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Abstract. Given a finite set of roots of unity, we show that all power sums are non-
negative integers iff the set forms a group under multiplication. The main argument is
purely combinatorial and states that for an arbitrary finite set system the non-negativity
of certain alternating sums is equivalent to the set system being a filter.
As an application we determine all discrete Fourier pairs of {0, 1}-matrices. This technical
result is an essential step in the classification of R-matrices of quantum groups.
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1. Introduction

In this paper we prove the following main theorem:

Theorem (3.1). Let U be a non-empty finite set of complex roots of unity and consider
the power sums ak :=

∑

ζ∈U ζk. Then all ak are non-negative integers iff U is actually a

multiplicative group of roots of unity (i.e. all n-th roots of unity for some n).

The proof of the theorem is combinatorial in nature. Especially if the order of all ζ are
squarefree numbers and hence correspond to subsets of primes, the statement amounts to
the following apparently new combinatorial principle, which is interesting in its own right:

Theorem (2.1). Let N be finite set, P(N) denote the power set of N and E ⊂ P(N). Let
µ : P(N) → [0,∞] be a measure on P(N). Then the following is equivalent:

(i) aC := (−1)|N |
∑

D∈E(−1)|C∪D|eµ(C−D) ≥ 0 for all C ⊂ N .
(ii) E = {D ⊂ N | D ⊃ A} for some A ⊂ N . Such a set E is called a filter in N .
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The proof of the main theorem proceeds along these lines with µ some explicit number
theoretic function. But to include the non-square-free case the set system E ⊂ P(N) is
roughly replaced by the set of orders of ζ ∈ U , which is partially ordered via divisibility.
It would be nice to prove the main theorem even more generally for any partially ordered
set. Note that the expressions we calculate remind very strongly on partition functions in
statistical physics.

We briefly discuss the proof strategy: We perform an induction on the greatest common
multiple N of the orders of the ζ ∈ U . Given the set of numbers E = {N/ord(ζ) | ζ ∈ U}
we define sets Ep by decreasing the power of a prime p in each number and removing
non-divisible ones (Definition 3.7). In Lemma 3.8 we show that the assumption of ak ≥ 0
for E implies it also for all Ep. In Lemma 3.9 we use the induction hypothesis that all Ep
are filters to show that Ep is almost a filter. Since an explicit calculation in Lemma 3.6 has
shown that small modifications of a filter usually violate the condition ak ≥ 0 for some k
we see that E is actually a filter.

As an application we prove the following theorem:

Theorem (4.3). All idempotents ε/N of the group algebra C[ZN × ZN ] with εij ∈ {0, 1},
or equivalently all discrete Fourier pairs ε, ε̄ of {0, 1}-matrices are either

εij = δ(N
d
|i)δ(d|j−t i

N/d
), (1.1)

for a unique d | N and 0 ≤ t ≤ d− 1 or they are trivial ε = ε̄ = 0.

The significance of this technical result is the classification of R-matrices for quantum
groups and hence for constructing certain braided categories. Lusztig’s ansatz for such
R-matrices [Lus93] Sec. 32.1, contains a free parameter R0 ∈ C[Λ × Λ] for some abelian
group Λ and a system of equations on R0. In the last section of this paper, using the
previous theorem, we will solve a subset of these equations only depending on an abelian
group.

Once these explicit solutions have been obtained, they can be plugged into the remaining
equations which depend heavily on the specific parameters of the quantum group. This is
done in a rather Lie-theoretic case-by-case argument in [LN14].

Acknowledgements. Partly supported by the DFG Priority Program 1388 “Represen-
tation theory”. We thank Christian Reiher for several helpful comments.

2. A combinatorial principle

Before we turn to the proof of the main Theorem 3.1 we prove the following combina-
torial principle. It shows that the main Theorem does not depend on specific properties
of prime numbers, but is cominatorial in nature. It also gives the blueprint for the proof
of the main theorem.

Theorem 2.1. Let N be finite set, P(N) denote the power set of N and E ⊂ P(N). Let
µ : P(N) → [0,∞] be a measure on P(N). Then the following is equivalent:

(i) aC := (−1)|N |
∑

D∈E(−1)|C∪D|eµ(C−D) ≥ 0 for all C ⊂ N .
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(ii) E = {D ⊂ N | D ⊃ A} for some A ⊂ N . Such a set E is called a filter in N (see
e.g. [Bou66] §6).

The remainder of this section is devoted to the proof of this theorem.

A straightforward calculation gives the values of the aC if E is a filter. It shows imme-
diately the implication (i) → (ii), but the precise value will also be crucial to the proof of
the converse in what follows:

Lemma 2.2. Let E be a filter, i.e. E = {D ⊂ N | D ⊃ A} for some A ⊂ N . Then for
any C ⊂ N we have

aC := (−1)|N |
∑

D∈E

(−1)|C∪D|eµ(C−D) =

{

eµ(N−A)
∏

p∈N−A

(
1 + e−µ(p)

)
, C ∪A = N

0, else

Proof.

aC = (−1)|N |
∑

A⊂D⊂N

(−1)|C∪D|eµ(C−D)

= (−1)|N |
∑

D′⊂N−A

(−1)|C∪A∪D′|eµ(C−A−D′)

= (−1)|N−A|
∑

D′⊂N−A

(−1)|(C−A)∪D′|eµ(C−A−D′)

This shows that the value of aC for the filter generated by A in N is equal to the value
of aC−A for the filter generated by ∅ in N −A. Thus is suffices to show the claim for the
filter E = P(N) generated by A = ∅:

aC = (−1)|N |
∑

D⊂N

(−1)|C∪D|eµ(C−D)

= (−1)|N |
∑

D1⊂C,D2⊂N−C

(−1)|C|+|D2|eµ(C)−µ(D1)

= (−1)|N |+|C|eµ(C)




∑

D2⊂N−C

(−1)|D2|








∑

D1⊂C

e−µ(D1)





= (−1)|N |+|C|eµ(C)




∏

p∈N−C

(1− 1)








∏

p∈C

(

1 + e−µ(p)
)





=

{

eµ(N)
∏

p∈N

(
1 + e−µ(p)

)
, C = N

0, else

The general formula for arbitrary A follows by again replacing N with N − A and C by
C −A. ❚

We use this result to show that if E is a small modification of a filter, the main assumption
aC ≥ 0 for all C ⊂ N usually fails to be true.

Lemma 2.3.

(a) Let E 6= P(N) be a filter in |N | > 1, then E ∪ {∅} gives aC < 0 for some C ⊂ N .
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(b) Let E = P(N) in |N | > 1, then E \ {∅} gives aC < 0 for some C ⊂ N .

Note that on the other hand for |N | = 1 and E the only filter E 6= P(N) we have that both
E ∪∅ and P(N)−∅ are filters (namely P(N) and E).

Proof. (a) By assumption E is a filter generated by some A 6= ∅ for |N | > 1. We wish to

find a negative value of some ãC for the set system Ẽ := E ∪ {∅}: Suppose first that
also A 6= N and choose some p ∈ N −A, then aN−p = 0 by Lemma 2.2 and thus:

ãN−p = (−1)|N |
∑

D∈E∪{∅}

(−1)|C∪D|eµ(C−D)

= aN−p + (−1)|N |+|N−p|eµ(N−p)

= −eµ(N−p) < 0

Suppose now that A = N and choose some q ∈ N , then again by Lemma 2.2:

ãN−q = (−1)|N |
∑

D∈E∪{∅}

(−1)|C∪D|eµ(C−D)

= aN−q + (−1)|N |+|N−q|eµ(N−q)

= 1− eµ(N−q) < 0

(b) By assumption E = P(N) for |N | > 1, so E is the filter generated by A = {∅}. Then
again by Lemma 2.2 aC = 0 for C 6= N . Choose any q 6= p ∈ N , then we calculate
ãN−{p,q} for the filter Ẽ := E − {∅}:

ãN−{p,q} = (−1)|N |
∑

D∈E−{∅}

(−1)|C∪D|eµ(C−D)

= aN−q − (−1)|N |+|N−{p,q}|eµ(N−{p,q})

= 1− eµ(N−{p,q}) < 0

❚

We now proceed by introducing the induction step along |N |:

Definition 2.4. Let E be any set system in N and p ∈ N , then we define a new set system
for N − p by

Ep = {D − p | p ∈ D,D ∈ E}

For C ⊂ N − p we denote by apC the corresponding sum over Ep, i.e.

apC = (−1)|N−p|
∑

D∈Ep

(−1)|C∪D|eµ(C−D)

We will in the following only consider Ep for all p, such that there exists any D ∈ E with
p ∈ D, so Ep is not empty.

We first wish to prove that our main assumption aC ≥ 0 implies apC ≥ 0 in Ep:

Lemma 2.5. For any p ∈ N we get for all C ∈ Ep (note that p 6∈ C):

apC =
eµ(p)

1 + eµ(p)
aC +

1

1 + eµ(p)
aC∪p

In particular, aC ≥ 0 for all C ∈ E implies apC ≥ 0 for all C ∈ Ep.
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Proof. We calculate the right hand side by splitting the sum over all D ∈ E into two
summands for all p 6∈ D resp. p ∈ D and use p 6∈ C. The latter set of D then correspond
to D′ = D − p in Ep:

eµ(p)

1 + eµ(p)
aC +

1

1 + eµ(p)
aC+p

= (−1)|N | eµ(p)

1 + eµ(p)

∑

p∈D∈E

(−1)|C∪D|eµ(C−D) + (−1)|N | 1

1 + eµ(p)

∑

p∈D∈E

(−1)|C∪p∪D|eµ((C∪p)−D)

+ (−1)|N | eµ(p)

1 + eµ(p)

∑

p 6∈D∈E

(−1)|C∪D|eµ(C−D) + (−1)|N | 1

1 + eµ(p)

∑

p 6∈D∈E

(−1)|C∪p∪D|eµ((C∪p)−D)

= (−1)|N | eµ(p)

1 + eµ(p)

∑

p∈D∈E

(−1)|C∪D|eµ(C−D) + (−1)|N | 1

1 + eµ(p)

∑

p∈D∈E

(−1)|C∪D|eµ(C−D)

+ (−1)|N | eµ(p)

1 + eµ(p)

∑

p 6∈D∈E

(−1)|C∪D|eµ(C−D) + (−1)|N | 1

1 + eµ(p)

∑

p 6∈D∈E

(−1)|C∪D|+1eµ(C−D)+µ(p)

=

(

eµ(p)

1 + eµ(p)
+

1

1 + eµ(p)

)

· (−1)|N |
∑

p∈D∈E

(−1)|C∪D|eµ(C−D)

+

(

eµ(p)

1 + eµ(p)
−

1

1 + eµ(p)
· eµ(p)

)

· (−1)|N |
∑

p 6∈D∈E

(−1)|C∪D|eµ(C−D)

= (−1)|N |
∑

p∈D∈E

(−1)|C∪D|eµ(C−D) = (−1)|N−p|
∑

D′∈Ep

(−1)|C∪D′|eµ(C−D′) = apC

❚

Thus if all aC ≥ 0 by induction hypothesis all Ep are filters. We now conclude the
induction that E is a filter if all possible reductions Ep are filters. As induction step, we
use the following lemma.

Lemma 2.6. Let E be a set system for N such that all Ep are filters generated by sets
Ap ⊂ N − p. Then either there exists a p ∈ N with p ∈ Aq for all p 6= q or for all p ∈ N
we have Ap = ∅.
In the first case we show that E is the filter generated by p ∪ Ap or E is the set system
consisting of this filter together with D = ∅. In the second case we show E = P(N) or
E = P(N)−∅.

Proof. Assume there exists q′ with Aq′ 6= ∅ and let p ∈ Aq′ , then we claim p ∈ Aq for
all q 6= p. We prove this by contradiction, since if p 6∈ Aq for some q then we consider
q′ ∪Aq ∈ Eq (since Eq is a filter) and hence q ∪ q′ ∪Aq ∈ E (by definition of Eq). But then
q ∪ Aq ∈ Eq′ and Aq′ ⊂ q ∪ Aq (since Eq′ is a filter). But this contradicts p 6∈ Aq, which
shows the first part of the Lemma.

We now prove the consequences in the two cases. In the first case we assume it exists
p ∈ Aq for all q 6= p. Let D ⊃ p ∪ Ap then D ∈ Ep (since Ep is a filter) and D ∈ E (by
definition of Ep). Let now conversly by D ∈ E . If p ∈ D then we have D − p ∈ Ep (by
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definition of Ep) and hence also D ⊃ Ap (since Ep is a filter), implying D ⊃ p∪Ap. If p 6∈ D
then either D = ∅ or some q ∈ D. In the latter case D − q ∈ Eq, hence D − q ⊃ Aq ∋ p
which is a contradicion. So either D ⊃ p ∪Ap or D = ∅ as asserted.
In the second case we assume Ap = ∅ for all p ∈ N , hence any for any set D 6= ∅ we
may chose some p ∈ D and yield D − p ∈ Ep and hence D ∈ Eq. Hence any set with the
possible exception of D = ∅ is in E as asserted. ❚

We can now conclude the inductive proof of the implication (i)→(ii) in Theorem 2.1:
For |N | = 0 the only set system is E = {∅} and is a filter. Let |N | ≥ 1 and E such that
all aC ≥ 0, then apC ≥ 0 for all p ∈ N by Lemma 2.5. Thus by induction hypothesis all
Ep are filters. Then by Lemma 2.6 we have that either E is a filter (in which case the
induction step is finished) or some filter E 6= P(N) together with ∅ or E = P(N) − {∅}.
By Lemma 2.3 these two cases can only fulfill aC ≥ 0 for |N | = 1 where both are filters.
This concludes the proof of Theorem 2.1.

3. A theorem about roots of unity

Theorem 3.1. Let U be a non-empty finite set of complex roots of unity and consider
the power sums ak :=

∑

ζ∈U ζk. Then all ak are non-negative integers iff U is actually a

multiplicative group of roots of unity (i.e. all n-th roots of unity for some n).

The remainder of this section is devoted to the proof of this theorem.

Since U is finite, we may assume some integer N such that U ⊂ ΣN = {ζ ∈ C | ζN = 1}.
Let ξN the primitive N -th root of unity exp(2πi/N). We start with the observation, that
the set U is a union of Galois orbits of Gal(ξN ) acting on ΣN .
In the following, we denote by (a, b) the greatest common divisor of two integers a, b.

Lemma 3.2. Any U as in Theorem 3.1 is invariant under the Galois group G = Gal(ξN ),
i.e. it is a union of orbits of G acting on ΣN . Each orbit consist of all primitive roots of
unity for some divisor of N and hence ak only depends on (k,N).

Proof. Let p(x) =
∏

ζ∈U (x − ζ) ∈ C[x], i.e. p(ζ) = 0 for all ζ ∈ U . Denote t = |U |

and U = {ζ1, . . . , ζt}. For 0 ≤ k ≤ t let σk(x1, . . . , xt) =
∑

1≤j1<...<jk≤t xj1 · . . . · xjk
be the elementary symmetric polynomials. Then p(x) =

∑t
k=0(−1)t−kσt−k(ζ1, . . . , ζt)x

k.

Let sk(x1, . . . , xt) =
∑t

i=1 x
k
i , then we have in particular, ak = sk(ζ1, . . . , ζt). By the

Newton identities, the σk(x1, . . . , xt) can be expressed as sums of powers of the sk with
rational coefficients, e.g. σ2 =

1
2s

2
1 −

1
2s2. Thus, we have that the coefficients of p(x), the

σk(ζ1, . . . , ζk), are sums of integers with rational coefficients, hence p(x) ∈ Q[x]. (In fact,
we have p(x) ∈ Z[x], since the σk(ζ1, . . . , ζt) are algebraic integers in Q, hence in Z.) Thus
we get, that the Galois group G permutes the roots of p(x), i.e. U consists of orbits of
G. ❚

Definition 3.3. Let N ∈ N. The set D(N) = {d ∈ N | d | N} is the set of all divisors
of N . We call a set E ⊂ D(N) a filter in D(N) if there exist an e | N such that E =
eD(N/e) = {d | N | e | d}. In this case we write E = (e)N or shortly (e) for the filter in
D(N).
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By Lemma 3.2, the set U is of the form U =
⋃

d∈E{ξ
i
N | (N, i) = d} for a set E ⊂ D(N).

We wish to prove that E is a filter and hence U is a subgroup. For c | N we have

ac =
∑

ζ∈U

ζc =
∑

d∈E

∑

(i,N)=d

ξicN .

A straightforward calculation gives the values of the ac.

Lemma 3.4. For N ∈ N and c ∈ D(N), we have

ac =
∑

d∈E

ϕ(N/d)

ϕ(N/(N, dc))
µ

(
N

(N, dc)

)

.

Here, ϕ : N → N is the Euler ϕ-function, given by ϕ(
∏t

i=1 p
ri
i ) =

∏t
i=1(pi − 1)pri−1

i for
mutually different prime numbers pi, and µ : N → {−1, 0, 1} is the Moebius function,
defined by µ(n) = 1 if n is square-free and has an even number of prime factors, µ(n) = −1
if n is square-free and has an odd number of prime factors and µ(n) = 0 if n has a squared
prime factor.

Proof. It is an elementary number theoretical fact, that for an primitive N -th root of unity
ξ we have

N∑

i=1
(i,N)=1

ξi = µ(N)

with the Moebius function µ. For d | N we have

N∑

i=1
(i,N)=d

ξiN =

N/d
∑

i=1
(i,N/d)=1

ξiN/d = µ(N/d)

with primitive (N/d)-th root of unity ξN/d. For c | N we get

N∑

i=1
(i,N)=d

ξic =

N/d
∑

i=1
(i,N/d)=1

ξicN/d =

N/d
∑

i=1
(i,N/d)=1

ξiN/(N,dc) =
ϕ(N/d)

ϕ(N/(N, dc))
µ

(
N

(N, dc)

)

,

since the last sum has ϕ(N/d) summands which contain ϕ(N/(N, dc))-times all primitive
N/(N, dc)-th roots of unity and their sum gives µ(N/(N, dc)). ❚

Next, we calculate the ac explicitly in the case E is a filter in D(N).

Lemma 3.5. Let c | N and E = (e) be a filter for some e | N . Then

ac =

{

N/e, c ∈ (N/e)e = (N/e)D(e),

0, else.

Especially, for a E being a filter, we have ac ≥ 0 for all c ∈ D(N).
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Proof. We calculate ac for all c ∈ D(N):

ac =
∑

d∈E

ϕ(N/d)

ϕ(N/(N, dc))
µ

(
N

(N, dc)

)

=
∑

d′∈D(N/e)

ϕ(N ′e/d′e)

ϕ(N ′e/(N ′e, d′ec))
µ

(
N ′e

(N ′e, d′ec)

)

(N ′ = N/e, d′ = d/e)

=
∑

d′∈D(N/e)

ϕ(N ′/d′)

ϕ(N ′/(N ′, d′c))
µ

(
N ′

(N ′, d′c)

)

Thus, we can assume E = D(N) and omit the superscript ′. Since ϕ and µ are multiplica-
tive functions, we may assume N = pNp , Np > 0, for a prime p and d = pdp , c = pcp for
d, c | N and 0 ≤ dp, cp ≤ Np. Then

ac =
∑

d∈D(N)

ϕ(N/d)

ϕ(N/(N, dc))
µ

(
N

(N, dc)

)

=
∑

d∈D(N)

ϕ(pNp−dp)

ϕ(pNp−min{dp+cp,Np})
µ
(

pNp−min{dp+cp,Np}
)

=

Np∑

i=0

ϕ(pNp−i)

ϕ(pNp−min{i+cp,Np})
µ
(

pNp−min{i+cp,Np}
)

Since the µ-term equals 0 if i + cp < Np − 1, is equal to −1 if i + cp = Np − 1 and +1
otherwise, we get

ac =

Np−1
∑

i=0

(p− 1)pNp−i−1 + 1

= (p − 1)pNp−1 p
−Np − 1

p−1 − 1
+ 1

= pNp − 1 + 1 = pNp = N,

for cp = Np, and

ac =

Np−1
∑

i=Np−cp−1

ϕ(pNp−i)

ϕ(pNp−min{i+cp,Np})
µ
(

pNp−min{i+cp,Np}
)

+ 1

= −
(p − 1)pNp−(Np−cp−1)−1

(p− 1)pNp−(Np−cp−1+cp)−1
+

Np−1
∑

i=Np−cp

(p− 1)pNp−i−1 + 1

= −pcp + (p − 1)pNp−1p−(Np−cp)

cp−1
∑

i=0

p−i + 1

= −pcp − (1− pcp) + 1 = 0,

for 0 ≤ cp < Np. Thus, in the general case E = (e), we have ac = N ′ = N/e for c = N/e
and all multiples, hence the lemma is proven. ❚



9

We use this result to show that if E is a small modification of a filter, the main assumption
ac ≥ 0 for all c ∈ D(N) usually fails to be true.

Lemma 3.6.

(a) Let E = (e) 6= D(N) be a filter, but not (p) for N = pn a prime power. Then E ∪ {1}
gives ac < 0 for some c. If N = pn for some prime number p, n ∈ N, and E = (p) a
filter, then E ∪ {1} is a filter as well.

(b) Let E = (1) = D(N) and N be not a prime power. Then E \ {1} gives ac < 0 for some
c. In the case N = pn, the set E \ {1} is a also a filter, namely (p).

Proof. (a) Assume at first, that N =
∏

p|N pNp , Np ≥ 1 for all p, is not a prime power. If

p ∤ e for a prime divisor p | N , we have N/e ∤ N/p, and therefore aN/p = 0 by Lemma
3.5. We calculate the value ãN/p for E ∪ {1}:

ãN/p =
∑

d∈E∪{1}

ϕ(N/d)

ϕ(N/(N, d(N/p)))
µ(N/(N, d(N/p)))

= aN/p +
ϕ(N)

ϕ(p)
µ(p) = 0 +

ϕ(N)

p− 1
(−1) < 0.

Let e =
∏

p|N pep with primes p. If ep ≥ 1 for all p we have N/e ≤ N/(
∏

p|N p) =
∏

p|N pNp−1. We calculate ãN/q for some prime divisor q and E ∪ {1}:

ãN/q = aN/q +
ϕ(N)

ϕ(q)
µ(q)

≤
∏

p|N

pNp−1 −

∏

p|N(p− 1)pNp−1

q − 1

=
∏

p|N

pNp−1



1−
∏

p 6=q

(p − 1)



 < 0.

Assume now, N = pn and e = pk for 1 < k ≤ n, thus ac = pn−k for all c = pn−k+l

for 0 ≤ l ≤ k. We calculate ãpn−1 for E ∪ {1}:

ãpn−1 = apn−1 +
ϕ(pn)

ϕ(p)
µ(p) = pn−k − pn−1 < 0.

If N = pn and E = (p), we have E ∪ {1} = D(N), hence it is a filter.
(b) If E = D(N), it is ac = N for c = N and 0 otherwise by Lemma 3.5. Since N is not a

prime power, there exist distinct primes p, q | N . We calculate ãc for c = N/(pq) and
E \ {1}:

ãc = ac −
ϕ(N)

ϕ(N/(N,N/(pq)))
µ(N/(N,N/(pq)))

= 0−
ϕ(N)

ϕ(pq)
µ(pq) = −

ϕ(N)

(p− 1)(q − 1)
< 0.

❚
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The main part of the proof of Theorem 3.1 is the following claim, which we show by
induction: Let N ∈ N, D(N) the set of all divisors of N and E ⊂ D(N). If

ac =
∑

d∈E

ϕ(N/d)

ϕ(N/(cd,N))
µ(N/(cd,N)) ≥ 0 (3.1)

for all c ∈ D(N), then E is a filter in D(N) as is Definition 3.3.

Definition 3.7. Let N ∈ N and E ⊂ D(N). For a prime factor p | N we define a new set
of divisors of N/p, namely

Ep = {d/p | d ∈ E , p | d} ⊂ D(N/p).

For c ∈ D(N/p) we denote by apc the corresponding sum over Ep, i.e.

apc =
∑

(d/p)∈Ep

ϕ
(
N/p
d/p

)

ϕ
(

N/p
(N/p,cd/p)

)µ

(
N/p

(N/p, cd/p)

)

.

We will in the following only consider Ep for all p, such that there exists any d ∈ E with
p|d, so Ep is not empty.

We use this as induction step N/p 7→ N . We first wish to prove that ac ≥ 0 for E implies
apc ≥ 0 for Ep and all c ∈ D(N/p).

Lemma 3.8. For any p|N with Ep we get for all c ∈ D(N/p):

apc =

{

ac, if pc | N/p,
1
p((p − 1)ac + apc) if pc ∤ N/p.

In particular, ac ≥ 0 for all c ∈ D(N) implies apc ≥ 0 for all c ∈ D(N/p).

Proof. For E and p ∈ D(N) such that p divides at least one d ∈ E , the set Ep is non-empty.
We calculate the value of apc for all c ∈ D(N/p):

apc =
∑

(d/p)∈Ep

ϕ
(
N/p
d/p

)

ϕ
(

N/p
(N/p,cd/p)

)µ

(
N/p

(N/p, cd/p)

)

=
∑

d∈E
p|d

ϕ
(
N
d

)

ϕ
(

N
(N,cd)

)µ

(
N

(N, cd)

)

= ac −
∑

d∈E
p∤d

ϕ
(
N
d

)

ϕ
(

N
(N,cd)

)µ

(
N

(N, cd)

)

.

︸ ︷︷ ︸

=:ap
′

c

For n ∈ N and prime number p let νp(n) ≥ 0 the maximal p-part of n, i.e. pνp(n) | n

and pνp(n)+1 ∤ n. Let k = νp(N). If νp(c) ≤ k − 2, i.e. in particular it is k ≥ 2, then
νp(N/(cd,N)) ≥ 2 for d ∈ E , p ∤ d. Thus, we have µ(N/(cd,N)) = 0 and apc = ac in the
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case pc | (N/p). For νp(c) = k − 1 we have

ap
′

c =
∑

d∈E
p∤d

ϕ
(
N
d

)

ϕ
(

N
(N,cd)

)µ

(
N

(N, cd)

)

=
∑

d∈E
p∤d

ϕ(pk)ϕ
(
N/pk

d

)

ϕ(p)ϕ
(

N/pk

(N/pk ,dc/pk−1)

)µ(p)
︸︷︷︸

=−1

µ

(
N/pk

(N/pk, dc/pk−1)

)

= −pk−1
∑

d∈E
p∤d

ϕ
(
N/pk

d

)

ϕ
(

N/pk

(N/pk ,dc/pk−1)

)µ

(
N/pk

(N/pk, dc/pk−1)

)

.

︸ ︷︷ ︸

=:X(c)

Assume now νp(c) = νp(N) = k. We write N ′ = N/pk and c′ = c/pk, then we get

ac =
∑

d∈E

ϕ
(
N ′pk

d

)

ϕ
(

N ′pk

(N ′pk,c′pkd)

)µ

(
N ′pk

(N ′pk, c′pkd)

)

=
∑

d∈E
p∤d

ϕ(pk)ϕ
(
N ′

d

)

ϕ
(

N ′

(N ′,c′d)

) µ

(
N ′

(N ′, c′d)

)

+
∑

d∈E
p|d

ϕ
(
N ′

d

)

ϕ
(

N ′

(N ′,c′d)

)µ

(
N ′

(N ′, c′d)

)

︸ ︷︷ ︸

=ap
(c′pk−1)

= (p− 1)pk−1X(c) + ap
(c′pk−1)

.

We combine the two expressions for ac, c = c′pk. Then, c/p = c′pk−1 | N/p and
X(c′pk−1) = X(c′pk) = X(c). Since xa(c′pk−1) + ya(c′pk) ≥ 0 for x, y ≥ 0 we get from

xa(c′pk−1) + ya(c′pk) = x
(

ap
(c′pk−1)

− pk−1X(c)
)

+ y
(

(p− 1)pk−1X(c) + ap
(c′pk−1)

)

= pap
(c′pk−1)

, (x = p− 1, y = 1)

and this proves the lemma. ❚

We now conclude by induction that E is a filter if all possible reductions Ep, p | N , are
filters. Under this assumption, it follows that no Ep is empty: Let p | N such that p | d
for some d ∈ E , then Ep is not empty, hence equals (ep) for some ep. Since Ep is a filter,
we have N/p ∈ Ep, and hence N = p · N/p ∈ E . As induction step, we use the following
lemma.

Lemma 3.9. Let E ⊂ D(N) and for all p | N the set Ep, defined as in Definition 3.7, a
filter, namely (ep) = (ep)N/p for some ep | N/p. Then either there exist a prime p | N
with p | eq for all p 6= q or it is ep = 1 for all p.
In the first case we have E = (pep) or E = (pep) ∪ {1}. In the second case we have
E = (1) = D(N) or E = (1) \ {1}.

Proof. Assume, there exist q′ with eq′ 6= 1 and p | eq′ . Then p | eq for all q 6= p. We prove
this by contradiction, then if p ∤ eq for some q, then q′eq ∈ Eq (since Eq is a filter) and
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hence qq′eq ∈ E (by definition of Eq). Then qeq ∈ Eq′ and eq′ | qeq, hence a contradiction
to p ∤ eq. This proves the first part of the lemma.

We now prove the consequences in the two cases. Firstly, we assume it exist p with
p | eq for all q 6= p. Let x ∈ (pep), then ep | x/p, and since Ep is a filter, x/p ∈ Ep. Thus
we have x = p · x/p ∈ E , i.e. (pep) ⊂ E . Let now x ∈ E . If p | x we have x/p ∈ Ep, hence
ep | x/p and therefore pep | x. If p ∤ x, then x = 1 or it exists q with q | x. In this case
is x/q ∈ Eq and eq | x/q, which is a contradiction to p ∤ x. This proves (pep) = E \ {1}
(which may be equal to E).
In the case ep = 1 for all p, we have (p) ⊂ E for all p. Since it is

⋃

p∈D(N)(p) = D(N)\{1},

this proves the assertion. ❚

We can now conclude the proof of the claim of (3.1). Let E such that

ac =
∑

d∈E

ϕ(N/d)

ϕ(N/(cd,N))
µ(N/(cd,N)) ≥ 0

for all c ∈ D(N), then apc ≥ 0 for all Ep and c ∈ D(N/p) by Lemma 3.8. By induction,
all Ep are filters, namely (ep) for some ep | N/p. Then, by Lemma 3.9, we have that E is
a filter (e) for some e | N or (e) ∪ {1} for some e 6= 1 or (1) \ {1}. By Lemma 3.6, the
last cases are only possible for N = pn and e = p. In this cases E is a filter as well. This
proves the claim (3.1) and hence concludes the proof of Theorem 3.1.

4. Fourier pairs of {0, 1}-matrices

In the following, we consider idempotents ε/N of the group algebra C[ZN × ZN ], i.e.

ε/N · ε/N = ε/N. (4.1)

If we introduce a basis {gi⊗gj | 0 ≤ i, j < N}, with 〈g〉 = ZN , and write ε =
∑

i,j εijg
i⊗gj ,

equation (4.1) translates to

1

N2

∑

i′,i′′

∑

j′,j′′

εi′j′εi′′j′′(g
i′ ⊗ gj

′
)(gi

′′
⊗ gj

′′
) =

1

N

∑

i,j

εijg
i ⊗ gj ,

and by comparing coefficients, we get

1

N2

∑

i′+i′′=i

∑

j′+j′′=j

εi′j′εi′′j′′ =
1

N
εij . (4.2)

Let ξ = ξN be a primitive N -th root of unity and {ek = 1/N
∑N

r=0 ξ
krgr | 0 ≤ k < N} be

the set of primitive idempotents of the group algebra C[ZN ]. Then {ek ⊗ el} is the set of
primitive idempotents of C[ZN × ZN ] and we can express ε/N as sum of these primitive
idempotents: ε/N =

∑

k,l ε̄klek ⊗ el with ε̄kl ∈ {0, 1} for all 0 ≤ k, l < N . This leads to

εij =
1

N

∑

k,l

ε̄klξ
ik+jl, (4.3)

which means, that the matrix ε = (εij)ij is the discrete Fourier transformation of the
{0, 1}-matrix ε̄. This considerations lead to the following problem.

Problem 4.1. We wish to determine all idempotents ε/N of C[ZN × ZN ], such that
ε = (εij)ij is {0, 1}-matrix, or equivalent, all Fourier pairs of {0, 1}-matrices ε and ε̄.
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Example 4.2. We consider some examples of Fourier transformed matrices, where ε is
not necessarily a {0, 1}-matrix.

(i) Let ε̄ the matrix with ε̄00 = 1 and ε̄kl = 0 otherwise. Then εij = 1/N for all j, j.
(ii) Let ε̄ the matrix with ε̄0l = 1 for all l and ε̄kl = 0 otherwise. Then εi0 = 1 for all i

and εij = 0 otherwise.
(iii) Let ε̄ the matrix with ε̄kk = 1 for all k and ε̄kl = 0 otherwise. Then εij = 1 for all

i, j with i+ j ≡ 0 mod N and εij = 0 otherwise. We give the matrices explicitly for
N = 4:

ε̄ =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







−→ ε =







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







.

The following theorem completely solves this problem, relying heavily on our main
Theorem 3.1:

Theorem 4.3. All idempotents ε/N of the group algebra C[ZN × ZN ] with εij ∈ {0, 1},
or equivalently all discrete Fourier pairs ε, ε̄ of {0, 1}-matrices are either

εij = δ(N
d
|i)δ(d|j−t i

N/d
), (4.4)

for a unique d | N and 0 ≤ t ≤ d− 1 or they are trivial ε = ε̄ = 0.

Before we proceed to the proof of the theorem, we give another Example.

Example 4.4. Let N = 12, d = 3 and t = 2, then ε as in (4.4) is given by






















0 t d

0 1 0 0 0 1 0 0 0 1 0 0 0
0 . . . . . . . . . . .
0 . . . . . . . . . . .

N/d 0 0 1 0 0 0 1 0 0 0 1 0
0 . . . . . . . . . . .
0 . . . . . . . . . . .

d̄ 1 0 0 0 1 0 0 0 1 0 0 0
0 . . . . . . . . . . .
0 . . . . . . . . . . .
0 0 1 0 0 0 1 0 0 0 1 0
0 . . . . . . . . . . .
0 . . . . . . . . . . .






















.

Proof. By the Fourier transformation (4.3), we have ε00 = 1
N

∑

k,l ε̄. Since ε and ε̄ are

{0, 1}-matrices, this gives either ε̄kl = 0 for all k, l or
∑

k,l ε̄kl = N . In the first case we
have ε = 0 as well. Applying the same argument to the dual Fourier transformation,

ε̄kl = 1/N
∑

ij

εijξ
−(ik+jl), (4.5)

we get
∑

i,j εij = N in the second case.

Assume in the following ε 6= 0. We now calculate the row-, resp. column-sums of the
matrices ε and ε̄. Let ak the k-th row sum of ε and a′l the l-th column-sum for ε, and āk,
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ā′l the according sums of ε̄. Then

ak =
∑

j

εkj =
1

N

∑

l,i,j

ε̄ijξ
ik+jl =

1

N

∑

i

ξik
∑

j

ε̄ij
∑

l

ξjl

︸ ︷︷ ︸

=Nδ(j=0)

=
∑

i

ξikε̄i0 (4.6)

Since the row sum ak is a non-negative integer, we get by Theorem 3.1, that {i | ε̄i0 = 1} is
a subgroup of ZN , thus it exist d | N with ε̄i0 = δ(d|i). Analogously, we get by calculating
the column sum a′l that d′ | N exist, such that ε̄0j = δ(d′|j). As a consequence, we get
ak = N/d for k being an N/d-multiple and a′l = N/d′ for l being an N/d′-multiple, and
the other row, resp. column sums being 0. We now calculate the row and column sums
of ε̄ using the dual transformation (4.5). This gives, again by application of Theorem 3.1,
that there exist d̄, d̄′ | N such that εi0 = δ(d̄|i) and ε0j = δ(d̄′|j), and āk = N/d̄ for k being

N/d̄-multiple and ā′l = N/d̄′ for l being N/d̄′-multiple. Since N/d = a0 =
∑

j ε0j = N/d̄′,

we get d = d̄′. Analogously, we get d̄ = d′. Since only the N/d-th rows have entries 1 and
εi0 = δ(d̄|i), we get N/d | d̄ = d′, hence N | dd′.

The case N = dd′, i.e. d′ = N/d corresponds to the non-shifted solution of (4.2), since
in this case there maximal N/d ·N/d′ = N entries 1.

We consider now a solution with N < dd′ and show, that a suitably shifted version of
this is also a solution of (4.2) with smaller dd′. The claim then follows by induction over
dd′. For a solution ε of (4.2) the shifted matrix, defined by

ε
[t]
ij :=

{

εi,j−t i
N/d

, N/d | i,

εi,j = 0, otherwise.

for some 0 ≤ t ≤ d − 1, is also a solution of (4.2). This follows easily by inserting ε
[t]
ij in

(4.2), since the shift gives only a new ordering of the summands. Let now ε be a solution
with dd′ > N . We now want to shift this ε in a way, that no 1 entries in the first column
are moved, i.e. the d′-th rows are shifted by multiple of d, and some of the other rows are
shifted, such that ε[t] has at least one 1-entry more in the first column, than ε:

Consider the N/d-row. By hypothesis, N/d < d′, hence εN/d,0 = 0, but εN/d,t = 1 for
some t, since the row sum aN/d = N/d > 0. Since the column sum a′t 6= 0, we have N/d′ | t,

hence d | t · dd′/N . Thus the shifted solution ε
[−t]
ij has in the 0-column still εi0 = 1 for

d′ | i and it has now additionally εN/d,0 = 1. The expression dd′ for ε[t] has to be strictly

smaller than dd′ for ε, this reduces the claim by induction to the unshifted case dd′ = N ,
which has been solved above. ❚

5. A system of equations and R-matrices of quantum groups

The following system of equations for an abelian group G arises as a necessary condition
on the the element R0 ∈ C[Λ×Λ] in Lusztig’s ansatz for R-matrices for a quantum group
Uq(g) with coradical C[Λ]. In this application, the abelian group G will be the fundamental
group of g, and hence cyclic except for g = D2n. We will not discuss this matter further,
but refer the reader to our respective paper [LN14]. Note Remark 5.4.
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Definition 5.1. For an abelian group G we define a set of 2|G|2 + 2 quadratic equations
in |G|2 formal complex variables g(x, y) indexed by x, y ∈ G:

g(x, y) =
∑

y1+y2=y

g(x, y1)g(x, y2), (5.1)

g(x, y) =
∑

x1+x2=x

g(x1, y)g(x2, y), (5.2)

1 =
∑

y∈G

g(0, y), (5.3)

1 =
∑

x∈G

g(x, 0). (5.4)

As a side remark, note that these equations are a subset of the equations for a Hopf
pairing g : CG ⊗ CG → C, but it allows for significantly more solutions containing 0’s, as
the next theorem shows. The result of this article is in some sense, that g is still a pairing
on a pair of subgroups.

Theorem 5.2. Let G be an abelian group and H1,H2 subgroups with equal cardinality
|H1| = |H2| = d (not necessarily isomorphic!). Let ω : H1 × H2 → C× be a pairing of
groups. Here, the group G is written additively and C× multiplicatively, thus we have
ω(x, y)d = 1 for all x ∈ H1, y ∈ H2. Then the assignment

g : G×G → C, (x, y) 7→
1

d
ω(x, y)δ(x∈H1)δ(y∈H2) (5.5)

is a solution of the equations (5.1)-(5.4) for G.

Proof. The claim follows by straightforward calculations:

∑

y1+y2=y

g(x, y1)g(x, y2) =

(
1

d

)2 ∑

y1+y2=y

ω(x, y1)ω(x, y2)δ(x∈H1)δ(y1∈H2)δ(y2∈H2)

=

(
1

d

)2 ∑

y1+y2=y

ω(x, y1 + y2)δ(x∈H1)δ(y1∈H2)δ(y2∈H2)

=

(
1

d

)2

|H2|ω(x, y)δ(x∈H1)δ(y∈H2) = g(x, y).

∑

y∈G

g(0, y) =
1

d

∑

y∈G

ω(0, y)δ(y∈H2) =
1

d

∑

y∈H2

1 = 1.

❚

Question 5.3. Are these all solutions of the equations (5.1)-(5.4)?

As an application of the theorems proved in this paper we will below positively answer
this question for a cyclic group G. We would actually hope to completely resolve the
question with the combinatorial results of this article.

Remark 5.4. For the application in quantum groups, the only non-cyclic case of interest
is Z2 × Z2 (the fundamental group of the Lie algebra g = D2n), which can be checked
explicitly to hold as well. Most other Lie algebras have G = Z1,Z2,Z3,Z4
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It is quite remarkable that the only highly nontrivial case solved with this articles result
is hence the Lie algebra An with G = Zn+1, which depends highly on the prime divisors
of n+1. This is due to the unusually large center Zn+1 of the algebraic group SLn+1,
which makes it notoriously hard to deal with (e.g. in Deligne-Lusztig theory). We hope
that the technical tools developed in this article might be useful in addressing such issues.

Example 5.5. Let G = ZN and consider for any divisor d|N the unique subgroup H =
N
d ZN

∼= Zd of G of order d. By Theorem 5.2 we have for any pairing ω : H ×H → C× the
function g as in (5.5) as a solution of the equations (5.1)-(5.4).
We give the solution explicitly: For H = 〈h〉, h ∈ n

dZn, we define a pairing ω : H×H → C×

by ω(h, h) = ξ with ξ a d-th root of unity, not necessarily primitive.
Thus the general solution ansatz in Lemma 5.2 translates for cyclic groups G to

g : G×G, (x, y) 7→
1

d
ξ

xy

(N/d)2 δ(N
d
|x)δ(N

d
|y). (5.6)

Theorem 5.6. For G = ZN the solutions given in Lemma 5.2 (and worked out in this
case in example 5.5), are in fact all solutions to the system of equations (5.1)-(5.4).

Proof. (a) The proof is an application of Theorem 4.3, which follows from the main The-
orem 3.1. Let g : ZN × ZN → C be a solution of the equations (5.1)-(5.4). We write
shortly gij for g(i, j), 0 ≤ i, j ≤ N − 1. Let ZN = 〈g〉, then

∑

j′,j′′

(gij′x
j′)(gij′′x

j′′) =
∑

j

gijx
i

for all i by (5.1), hence
∑

j gijx
i is an idempotent in C[ZN ]. Let ξ = ξN be a primitive

N -th root of unity, then primitive idempotents of C[ZN ] are all of the form ek =
1
N

∑N−1
r=0 ξkrxr. Thus, we have

∑

j gijx
i =

∑

k εikek for εik ∈ {0, 1} for all i, and
therefore

gij =
1

N

N−1∑

k=1

εikξ
jk

for {0, 1}-matrix ε = (εik). By inserting this in (5.2),
∑

i′+i′′=i gi′jgi′′j = gij , we get

1

N2

∑

i′+i′′=i

∑

k′,k′′

εi′k′εi′′k′′ξ
(k′+k′′)j =

1

N

∑

k

εikξ
kj.

By comparing the coefficients on both sides we get

1

N2

∑

i′+i′′=i

∑

k′+k′′=k

εi′k′εi′′k′′ =
1

N
εik, (5.7)

which is equation (4.2). Thus, ε/N is an idempotent in C[ZN × ZN ] and ε is {0, 1}-
matrix and we can apply Theorem 4.3. We have

εij =

{

δ(N
d
|i)δ(d|j−t i

N/d
), if N/d | i,

0, otherwise,
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for some d | N and 0 ≤ t ≤ d− 1. We insert in (a):

gij =
1

N

N−1∑

k=0

δ(N
d
|i)δ(d|k−t i

N/d
)ξ

jk

=
1

N
δ(N

d
|i)

N/d−1
∑

k′=0

ξ
j(t i

N/d
+dk′)

(k = t i
N/d + dk′, k′ = 0, . . . , d− 1)

=
1

d

(

ξN/d
)t i

N/d
j

N/d
δ(N

d
|i)

1

N/d

N/d−1
∑

k′=0

(ξd)jk
′

︸ ︷︷ ︸

=δN
d

|j

Thus, g is the solution given already in Example 5.5, which was the explicitly worked
out case of Lemma 5.2 for G cyclic.

❚
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