∗ : C
∞(M,G)→ C∞(M,H), γ 7→ f ◦ γ is smooth by Theorem A.8 e). Thus its restriction

to the submanifold Γ(M
α
←− G) and in there to the open subset Bis(G) is smooth. That it is a group

homomorphism follows directly from the definition.

Remark 2.10. Suppose M is a compact manifold. Then we consider the full subcategory LieGroupoidsΣM of
LieGroupoidsM whose objects are locally convex and locally metrisable Lie groupoids with object spaceM that
admit an adapted local addition. Then the results of this section show that Bis may be regarded as a functor

Bis : LieGroupoidsΣM → LieGroups,

where LieGroups denotes the category of locally convex Lie groups.

Proposition 2.11. Under the assumptions from Theorem 2.8, the natural action

γ : Bis(G) ×G→ G, (ψ, g) 7→ ψ(β(g))g.

is smooth, as well as the restriction of this action to the α-fibre

γm : Bis(G) × α−1(m)→ α−1(m), (ψ, g) 7→ ψ(β(g))g

for each m ∈M .

Proof. The action γ is given as the composition γ(ψ, g) = m(ev(ψ, β(g)), g) for (ψ, g) ∈ Bis(G) × G. Here
ev : Bis(G)×M → G is the canonical evaluation map, which is smooth by A.8 d). Thus the action γ is smooth
as a composition of smooth maps.

From α(ψ(β(g))g) = α(g) it follows that the action γ preserves the α-fibres. Since α is a submersion,
α−1(m) is a submanifold. Consequently, the action restricted to α−1(m) is also smooth.

We will now give examples for Lie groupoids which admit an adapted local addition. Hence the following
classes of Lie groupoids we can apply the previous results of this section to.

Proposition 2.12. Suppose G = (G ⇒ M) is a Lie groupoid such that G,M are Banach manifolds and M
admits smooth partitions of unity. Then G admits an adapted local addition.

The statement suggest similarities to [Ryb02, Proposition 3.2]. However, the difference between [Ryb02,
Proposition 3.2] and the previous proposition is that we will construct an adapted local addition on all of G,
whereas in [Ryb02, Proposition 3.2] a local addition is only constructed on a neighbourhood of M in G. This
allows us to view Bis(G) as a submanifold of C∞(M,G) and to use the known results on mapping spaces,
rather than constructing an auxiliary manifold structure on Bis(G).

Proof (of Proposition 2.12). We first recall some concepts from [Lan95, §IV.3]. Suppose X is an arbitrary
Banach manifold and write πTX : TX → X for the projection of the tangent bundle. Then a vector field
TX → T (TX) on TX is said to be of second order if

T (πTX)(F (v)) = v (8)

holds for all v ∈ TX . For each s ∈ R we denote by sTX : TX → TX the vector bundle morphism which
is given in each fibre by multiplication with s. With this notion fixed we define a second order vector field
F : TX → T (TX) to be a spray if

F (s · v) = T (sTX)(s · F (v)) (9)

holds for all s ∈ R and all v ∈ TX . For each v ∈ TX there exists a unique integral curve βv of F with initial
condition v. The subset W ⊆ TX such that βv is defined on [0, 1] is an open neighbourhood of the zero section
in TX . Then the exponential map of F is defined to be

expF : W → X, v 7→ πTX(βv(1)).
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The restriction of expF to TxX is for each x ∈ X a local diffeomorphism at 0x. By the Inverse Function
Theorem there exists Ux ⊆◦ TX∩W with 0x ∈ Ux such that (π × expF )|Ux is a diffeomorphism onto its image.
Consequently, we obtain a local addition

ΣF : U := ∪x∈XUx → X, v 7→ expF (v).

Thus sprays are the key to constructing local additions on Banach manifolds. We now assume that this
manifold is the manifold of arrows of the Lie groupoid (G ⇒ M). For the rest of this proof we identify
M with the submanifold 1(M) of G and TM with the submanifold T 1(TM) of TG. There exists a spray
F : TM → T (TM) on M by [Lan95, Theorem IV.3.1]. With respect to the mentioned identifications, we may
interpret F as a section of T TαTG

∣∣
TM
→ TM that satisfies (8) and (9) for all v ∈ TM and all s ∈ R.

We now want to extend this spray by right translation. To this end, recall from Remark 1.2 e) that
TG = (TG⇒ TM) is also a Lie groupoid, where we take the tangent maps at all levels.

Claim: The vertical right-invariant extension
−→
F : TG → T TαTG of F is a spray satisfying

−→
F (v) ∈ T TαTG for all v ∈ TG.

We first establish (8) for all v ∈ TG. To this end we compute

T (πTG)(
−→
F (v)) = T (πTG)(TRv(F (Tβ(v)))) = T (πTG ◦ Tm)(F (Tβ(v)), 0v)

= T (m ◦ πTG×TG)(F (Tβ(v)), 0v) = Tm(TπTG(F (Tβ(v))), v) = Tm(Tβ(v), v) = v,

where we have used TπTG(F (Tβ(v))) = Tβ(v) since Tβ(v) ∈ TM , that Tβ(v) is an identity in (TG⇒ TM)
and that

TG×Tα,Tβ TG
Tm

//

πTG×TG

��

TG

πTG

��

G×α,β G
m

// G

commutes. That (9) holds for all s ∈ R and all v ∈ TG follows from the linearity of the tangent maps on each
tangent space and the equality Rsv ◦ sTG = sTG ◦Rv, which imply

−→
F (s · v) = TRsv(F (Tβ(s · v))) = TRsv(F (s · Tβ(v))) = TRsv(TsTG(s · F (Tβ(v))))

= TsTG(TRv(s · F (Tβ(v)))) = TsTG(s · TRv(F (Tβ(v)))) = TsTG(s ·
−→
F (v)).

Claim: The local addition Σ−→
F

constructed from
−→
F is adapted to the source projection α.

Suppose βv : [0, 1]→ TG is an integral curve for
−→
F . By definition we have

α(Σ−→
F
(v)) = α(πTG(βv(1))) = πTM (Tα(βv(1))).

Thus it suffices by [Lan95, Proposition 2.11] to check that Tα ◦ βv : [0, 1] → TM is an integral curve for the
zero vector field. The latter is in fact the case since we have

(Tα ◦ βv)
′
(t) = T (Tα(β′

v(t))) = T


Tα(

−→
F (βv(t))︸ ︷︷ ︸

∈kerTβv(t)Tα

)


 = 0.

Putting these two proven claims together establishes the proof of the proposition.

Remark 2.13. Let G = (G⇒M) be a locally trivial Lie groupoid, i.e., one for which (β, α) : G→M×M is a
surjective submersion. Then G is equivalent overM to the gauge groupoid of a principal bundle (the argument
from [Mac05, §1.3] carries verbatim over to our more general setting). Thus the following proposition implies
that each locally trivial Lie groupoid with locally exponential vertex group and finite-dimensional space of
objects admits a local addition.
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Proposition 2.14. Let π : P →M be a principal H-bundle with finite-dimensional base M and locally expo-
nential structure group H. Then the associated gauge groupoid P×P

H
⇒M admits an adapted local addition.

Proof. We begin with the construction of a local addition for the Lie group H . As H is locally exponential,
the exponential map expH : L(H)→ H restricts to a diffeomorphism on a zero-neighbourhood. Fix a convex
zero-neighbourhood W ⊆◦ L(H) = TeH (the tangent space at the identity e ∈ H) together with an identity-
neighbourhood V ⊆◦ H such that ψ := (expH |

V
W )−1 : V →W becomes a manifold chart for H . By construction

this chart satisfies the following properties:

a) ψ(e) = 0

b) If x ∈ V and for k ∈ H the product kxk−1 is also contained in V , then ψ(kxk−1) = Ad(k)(ψ(x)) holds.
Here Ad: H → Aut(L(H)) is the adjoint representation of H on its Lie-algebra.

Let mH be the group multiplication in H and λh = mH(h, ·), ρh = mH(· , h) for h ∈ H . The tangent bundle
TH of the Lie groupH admits the following trivialisation Φ: H×TeH → TH, (h, V ) 7→ h.V = 0h·V = Tλh(V ).
Hence W̃ := Φ(H ×W ) is an open neighbourhood of the zero-section in TH . We define a smooth map

ΣH : W̃ → H, ΣH(h.V ) := h · expH(V ),

which obviously satisfies ΣH(0h) = h for all h ∈ H . The inverse to (h.V ) 7→ (h,ΣH(h.V )) is given by
(h, h′) 7→ h.ψ(h−1h′) and thus ΣH is a local addition. Moreover, the local addition ΣH is left-invariant and
right-invariant, i.e. for h ∈ H , V1 ∈ W̃ and V2 ∈ Tρh−1(W̃ ) we have

ΣH(h.V1) = h · ΣH(V1) (10)

by definition and, if V2 ∈ Th′H ,

ΣH(V2.h) = ΣH((h′h(h′h)−1).V2.h) = h′h · expH(Ad(h
−1)(h′−1.V2)) = h′hh−1 expH(h′−1.V2) · h

= ΣH(V2) · h.
(11)

We use the local addition on H to construct the desired local addition on the gauge groupoid P×P
H

⇒M .
We will use the notation introduced in Example 1.8 for the gauge groupoid. To simplify the notation,

define γp1,p2 := δ(σi(π(p1), p1))δ(σi(π(p2)), p2)
−1, set Uij := Ui ∩ Uj and denote by kji : Uij → H the smooth

map x 7→ δ(σj(x), σi(x)).

Construction of the local addition in charts: Fix i ∈ I and let ΣM : TM →M be a local addition for
M . Since M is finite dimensional a globally defined local addition always exists by [KM97, p. 441]. For i ∈ I
we set Wi := Σ−1

M (Ui) ∩ TUi and Vi := πTUi (Wi). Then Vi is open in Ui and Wi is an open neighbourhood
of the zero-section in TVi. By making the indexing set I larger and shrinking Ui if necessary we may assume
that (Vi)i∈I is still an open cover of M .

We now now want to use similar trivialisations as in Example 1.8 for the gauge groupoid of the principal
TH-bundle Tπ : TP → TM . In order to obtain trivialisations with a slightly more specialised property, we
proceed as follows. Since Vi ⊆ Ui, for the open cover (TVi)i∈I there exist the local sections Tσi : TVi → TP
of Tπ. Now choose a connection on TP , which we interpret as a decomposition TP = T vP ⊕H of the tangent
bundle of P into the vertical bundle T vP := ker(Tπ) and an H-equivariant horizontal complement. The
existence of such a connection is ensured by the smooth paracompactness of the base TM by constructing a
connection on TP |TVi and patching them together with a partition of unity. From this we obtain the projection

πH : TP → H, which is a morphism of vector bundles over TM . Consequently, σ̃i := πH ◦ Tσi : TVi → TP is
another system of sections of Tπ. From this we deduce for vx ∈ TVi ∩ TVj the formula

σ̃i(vx) = σ̃j(vx) · kji(x),

since σ̃i(vx) and σ̃j(vx) are both horizontal tangent vectors in Tσi(x)P and Tσj(x)P respectively. If we denote
as in Example 1.8 the trivialisations associated to the sections σ̃i by

T̃Kij :
Tπ−1(TVi)× Tπ−1(TVj)

TH
→ TVi × TVj × TH,



The Lie group structure on the bisections 13

then the associated chart changes are given by

T̃Kij ◦ T̃Kmn

−1

: TVi × TVj × TH → TVm × TVn × TH, (Vx, Vy, Vh) 7→ (Vx, Vy, kmi(x) · Vh · knj(y)
−1).

Here the product in the third component is the product in the tangent group TH . Now we can define a smooth
map

Σij : T̃K
−1

ij (Vi × Vj × W̃ )→ Kij(Ui × Uj ×H), Σij := K−1
ij ◦ (ΣM ×ΣM ×ΣH) ◦ T̃Kij . (12)

By construction T̃Kij(0〈p,q〉) = (0π(p), 0π(q), 0γu2,u1 ) holds for 〈p, q〉 in the domain of Kij . Since ΣM and ΣH
are local additions, for all such 〈p, q〉 we obtain Σij(0〈p,q〉) = 〈p, q〉.

Claim: For i, j,m, n ∈ I the maps Σij and Σmn coincide on the intersection of their domains.

Assume that the intersection
Pim×Pjn

H
of the domains of Kij and Kmn is non-empty. Let 〈p, q〉 be an element

of
Pim×Pjn

H
with x := π(p) and y := π(q). We will show that for V〈p,q〉 ∈ T〈p,q〉

P×P
H
∩ domΣij ∩ domΣmn the

mappings Σij and Σmn yield the same image. The image T̃Kij(V〈p,q〉) = (Vx, Vy , Vγp,q ) ∈ TxVim × TyVjn ×

Tγp,qH is related to the image under T̃Kmn via the formula

T̃Kmn(V〈p,q〉) = (Vx, Vy , kmi(x) · Vγp,q · knj(y)
−1) (13)

The change of charts formula (13) shows that the first two components of the image are invariant under change
of charts. By definition of the maps Σij and Σmn, the two maps coincide in these components since they are
just a restriction of the map ΣM . We compute now a formula for the third component of Kmn ◦ Σmn(V〈p,q〉),
which is given by (13), (12), (11) and (10) by

ΣH(kmi(x) · Vγp,q · knj(y)
−1) = kmi(x)ΣH(Vγp,q )knj(y)

−1.

We can thus conclude Σij(V〈p,q〉) = Σmn(V〈p,q〉). As the smooth maps Σij , (i, j) ∈ I2 coincide on the intersec-
tion of their domains, we obtain a well-defined smooth map

ΣGau :
⋃

(i,j)∈I2

domΣij ⊆◦ T

(
P × P

H

)
→ G, V 7→ Σij(V ) if V ∈ domΣij .

Claim: ΣGau is a local addition adapted to the source projection: By construction ΣGau is defined
on an open neighbourhood of the zero-section. The local additions ΣM and ΣH do not depend on the chartKij .
Using this fact, an easy computation in charts shows that (πT P×P

H
|⋃

(i,j)∈I2 domΣij ,ΣGau) is a diffeomorphism

onto an open neighbourhood of the diagonal in P×P
H
× P×P

H
. We conclude that ΣGau is a local addition.

Recall that the source projection of the gauge groupoid P×P
H

is the mapping α : P×P
H
→M, 〈p, q〉 7→ π(q).

Computing in the chart Kij we see that α is just the projection onto the second factor of the product.
Hence the kernel of Tα at a point 〈p, q〉 in this chart is the subspace of elements V〈p,q〉 ∈ T〈p,q〉

P×P
H

with

pr2 ◦T̃Kij(V〈p,q〉) = 0π(q). The local addition ΣM satisfies ΣM (0π(q)) = π(q). By construction, this implies
ΣGau(kerT〈p,q〉Tα) ⊆ π

−1(π(q)). Summing up, the local addition ΣGau is adapted to the source projection.

Remark 2.15. The same argument as in the previous proof shows that under the same assumptions the
associated Lie group bundle P×H

H
⇒M has an adapted local addition. In fact, P×H

H
⇒M may be considered

as the arrow manifold of the subgroupoid P×MP
H

⇒M (with equal source and target projection) of P×P
H

⇒M ,
and the local addition constructed in the previous proof restricts to a local addition on this submanifold with
the desired properties.

Example 2.16. For a principal H-bundle π : P →M with locally exponential structure groupH and compact
M we thus obtain a Lie group structure on Bis(P×P

H
). Moreover, the natural map

β∗ : Bis

(
P × P

H

)
→ Diff(M)
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is smooth by Theorem A.8 e). Its kernel is the group of bisections Bis(P×MP
H

) of the associated Lie group

bundle. The latter is a submanifold of Bis(P×P
H

) since the adapted local addition on P×P
H

used in the

construction of the manifold structure on Bis(P×P
H

) restricts to an adapted local addition on P×MP
H

, and

thus the corresponding carts for the manifold structure on Bis(P×P
H

) yield submanifold charts for Bis(P×MP
H

).
In total, we have a sequence of Lie groups

Bis

(
P ×M P

H

)
→֒ Bis

(
P × P

H

)
։ im(β∗). (14)

In fact, we get this sequence if we start with an arbitrary locally trivial Lie groupoid [Mac05, p. 130] (or
in finite dimensions, equivalently with a Lie groupoid whose base is connected and whose Lie algebroid is
transitive [Mac05, Corollary 3.5.18]).

We will now explain how to turn this sequence into an extension of Lie groups, i.e., into a locally trivial
bundle. To this end it suffices to construct a smooth section of β∗ on some identity neighbourhood of Diff(M).
This then implies in particular that im(β∗) is an open subgroup of Diff(M).

Recall the notation from Example 1.8. We choose a finite subcover U1, ..., Un of the trivialising cover
(Ui)i∈I . From Theorem A.8 a) recall the chart

ϕid : Oid → Γ(M ←− TM) ∩ C∞(M,U)

of Diff(M), where U denotes the domain of a local addition Σ: U ⊆◦ TM → M . Observe that ϕ−1
id (h)(x) =

ϕ−1
id (h′)(x) if h(x) = h′(x) follows from the construction of ϕid. We now choose a partition of unity λi : M → R

with supp(λi) ⊆ Ui. For f ∈ Oid we then have that

si(f) := ϕ−1
id ((λ1 + ...+ λi−1) · ϕid(f))

−1 ◦ ϕ−1
id ((λ1 + ...+ λi) · ϕid(f))

defines a smooth map si : Oid → Diff(M). Moreover, we have si(f)(x) = x if x /∈ supp(λi), since

((λ1 + ...+ λi−1) · ϕid(f))(x) = ((λ1 + ...+ λi) · ϕid(f))(x) for x /∈ supp(λi).

In addition, s1(f) ◦ ... ◦ sn(f) = f follows directly from the definition (see also [HT03, Proposition 1]).
With the aid of the chart

Kij :
π−1(Ui)× π−1(Uj)

H
→ Ui × Uj ×H

we then define the bisection

s̃ij(f) : M ×M →
P × P

H
, (x, y) 7→

{
K−1
ij ((x, sj(f)(y), e)) if (x, y) ∈ Ui × Uj

1(x,y) = K−1
ij (x, y, e) else.

This defines a smooth map since sj(f)(x) = x if x /∈ supp(λj) and M × (M \ supp(λj)) is open in M ×M .
Moreover,

s̃ij : Oid → Bis

(
P × P

H

)
, f 7→ s̃ij(f)

is smooth by Theorem A.8 e). From β ◦K−1
ij = pr2 we infer β∗(s̃ij(f)) = sj(f) and thus

O → Bis

(
P × P

H

)
, f 7→ s̃11(f) ⋆ ... ⋆ s̃nn(f)

is a smooth section of β∗, where ⋆ is the product (2). This turns (14) into an extension of Lie groups.
We now identify Bis

(
P×P
H

)
with the group of bundle automorphism of P via the group isomorphism

Aut(P )→ Bis

(
P × P

H

)
, f 7→ (m 7→ 〈σi(m), f(σi(m))〉 if x ∈ Ui) .
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Under this isomorphism the subgroup Bis(P×MP
H

) maps to the group of gauge transformations Gau(P ). If we
denote by Diff(M)[P ] = im(β∗) the open subgroup of diffeomorphisms ofM that lift to bundle automorphisms,
then we obtain the well-known extension of Lie groups

Gau(P )→ Aut(P )→ Diff(M)[P ]

from [Woc07]. Moreover, the natural action

Aut(P )× P → P, (f, p) 7→ f(p)

is smooth with respect to this identification, since it can be identified (non-canonically) with the action of
Bis(P×P

H
) on the α-fibre α−1(m) = Pm×P

H
∼= P for each m ∈M .

3 The Lie algebra of the group of bisections

In this section the Lie algebra of the Lie group Bis(G) is computed for a Lie groupoid G = (G ⇒ M).
Throughout this section G denotes a locally convex and locally metrisable Lie groupoid with compact space of
objects M that admits an adapted local addition.

It will turn out that the Lie algebra of the group of bisections is naturally (anti-) isomorphic to the Lie
algebra of sections of the Lie algebroid L(G) associated to G (see Section 1 for the corresponding notions).
Before we compute the bracket, let us identify the tangent space T1 Bis(G).

Remark 3.1. By construction Bis(G) is an open submanifold of Γ(M
α
←− G). We first analyse the space

T1C
∞(M,G). This is by Theorem A.9 isomorphic to the space Γ(1∗TG), the isomorphism given by restricting

the vector bundle isomorphism

ΦM,G : TC∞(M,G)→ C∞(M,TG), [t 7→ η(t)] 7→ (m 7→ [t 7→ η∧(t,m)])

to T1C
∞(M,G). Here we have identified tangent vectors in C∞(M,G) with equivalence classes [η] of smooth

curves η : ]−ε, ε[→ C∞(M,G) for some ε > 0 [Nee06, Definition I.3.3]. This isomorphism maps T1C
∞(M,G)

onto
{f ∈ C∞(M,TG) | f(m) ∈ T1mG for all m ∈M} ,

and the latter space is naturally isomorphic to Γ(1∗TG). If we restrict in C∞(M,G) to the submanifold

Γ(M
α
←− G), then this isomorphism maps T1(Γ(M

α
←− G)) onto

{
f ∈ C∞(M,TG) | f(m) ∈ Tα1mG for all m ∈M

}
,

which in turn is naturally isomorphic to Γ(L(G)). In the sequel we will denote by

ϕG : T1 Bis(G) = L(Bis(G))→ Γ(1∗TαG) = Γ(L(G)). (15)

the resulting isomorphism.

Following some preparations, we will prove in Theorem 3.4 that the Lie algebra bracket [ · , · ] on T1 Bis(G)
is, with respect to the isomorphism ϕG , the negative of the bracket of the Lie algebroid associated to G. To
compute the Lie bracket on T1Bis(G) we adapt an idea of Milnor. In [Mil84, p. 1041] a natural action of
the diffeomorphism group was used to compute the Lie bracket of its Lie algebra. In the present context we
exploit the natural action of the group of bisections via left-translations on the manifold of arrows G from
Remark 1.2 c).
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Proposition 3.2. Let X be an element of T1Bis(G) and denote by 0 the zero-section in Γ(TG). Then the

vector fields
−−−−→
ϕG(X) (cf. (6) and (15)) and Xρ × 0 are γ-related, i.e. the diagram

T Bis(G)× TG
Tγ

// TG

Bis(G)×G
γ

//

Xρ×0

OO

G

−−−−→
ϕG(X)

OO

(16)

commutes.

Proof. To simplify computations we identify X with the equivalence class [η] of a smooth curve η : ]−ε, ε[→
Bis(G) satisfying η(0) = 1 and η′(0) = X . From Theorem A.8 d) we infer that η∧ : ]−ε, ε[ × M → G,
(t,m) 7→ η(t)(m) is smooth. Thus for each ψ ∈ Bis(G) we obtain the smooth map (ρψ ◦ η)

∧. Evaluating in
(t, x) ∈ ]−ε, ε[×M we obtain the formula

(ρψ ◦ η)
∧(t, x) = (η∧(t, ·) ⋆ ψ)(x) = m(η∧(t, β(ψ(x))), ψ(x)). (17)

Moreover, by definition of right invariant vector fields Xρ(ψ) = [t 7→ ρψ ◦ η∧(t, ·)] holds for each ψ ∈ Bis(G).
We use the above facts to compute for (ψ, g) ∈ Bis(G)×G

−−−−→
ϕG(X) ◦ γ(ψ, g) =

−−−−→
ϕG(X)(m(ψ(β(g)), g))

(6)
= TRm(ψ(β(g)),g)ϕG(X)(β(m(ψ(β(g)), g)))

= TRm(ψ(β(g)),g)ϕG(X)(β(ψ(β(g)))) = [t 7→ m(m(η∧(t, β(ψ(β(g)))), ψ(β(g))), g)]

(17)
= [t 7→ m(ρψ ◦ η

∧(t, β(g)), g)] = [t 7→ γ(ρψ ◦ η
∧(t, ·), g)]

= Tγ(Xρ(ψ), 0g) = Tγ ◦ (Xρ × 0)(ψ, g).

Hence (16) commutes and the assertion follows.

3.3. Before phrasing the main result of this section we introduce the following notation. If we fix a manifold
M and consider the category LieAlgebroidsM of locally convex Lie algebroids over M , then taking sections
gives rise to a functor

Γ: LieAlgebroidsM → LieAlgebras.

Likewise, there is the functor
−Γ: LieAlgebroidsM → LieAlgebras

which assigns to a Lie algebroid its Lie algebra of sections, but with the negative Lie bracket on it.

Theorem 3.4. Let M be a compact manifold and G = (G ⇒ M) be a locally convex Lie groupoid admitting
an adapted local addition. Then the morphism of topological vector spaces

ϕG : L(Bis(G))→ Γ(L(G))

from (15) is actually an anti-isomorphism of Lie algebras. Moreover, ϕG constitutes a natural isomorphism
fitting into the diagram

LieGroupoidsΣM
L

//

Bis

��

LieAlgebroidsM

−Γ

��

LieGroups
L // LieAlgebras,

ϕ
3;

♥♥♥♥♥♥♥♥

♥♥♥♥♥♥♥♥

of functors.
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Proof. Recall that the bracket on Γ(L(G)) is induced from the isomorphism (6) with the right invariant
vector fields on G. In Proposition 3.2 we have seen that for X,Y ∈ T1 Bis(G) the right-invariant vector fields
−−−−→
ϕG(X) and

−−−−→
ϕG(Y ) are γ-related to Xρ× 0 and Y ρ× 0, respectively. Hence the Lie bracket [Xρ × 0, Y ρ × 0] =

[Xρ, Y ρ ]× 0 is γ-related to the Lie bracket
[−−−−→
ϕG(X),

−−−−→
ϕG(Y )

]
, i.e., we have

Tγ ◦ ([Xρ, Y ρ]× 0) = [
−−−−→
ϕG(X),

−−−−→
ϕG(Y )] ◦ γ.

From this we deduce

−ϕG([X,Y ])(x) = −ϕG(
−−−→
[X,Y ])(1x) = −ϕG(

−−−→
[X,Y ])(γ(1, 1x)) = Tγ((−[X,Y ]ρ × 0)(1, 1x))

1.6
= Tγ(([Xρ, Y ρ]× 0)(1, 1x)) = [

−−−−→
ϕG(X),

−−−−→
ϕG(Y )](γ(1, 1x)) = [

−−−−→
ϕG(X),

−−−→
ϕG(Y ](1x)

= [
−−−−→
ϕG(X),

−−−−→
ϕG(Y )](x).

Hence (7) implies that ϕG is an anti-isomorphism.
To check that ϕG is natural, suppose H = (H ⇒ M) is another Lie groupoid over M admitting an

adapted local addition and f : G → H is a morphism. Then −Γ(L(f)) is the induced map on sections
Γ(L(G)) → Γ(L(H)), ξ 7→ Tf ◦ ξ. On the other hand, Bis(f) is the map Bis(G) → Bis(H), σ 7→ f ◦ σ.
The tangent map of f∗ : C

∞(M,G)→ C∞(M,H), σ 7→ f ◦ σ at 1 is given by Theorem A.9 by

T1(f∗) : Γ(1
∗TG)→ Γ(1∗TH), ξ 7→ Tf ◦ ξ (18)

with respect to the identifications T1C
∞(M,G) ∼= Γ(1∗TG) and T1C

∞(M,H) ∼= Γ(1∗TH). Restricting the
latter isomorphism to vertical sections gives exactly the isomorphism ϕG and (18) gives the above formula for
−Γ(L(f)).

Example 3.5. For the gauge groupoid P×P
H

⇒ M of the principal H-bundle π : P → M with locally expo-

nential structure group H we have the natural isomorphisms L(P×P
H

⇒ M) ∼= TP/H → M from Example
1.8. Thus the extension

Bis

(
P ×M P

H

)
→֒ Bis

(
P × P

H

)
։ im(β∗) (19)

of locally convex Lie groups from (14) gives rise via the latter isomorphism and the isomorphism from (15) to
the extension

Γ(M ←− (T vP )/H)→ Γ(M ←− TP/H)→ Γ(M ←− TM)

of topological Lie algebras, where T vP := ker(Tπ) denotes the vertical subalgebroid of TP/H . This is of course
the extension of Lie algebras which is naturally associated to the Atiyah sequence T vP/H → TP/H → TM .

3.6. For the following corollary, recall that a Lie algebroid A is called integrable if there is a Lie groupoid G
such that L(G) is isomorphic (over M) to A. In the same way, a Lie algebra h is called integrable if there is a
Lie group H such that L(H) is isomorphic to h.

Corollary 3.7. Suppose M is a compact manifold and A = (A → M,a, [ · , · ] ) is a finite-dimensional Lie
algebroid over M . If A is integrable, then so is its algebra of sections (Γ(M ←− A), [ · , · ]).

Question 3.8. The previous result is not a surprise. What is more interesting is the question about the
converse statement: suppose that a finite-dimensional Lie algebroid is not integrable, is then its algebra of
sections also not integrable?

Remark 3.9. Note that the Lie algebras that arise here as the Lie algebras of Lie groups of bisections carry
more information that just the structure of a Lie algebra. In fact, the geometric structure that they have is
subsumed in the notion of a Lie-Rinehart algebra [Hue90, KSM90]. Thus a way to solve the above question
could be to create a theory of objects that are integrating Lie-Rinehart algebras on an algebraic level (something
that one might call Lie-Rinehart groups). To our best knowledge such a theory does not exist at the moment.
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4 Regularity properties of the group of bisections

This section contains an investigation of regularity properties for the Lie group of bisections. Throughout this
section G denotes a locally convex and locally metrisable Lie groupoid with compact space of objects M that
admits an adapted local addition. Moreover, we identify throughout this section the Lie algebra L(Bis(G))
with −Γ(L(G)) via the isomorphism ϕG from Theorem 3.4.

We will give two completely different proofs of the Ck-regularity of Bis(G) in the case of a locally trivial
Lie groupoid and in the case of a Banach-Lie groupoid. While the argument in the locally continuous case is
geometric in nature (and rather elementary), the argument in the case of Banach-Lie groupoids is analytical.

Theorem 4.1. Let G = (G⇒M) be a Lie groupoid and k ∈ N0 ∪{∞}. Assume that G is a locally trivial Lie
groupoid with locally exponential and Ck-regular vertex group and compact M . Then the Lie group Bis(G) is
Ck-regular. In particular, the Lie group Bis(G) is regular in the sense of Milnor.

Proof. First note that G is isomorphic over M to the gauge groupoid of a principal K-bundle P →M , where
K is the vertex group of G. So we may assume without loss of generality that G = (P×P

H
⇒ M). We consider

the extension

Bis

(
P ×M P

H

)
→֒ Bis

(
P × P

H

)
։ im(β∗)

of Lie groups from Example 2.16. As explained in Example 2.16 the Lie group Bis
(
P×MP
H

)
is isomorphic to

the gauge group Gau(P ). This isomorphism is even an isomorphism of locally metrisable Lie groups since it
maps smooth curves to smooth curves. From [Glö13] it now follows that Bis

(
P×MP
H

)
is Ck-regular, as well as

im(β∗) (the latter is just an open subgroup of Diff(M)). Since Ck-regularity is an extension property [NS12,
Appendix B] it follows that also Bis

(
P×P
H

)
is Ck-regular, what we were after to show.

4.2. Let G be a Lie groupoid. Define the map

f : [0, 1]×G× C0([0, 1],Γ(L(G)))c.o. → TαG, (t, g, η) 7→ TRgη
∧(t, β(g)) := TRgη(t)(β(g)).

This map makes sense, since (6) shows for fixed (t, η) ∈ [0, 1]× C0([0, 1],Γ(L(G))) that f(t, ·, η) is the right-
invariant vector field associated to η(t) and thus takes its values in TαG. We now consider the parameter
dependent initial value problem:

{
x′(t) = f(t, x(t), η) = TRx(t)η

∧(t, β(x(t))),

x(t0) = g0, (t0, g0) ∈ [0, 1]×G
(20)

To prove the regularity of Bis(G) we will study the flow of the differential equation.

Recall the following definition of Cr,s-mappings from [AS12].

4.3. Let E1, E2 and F be locally convex spaces, U and V open subsets of E1 and E2, respectively, and
r, s ∈ N0 ∪ {∞}. A mapping f : U × V → F is called a Cr,s-map if for all i, j ∈ N0 such that i ≤ r, j ≤ s, the
iterated directional derivative

d(i,j)f(x, y, w1, . . . , wi, v1, . . . , vj) := (D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f)(x, y)

exists for all x ∈ U, y ∈ V,w1, . . . , wi ∈ E1, v1, . . . , vj ∈ E2 and yields continuous maps

d(i,j)f : U × V × Ei1 × E
j
2 → F,

(x, y, w1, . . . , wi, v1, . . . , vj) 7→ (D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f)(x, y).

One can extend the definition of Cr,s-maps to mappings on locally convex domains with dense interior (cf.
Definition A.2). In addition, there are chain rules for Cr,s-mappings allowing us to naturally extend the notion
of Cr,s-maps to maps defined on products of locally convex manifolds with values in a locally convex manifold.

For further results and details on the calculus of Cr,s-maps we refer to [AS12].
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Proposition 4.4. a) The map f from 4.2 is of class C0,∞ with respect to the splitting
[0, 1]× (G× C0([0, 1],Γ(L(G)))c.o.) and satisfies

f(t, g, η) ∈ Tαg G for (t, g, η) ∈ [0, 1]×G× C0([0, 1],Γ(L(G))).

Assume in addition that G is a Banach-manifold. Then the following holds:

b) There is a zero-neighbourhood Ω ⊆◦ Γ(L(G)) such that for every (t0, g0, η) ∈ [0, 1] × G × C0([0, 1],Ω)
the initial value problem (20) admits a unique maximal solution ϕt0,g0,η : [0, 1] → G. Here we defined
C0([0, 1],Ω) :=

{
X ∈ C0([0, 1],Γ(L(G)))

∣∣X([0, 1]) ⊆ Ω
}
⊆◦ C0([0, 1],Γ(L(G)))c.o..

Hence, we obtain the flow of (20) as

Flf : [0, 1]× [0, 1]×G× C0([0, 1],Ω)→ G, (t0, t, g0, η) 7→ ϕt0,g0,η(t).

c) The map Flf0 := Flf (0, ·) : [0, 1]× (G× C0([0, 1],Ω))→ G, (t, g, η) 7→ Flf (0, t, g, η) is of class C1,∞.

d) Fix (s, t, η) ∈ [0, 1]× [0, 1]×C0([0, 1],Ω) then the map β ◦Flf (s, t, ·, η) ◦ 1: M →M is a diffeomorphism.

e) Fix η ∈ C0([0, 1],Ω), then Hη : [0, 1]×M → G, (t, x) 7→ Flf0 (t, 1x, η) is a C1,∞-mapping which induces a
C1-map

cη : [0, 1]→ Bis(G), t 7→ Flf0 (t, ·, η).

We postpone the rather technical proof of Proposition 4.4 to Section 5.

Theorem 4.5. Let G = (G⇒M) be a Lie groupoid and assume that G is a Banach manifold and that M is
compact. Then the Lie group Bis(G) is Ck-regular for each k ∈ N0 ∪ {∞}. In particular, the Lie group Bis(G)
is regular in the sense of Milnor.

Proof. Let Ω ⊆◦ Γ(L(G)) = T1 Bis(G) = L(Bis(G)) be the zero-neighbourhood constructed in Proposition 4.4
b). Combine Proposition 4.4 c) and d) with Theorem A.8 d) to obtain a smooth map

evol: C0([0, 1],Ω)→ Bis(G), η 7→ Flf0 (1, ·, η) ◦ 1 = cη(1).

We claim that cη : [0, 1]→ Bis(G) is the product integral of η : [0, 1]→ Ω ⊆ L(Bis(G)), i.e. it solves the initial
value problem (cf. (1)) {

γ′(t) = T1ργ(t)(η(t)) = η(t).γ(t)

γ(0) = 1
.

If this is true, then the proof can be completed as follows: For each η ∈ C0([0, 1],Ω) ⊆◦ C0([0, 1],Γ(L(G)))
there is a product integral and the evolution evol is smooth. Then Bis(G) is C0-regular by [Dah12, Proposition
1.3.10]. Since C0-regularity implies Ck-regularity for all k ≥ 0 the assertion follows.

Proof of the claim: Fix η ∈ C0([0, 1],Ω) and observe that cη : [0, 1]→ Bis(G) is a C1-curve by Proposition

4.4 e). Furthermore, cη(0) = Hη(0, ·) = Flf0 (0, ·, η)◦1 = 1 ∈ Bis(G). Let us now compute the derivative ∂
∂t
cη(t)

for fixed t ∈ [0, 1]. To this end choose a smooth curve k : ]− ε, ε[→ Bis(G) (for some ε > 0) with k(0) = 1 and
k′(0) = η(t) ∈ T1 Bis(G). Recall that ΦM,G : TC∞(M,G) → C∞(M,TG), [t 7→ h(t)] 7→ (m 7→ [t 7→ h∧(t,m)])
is an isomorphism of vector bundles by Theorem A.9. Therefore, we can compute the derivative as follows:

∂

∂t
cη(t) = [s 7→ cη(t+ s)] = Φ−1

M,G

(
m 7→ [s 7→ Flf0 (t+ s, 1m, η)]

)

(20)
= Φ−1

M,G

(
m 7→ TRFlf0 (t,1m,η)

η∧(t, β(Flf0 (t, 1m, η)))
)

= Φ−1
M,G

(
m 7→ TRc∧η (t,m) ◦ η

∧(t, ·) ◦ (β ◦ cη)
∧(t,m)))

)

= Φ−1
M,G

(
m 7→ [s 7→ Rc∧η (t,m) ◦ k

∧(s, ·) ◦ β ◦ c∧η (t,m)]
)

(2)
= Φ−1

M,G

(
m 7→ [s 7→ ((ρcη(t) ◦ k)

∧(s,m)]
)
= [s 7→ ρcη(t) ◦ k(s)] = T1ρcη(t)([s 7→ k(s)])

= T1ρcη(t)η(t)

As t ∈ [0, 1] was arbitrary, cη is the product integral for η : [0, 1]→ L(Bis(G)).
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5 Proof of Proposition 4.4

In this section we exhibit the technical proof of Proposition 4.4. Let us first recall its content:

5.1. a) The map f from 4.2 is of class C0,∞ with respect to the splitting [0, 1]×(G×C0([0, 1],Γ(L(G)))c.o.)
and satisfies

f(t, g, η) ∈ Tαg G for (t, g, η) ∈ [0, 1]×G× C0([0, 1],Γ(L(G))).

Assume in addition that G is a Banach-manifold. Then the following holds:

b) There is a zero-neighbourhood Ω ⊆◦ Γ(L(G)) such that for every (t0, g0, η) ∈ [0, 1] × G × C0([0, 1],Ω)
the initial value problem (20) admits a unique maximal solution ϕt0,g0,η : [0, 1] → G. Here we defined
C0([0, 1],Ω) :=

{
X ∈ C0([0, 1],Γ(L(G)))

∣∣X([0, 1]) ⊆ Ω
}
⊆◦ C0([0, 1],Γ(L(G)))c.o..

Hence, we obtain the flow of (20) as

Flf : [0, 1]× [0, 1]×G× C0([0, 1],Ω)→ G, (t0, t, g0, η) 7→ ϕt0,g0,η(t).

c) The map Flf0 := Flf (0, ·) : [0, 1]× (G× C0([0, 1],Ω))→ G, (t, g, η) 7→ Flf (0, t, g, η) is of class C1,∞.

d) Fix (s, t, η) ∈ [0, 1]× [0, 1]×C0([0, 1],Ω) then the map β ◦Flf (s, t, ·, η) ◦ 1: M →M is a diffeomorphism.

e) Fix η ∈ C0([0, 1],Ω), then Hη : [0, 1]×M → G, (t, x) 7→ Flf0 (t, 1x, η) is a C
1,∞-mapping which induces a

C1-map

cη : [0, 1]→ Bis(G), t 7→ Flf0 (t, ·, η).

Proof (of Proposition 4.4). a) To prove that f is a C0,∞-map, define first an auxiliary map

f0 : [0, 1]×M × C
0([0, 1],Γ(L(G)))c.o. → TαG, (t, x, η) 7→ η∧(t, x) = η(t)(x).

We will first prove that f0 is of class C
0,∞ with respect to the splitting [0, 1]×(M×Cr([0, 1],Γ(L(G)))c.o.).

To this end consider the evaluation maps ev0 : C
0([0, 1],Γ(L(G)))c.o. × [0, 1]→ Γ(L(G)), ev0(η, t) = η(t)

and ẽv : Γ(L(G)) ×M → TαG, ẽv(X, y) = X(y). Clearly f0(t, x, η) = ẽv ◦ (ev0(η, t), g). Since ev0 is a
C∞,0-map by [AS12, Proposition 3.20], a combination of the chain rules [AS12, Lemma 3.17 and Lemma
3.19] for Cr,s-mappings shows that f0 will be C0,∞ if ẽv is smooth. To see that ẽv is smooth we compute
in bundle charts. Consider the vector bundle πα : T

αG→ G and denote its typical fibre by E, We choose
a local trivialisation κ : π−1

α (Uκ) → Uκ × E such that Uκ ∩ 1(M) 6= ∅. By construction 1.4, the vector
bundle L(G)→M is the pullback bundle of TαG over the embedding 1. Hence κ induces the trivialisation
1∗κ : (1 ∗ πα)

−1(1−1(Uκ)) → 1−1(Uκ) × E, Y 7→ (1∗πα(Y ), κ(π∗
α1(Y ))) of L(G) → M . Shrinking Uκ we

may assume that W := 1−1(Uκ) is the domain of a manifold chart (ψ,W ) of M . Recall from [Woc13,
Proposition 7.3 and Lemma 5.5] that the map θκ,ψ : Γ(L(G))→ C∞(ψ(W ), E), X 7→ pr2 ◦1

∗κ ◦X ◦ ψ−1

is continuous linear, whence smooth. We obtain a commutative diagram with smooth columns

Γ(L(G)) ×W

(θκ,ψ×ψ)

��

ẽv|
π−1
α (Uκ)

Γ(L(G))×W
// π−1
α (Uκ)

C∞(ψ(W ), E)× ψ(W )
(1◦pr2,ev)

// Uκ × E

κ−1

OO

where ev : C∞(ψ(W ), E)×ψ(W )→ E, (λ, x) 7→ λ(x) is the evaluation map. By [AS12, Proposition 3.20]
(which is applicable by [Woc13, Lemma 5.3]) the map ev is smooth. Furthermore, the local trivialisation
κ was chosen arbitrarily, the map ẽv is smooth and in conclusion f0 is of class C0,∞.

We claim that the following diagram makes sense and commutes:

[0, 1]×G× C0([0, 1],Γ(L(G)))c.o.
f

//

(id[0,1] ×(β,idG)×idCr([0,1],Γ(L(G))))

��

TG

[0, 1]×M × C0([0, 1],Γ(L(G)))c.o. ×G
f0×0

// TG×Tα,Tβ TG

Tm

OO

(21)
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Assume for a moment that the claim is true and (21) commutes. Then f is a C0,∞-map by the chain
rules for C0,∞ mappings and smooth maps [AS12, Lemma 3.17 and Lemma 3.18]. By construction (see
4.2) the map f factors through the split submanifold TαG, whence assertion a) follows.

Proof of the claim: Fix (t, g, η) ∈ [0, 1]×G×C0([0, 1],Γ(L(G))). Notice first that the composition makes
sense: By definition we have f0(t, β(g), η) = Tα1(β(g))G. Hence Tα(f0(t, β(g), η)) = 0β(g) = Tβ(0(g)).

In conclusion f0 × 0 factors through TG×Tα,Tβ TG. We are left to prove that (21) commutes. To see
this we will use the explicit formula for the multiplication in the tangent prolongation. However, since
f0 takes its image only in tangent spaces over units in G, the formula simplifies (cf. [Mac05, Theorem
1.4.14, eq. (4)]) to

Tm(f0(t, β(g), η), 0(g)) = T (Rg)(f0(t, β(g), η)) − T (1)Tα(f0(t, β(g), η)) + 0(g)

= T (Rg)(η
∧(t, β(g))) − T (1)Tα(f0(t, β(g), η))︸ ︷︷ ︸

=0(1(β(g))

) = f(t, g, η).

b) In a) we have seen that f is a mapping of class C0,∞ such that for all g ∈ G we have f(·, g, ·) ∈ TgG. Now
G is a smooth Banach-manifold by assumption and the map f satisfies the assumptions of [AS12, 5.12].
Hence [AS12, 5.12] yields for all choices (t0, g0, η) ∈ [0, 1] × G × C0([0, 1],Γ(L(G))) a unique maximal
solution ϕt0,g0,η : Jt0,g0,η → G of (20) defined on some (relatively) open interval t0 ∈ Jt0,g0,η ⊆ [0, 1]. We
claim that it is possible to construct an zero-neighbourhood Ω ⊆◦ Γ(L(G)) such that for all (t0, g0, η) ∈
[0, 1] × G × C0([0, 1],Ω) the maximal solution ϕt0,g0,η is defined on [0, 1]. If this is true, then the flow

map Flf is defined on [0, 1]× [0, 1]× (G× C0([0, 1],Ω)).

Construction of Ω: We construct the neighbourhood Ω via a local argument in charts. Let us thus fix
the following symbols for the rest of this proof:

• F is the Banach-space on which G is modelled,

• E denotes the complemented subspace of F on which TαG is modelled (cf. 1.3).

Step 1: Reduction to initial values in M . First recall that for t ∈ Jt0,g0,η the following holds

∂

∂t
ϕt0,g0,η(t) = f(t, ϕt0,g0,η(t), η) = TRϕt0,g0,η(t)η

∧(t, β(ϕt0,g0,η(t)))
(6)
=
−−→
η(t)(ϕt0,g0,η(t)). (22)

We conclude that ϕt0,g0,η is an integral curve for the time-dependent right-invariant vector field
−→η : [0, 1] → Γρ(TαG), t 7→

−−→
η(t). Arguing as in [Mac05, p. 132 3.6] we derive the following information

on the integral curves: Recall that
−−→
η(t) is α-vertical for each t ∈ [0, 1]. Thus (22) yields for g0 ∈

G the equation α ◦ ϕt0,g0,η = α(g0). In particular, the integral curve through 1β(g0) restricts to a
mapping Jt0,1β(g0),η → α−1(β(g0)). Thus c : Jt0,1β(g0),η → G, t 7→ Rg0 ◦ ϕt0,1β(g0),η(t) is defined. A quick

computation shows that c(t0) = g0 and by (22) we derive ∂
∂t
c(t) =

−−→
η(t)(c(t)). This proves that c(t)

is the solution of (20) passing through g0 at time 0. We conclude that it suffices to construct a zero-
neighbourhood Ω such that the solutions ϕt0,1x,η are defined on [0, 1] for all (x, η) ∈M × C0([0, 1],Ω).

Step 2: Integral curves on [0, 1] for all initial values in a neighbourhood of x0 ∈ M . Fix x0 ∈ M . We
choose a submersion chart κx0 : Ux0 → Vx0 ⊆ F for α whose domain contains 1x0 . Then the tangent chart
Tκx0 is a submersion chart for Tα, whence it restricts to the bundle πα : T

αG→ G and yields a bundle

trivialisation Tακx0 : π
−1
α (Ux0) → Vx0 × E defined via Tακx0 = Tκx0|

Vx0×E

π−1
α (Ux0 )

. We remark that Tακx0

induces a trivialisation of the pullback bundle L(G)→M . In the following we will identify L(G) →M
with the restriction of TαG to 1(M) and the fibres L(G)x with Tα1xG. Under this identification the
pullback trivialisation is just the restriction of Tακx0 to π−1

α (1(M)).
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Note that the map 1◦β fixes units. Hence, by replacing Ux0 with the open set Ux0 ∩ (1◦β)
−1(Ux0) ∋ 1x0

for each g ∈ Ux0 the unit 1β(g) is also contained in Ux0 . Denote the (smooth) inclusion of E into F by
IFE . We define the map

hx0 : [0, 1]× (Vx0 × C
0([0, 1],Γ(L(G)))c.o.)→ F, (t, x, η) 7→ IFE ◦ pr2 ◦T

ακx0 ◦ f(t, κ
−1
x0

(x), η) (23)

which is of class C0,∞ by the chain rules [AS12, Lemma 3.17 and Lemma 3.18 ] and part (a). For later
use we record that for all X ∈ π−1

α (Ux0) ⊆ TG we have IFE ◦ pr2 ◦T
ακx0(X) = pr2 ◦Tκx0(X). Note that

since 1 ◦ β(Ux0) ⊆ Ux0 , we can rewrite hx0(t, y, η) for fixed (t, y) ∈ [0, 1]× Vx0 as

hx0(t, y, η) = pr2 ◦Tκx0 ◦ f(t, κ
−1
x0

(y), η) = pr2 ◦Tκx0 ◦ TRκ−1
x0

(y)(η
∧(t, β(κ−1

x0
(y)))

︸ ︷︷ ︸
∈π−1

α (Ux0 )

)

= pr2 ◦Tκx0 ◦ TRκ−1
x0

(y) ◦ T
ακ−1

x0
◦ Tακx0(η

∧(t, β(κ−1
x0

(y))))

= pr2 ◦Tκx0 ◦ TRκ−1
x0

(y) ◦ T
ακ−1

x0
(κx0(1β(κ−1

x0
(y))), pr2 T

ακx0(η
∧(t, β(κ−1

x0
(y))))).

Hence we obtain for each y ∈ Vx0 a continuous linear map

lx0,y : E → F, lx0,y(ω) = pr2 ◦Tκx0 ◦ TRκ−1
x0

(y) ◦ T
ακ−1

x0
(κx0(1β(κ−1

x0
(y))), ω).

Set z0 := κx0(1x0). By Lemma 5.2 the assignment lx0 : Vx0 → L (E,F ) , y 7→ lx0,y is continuous. Hence
we obtain an open z0-neighbourhood Wz0 ⊆ Vx0 such that supw∈Wz0

‖lx0,w‖op ≤ Bx0
:= ‖lx0,z0‖op + 1.

Now β is a submersion, whence an open map. We conclude from βκ−1
x0

(z0) = x0 that β ◦ κ−1
x0

(Vx0)
is an open neighbourhood of x0. Choose a compact x0-neighbourhood Ax0 ⊆ β(Ux0) and note that
z0 ∈ (β ◦ κ−1

x0
)−1(A◦

x0
) ⊆◦ Vx0 . Hence there is Rx0 > 0 with B2Rx0

(z0) ⊆Wz0 ∩ (β ◦ κ−1
x0

)−1(A◦
x0
)).

By Lemma 5.3 we can shrink Rx0 and choose a zero-neighbourhoodN0 ⊆◦ Γ(L(G)) such that the map hx0

is uniformly Lipschitz continuous in the Banach-space component on [0, 1]× C0([0, 1], N0)×B2Rx0
(z0).

Fix v ∈ BRx0 (z0) and estimate the supremum of the norm of hx0 on [0, 1] × C0([0, 1], N0) × BRx0 (v).

By choice of v the ball BRx0 (v) is contained in B2Rx0
(z0) ⊆Wx0 . Thus for all y ∈ BRx0 (v) we have the

upper bound Bx0 for ‖lx0,y‖op. We obtain an estimate the supremum of ‖hx0(t, y, η)‖F over (t, y, η) ∈

[0, 1]× C0([0, 1], N0)×BRx0 (v) as

sup
(t,y,η)

‖hx0(t, y, η)‖F ≤ sup
(t,y,η)

‖lx0,y‖op
∥∥pr2 Tακx0 ◦ η

∧(t, β(κ−1
x0

(y)))
∥∥
E

≤ Bx0 sup
(t,y,η)

∥∥pr2 Tακx0 ◦ η
∧(t, β(κ−1

x0
(y)))

∥∥
E
.

(24)

By construction of B2Rx0
(z0) we have β ◦ κ−1

x0
(B2Rx0

(z0)) ⊆ Ax0 and Ax0 is a compact subset of

1−1(Ux0) ⊆ M . Now Tακx0 restricts to a trivialisation of the pullback bundle L(G) → M (identified
with a subset of TαG). Recall that Ax0 is a compact set. Hence for each open set O ⊆ E by definition of
the compact open topology and Definition A.6 the set ⌊Ax0 , O⌋ := {f ∈ C

∞(β(Ux0), E) | f(Ax0) ⊆ O}
is open in C∞(β(Ux0), E). Let res: Γ(L(G)) → Γ(L(G)|β(Ux0)

), f 7→ f |β(Ux0). Then a combination of

[Woc13, Lemma 5.5] with Theorem A.7 implies that

D :=

{
X ∈ Γ(L(G))

∣∣∣∣∣ sup
y∈Ax0

‖pr2 ◦T
ακx0 ◦X(y)‖E <

Rx0

Bx0

}
= ((pr2 ◦T

ακx0)∗ ◦ res)
−1

(
BRx0
Bx0

(0)

)

is an open neighbourhood of the zero-section in Γ(L(G)).

Define Ω0 := D ∩ N0. Clearly Ω0 ⊆◦ Γ(L(G)) is a zero-neighbourhood and C0([0, 1],Ω0) is open in
C0([0, 1],Γ(L(G)))c.o.. From (24) we derive that for all v ∈ BRx0 (z0) and η ∈ C

0([0, 1],Ωx0) the estimate:

sup
(t,y,η)∈[0,1]×BRx0 (v)×C

0([0,1],Ωx0)

‖hx0(t, y, η)‖F < Rx0 (25)
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We will now solve the initial value problem (20) for fixed η ∈ C0([0, 1],Ωx0) and (t0, v) ∈ [0, 1]×BRx0 (z0):

{
∂
∂t
c(t) = hx0(t, c(t), η),

c(t0) = v.
(26)

From the argument above, we know that hx0(·, η) : [0, 1]× B2Rx0
(z0) → F satisfies a uniform Lipschitz

condition in the Banach space component (i.e. in B2Rx0
(z0)). In addition, (25) shows that for all

η ∈ C0([0, 1],Ωx0) we obtain M := sup(t,x)∈[0,1]×BRx0(v)
‖hx0(t, x, η)‖E < Rx0 . Observe that

Rx0
M
≥ 1.

Now a combination of [Ama90, 7.4 Local Existence and Uniqueness Theorem] with [Ama90, Remark 7.10
(a)] shows that the initial value problem (26) admits a unique solution ct0,v,η : [0, 1]→ BRx0 (v).

4 It is

easy to see that κ−1
x0
◦ ct0,v,η is just the integral curve ϕt0,κ−1

x0
(v),η, whence this curve must exist on [0, 1].

Hence for all (t0, y, η) ∈ [0, 1]× κx0(BRx0 (z0)) × C
0([0, 1],Ωx0) the initial value problem (20) admits a

unique solution ϕt0,y,η on [0, 1]. Finally we remark that κx0(BRx0 (z0)) is an open neighbourhood of 1x0 .

Step 3: Define Ω. We construct for each x ∈ M as in Step 2 an open neighbourhood Nx ⊆ G of x and
a zero-neighbourhood Ωx ⊆◦ Γ(L(G)). By construction the solution ϕt0,y,η of (20) exists on [0, 1] for all
(t0, y, η) ∈ [0, 1] × Nx × C0([0, 1],Ωx). Since M is compact, there is a finite set x1, . . . , xn ∈ M,n ∈ N

such that Gx0 ⊆
⋃

1≤i≤nNxi . Then Ω :=
⋂

1≤i≤n Ωxi is an open zero-neighbourhood in Γ(L(G))). By

construction for all (t0, x, η) ∈ [0, 1]×M × C0([0, 1],Ω) the solution ϕt0,1x,η of (20) exists on [0, 1].

c) Let r ∈ N0∪{∞}. For η ∈ C0([0, 1],Ω) we derive from (b) that the integral curves for (20) exist on [0, 1].
From (a) we know that f is of class C0,∞. Hence [AS12, Proposition 5.13] implies that for fixed t0 ∈ [0, 1]
the map Flf (t0, ·) : [0, 1]× (G × C0([0, 1],Γ(L(G)))c.o.)→ G is a mapping of class C1,∞. Specialising to

t0 = 0 we see that Flf0 is of class C1,∞.

d) Fix η ∈ C0([0, 1],Γ(L(G))) and s, t ∈ [0, 1]. We have to prove that Ψs,t := β ◦ Flf (s, t, ·, η) ◦ 1: M →M
is a diffeomorphism. The map Ψs,t is smooth as a composition of smooth mappings. We claim that the

inverse of Ψs,t is given by Ψt,s := β ◦ Flf (t, s, ·, η) ◦ 1. To see this recall the following properties of the
flow for t0, t1, t2 ∈ [0, 1]

Flf (t1, t2, ·, η) ◦ Fl
f (t0, t1, ·, η) = Flf (t0, t2, ·, η) and Flf (t0, t0, ·, η) = idG(·) (27)

∀(h, g) ∈ G×α,β G, by (b) and (c) Step 1: Rg ◦ Fl
f (t0, t1, h, η) = Flf (t0, t1, ·, η) ◦Rg(h) (28)

Furthermore, we observe for g ∈ G that R−1
g = Rg−1 . Hence for x ∈ M a combination of (27) and (28)

yields R−1
Flf (t,s,1x,η)

(1x) = Flf (s, t, ·, η) ◦ R−1
Flf (t,s,1x,η)

◦ Flf (t, s, ·, η)(1x) = Flf (s, t, ·, η)(1β(Flf (t,s,1x,η))).

Together with β(Rg(h)) = β(h) for all (h, g) ∈ G ×α,β G, the last observation enables the following
computation:

x = β(1x) = β ◦R−1
Flf (t,s,1x,η)

(1x) = β ◦ Flf (s, t, ·, η) ◦R−1
Flf (t,s,1x,η)

◦ Flf (t, s, ·, η)(1x)

= β ◦ Flf (s, t, ·, η) ◦ 1 ◦ β ◦ Flf (t, s, ·, η)(1x) = Ψs,t ◦Ψt,s(x)

Interchanging the roles of Ψs,t and Ψt,s we see that indeed Ψ−1
s,t = Ψt,s and Ψs,t is a diffeomorphism.

e) The map 1: M → G is smooth. Thus the chain rule [AS12, Lemma 3.17] and (c) show that

Hη = Flf0 (·, η) ◦ id[0,1]×1 is a C1,∞-map. From (22) and step 1 in (a) we infer α ◦ cη(t) = idM . Then a
combination of [Glö12, 1.7] and (d) shows that cη(t) ∈ Bis(G) and thus cη : [0, 1]→ Bis(G) makes sense.

To see that cη is continuous, recall from Definition A.6 that the topology on C∞(M,G) is initial with
respect to the family (T n : C∞(M,G)→ C0(T nM,T nG)c.o., f 7→ T nf)n∈N0 . Now Bis(G) is an embedded

4Note that the proof of [Ama90, 7.4] for infinite-dimensional Banach spaces requires a uniform Lipschitz condition on all of

B2Rx0
(z0) (cf. [Ama90, Remark 7.5 (b)]).
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submanifold whence the topology on Bis(G) is the subspace topology induced by C∞(M,G). Clearly
cη will be continuous if for all n ∈ N0 the map T n ◦ cη is continuous. Observe that c∧η = Hη and the
mapping Hη : [0, 1]×M → G is of class C1,∞. For ξ ∈ T nM and t ∈ [0, 1] fixed, we obtain the formula
T ncη(t)(ξ) = T nHη(t, ·)(ξ) (where we compute the tangent only with respect to the argument in M).
We compute locally to exploit the C1,∞-property of Hη: Choose an open t-neighbourhood Ut ⊆◦ [0, 1]
with inclusion it : Ut →֒ [0, 1] and charts κ of M and λ of G such that λ ◦Hη ◦ (it × κ) is defined. Then
we see (cf. [Woc13, Lemma 5.3]) that

T nλ ◦ T nHη(t, ·) ◦ T
nκ = T n(λ ◦Hη(t, ·) ◦ κ) = T n−1(λ ◦Hη(t, ·) ◦ κ)× (dT n−1(λ ◦Hη(t, ·) ◦ κ)). (29)

Denote by Rk the model space of M and let f : Rk ⊇ U → F be a smooth mapping from an open subset
into a locally convex space. Recall from [Glö02, p. 49] the following variant of the usual differential for
f : Set d0f = f , d1f = df and dnf = d(dn−1f) : U × (Rk)2

n−1 → F . Note that by [Glö02, Lemma 1.14]
these differentials exist for any C∞-map f . Thus (29) shows that we can recursively split the tangent
into a product of derivatives dr(λ ◦Hη(t, ·) ◦ κ) composed with projections. Furthermore, the formula in
the proof of [Glö02, Lemma 1.14] and the C1,∞-property of Hη show that dr(λ ◦Hη(t, ·) ◦ κ2) depends
continuously on t. In conclusion, T 0,nHη : [0, 1]×T nM → T nG, (t, ξ) 7→ T nHη(t, ·)(ξ) is continuous. The
manifold M is finite dimensional and so is T nM for all n ∈ N0. In particular, T nM is locally compact
for n ∈ N0 and we derive from [Eng89, Theorem 3.4.1] that T ncη = (T 0,nHη)

∨ is continuous.

We will prove now that cη is of class C1. It suffices to prove that cη is locally of class C1. To do so fix
s ∈ [0, 1] and recall some facts from the construction of Ω in (b). The set Ω was constructed with respect
to a finite family Ni ⊆◦ G, 1 ≤ i ≤ n which satisfies:

(i) 1(M) ⊆
⋃

1≤i≤nNi,

(ii) For each 1 ≤ i ≤ n there is a manifold chart κi : Ui → Vi ⊆ F , such that Flf (0, ·)|[0,1]×Ni×C0([0,1],Ω)

takes its values in Ui (cf. (b) Step 2). Moreover, κi is a submersion chart for α, whence
Tακi := Tκi|ETαUi : T

αUi → Ui × E is a trivialisation of TαG.

Set g := cη(s) ∈ Bis(G). Recall from Proposition 2.6 the form of a manifold chart around g of Bis(G):
ϕg : Og → ϕg(Og) ⊆◦ Γ(g∗TαG), where Og := {s ∈ Bis(G) | ∀x ∈ M, (s(x), g(x)) ∈ Q} for a a fixed
neighbourhood Q of the diagonal in N ×N .

Consider the C1,∞-mapping c∧η := Hη : [0, 1] × M → G. Then (g ◦ pr2, c
∧
γ ) : [0, 1] × M → G × G is

continuous with {s} ×M ⊆ (g ◦ pr2, c
∧
γ )

−1(V ) ⊆◦ [0, 1] ×M . Hence there is a relatively open interval

s ∈ Js ⊆ [0, 1] such that cη(Js) ⊆ Og. We will prove that ϕg ◦ cη|Js : Js → Γ(g∗TαG) is C1. Note first
that cη(t) maps 1−1(Ni) ⊆◦ M into the chart domain Ui for all t ∈ Js. In particular, for z ∈ 1−1(Ni) the
compact set c∧η (Js × {z}) × {g(z)} is contained in V ∩ (Ui × Ui). We apply Wallace Theorem [Eng89,

3.2.10] to obtain open neighbourhoods Uz,s, Vz ⊆◦ G with c∧η (Js×{z})×{g(z)} ⊆ Uz,s×Vz ⊆◦ V ∩(Ui×Ui).

The set (c∧η )
−1(Uz,s) is an open neighbourhood of Js × {z} ∈ [0, 1]× 1−1(Ni). Apply Wallace Theorem

again to find an open z-neighbourhoodWz ⊆◦ 1−1(Ni) such that g(Wz) ⊆ Vz and Js×Wz ⊆ (c∧η )
−1(Uz,s).

By (i) the open sets (1−1(Ni))1≤i≤n cover M . Thus we repeat the construction of Wz for all z ∈ M .
By compactness of M , there are finitely many zj , 1 ≤ j ≤ m such that M =

⋃
1≤j≤mWzj . For each

1 ≤ j ≤ m we choose κij such that cη(Js ×Wzj )× g(Wzj ) ⊆ Uzj ,s × Vzj ⊆ Uij × Uij . Note that by (ii)
the trivialisations Tακij of TαG induce an atlas of trivialisations for the bundle g∗TαG. From [Woc13,
Proposition 7.3] we recall that the topology of Γ(g∗TαG) is initial with respect to

Φ: Γ(g∗TαG)→
∏

1≤j≤n

C∞(Wzj , E), σ 7→ pr2 ◦T
ακij ◦ σ|Wzj

and that Φ is a linear topological embedding with closed image. Thus ϕg ◦ cη|Js will be of class C1 if
and only if for each 1 ≤ j ≤ m the map pj ◦ Φ ◦ ϕg ◦ cη|Js : Js → C∞(Wzj , E) is C1. Here pj is the
projection onto the j-th component of the product. The manifold Wzj ⊆◦ M is finite dimensional and
Js ⊆◦ [0, 1] is a locally convex subset with dense interior of R. We can thus apply the exponential law
for C1,∞-maps [AS12, Theorem 4.6 (d)]: The map ϕg ◦ cη|Js will be of class C1 if and only if for each
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1 ≤ j ≤ m the map (prj ◦Φ ◦ ϕg ◦ cη|Js)
∧ : Js ×Wzj → E is of class C1,∞. Let πα : T

αG → G be the
bundle projection and denote by Σ the local addition on G adapted to α. Using the description of the
chart ϕg we compute an explicit formula for (prj ◦Φ ◦ ϕg ◦ cη|Js)

∧:

(prj ◦Φ ◦ ϕg ◦ cη|Js)
∧(t, x) = (pr2 T

ακij ◦ (πα,Σ)
−1 ◦ (g, cη|Js))

∧(t, x)

= (pr2 T
ακij ◦ (πα,Σ)

−1 ◦ (g, cη(t))(x))

= pr2 T
ακij ◦ (πα,Σ)

−1 ◦ (g ◦ prWzj
, c∧η |Js×Wzj

)(t, x)

(30)

Here prWzj
: Js×Wzj →Wzj is the canonical (smooth) projection. By construction of the open setsWzj ,

the smooth mapping pr2 T
ακi ◦ (πα,Σ)−1 ◦ (idUz,s , g) is defined on the product Uzj,s×Wzj . Furthermore

c∧η |Js×Wzj
= Hη|Js×Wzj

holds and thus c∧η |Js×Wzj
is of class C1,∞. We have c∧η (Js × Wzj ) ⊆ Uzj,s.

Computing in local charts, the chain rule [AS12, Lemma 3.19] together with (30) implies that
(prj ◦Φ ◦ ϕg ◦ cη|Js)

∧ is a mapping of class C1,∞. We conclude that cη|Js : Js → Bis(G) is of class C1,
whence the assertion follows.

Lemma 5.2. In the situation of Proposition 4.4 b) denote by F the model space of G and by E the typical
fibre of TαG. Let κ : U → V ⊆ F be a submersion chart for α such that for all g ∈ U we have 1β(g) ∈ U .
Furthermore, we denote by Tακ the trivialisation of the bundle TαG obtained by restriction of Tκ to TαG.
Then the map

l : V → L (E,F ) , y 7→ ly with ly(ω) = pr2 ◦Tκ ◦ TRκ−1(y) ◦ T
ακ−1(κ(1β(κ−1(y))), ω)

is continuous with respect to the operator-norm topology on L (E,F ).

Proof. Before we tackle the continuity, we begin with some preliminaries: For each y ∈ V , the element
(1β(κ(y)), κ

−1(y)) is contained in the domain G ×α,β G of the groupoid multiplication m. Define the map
u : V → G ×α,β G, v 7→ (1β(κ−1(v)), κ

−1(v)). As G ×α,β G is a split submanifold of G × G (modelled on
a complemented subspace H of F × F ), the map u is smooth as a mapping into the submanifold. Note
that for all g ∈ U the unit 1β(g) is contained in U , whence u(V ) ⊆ (U × U) ∩ (G ×α,β G). It suffices to
check continuity of l locally. To this end fix v ∈ V . Let τ : Uτ → Vτ ⊆ F × F be a submanifold chart for
G ×α,β G around u(v), i.e. τ(Uτ ∩ (G ×α,β G)) = Vτ ∩ H and u(v) ∈ Uτ . Shrinking Uτ we can assume that
m(Uτ ∩ (G ×α,β G)) ⊆ U holds. We obtain an open v-neighbourhood Wv := u−1(Uτ ) ⊆ V ⊆ F such that
u(Wv) ⊆ Uτ ∩ ((U × U)× (G×α,β G)). Now back to l: As explained in Proposition 4.4 a), we can rewrite the
formula for l for all y ∈Wv as follows

l(y) = pr2 ◦Tκ ◦ Tm(Tακ−1(κ(1β(κ−1(y))), ω), 0(κ
−1(y)))

= pr2 ◦Tκ ◦ Tm(Tακ−1 × Tακ−1((κ(1β(κ−1(y))), ω)(y, 0)))

= pr2 ◦T (κ ◦m ◦ τ
−1|Vτ∩H)(Tτ ◦ (Tακ−1 × Tακ−1)((κ(1β(κ−1(y))), ω)(y, 0)))

(31)

The above formula shows that the map l splits into several components. We exploit this splitting to prove
continuity of l|Wv

. First consider pr2 ◦T (κ◦m◦τ
−1|Vτ∩H). The mapping κ◦m◦τ−1|Vτ∩H : Vτ ∩H → V is well-

defined and smooth. We see that pr2 ◦T (κ◦m◦ τ
−1|Vτ∩H) = d(κ◦m◦ τ−1|Vτ∩H) : (Vτ ∩H)×H → F . Since H

and F are Banach spaces, [Mil82, Lemma 2.10] implies that p : Vτ∩H → L (H,F ) , y 7→ d(κ◦m◦τ−1|Vτ∩H)(y, ·)
is continuous.

Now we deal with Tτ ◦ (Tακ−1 × Tακ−1): Recall that κ : U → V ⊆ F is a chart for G and for the bundle
trivialisation we have Tακ = Tκ|V×E

π−1
α (U)

. Hence Tτ ◦ (Tακ−1 × Tακ−1) is the restriction of T (τ ◦ (κ−1 × κ−1))

to the subset ((κ× κ((U × U) ∩ Uτ ))× E × E). Again from [Mil82, Lemma 2.10] it follows that

q : κ× κ((U × U) ∩ Uτ )→ L (F × F, F × F ) , x 7→ d(τ ◦ κ−1 × κ−1|κ×κ((U×U)∩Uτ ))(x, ·)

is a continuous map. Let IFE be the canonical (smooth) inclusion of E into F . Then for all x in the domain of
q we derive

q(x) ◦ (IFE × I
F
E )(·) = pr2 Tτ ◦ (T

ακ−1 × Tακ−1)(x, ·). (32)
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We define the canonical inclusion IE×E
E : E → E×{0} ⊆ E×E and note that (IFE×I

F
E )◦I

E×E
E ∈ L (E,F × F ).

The Banach space H is a split subspace of F × F . Hence the projection πH : F × F → H is continuous.
The composition of continuous linear maps between Banach spaces is jointly continuous. Thus we obtain a
continuous map

z : κ× κ((U × U) ∩ Uτ )→ L (E,H) , x 7→ πH ◦ q(x) ◦ (I
F
E × I

F
E ) ◦ IE×E

E

Now for x ∈ (U × U) ∩ Uτ ∩ G ×α,β G we set (x1, x2) := κ × κ(x) and let Y ∈ E. Then the identity (32)
together with τ being a submanifold chart for G×α,β G shows

q(x) ◦ (IFE × I
F
E ) ◦ I

E×E
E (Y ) = pr2 Txτ( Tαx1

κ−1(Y )× 0κ−1(x2)︸ ︷︷ ︸
∈TG×Tα,TβTG

(5)
= T (G×α,βG)

) ∈ H

In particular, z(x)(Y ) = q(x) ◦ (IFE × I
F
E )(Y, 0). With the help of (32) insert the mappings p and z into (31)

to derive for y ∈Wv the identity

l(y) = p(τ ◦ u(y)) ◦ z((κ× κ) ◦ u(y)) ∈ L (E,F ) .

We conclude that l|Wv
is continuous and the assertion of the Lemma follows.

Lemma 5.3. Let hx0 : [0, 1] × Vx0 × C
0([0, 1],Γ(L(G))) → F be the map defined in (23). Then there is an

open zero-neighbourhood N0 ⊆◦ Γ(L(G)) and ε > 0 such that hx0 |[0,1]×C0([0,1],N0)×Bε(z0) is uniformly Lipschitz
continuous with respect to the Banach space component.
Here we define C0([0, 1], N0) = {η ∈ C0([0, 1],Γ(L(G))) | η([0, 1]) ⊆ N0} ⊆◦ C0([0, 1],Γ(L(G)))c.o..

Proof. Reordering the product on which hx0 is defined, we identify hx0 with a C0,∞-mapping with respect to
the decomposition ([0, 1]× C0([0, 1],Γ(L(G)))c.o.) × Vx0 . By [Ama90, Proposition 6.3] the map hx0 is locally
Lipschitz continuous with respect to the Banach space component. Consider the constant map 0 : [0, 1] →
Γ(L(G)) whose image is the zero section in Γ(L(G)). Since [0, 1] × {0} × {z0} is compact, there are finitely
many indices 1 ≤ i ≤ n, n ∈ N such that [0, 1] =

⋃
1≤i≤n Ji for Ji ⊆◦ [0, 1] and the following holds:

For each 1 ≤ i ≤ n there is Ui ⊆◦ C0([0, 1],Γ(L(G))) and εi > 0 such that on Ji ×Ui×Bεi(z0) the mapping
hx0 is Lipschitz continuous with respect to z ∈ Bεi(z0).

We let λi be the minimal Lipschitz constant for hx0 on Ji×Ui×Bεi(z0). Let P be a subbasis for the topology
of Γ(L(G)). Since [0, 1] is compact, the sets C0([0, 1],W ) := {f ∈ C0([0, 1],Γ(L(G)))|f([0, 1]) ⊆W} with W ∈
P form a subbasis of the compact-open topology on C0([0, 1],Γ(L(G))). Hence there areW1, . . .Wm ∈ P ,m ∈ N

such that C0([0, 1],
⋂

1≤j≤mWj) =
⋂

1≤j≤m C
0([0, 1],Wj) ⊆

⋂
1≤i≤n Ui is a 0-neighbourhood. Define N0 :=⋂

1≤j≤nWj . Since 0 ∈ C0([0, 1], N0) and thus 0(1) = 0 ∈ N0 holds, N0 ⊆◦ Γ(L(G)) is a zero-neighbourhood.

Now define L := max1≤i≤n{λi} and ε =
min1≤i≤n εi

2 . We consider (t, η, x)(t, η, y) ∈ [0, 1]×C0([0, 1], N0)×Bε(z0)
such that t ∈ Ji. From ‖x− y‖E < ε ≤ εi

2 we derive ‖y − z0‖E ≤ ‖y − x‖E + ‖x− z0‖E < εi. Thus
‖hx0(t, η, x)− hx0(t, η, y)‖F ≤ λi ‖x− y‖E ≤ L ‖x− y‖E and L is a Lipschitz constant for hx0 on [0, 1] ×
C0([0, 1], N0)×Bε(0). In conclusion, hx0 is uniformly Lipschitz continuous with respect to the Banach space
component.

A Locally convex manifolds and spaces of smooth maps

In this appendix we collect the necessary background on the theory of manifolds that are modelled on locally
convex spaces and how spaces of smooth maps can be equipped with such a structure. Let us first recall some
basic facts concerning differential calculus in locally convex spaces. We follow [Glö02, BGN04].

Definition A.1. Let E,F be locally convex spaces, U ⊆ E be an open subset, f : U → F a map and
r ∈ N0 ∪ {∞}. If it exists, we define for (x, h) ∈ U × E the directional derivative

df(x, h) := Dhf(x) := lim
t→0

t−1(f(x + th)− f(x)).
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We say that f is Cr if the iterated directional derivatives

d(k)f(x, y1, . . . , yk) := (DykDyk−1
· · ·Dy1f)(x)

exist for all k ∈ N0 such that k ≤ r, x ∈ U and y1, . . . , yk ∈ E and define continuous maps d(k)f : U ×Ek → F .
If f is C∞ it is also called smooth. We abbreviate df := d(1)f .

From this definition of smooth map there is an associated concept of locally convex manifold, i.e., a
Hausdorff space that is locally homeomorphic to open subsets of locally convex spaces with smooth chart
changes. See [Woc13, Nee06, Glö02] for more details.

Definition A.2 (Differentials on non-open sets). a) A subset U of a locally convex space E is called
locally convex if every x ∈ U has a convex neighbourhood V in U .

b) Let U ⊆ E be a locally convex subset with dense interior and F a locally convex space. A continuous
mapping f : U → F is called Cr if f |U◦ : U◦ → F is Cr and each of the maps d(k)(f |U◦) : U◦ × Ek → F
admits a continuous extension d(k)f : U × Ek → F (which is then necessarily unique). Analogously,
we say that a continuous map g : U → M to a smooth manifold M is of class Cr if the tangent maps

T k(f |U◦) : U◦ ×E2k−1 → T kM exist and admit a continuous extension T kf : U ×E2k−1 → T kM . Note
that we defined Ck-mappings on locally convex sets with dense interior in two ways for topological vector
spaces (when viewed as manifolds). However, by [Glö02, Lemma 1.14] both conditions yield the same
class of mappings. If U ⊆ R and g is C1, we obtain a continuous map g′ : U → TM, g′(x) := Txg(1). We
shall write ∂

∂x
g(x) := g′(x).

Definition A.3. Let M be a smooth manifold. Then M is called Banach (or Fréchet) manifold if all its
modelling spaces are Banach (or Fréchet) spaces. The manifold M is called locally metrisable if the underlying
topological space is locally metrisable (equivalently if all modelling spaces of M are metrizable). It is called
metrizable if it is metrisable as a topological space (equivalently locally metrisable and paracompact).

Definition A.4. Suppose M is a smooth manifold. Then a local addition on M is a smooth map Σ: U ⊆◦

TM →M , defined on an open neighbourhood U of the submanifold M ⊆ TM such that

a) π ×Σ: U →M ×M , v 7→ (π(v),Σ(v)) is a diffeomorphism onto an open neighbourhood of the diagonal
∆M ⊆M ×M and

b) Σ(0m) = m for all m ∈M .

We say that M admits a local addition if there exist a local addition on M .

Lemma A.5. (cf. [Mic80, 10.11]) Suppose that Σ: U ⊆◦ TM → M is a local addition on M and that
τ : T (TM) → T (TM) is the canonical flip on T (TM). Then T Σ ◦τ : τ(TU) ⊆◦ T (TM) → TM is a local
addition on TM . In particular, TM admits a local addition if M does so.

Proof. Let 0M : M → TM denote the zero section of πM : TM →M .
The diffeomorphism τ : T (TM) → T (TM) is locally given by (m,x, y, z) 7→ (m, y, x, z) and makes the

diagrams

T (TM)

TπM

��

τ // T (TM)

πTM

��

TM TM

and

T (TM)
τ // T (TM)

TM

T0M

OO

TM

0TM

OO

commute [Mic80, 1.19]. Then Σ ◦0M = idM implies that T Σ is defined on the open neighbourhood TU
of T 0M(TM) in T (TM) and satisfies T Σ ◦T 0M = idTM . This implies that T Σ ◦τ is defined on the open
neighbourhood τ(TU) of 0TM (TM). It satisfies T Σ ◦τ ◦ 0TM = idTM and thus A.4 b) by construction.
Moreover, if πM × Σ is a diffeomorphism from U onto V ⊆◦ M ×M , then T (πM × Σ) = (TπM × T Σ) is a
diffeomorphism from TU onto TV ⊆◦ T (M ×M) = TM × TM . Thus (πTM × T Σ ◦τ) is a diffeomorphism
from τ(TU) onto TV . This establishes A.4 a).
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Definition A.6. Let M,N be smooth manifolds. Then we endow the smooth maps C∞(M,N) with the
initial topology with respect to

C∞(M,N) →֒
∏

k∈N0

C0(T kM,T kN)c.o., f 7→ (T kf)k∈N0 ,

where C0(T kM,T kN)c.o. denotes the space of continuous functions endowed with the compact-open topology.

From [Woc13, Proposition 7.3 and Theorem 5.14] we recall the following result.

Theorem A.7. Let E → M be a vector bundle over the compact manifold M such that the fibres are locally
convex spaces. Then the space of sections Γ(M ←− E) is a closed subspace of C∞(M,E) and a locally convex
space with respect to point-wise addition and scalar multiplication. If the fibres of E →M are metrisable, then
so is Γ(M ←− E) and if the fibres are Fréchet spaces, then so is Γ(M ←− E).

Our main tool will be the following excerpt from [Woc13, Theorem 7.6].

Theorem A.8. Let M be a compact manifold and N be a locally convex and locally metrisable manifold that
admits a local addition Σ: U ⊆◦ TN → N . Set V := (π × Σ)(U), which is an open neighbourhood of the
diagonal ∆N in N ×N . For each f ∈ C∞(M,N) we set

Of := {g ∈ C∞(M,N) | (f(x), g(x)) ∈ V }.

Then the following assertions hold.

a) The set Of contains f , is open in C∞(M,N) and the formula (f(x), g(x)) = (f(x),Σ(ϕf (g)(m))) deter-
mines a homeomorphism

ϕf : Of → {h ∈ C
∞(M,TN) | π(h(x)) = f(x)} ∼= Γ(f∗(TN))

from Of onto the open subset {h ∈ C∞(M,TN) | π(h(x)) = f(x)} ∩ C∞(M,U) of Γ(f∗(TN)).

b) The family (ϕf : Of → ϕf (Of ))f∈C∞(M,N) is an atlas, turning C∞(M,N) into a smooth locally convex
and locally metrisable manifold.

c) The manifold structure on C∞(M,N) from b) is independent of the choice of the local addition Σ.

d) If L is another locally convex and locally metrisable manifold, then a map f : L ×M → N is smooth if

and only if f̂ : L→ C∞(M,N) is smooth. In other words,

C∞(L ×M,N)→ C∞(L,C∞(M,N)), f 7→ f̂

is a bijection (which is even natural).

e) Let M ′ be compact and N ′ be locally metrisable such that N ′ admits a local addition. If µ : M ′ → M ,
ν : N → N ′ are smooth, then

ν∗µ
∗ : C∞(M,N)→ C∞(M ′, N ′), γ 7→ ν ◦ γ ◦ µ

is smooth.

f) If M ′ is another compact manifold, then the composition map

◦ : C∞(M ′, N)× C∞(M,M ′)→ C∞(M,N), (γ, η) 7→ γ ◦ η

is smooth.
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Theorem A.9. Let M be a compact manifold and N be a locally convex and locally metrisable manifold that
admits a local addition. There is an isomorphism of vector bundles

TC∞(M,N)

πTC∞(M,N) ))❙
❙❙

❙❙
❙

ΦM,N
// C∞(M,TN)

(πTN )∗uu❦❦
❦❦
❦❦

C∞(M,N)

given by
ΦM,N : TC∞(M,N)→ C∞(M,TN), [t 7→ η(t)] 7→ (m 7→ [t 7→ η∧(t,m)]) .

Here we have identified tangent vectors in C∞(M,N) with equivalence classes [η] of smooth curves
η : ]−ε, ε[ → C∞(M,N) for some ε > 0. The isomorphism ϕM,N is natural with respect to the morphisms
from e), i.e., the diagrams

TC∞(M,N)
ΦM,N

//

T (µ∗)
��

C∞(M,TN)
µ∗
��

TC∞(M ′, N)
ΦM′,N

//

T (ν∗) ��

C∞(M ′, TN)
(Tν)∗��

TC∞(M ′, N ′)
ΦM′,N′

// C∞(M ′, TN ′)

and

TC∞(M,N)
ΦM,N

//

T (ν∗) ��

C∞(M,TN)
(Tν)∗��

TC∞(M,N ′)
ΦM,N′

//

T (µ∗)
��

C∞(M,TN ′)
µ∗
��

TC∞(M ′, N ′)
ΦM′,N′

// C∞(M ′, TN ′)

commute. In particular, TfC
∞(M,N) is naturally isomorphic (as a topological vector space) to Γ(f∗TN) and

with respect to this isomorphism we have

Tf(µ
∗) : Γ(f∗TN)→ Γ((f ◦ µ)∗TN), σ 7→ σ ◦ µ

Tf(ν∗) : Γ(f
∗TN)→ Γ((ν ◦ f)∗TN ′), σ 7→ Tν ◦ σ.

Proof. First note that TN is also locally convex and locally metrisable and from Lemma A.5 we infer that
it also admits a local addition. Let Σ: TN ⊇ Ω → N be the local addition on N and τ : T 2N → T 2N be
the canonical flip (cf. Lemma A.5). Then T Σ ◦τ is a local addition on TN . Furthermore, M is compact and
thus Theorem A.8 implies that C∞(M,N), TC∞(M,N) and C∞(M,TN) are locally convex manifolds. We
can now argue as in [Mic80, 10.12] to see that the charts (ϕ0◦f )f∈C∞(M,N) cover C∞(M,TN). In fact, the
charts (ϕ0◦f )f∈C∞(M,N) are bundle trivialisations for (πTN )∗ : C

∞(M,TN) → C∞(M,N) (see [Mic80, 10.12
2. Claim]). The map ΦM,N will be an isomorphism of vector bundles if we can show that it coincides fibre-wise
with the isomorphism of vector bundles constructed in the proof of [Mic80, Theorem 10.13]. Note that the
proof of [Mic80, Theorem 10.13] deals only with the case of a finite-dimensional target N . However, the local
addition constructed in Lemma A.5 allows us to copy the proof of [Mic80, Theorem 10.13] almost verbatim5.
To prove that ΦM,N is indeed of the claimed form, fix f ∈ C∞(M,N). We will evaluate ϕ0◦f ◦ ΦM,N on the
equivalence class [t 7→ c(t)] of a smooth curve c : ]− ε, ε[→ C∞(M,N) with c(0) = f :

ϕ0◦f ◦ ΦM,N ([t 7→ c(t)]) = ϕ0◦f (m 7→ [t 7→ c∧(t,m)])

=
(
m 7→ (πT 2N , T Σ ◦τ)−1(0 ◦ f(m), [t 7→ c∧(t,m)])

) (33)

By construction we obtain an element in Γ((0 ◦ f)∗T 2N) = Γ((0 ◦ f)∗T 2N |N) where T 2N |N is the restriction
of the bundle T 2N to the zero-section of TN . Consider the vertical lift VTN : TN ⊕ TN → V (TN) given
locally by V ((x, a), (x, b)) := (x, a, 0, b). Recall that τ and VTN are vector bundle isomorphisms. Now we
argue as in [Mic80, 10.12] to obtain a canonical isomorphism

If := (f∗(VTN )−1 ◦ f∗τ)∗ : Γ((0 ◦ f)
∗T 2N |N)→ Γ(f∗TN)⊕ Γ(f∗TN).

(Notice that there is some abuse in notation for f∗τ , explained in detail in [Mic80, 10.12]). We will now prove
that If is the inverse of ϕ0◦f ◦ ΦM,N ◦ Tϕ

−1
f . A computation in canonical coordinates for T 2N yields

Tϕf ([t 7→ c(t)])] = (m 7→ [t 7→ (πTN ,Σ)
−1(f(m), c∧(t,m))]))

= (m 7→ V −1
TN ◦ T (πTN ,Σ)

−1(0 ◦ f, [t 7→ c∧(t, ·)])) ∈ Γ(f∗TN)⊕ Γ(f∗TN).
(34)

5The changes needed are restrictions of some mappings to open subsets since contrary to [Mic80, Theorem 10.13] our local
additions are not defined on the whole tangent bundle.
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Here we have used the identifications C∞
f (M,TN ⊕ TN) ∼= Γ(f∗(TN ⊕ TN)) ∼= Γ(f∗TN)⊕ Γ(f∗TN). Since

τ is an involution on T 2N we can compute as follows

If ◦ ϕ0◦f ◦ ΦM,N([t 7→ c(t)])
(33)
=

(
m 7→ V −1

TN ◦ τ ◦ (πT 2N , T Σ ◦τ)−1(0 ◦ f(m), [t 7→ c∧(t,m)])
)

=
(
m 7→ V −1

TN ◦ (πT 2N ◦ τ, T Σ ◦τ ◦ τ)−1(0 ◦ f(m), [t 7→ c∧(t,m)])
)

= (m 7→ V −1
TN ◦ T (πTN ,Σ)

−1(0 ◦ f, [t 7→ c∧(t, ·)])).

(35)

Hence the right hand side of (35) coincides with the right hand side of (34). Summing up the map If is the

inverse of ΦM,N |
C∞

0◦f (M,TN)

TfC∞(M,N). We conclude that Φ−1
M,N is the isomorphism of vector bundles described in [Mic80,

Theorem 10.13]. The statements concerning the tangent maps of the smooth maps discussed in Theorem A.8
e) then follow from [Mic80, Corollary 10.14].
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