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Abstract

We construct locally homogeneous 6-dimensional nearly Kähler

manifolds as quotients of homogeneous nearly Kähler manifolds M by

freely acting finite subgroups of Aut0(M). We show that non-trivial

such groups do only exists if M = S3 × S3. In that case we classify all

freely acting subgroups of Aut0(M) = SU(2) × SU(2) × SU(2) of the
form A ×B, where A ⊂ SU(2) × SU(2) and B ⊂ SU(2).
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Introduction

Recall that an almost Hermitian manifold (M,g,J) without nontrivial Kähler

local de Rham factor is called (strict) nearly Kähler if (∇XJ)X = 0 for all

X ∈ TM , where ∇ denotes the Levi-Civita connection. It was shown by

Nagy [N] that all complete simply connected nearly Kähler manifolds are

products of twistor spaces of quaternionic Kähler manifolds of positive scalar

curvature, homogeneous spaces and six-dimensional nearly Kähler manifolds.

According to Butruille [B1, B2] there exist only 4 examples of 6-dimensional

homogeneous nearly Kähler manifolds M = G/K:

1. the sphere S6 = G2/SU(3),

2. the complex projective space CP 3 = Sp(2)/(U(1) × Sp(1)),

3. the flag manifold F1,2(C3) = SU(3)/(U(1) ×U(1)),

4. the Lie group S3 × S3 = SU(2)3/∆(SU(2)), where ∆ ∶ SU(2) ↪ SU(2)3
is the diagonal embedding.

To our knowledge, these exhaust all examples of 6-dimensional nearly Kähler

manifolds which have occurred in the literature so far. Incidentally, the sec-

ond and third examples are precisely the twistor spaces of the 4-dimensional

quaternionic Kähler manifolds of positive scalar curvature. Each of these four

homogeneous spaces M = G/K is a 3-symmetric space and G = Aut0(M) is
the maximal connected group of automorphisms of the nearly Kähler struc-

ture. The latter statement follows from [GM, Theorem 5.3], which uses [T,

Theorem 3.6].
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In this paper we are interested in six-dimensional nearly Kähler mani-

folds M for which the universal covering M̃ is homogeneous. Such manifolds

will be called locally homogeneous nearly Kähler manifolds in the following.

The classification of these manifolds amounts to the description of the finite

subgroups Γ ⊂ Aut(M̃) which act freely on M̃ , for each of the 4 (simply con-

nected) homogeneous nearly Kähler manifolds M̃ from Butruille’s list. For

simplicity, we will only consider subgroups Γ of G = Aut0(M̃). The corre-

sponding locally homogeneous nearly Kähler manifolds M are the quotients

M = M̃/Γ = Γ/G/K, by the natural left-action of Γ ⊂ G on M̃ = G/K.

The next proposition shows that it is sufficient to consider the case M̃ =
S3 × S3, in which case we will classify certain classes of freely acting groups

of automorphisms in the main part of the paper.

Proposition 0.1. Let M be a homogeneous nearly Kähler manifold such

that G = Aut0(M) admits a nontrivial subgroup acting freely on M . Then

the nearly Kähler manifold M is isomorphic to S3 × S3.

Proof. Any element γ ∈ G is contained in some maximal torus T of G. If

M is not isomorphic to S3 × S3 then the stabilizer K ⊂ G of a point o ∈ M
is of maximal rank and, hence, contains a maximal torus T0 of G. Since

any two maximal tori are conjugate, there exists an element a ∈ G such that

aTa−1 = T0. This implies that p = a−1o ∈M is a fixed point of γ. This shows

that G does not contain any nontrivial subgroup Γ acting freely on M .

From now on we consider the case M = S3 × S3 = G/K, where G =
SU(2) × SU(2) × SU(2) and K = ∆(SU(2)) ⊂ G. Notice that the nearly

Kähler structure on M can be considered as a left-invariant structure on

the Lie group L = SU(2) × SU(2) = M . Let L act by left-translations as a

subgroup of G = Aut0(M), where the inclusion is simply (a, b) ↦ (a, b,1).
Since the action of L = SU(2) × SU(2) ≅ SU(2) × SU(2) × {1} ⊂ G by left-

translations on M is free, any finite subgroup Γ ⊂ L gives rise to a locally

homogeneous nearly Kähler manifold M/Γ.
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Our main results amount to the classification of all finite subgroups of

G = Aut0(M) = L × SU(2) acting freely on M that (up to a permutation

of the three factors of G) are of the form A × B, for some finite subgroups

A ⊂ L, B ⊂ SU(2). In addition, we classify all finite simple groups Γ ⊂ G that

act freely on M , see Theorem 2.2 in Section 2. We refer to Theorem 3.5 in

Section 3 for the description of finite subgroups Γ1 ×Γ2 ×Γ3 ⊂ G acting freely

on M that are products of groups Γi ⊂ SU(2) for i = 1,2,3, and to Theorems

4.3, 4.4, 4.7, 4.8 in Section 4, for the remaining groups. This yields a wealth

of new examples of nearly Kähler manifolds.

Acknowledgements: This work was supported by the Collaborative Re-

search Center SFB 676 “Particles, Strings, and the Early Universe” of the

Deutsche Forschungsgemeinschaft.

1 Goursat’s Theorem

Finite subgroups of the product G1×G2 of two abstract groups are described

by Goursat’s theorem, see e.g. [FD]. We give the proof of the theorem as it

is needed in the sequel.

Theorem 1.1 (Goursat’s theorem). Let G1,G2 be groups. There is a one-

to-one correspondence between subgroups C ⊂ G1×G2 and quintuples Q(C) =
{A,A0,B,B0, θ}, where A0◁A ⊂ G1, B0◁B ⊂ G2 and θ ∶ A/A0 Ð→ B/B0 is an

isomorphism.

Proof. Let C ⊂ G1 ×G2 be a subgroup and denote by πi ∶ G1 ×G2 Ð→ Gi,

i = 1,2, the natural projections. Set A = π1(C) ⊂ G1, B = π2(C) ⊂ G2,

A0 = Ker(π2∣C) and B0 = Ker(π1∣C). It is readily seen that A0 and B0 can

be identified with normal subgroups of A and B respectively. We denote

these subgroups again by A0 and B0. Define a map θ̃ ∶ A Ð→ B/B0 as follows.

For a ∈ A pick any b ∈ B so that (a, b) ∈ C and set θ̃(a) ∶= bB0. One can

check that this map is well-defined and factorizes through an isomorphism

θ ∶ A/A0 Ð→
B/B0. This defines a map C ↦ Q(C).
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Conversely, a quintuple Q = {A,A0,B,B0, θ} as described above defines

a group C = G(Q) ⊂ G1 ×G2 by setting C = p−1(Γ(θ)), where p ∶ A ×B Ð→
A/A0 × B/B0 is the natural homomorphism and Γ(θ) ⊂ A/A0 × B/B0 denotes the

graph of the homomorphism θ. Observe that C ⊂ G1 ×G2 is in fact a fiber

product,

C = {(a, b) ∈ A ×B ∶ θ(aA0) = bB0} = {(a, b) ∈ A ×B∣ α(a) = β(b)}, (1.1)

where

α ∶ A A/A0
B/B0 and β ∶ B B/B0

θ

are the natural homomorphisms. The maps Q and G are inverse to each

other.

Proposition 1.2. Two subgroups C,C ′ ⊂ G1 ×G2 with corresponding quin-

tuples Q(C) = {A,A0,B,B0, θ}, Q(C ′) = {A′,A′0,B′,B′0, θ′} are conjugate

if and only if there exists (g1, g2) ∈ G1 × G2 such that A′ = g1Ag−11 ,B′ =
g2Bg

−1
2 ,A

′
0 = g1A0g

−1
1 ,B

′
0 = g2B0g

−1
2 and the diagram

A/A0 B/B0

A′/A′0 B′/B′0

θ

c(g1) c(g2)

θ′

commutes. Where c(gi) denotes conjugation by gi ∈ Gi, i = 1,2.

Remark. Sometimes we will consider different subgroups C = G(A,A0,B,B0,

θ) ⊂ G1 ×G2 for fixed A,A0,B,B0. In that case it is convenient to identify

A/A0 and B/B0 with the same abstract group F and consider θ ∶ A/A0 →

B/B0 as an automorphism of F .
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In the remaining parts of this paper, we classify (up to conjugation) finite

subgroups C ⊂ G acting freely on the nearly Kähler manifold M , which are

either simple or of the form D × E ⊂ G, for D ⊂ SU(2)2 and E ⊂ SU(2)
arbitrary. This motivates the following definition.

Definition 1.3. A finite subgroup C ⊂ G = SU(2)3 is said to be splittable

whenever C = A1 × A2 × A3 ⊂ G for some non-trivial subgroups Ai ⊂ SU(2)
for i = 1,2,3, and semi-splittable if C = D×E for some non-trivial subgroups

D ⊂ SU(2)2, E ⊂ SU(2). In addition, a semi-splittable group C ⊂ G is said

to be strict if it is not splittable.

We are excluding the case of trivial factors in the above definition be-

cause the occurrence of a trivial factor implies that C acts freely on M , as

mentioned in the introduction.

2 Simple groups

The Lemma below will help us to distinguish subgroups of G = SU(2) ×
SU(2) × SU(2) that act freely on M = S3 × S3.

Lemma 2.1. A subgroup C ⊂ G acts non freely on M if and only if there is

a non-trivial element (a1, a2, a3) ∈ C, so that

Re(a1) = Re(a2) = Re(a3).

Proof. Consider the action of SU(2) = S3 ⊂ H = R4 on itself given by conju-

gation. The orbit of a given unit quaternion 1 ≠ a = Re(a) + Im(a) is then of

the form

{Re(a)} × S2(ρ) ⊂ R × R3 = R4 , ρ =
√
1 −Re(a)2. (2.1)

Let (a1, a2, a3) ∈ C be a non-trivial element fixing a class [(a, b, c)] ∈M , i.e. so

that (a, b, c)−1(a1, a2, a3)(a, b, c) = (w,w,w) ∈K. As the real part of a quater-

nion is invariant under conjugation, we have Re(a1) = Re(a2) = Re(a3) =
6



Re(w). Conversely, suppose there is an element (1,1,1) ≠ (a1, a2, a3) ∈ C
with: Re(a1) = Re(a2) = Re(a3). Then, by relation (2.1) the orbits of

a1, a2, a3 ∈ SU(2) are the same.

Let us recall now that any finite subgroup of SU(2) is conjugate to one

of the so-called ADE groups, see e.g. Theorem 1.2.4 in [To]. These groups

are described in terms of generators as follows.

Label Name Order Generators

An−1 Zn n e
i2π
n

Dn+2 2D2n 4n j, e
iπ
n

E6 2T 24 1
2
(1 + i)(1 + j), 1

2
(1 + j)(1 + i)

E7 2O 48 1
2
(1 + i)(1 + j), 1√

2
(1 + i)

E8 2I 120 1
2
(1 + i)(1 + j), 1

2
(φ + φ−1i + j)

Table 1: Finite subgroups of SU(2).
Here n ≥ 2 and φ = 1+

√
5

2
is the golden ratio. An element-wise description

of the ADE groups is provided in Table 2.

Label Name Order Elements

An−1 Zn n {e 2πix
n ∶ x = 0, ..., n − 1}

Dn+2 2D2n 4n {e iπx
n ∶ x = 0, ...,2n − 1} ∪ j{e iπx

n ∶ x = 0, ...,2n − 1}
E6 2T 24 2D4 ∪{±1±i±j±k2

}
E7 2O 48 2T∪e iπ

4 2T
E8 2I 120 2T∪q 2T∪q2 2T∪q3 2T∪q4 2T

Table 2: Element description for ADE groups.

Where q = 1
2
(φ + φ−1i + j).

Theorem 2.2. The following are, up to conjugation and permutation of the

factors, the only non-trivial simple subgroups C ⊂ G acting freely on M .
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(a) Zp × {1} × {1}.
(b) Γ(ϕ(r)) × {1}, where ϕ(r) ∈ Aut(Zp), see Section 3.2.

(c) C(p, r, s) = {(x,ϕ(r)x,ϕ(s)x) ∶ x ∈ Zp}, where ϕ(r), ϕ(s) are auto-

morphisms of Zp and either r ≠ ±1 mod p, or s ≠ ±1 mod p.

Here p ∈ Z is an arbitrary prime number.

Proof. Let C ⊂ G be a non trivial simple subgroup and j ∈ {1,2,3} be so that

πj(Γ) ≠ {1}, where πj denotes the natural projection. Because C is simple,

the taken projection restricts to an isomorphism (πj) ∣C ∶ C Ð→ πj(C) ⊂ G.
However, groups of type DE are non commutative and have non trivial center,

whilst groups of type A are commutative and non simple, unless they are of

prime order. Consequently, C ⊂ G has the isomorphism type of Zp for some

fixed prime number p. We distinguish between the following cases

(a) Let π1(C) ≠ {1} and π2(C) = π3(C) = {1}. That is, C = A × {1} × {1}
for some finite subgroup A ⊂ SU(2). Because π1∣C an isomorphism, the

group C ⊂ G is conjugate to Zp × {1} × {1}.
(b) Let π1(C), π2(C) ≠ {1} and π3(C) = {1}. In particular C = D ×
{1} ⊂ G for some finite subgroup D ⊂ SU(2)2. Denote by Q(D) =
{A,A0,B,B0, θ} the quintuple defining D ⊂ SU(2)2, see Theorem 1.1.

By construction of Q(D) and the simplicity of C, we see that A0 =
B0 = {1} and (up to conjugation) A = B = Zp ⊂ SU(2), and so, the

isomorphism θ can be realized as an automorphism of Zp. It follows

that C ⊂ G is conjugate to Γ(θ) × {1}.
(c) Let πj(C) ≠ {1} for j = 1,2,3, G1 = SU(2)2 and G2 = SU(2). The sub-

group C ⊂ G1 ×G2 determines the quintuple Q(C) = {A,A0,B,B0, θ},

8



where

A ={(a, b) ∈ G1 ∶ (a, b, c) ∈ C for some c ∈ SU(2)},
B ={c ∈ G2 ∶ (a, b, c) ∈ C for some c ∈ SU(2)},
A0 ={(a, b) ∈ A ∶ (a, b,1) ∈ C},
B0 ={c ∈ B ∶ (1,1, c) ∈ C},

and θ ∶ A/A0 →
B/B0 is an isomorphism. Using the simplicity of C ⊂ G,

we can easily check that A is simple, A0 = {(1,1)} and B0 = {1}. Just
as in (b), we conclude that (possibly after conjugation) A = Γ(ϕ) ⊂ G1

for some ϕ ∈ Aut(Zp). The isomorphism θ can be thus realized as an

automorphism of Zp, and so, the group C ⊂ G is conjugate to a group

of the form {(x,ϕ(x), ψ(x)) ∶ x ∈ Zp}, where ϕ,ψ are automorphism of

Zp.

We are now left to decide using Lemma 2.1, which of the groups described

above act freely on M . To this end, observe that the groups Zp × {1} × {1}
and Γ(ϕ(r)) × {1} act freely on M , so we can suppose C = C(p, r, s) ⊂ G
for integers r, s ∈ Z so that r, s ∤ p. Lemma 2.1 tells us that the group

C(p, r, s) ⊂ G acts freely on M precisely if the system

(1 ± r)x = 0 mod p , rx = ±sx mod p (2.2)

admits just the trivial solution.

3 Splittable groups

In this section we will classify freely acting splittable subgroups A1×A2×A3 ⊂
G = SU(2)3. The correspondence given in Theorem 1.1 together with our

knowledge of ADE groups will be used in order to construct all relevant

subgroups C ⊂ SU(2)2. Thereafter, to verify using Lemma 2.1 when a given

subgroup A1 × A2 × A3 ⊂ G acts in the desired fashion amounts to solve

certain kinds of equations on integers, such as in (2.2), to which we devote

the forthcoming section.
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3.1 Integral equations

To begin with, we summarize all real parts of elements in ADE groups.

Label Name Real parts

An−1 Zn cos (2πx
n
) 0 < x ≤ n

Dn+2 2D2n 0, cos (πx
n
) 0 < x ≤ 2n

E6 2T 0,±1,±1
2

E7 2O 0,±1,±1
2
,±
√
2
2
,± 1

2
√
2

E8 2I 0,±1,±1
2
, ±1±

√
5

4

Table 3: Real parts of elements in ADE groups.

We are interested in solving the following type of equations on integers:

Case I ax + by = c, for a, b ∈ Z ∖ {0}, c ∈ Z. This case corresponds to a

linear Diophantine equation which can be completely solved using Bezout’s

lemma, see e.g. Theorems 2.1.1 and 2.1.2 in [AAC].

Theorem 3.1. Let a, b ∈ Z ∖ {0} and c ∈ Z. The equation

ax + by = c (3.1)

is solvable if and only if gcd(a, b)∣c, in which case its general solution reads

(x, y) = (x0, y0) + t(b,−a) t ∈ Z. (3.2)

Here (x0, y0) ∈ Z2 is a particular solution of equation (3.1).

Case II cos (2πx
n
) = b, b ∈ {0,±1,±1

2
,± 1√

m
∶ m ∈ N}. We determine first

all possible values of m ∈ N so that b = ± 1√
m

can be written as a cosine of

some rational multiple of 2π, by making use of the following standard result

in algebraic number theory, see e.g. Section 3 of [J].

Theorem 3.2. Let θ be a rational multiple of 2π. If cos(θ) ∈ Q, then cos(θ) ∈
{−1,−1

2
,0, 1

2
,1}.

10



In our situation, it follows that m ∈ {1,2,4}, and so, b ∈ R belongs to

the following list of values: 0,±1,± 1√
2
,±1

2
. Table 4 displays the restrictions

on n ∈ Z in order to get an integral solution x(n) ∈ Z for the equation

cos (2πx
n
) = b.

b x(n) ∈ Q Restriction on n
−1 n

2
+ nk 2∣n

− 1√
2

3n
8
+ nk, 5

8
n + nk 8∣n

−1
2

n
3
+ nk , 2n

3
+ nk 3∣n

0 n
4
+ nk , 3

4
n + nk 4∣n

1
2

n
6
+ nk , 5n

6
+ nk 6∣n

1√
2

n
8
+ nk , 7n

8
+ nk 8∣n

1 nk -

Table 4: Conditions on n.

Case III cos ( 2πx
n
) = c, c ∈ {a +√5b : a, b ∈ Q×}. Let c = a + b

√
5 with

a, b ∈ Q× and suppose x(n) ∈ Z solves the equation in consideration. From

this setup, we can easily derive that x(n) ∈ Z satisfies the integral equation

cos(2θ)+B cos(θ) = C, for B = −4a and C = 10b2−1−2a2, and where θ = 2πx
n
.

The latter equation can be completely solved by means of Theorem 7 in [CJ],

result which is stated in generality sufficient to our needs.

Theorem 3.3 (Conway, Jones). Suppose we have at most two distinct ra-

tional multiples of π lying strictly between 0 and π
2
for which some rational

linear combination of their cosines is rational. Then the appropriate linear

combination is proportional to either cos(π/5) − cos(2π/5) = 1
2
or cos(π/3) = 1

2
.

Table 5 displays the additional values of c ∈ Q[√5] we must consider,

together with the restrictions to impose on n ∈ Z in order to find an integral

solution x(n) ∈ Z for the equation cos (2πx
n
) = c.

11



c = a + b
√
5 x(n) ∈ Q Restriction on n

1
4
(1 +√5) n

10
+ kn, 9n

10
+ kn 10∣n

1
4
(−1 +√5) n

5
+ kn, 4n

5
+ kn 5∣n

1
4
(1 −√5) 3n

10
+ kn, 7n

10
+ kn 10∣n

−1
4
(1 +√5) 2n

5
+ kn, 3n

5
+ kn 5∣n

Table 5: Conditions on n.

Remark. In the latter situation cos(θ) is an algebraic number of degree 2. It

is in fact a zero of the quadratic polynomial (t−a)2−5b2. The classification of

algebraic numbers of low degree and sufficiently small length, see e.g. Section

5 of [J], provides an alternative argument to build Table 5.

3.2 Automorphisms of quotient groups

The present section comprises descriptions of automorphisms groups of quo-

tients of ADE groups that are relevant in the forthcoming sections. The main

reference is Section 6.2 in [FD]. This material will be however adapted to

our needs.

(1) The group of outer automorphisms of Zn is given by

Out(Zn) = {ϕ(r) ∶ gcd(r,n) = 1},
where ϕ(r) denotes the map Zn ∋ x ↦ xr ∈ Zn in multiplicative notation.

(2) To describe the outer automorphism group of a dihedral group D2n,

consider the following presentation of D2n

D2n = ⟨x, y ∶ x2 = yn = (xy)2 = 1⟩ = {yp ∶ 0 ≤ p < n} ∪ {xyp ∶ 0 ≤ p < n}.
Observe D2 = Z2, so we can assume that n > 1. The case n = 2 is also special

as D4 is isomorphic to the Klein Vierergruppe. The automorphism group

of D4 isomorphic to Sym(3) and acts by permutations of the 3 non trivial

involutions. The outer automorphism group of D2n for n > 2 is

Out(D2n) = ⟨τa,b ∶ (a, b) ∈ Z×n × Zn⟩ ≅ Z×n ⋉ Zn,

12



where the action of the affine group Z×n ⋉ Zn on D2n is given by

τa,b(yp) = yap , τa,b(xyp) = xyap+b.
(Here Zn denotes the additive group and Z×n the multiplicative group of units

in the ring Zn.)

(3) Since 2D2 ≅ Z4, we consider 2D2n only for n > 1. We have the following

presentation:

2D2n = ⟨s, t ∶ s2 = tn = (st)2⟩ = {tp ∶ 0 ≤ p < 2n} ∪ {stp ∶ 0 ≤ p < 2n}.
In fact, we can take s = jeiπn and t = eiπn when 2D2n is realized as a subgroup

of SU(2). The outer automorphism group of 2D2n for n > 2 is also an affine

group:

Out(2D2n) = ⟨τa,b ∶ (a, b) ∈ Z×2n × Z2n⟩ ≅ Z×2n ⋉ Z2n,

where the action on 2D2n is given by

τa,b(tp) = tap , τa,b(stp) = stap+b.
We need to make a distinction for n = 2. Any automorphism of 2D4 =
{±1,±i,±j,±k} ⊂ SU(2) is obtained via conjugation with an element in 2O

modulo Z2 = {±1}. The point-wise action of 2O/Z2 on 2D4 is described below.

13



i j k i j k

[i] i −j −k [ 1√
2
(1 − i)] i −k j

[j] −i j −k [ 1√
2
(j + k)] −i k j

[k] −i −j k [ 1√
2
(j − k)] −i −k −j

[1
2
(1 + i + j + k)] j k i [ 1√

2
(i + k)] k −j i

[1
2
(1 − i − j − k)] k i j [ 1√

2
(1 − k)] −j i k

[1
2
(1 + i − j − k)] −j k −i [ 1√

2
(i − k)] −k −j −i

[1
2
(1 + i + j − k)] −k i −j [ 1√

2
(i + j)] j i −k

[1
2
(1 − i + j − k)] −j −k i [ 1√

2
(1 + j)] −k j i

[1
2
(1 − i − j + k)] j −k −i [ 1√

2
(1 − j)] k j −i

[1
2
(1 − i + j + k)] −k −i j [ 1√

2
(1 + k)] j −i k

[1
2
(1 + i − j + k)] k −i −j [ 1√

2
(i − j)] −j −i −k

[ 1√
2
(1 + i)] i k −j

Table 6: Action of 2O/Z2 on 2D4.

(4) The tetrahedral group T is isomorphic to the alternating group Alt(4),
which has automorphism group Sym(4), acting by conjugation on the normal

subgroup Alt(4). This corresponds to the action of the octahedral group

O ≅ Sym(4) on its normal subgroup T, which is induced by the action of 2O

on the normal subgroup 2T. In fact, it can be derived from Table 6 that the

image of O = 2O/Z2 in Aut(T) = Aut(2T/Z2) is isomorphic to Sym(4).
(5) Every automorphism of O is inner.

(6) The icosahedral group I is isomorphic to Alt(5), which is generated

by s = (12)(34) and t = (135). Observe these generators satisfy s2 = t3 =
(st)5 = (1). The automorphism group of Alt(5) is Sym(5), whilst the outer

automorphism group is isomorphic to Z2. In terms of permutations, the

latter is generated by conjugation with an odd permutation, say (35). This
sends the generators listed above to (12)(45) and (153) respectively. The

action of this automorphism ϕ on conjugacy classes is described below.

14



Representative Size(1) 1(123) 20(12345) 12(13452) 12(12)(34) 15

Table 7: Conjugacy classes.

C(xyzvw) ϕ(C(xyzvw))C(1) C(1)C(123) C(123)C(12345) C(13452)C(13452) C(12345)C(12)(34) C(12)(34)
Table 8: Action of ϕ.

Where C(xyzvw) is the conjugacy class of a permutation (xyzvw) ∈ Alt(5).
(7) The outer automorphism group of 2T ⊂ SU(2) is generated by an

involution that exchanges the generators s = 1
2
(1+ i)(1+j), t = 1

2
(1+j)(1+ i),

which satisfy the relations s3 = t3 = (st)3. This automorphism is given by

conjugation with 1+j√
2
∈ 2O ⊂ SU(2).

(8) The outer automorphism group of 2O ⊂ SU(2) is generated by an

involution ϕ fixing s and sending t to −t, where s = 1
2
(1+ i+ j +k) and t = e iπ

4

generate 2O.

(9) The outer automorphism group of 2I ⊂ SU(2) is generated by an

involution ψ which fixes s and sends t to −φ
−1−φi+k

2
, where s = 1

2
(1+ i+ j + k)

and t = φ+φ−1i+j
2

generate 2I.

The action of the automorphisms ϕ ∈ Out(2O) and ψ ∈ Out(2I) on con-

jugacy classes C(x), for x ∈ 2O or x ∈ 2I respectively, is described in the

following tables.

15



Representative Size Real parts
1 1 1
−1 1 −1
s 8 1

2

t 6 1√
2

s2 8 −1
2

t2 8 0
t3 6 − 1√

2

st 12 0

Table 9: Conjugacy classes in 2O .

C(x) ϕ(C(x)) Re(ϕ(x))C(1) C(1) 1C(−1) C(−1) -1C(s) C(s) 1
2C(t) C(t3) − 1√
2C(s2) C(s2) −1
2C(t2) C(t2) 0C(t3) C(t) 1√
2C(st) C(st) 0

Table 10: Action of ϕ.

Representative Size Real parts
1 1 1
−1 1 −1
t 12 1+

√
5

4

t2 12 −1−
√
5

4

t3 12 1−
√
5

4

t4 12 −1+
√
5

4

s 20 1
2

s4 20 −1
2

st 30 0

Table 11: Conjugacy classes in 2I.

C(x) ψ(C(x)) Re(ψ(x))C(1) C(1) 1C(−1) C(−1) -1

C(t) C(t3) 1−
√
5

4C(t2) C(t4) −1+
√
5

4C(t3) C(t) 1+
√
5

4C(t4) C(t2) −1−
√
5

4C(s) C(s) 1
2C(s4) C(s4) −1
2C(st) C(st) 0

Table 12: Action of ψ.

3.3 Freely acting splittable groups

We regard splittable groups A1 × A2 × A3 ⊂ G with non-trivial factors Ai ⊂
SU(2), for i = 1,2,3. The following technical result shall be used in the proof

of Theorem 3.5.

Lemma 3.4. Let n,m ≥ 2 be integers, k = gcd(m,n) and m1 = m
k
, n1 = n

k
.

Then, the solution set of

cos(2πx
n
) = cos(2πy

m
) , (x, y) ∈ Z2,

16



is given by {(nq + εℓn1, ℓm1) ∶ q, ℓ ∈ Z, ε = ±1}.
Proof. Let (x, y) ∈ Z2 be a solution of either of the following equations

mx = ny mod mn mx = −ny mod mn.

say the first. In particular, there is an integer q ∈ Z, so thatm1x−n1y =mn1q.

Theorem 3.1 tells us that (x, y) ∈ ((nq,0) + Z(n1,m1)). The converse of the

assertion is straightforward.

Theorem 3.5. Any splittable subgroup acting freely on M , is up to permuta-

tion of the three factors and conjugation in G = SU(2)3, one in the following

list.

Group Conditions
Zn × 2I×2I 2,3,5 ∤ n
Zn × 2O×2I
Zn × 2O×2O
Zn × 2T×2O 2,3 ∤ n
Zn × 2T×2I
Zn × 2T×2T
Zn × Zm × Zl gcd(n,m, l) = 1
Zn × Zm × 2D2l gcd(n,m,2l) = 1
Zn × 2D2m ×2D2l gcd(n,2m,2l) = 1
Zn × Zm × 2T
Zn × Zm × 2O 2,3 ∤ gcd(n,m)
Zn × 2D2m ×2T
Zn × 2D2m ×2O 2,3 ∤ gcd(n,2m)
Zn × 2D2m ×2I
Zn × Zm × 2I 2,3,5 ∤ gcd(n,m)

Table 13: Freely acting splittable groups

Proof. Observe first that a freely acting group A1 ×A2 ×A3 ⊂ G must have

a cyclic factor Zn of odd order n, simply because otherwise (−1 − 1 − 1) ∈
A1 ×A2 ×A3 ⊂ G, see Table 3, situation which is not allowed by Lemma 2.1.

17



A splittable group Zn ×A2 ×A3 ⊂ G acts freely on M precisely if Re(A2) ∩
Re(A3) ∩Re(Zn) = {1}. However, since n is odd, we always have

{−1,0,± 1√
2
,
1

2
,
1

4
(1 ±√5)} ∩Re(Zn) = ∅,

see Table 4 and 5. Moreover, we see that under the additional divisibility

assumptions, which can be read off from these tables, also the numbers −1
2
,

1
4
(−1 ±√5) are not contained in Re(Zn). This observation gives us already

all the freely acting splittable groups Zn ×A2 ×A3 ⊂ G with A2,A3 ⊂ SU(2)
of type E satisfying the conditions displayed in Table 13.

As for the cases involving at least one factor A2 or A3 ⊂ SU(2) of type
AD, we observe that Re(Zn)∩Re(2D2m) = Re(Zgcd(n,2m)),Re(Zn)∩Re(Zm) =
Re(Zgcd(n,m)), which is a consequence of Lemma 3.4. Similar conclusions as

before hold.

4 Semi-splittable groups

We start the classification of freely acting semi-splittable subgroups C×D ⊂ G
by considering the classes of such subgroups for which the quintuple Q(C) =
{A,A0,B,B0, θ} defining C ⊂ SU(2)2 is so that A,B ⊂ SU(2) are non-trivial

ADE groups and one of the following conditions holds.

(a) A0 = A, B0 = B.

(b) A0 = B0 = {1} .
(c) A0 ≠ {1} and B0 = {1}.

Note that condition (a) is equivalent to C ×D ⊂ G being splittable. Since

splittable groups acting freely on M = S3 ×S3 have already been classified in

the previous sections, we will assume from now on that our group is strictly

semi-splittable. Observe also that under the condition (b), the group C is

conjugate to the graph Γ(ϕ,A) of some automorphism ϕ of A.
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Definition 4.1. A strictly semi-splittable group is said to be of type I or II

if it satisfies condition (b) or (c) respectively, and of type III otherwise.

4.1 Type I groups

We regard groups Γ(ϕ,A) × B ⊂ G, where Γ(ϕ,A) is the graph of some

automorphism ϕ ∶ A → A of an ADE group A ⊂ SU(2) and B ⊂ SU(2) is
some non trivial ADE group. The following technical result shall be used

recurrently in the forthcoming sections.

Lemma 4.2. Let n ≥ 2, r ∈ Z×n, and set k = gcd(1 + r,n), n1 = n
k
, r1 = 1+r

k
.

Then, n1Z is the solution set of the equation: x = −rx mod n.

Proof. Let x ∈ Z be a solution of the equation in question. There is in

particular an integer y ∈ Z, so that (1 + r)x + ny = 0. If we consider the

latter as an equation in (x, y) ∈ Z2, then (x, y) = t(n1,−r1) for some t ∈ Z,
see Theorem 3.1. This shows the claim as any number tn1 ∈ Z is a solution

of: x = −rx mod n.

Theorem 4.3. Let Γ(ϕ,A)×B ⊂ G be a freely acting type I group which is not

a subgroup of a freely acting splittable group. Then, it is either Γ(ϕ,2I)×Zn

with 3 ∤ n, or one of the following groups.

Γ(τa,b,2D2n) ×B , n > 2, a ≠ ±1 mod 2n

k̃1 > 1 k̃2 > 1 B Conditions

yes yes Zm 4 ∤m ∧ gcd(k̃1,m) = gcd(k̃2,m) = 1
yes no Zm 4 ∤m ∧ gcd(k̃1,m) = 1
no yes Zm 4 ∤m ∧ gcd(k̃2,m) = 1
no no Zm 4 ∤m
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Γ(ϕ(r),Zn) ×B, r ≠ ±1 mod n
k1 > 1 k2 > 1 B Conditions

Zm gcd(m,k1) = gcd(m,k2) = 1
yes yes 2D2m gcd(2m,k2) = gcd(2m,k1) = 1

2T,2O 2,3 ∤ k1, k2
2I 2,3,5 ∤ k1, k2
Zm gcd(k1,m) = 1

yes no 2D2m gcd(k1,2m) = 1
2T,2O 2,3 ∤ k1

2I 2,3,5 ∤ k1
Zm gcd(k2,m) = 1

no yes 2D2m gcd(k2,2m) = 1
2T,2O 2,3 ∤ k2

2I 2,3,5 ∤ k1
no no All -

Table 14: Type I freely acting subgroups.

Where k1 = gcd(1 + r,n), k2 = gcd(1 − r,n), k̃1 = gcd(1 + a,2n) and k̃2 =
gcd(1 − a,2n).
Proof. Let A ⊂ SU(2) be an ADE group and define

W(ϕ,A) = {Re(x) ∶ Re(x) = Re(ϕ(x))}.
If ϕ ∈ Inn(A), thenW(ϕ,A) = Re (A). In consequence, a group Γ(ϕ,A)×B ⊂
G with ϕ ∈ Inn(A) that acts freely on M must be a subgroup of a freely

acting splittable group. We consider therefore just outer automorphisms of

A ⊂ SU(2). Observe that once we have calculated W(ϕ,A) ⊂ R, the precise

conditions to impose on Γ(ϕ,A) × B ⊂ G to make it act freely on M are

easily obtained from Tables 3, 4 and 5 as in the case of splittable groups. For

this reason, we just calculate W(ϕ,A) for any ADE group A ⊂ SU(2) and
ϕ ∈ Out(A):

(a) let A ⊂ SU(2) be a type E group. Since Out(A) is in this case isomor-

phic to Z2, we must consider a single automorphism of the group A ⊂ SU(2).
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Furthermore, as the only non-trivial class in Out(2T) is represented by an

automorphism which can be obtained by conjugation with some element in

SU(2), we are left with A ∈ {2O,2I}. In these cases, we read from Tables 9-

12 that

W(ϕ,2O) =W(ψ,2I) = {1,−1, 1
2
,−1

2
,0} .

(b) Let A = Zn and ϕ(r) be a non-trivial outer automorphism of Zn.

Elements in W(ϕ(r),Zn) are readily seen to be obtained by solving

x = ±rx mod n. (4.1)

Further, we can suppose r ≠ ±1 mod n, as otherwise Re(Zn) =W(ϕ(r),Zn).
If gcd(1 ± r,n) = 1, equation (4.1) admits only the trivial solution and, thus,

any group Γ(ϕ(r),Zn) × B ⊂ G acts freely on M . Now, suppose that k1 =
gcd(1 + r,n) > 1, k2 = gcd(1 − r,n) = 1 and write n = k1n1, 1 + r = k1r1. The

solution set of equation (4.1) is n1Z, see Lemma 4.2, and so

W(ϕ(r),Zn) = {cos(2πz
k1
) ∶ z ∈ Z} .

If k1, k2 > 1, we find out that

W(Zn, ϕ(r)) = {cos(2πz
ki
) ∶ z ∈ Z, i = 1,2} .

(c) At last, consider A = 2D2n. Since automorphism of 2D4 are obtained

by conjugation with an element in 2O ⊂ SU(2), we can suppose that n > 2.
Let τa,b be a non-trivial outer automorphism of 2D2n. Since

Γ(τa,b,2D2n) = {(e iπx
n , e

iπax
n ) ,(je iπx

n , je
iπ(a(x−1)+b+1)

n ) ∶ x ∈ Z} ,
an element in W(2D2n, τa,b) is either zero or it is obtained by solving the

equation: x = ±ax mod 2n.
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4.2 Type II groups

We regard groups C ×D ⊂ G so that the quintuple Q(C) = {A,A0,B,B0, θ}
defining C ⊂ SU(2)2 is so that B0 = {1} and A ⊂ SU(2) admits a quotient

isomorphic (via θ) to some ADE group B ⊂ SU(2). As explained in the

remark on page 5, we shall identify here A/A0 with F = B and consider

θ as an automorphism of F . Tables 15 and 16 (which are borrowed from

[FD]) display all non-trivial normal subgroups A0 ⊂ SU(2) of an ADE group

A ⊂ SU(2) and the isomorphism type of the corresponding quotient.

A0◁A A/A0

Zk ◁ Zkl Zl

Z2k ◁ 2D2kl D2l

Z2k+1◁ 2D2l(2k+1) 2D2l

Z2k+1◁ 2D2(2k+1) Z4

2D2k◁2D4k Z2

Z2◁ 2T T

Table 15: Subgroups I.

A0◁A A/A0

2D4◁2T Z3

Z2◁ 2O O
2D4◁2O D6

2T◁2O Z2

Z2◁ 2I I

Table 16: Subgroups II.

Caveat. It should be stressed here that according to our convention, the group

2D2n is defined for n > 1.

Theorem 4.4. Any type II freely acting group C × D ⊂ G that is not a

subgroup of a freely acting splittable group belongs to the following list

Group ConditionsG(2T,2D4,Z3,{1}, ϕ(r)) × Zn 3 ∤ nG(2T,2D4,Z3,{1}, ϕ(r)) × 2D2l 3 ∤ 2lG(2D4k,2D2k,Z2,{1}, Id) ×DG(2O,2T,Z2,{1}, Id) ×D −G(2D2k,Z2k,Z2,{1}, Id) ×D
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G(Zkl,Zl,Zk,{1}, ϕ(r)) ×D, lr ≠ ±1 mod lk
k1 > 1 k2 > 1 D Conditions

Zm gcd(m,k1) = gcd(m,k2) = 1
yes yes 2D2m gcd(2m,k2) = gcd(2m,k1) = 1

2T,2O 2,3 ∤ k1, k2
2I 2,3,5 ∤ k1, k2
Zm gcd(k1,m) = 1

yes no 2D2m gcd(k1,2m) = 1
2T,2O 2,3 ∤ k1

2I 2,3,5 ∤ k1
Zm gcd(k2,m) = 1

no yes 2D2m gcd(k2,2m) = 1
2T,2O 2,3 ∤ k2

2I 2,3,5 ∤ k1
no no All -

G(2D2l(2k+1),Z2k+1,2D2l,{1}, cg ○ τa,b) ×D,
a(2k + 1) ≠ ±1 mod 2l(2k + 1), l > 2

k̃1 > 1 k̃2 > 1 D Conditions

yes yes Zm gcd(k̃1,m) = gcd(k̃2,m) = 1 ∧ 4 ∤m
yes no Zm gcd(k̃1,m) = 1 ∧ 4 ∤m
no yes Zm gcd(k̃2,m) = 1 ∧ 4 ∤m
no no Zm 4 ∤m

Table 17: Type II freely acting subgroups.

Where k1 = gcd(1+lr, kl), k2 = gcd(1−lr, kl), k̃1 = gcd(1−a(2k+1),2l(2k+
1)) and k̃2 = gcd(1 + a(2k + 1),2l(2k + 1)).
Proof. Let C×D ⊂ G be a freely acting type III group, Q(C) = {A,A0,B,{1}, θ}
be the quintuple defining C ⊂ SU(2)2 and define W(C) = {Re(x) ∶ Re(x) =
Re(y) , (x, y) ∈ C}. The following are the group triples (A,A0,B) that give
rise to a valid choice for Q(C), that is such that the quotient B = A/A0 is an

ADE group, see Tables 15 and 16.
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B (A,A0)
Zk (Zkl,Zl)
Z4 (2D2(2k+1),Z2k+1)
Z3 (2T,2D4)
Z2 (2D4k,2D2k)
Z2 (2O,2T)
Z2 (2D2k,Z2k)
2D2l (2D2l(2k+1),Z2k+1)

Table 18: Triples (A,A0,B).
We calculate W(C) case by case for triples (A,A0,B) that are part of

Q(C) in order to read off the conditions for W(C) ∩ Re(D) = {1}. For

later use we recall, see equation (1.1), that the group C is a fibered product

associated with the maps α ∶ A→ B and β = IdB ∶ B → B.

(a) Let (A,A0,B) = (Zkl,Zl,Zk) and θ = ϕ(r) some automorphism of Zk.

We have that

C = {([y]kl, [ry]k) ∶ y ∈ Z},
for some r ∈ Z×k . Lemma 4.2 helps us determining the solution set of

(1 ± lr)y = 0 mod kl,

whenever lr ≠ ±1 mod lk. The latter condition can be assumed as otherwise

W(C) = Re(Zkl) = Re(Zk) and C ×D is then a subgroup of a freely acting

splittable group A ×B ×D. We see that under this condition

W(C) = {cos (2πx
ki
) ∶ x ∈ Z, i = 1,2} .

(b) Let (A,A0,B) = (2D2(2k+1),Z2k+1,Z4). The map α ∶ A → B defining

G(2D2(2k+1),Z2k+1,Z4,{1}, ϕ(r)) ⊂ SU(2)2 is given by

α ∶ z ↦ α(z) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if z = e iπx
2k+1 , x = 0 mod 2,

e
iπr
2 if z = je iπx

2k+1 , x = 0 mod 2,

eiπr if z = e iπx
2k+1 , x = 1 mod 2,

e
3iπr
2 if z = je iπx

2k+1 , x = 1 mod 2.
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It is not difficult to verify that (e iπx
2k+1 , eπi) ∈ C ⊂ SU(2)2, for x odd and any

choice of r ∈ Z×4 , hence −1 ∈ W(C). Since C ×D acts freely it follows that

−1 /∈ Re(D) and, hence, D = Zn for n odd. Using W(C) ⊂ Re(Z4) = {0,±1},
this easily implies that C ×D ⊂ G is a subgroup of a freely acting splittable

group 2D2(2k+1) ×Z4 × Zn.

(c) Let (A,A0,B) = (2T,2D4,Z3). The map defining G(2T,2D4,Z3,{1},
ϕ(r)) ⊂ SU(2)2 is now given as follows

α ∶ z ↦ α(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if z ∈ 2D4,

e
2πir
3 if z ∈ −1+i+j+k

2
2D4,

e
4πir
3 if z ∈ 1+i+j+k

2
2D4.

We can check that ±1
2
∈ W(C) for any choice of r ∈ Z×3 . It follows that

W(C) = {1,±1
2
} = Re(Z3), and so no new freely acting group is obtained in

this way.

(d) Let (A,A0,B) = (2D4k,2D2k,Z2). We have

C = {(e iπy

k ,1), (je iπy

k ,1), (e iπ(2y+1)
2k ,−1), (je iπ(2y+1)

2k ,−1) ∶ y ∈ Z},
and henceW(C) = {1}. We conclude that any group G(2D4k,2D2k,Z2,{1}, Id)×
D ⊂ G acts freely on M .

(e) Let (A,A0,B) = (2O,2T,Z2). In this case,

α ∶ z ↦ α(z) = { 1 if z ∈ 2T,
−1 if z ∈ e iπ

4 2T.

Because Re(e iπ
4 2T) = {0,± 1√

2
,± 1

2
√
2
}, we have that W(C) = {1}. Therefore,

every subgroup G(2O,2T,Z2,{1}, Id) ×D ⊂ G acts freely on M .

(f) Let (A,A0,B) = (2D2k,Z2k,Z2). We have that

α ∶ z ↦ α(z) = { 1 if z = e iπx
k ,

−1 if z = je iπx
k .

From which, we see that

C = {(eπix
k ,1), (jeπix

k ,−1) ∶ x ∈ Z},
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and so W(C) = {1}. Any subgroup G(2D2k,Z2k,Z2,{1}, Id)×D ⊂ G will then

act freely on M .

(g) Let (A,A0,B) = (2D2l(2k+1),Z2k+1,2D2l) and l > 2. Since 2D2l is non-

commutative, we must consider also inner automorphisms in the construction

of our group C ⊂ SU(2)2. Denote by cg(w) the conjugation map by an element

g(w) ∈ {e iπw
l , je

iπw
l ∶ w ∈ Z} ⊂ 2D2l. The map defining C ⊂ SU(2)2 is given by

α ∶ z ↦ α(z) = ⎧⎪⎪⎨⎪⎪⎩
cg(w)(e iπxa

l ) if z = e
iπx

l(2k+1) ,

cg(w)(je iπ(a(x−1)+b+1)
l ) if z = je

iπx
l(2k+1) .

where (a, b) ∈ Z×2l × Z2l. In particular, C ⊂ SU(2)2 equals

{(e iπx
l(2k+1) , cg(w)(e iπxa

l )), (je iπy

l(2k+1) , cg(w)(je iπ(a(y−1)+b+1)
l )) ∶ x, y ∈ Z}.

An element in W(C) is thus either zero, or it is obtained from a solution of

(1 ± a(2k + 1))x = 0 mod 2l(2k + 1).
This situation that can be treated analogously as in case (a). At last, let

l = 2 and cw̃ be the conjugation map by an element w̃ ∈ 2O. We find that

C = {(e iπx
2(2k+1) , cw̃(e iπx

2 )), (je iπy

2(2k+1) , cw̃(je iπy

2 )) ∶ x, y ∈ Z},
and so, W(C) = Re(Z4). No new freely acting subgroups are thus obtained.

4.3 Type III groups

We seek now to distinguish freely acting type III groups C ×D ⊂ G. To begin

with, we assert that such groups must fulfill rather restrictive conditions a

priori.

Proposition 4.5. Let C × D ⊂ G be a type III freely acting group and

C = G(A,A0,B,B0, θ) ⊂ SU(2)2. Then (up to interchanging the roles of A

and B)
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(a) D = Z2k+1 or

(b) (A,A0,B,B0) ∈ {(2D2l(2k+1),Z2k+1,2D2l(2p+1),Z2p+1), (Z3(2k+1),Z2k+1,2T,

2D4), (Z(2k+1)l,Z2k+1,Zpl,Zp) , (Z2(2k+1),Z2k+1,2O,2T), (Z2(2k+1),Z2k+1,

2D4p,2D2p), (Z4(2k+1),Z2k+1,2D2(2p+1),Z2p+1), (2D2(2k+1),Z2k+1,2D2(2p+1),

Z2p+1), (2D2(2k+1),Z2k+1,Z4p,Zp)}.
Proof. Let C × D ⊂ G be a type III freely acting subgroup and Q(C) =
{A,A0,B,B0, θ} be the quintuple defining C ⊂ SU(2)2 via the homomor-

phisms α and β in equation (1.1). If D ⊂ SU(2) is a DE group or a cyclic

group of even order, and the groups A,B ⊂ SU(2) belong to the following

list: groups of type E, Zn and 2D2m, where n and m are powers of 2. A short

glance at Tables 3, 15 and 16 reveals that −1 ∈ A0 ∩ B0 ∩D. This can not

happen if C ×D ⊂ G acts freely on M , as otherwise (−1,−1,−1) ∈ C ×D ⊂ G.
By listing the remaining possibilities according to Tables 15, 16 and Theorem

1.1, we encounter the necessity of fulfilling (at least) one of the conditions in

the theorem if the group C ×D acts freely.

The technical result below will help us distinguishing type III freely acting

groups of the forms stated in Proposition 4.5.

Lemma 4.6. Let m,n, p ≥ 2. The equation,

cos(2πx
3n
) = c,

has a solution

(a) x ∈ 1 + 3Z for c = 1
2
, precisely if 6∣(n − 2) or 6∣(n + 2).

(b) x ∈ 1 + 3Z for c = −1
2
, precisely if 3∣(n − 1) or 3∣(n + 1).

(c) x ∈ 2 + 3Z for c = 1
2
, precisely if 6∣(n − 4) or 6∣(n + 4).

(d) x ∈ 2 + 3Z for c = −1
2
, precisely if 3∣(n − 2) or 3∣(n + 2).
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Theorem 4.7. For the groups C = G(A,A0,B,B0, θ) considered below,

which include the ones in part (b) of Proposition 4.5, we describe in each

case all type III groups C ×D ⊂ G that acts freely on M .

(a) Let C = G(Zkl,Zk,Zpl,Zp, ϕ(r)), then C ×D belongs to the following

list.

G(Zkl,Zk,Zpl,Zp, ϕ(r)) ×D
D Conditions
Zn gcd(n,ms) = 1
2D2n gcd(2n,ms) = 1
2T,2O 2,3 ∤ms

2I 2,3,5 ∤ms

Where the above conditions are required for both values of

m =mε = gcd(p − εkr, kl, lpk)),
for ε = ±1, and

s = kl

gcd(kl, lpk) .
(b) Let C = G(Z3n,Zn,2T,2D4, ϕ(r)) and assume that C ×D is not a sub-

group of a splittable freely acting group. Then it is either G(Z3n,Zn,2T,2D4,

ϕ(r)) × Z2p+1 with n even, subject to the conditions:

3 ∤ (n − 1), (n + 1), (n + 2), (n − 2),
or one of the following
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G(Z3n,Zn,2T,2D4, ϕ(r)) ×D, 2 ∤ n
6∣(n ± 2) ∨ 6∣(n ± 4) 3∣(n ± 1) ∨ 3∣(n ± 2) D Conditions

yes yes Zm 3 ∤m
2D2m 3 ∤m

yes no Zm 6 ∤m
2D2m 3 ∤m

no yes Zm 3 ∤m
2D2m 3 ∤m

no no All -

Table 19: Type III freely acting subgroups.

(c) Let C = G(2D2l(2k+1),Z2k+1,2D2l(2p+1),Z2p+1, cg(w) ○ τa,b) be such that

C ×D is not a subgroup of a freely acting splittable group. Then l > 2 and

C ×D = G(2D2l(2k+1),Z2k+1,2D2l(2p+1),Z2p+1, τa,b) × Zm′

subject to the conditions

4 ∤m′ ∧ gcd(m′,ms) = 1.
Here the latter condition is required for both values of

m =mε = gcd(2p + 1 − ε(2k + 1)a,2l(2k + 1),2l(2p + 1)(2k + 1)),
for ε = ±1, and

s = 2l(2k + 1)
gcd(2l(2k + 1),2l(2p + 1)(2k + 1)) .

(d) Let C = G(2D2(2k+1),Z2k+1,Z4p,Zp, ϕ(r)) be such that C ×D is not a

subgroup of a freely acting splittable group. Then the latter belongs to the

following table.

G(2D2(2k+1),Z2k+1,Z4p,Zp, ϕ(r)) ×D, p even
D Conditions

Zm,2D2m gcd(2k + 1, p,m) = 1
2T,2O 2,3 ∤ gcd(2k + 1, p)

2I 2,3,5 ∤ gcd(2k + 1, p)
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(e) Let C = G(2D2(2k+1),Z2k+1,2D2(2p+1),Z2p+1, ϕ(r)). Then C × D is a

subgroup of a splittable group that acts freely on M .

(f) Let C = G(Z2(2k+1),Z2k+1,2O,2T, Id). Then either 3 ∤ (2k + 1), in

which case any group C ×D acts freely on M , or in case 3∣(2k + 1), we have

D ∈ {Zm,2D2m} subject to the condition 3 ∤m.

(g) Let C = G(Z2(2k+1),Z2k+1,2D4p 2D2p, Id). Then C ×D is a subgroup of

a freely acting splittable group.

Proof. It suffices to figure out sufficient elements in

W(C) = {Re(x) ∶ Re(x) = Re(y), (x, y) ∈ C} ⊂ R
so we can read from them the precise conditions to impose on C ×D to act

freely on M .

(a) The maps defining C = G(Zkl,Zk,Zpl,Zp, ϕ(r)) ⊂ SU(2)2 are given by

α ∶ Zkl ∋ [x]kl ↦ [rx]l ∈ Zl , β ∶ Zpl ∋ [y]pl ↦ [y]l ∈ Zl.

In particular, C = {(e 2πix
kl , e

2πi(rx+yl)
pl ) ∶ y ∈ Z}. To determine W(C) we must

solve the congruence system

px = εk(rx + yl) mod lpk

separately for ε ∈ {−1,+1}. This leads to the following diophantine equation

in three variables (p − εkr)
m

x − εkl
m
y + lpk

m
z = 0,

where m = gcd(p − εkr, kl, lpk). Dividing this equation by lk
m

and setting

x = gx′ for x′ ∈ Z, where g = gcd(kl
m
, lpk

m
), we obtain the equation

(p − εkr)
kl

gx′ − εy + pz = 0,

which can be easily solved by considering it as an inhomogeneous equation
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in the variables y and z. The general solution is given by

x = gx′,

y = εp − εkr
kl

gx′ + λp,
z = ελ,

where the parameters x′ and λ are integers. Therefore

W(C) = Re(Zms), s = kl

gcd(kl, lpk) .
(b) The maps defining the group C = G(Z3n,Zn,2T,2D4, ϕ(r)) ⊂ SU(2)2

are given below.

α ∶ e 2πix
3n ↦ e

2πirx
3 , β ∶ z ↦ β(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if z ∈ 2D4

e
2πi
3 if z ∈ −1+i+j+k

2
2D4

e
4πi
3 if z ∈ 1+i+j+k

2
2D4 .

Thus, for r = 1 we get

C = {(e 2πix
n , z0), (e 2πi(1+3y)

3n , z1), (e 2πi(2+3z)
3n , z2) ∶ z0 ∈ 2D4, z1 ∈

−1 + i + j + k
2

2D4,

z2 ∈
1 + i + j + k

2
2D4, x, y, z ∈ Z},

whereas for r = 2,

C = {(e 2πix
n , z0), (e 2πi(1+3y)

3n , z1), (e 2πi(2+3z)
3n , z2) ∶ z0 ∈ 2D4, z1 ∈

1 + i + j + k
2

2D4,

z2 ∈
−1 + i + j + k

2
2D4, x, y, z ∈ Z},

For any value of r ∈ {1,2}, 0 or −1 is an element in W(C) precisely if 4∣n
or 2∣n respectively. Moreover, to verify if either 1

2
∈ W(C) or −1

2
∈ W(C)

amounts to solve each of the following equations,

cos(2π(1 + 3x)
3n

) = ±1
2
, cos(2π(2 + 3y)

3n
) = ±1

2
.
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Our analysis must distinguish according to the parity of n. For n even, the

element −1 lies inW(C) for r = 1,2, which implies D = Z2p+1 in order to have

a group acting freely. In such case 1
2
∉W(C) ∩Re(D), see Table 4. Observe

also that if −1
2
∈W(C) and the group C ×D acts freely on M , then similarly

3 ∤ (2p + 1), and so the former group will be a subgroup of the freely acting

splittable group A ×B ×D. In the opposite case, i.e. −1
2
/∈ W(C), we get a

new freely acting semi-splittable group, see Lemma 4.6.

Now, in case n is odd, then W(C) ⊂ {1,±1
2
}. The precise elements in

W(C) can be read off from Lemma 4.6 and a case by case analysis leads to

Table 19.

(c) Consider the group C = G(2D2l(2k+1),Z2k+1,2D2l(2p+1),Z2p+1, cg(w)○τa,b)
for l > 2, and its defining maps

α(z) = ⎧⎪⎪⎨⎪⎪⎩
cg(w)(e iπxa

l ) if z = e
iπx

l(2k+1)

cg(w)(je iπ(a(x−1)+b+1)
l ) if z = je

iπx
l(2k+1)

,

β(z) = ⎧⎪⎪⎨⎪⎪⎩
e

iπy

l if z = e
iπy

l(2p+1)

je
iπy

l if z = je
iπy

l(2p+1)

,

where (a, b) ∈ Z×2l×Z2l and g(w) ∈ {e iπw
l , je

iπw
l ∶ w ∈ Z}. It is easy to see that

zero is an element in W(C) for any g(w) ∈ 2D2l, and so we see the necessity

of having D = Zm′ for an integer m′ ∈ Z non-divisible by four. Furthermore,

since cg(w) sends the element e
iπxa

l either to itself or its inverse, the rest of

the elements in W(C) different from zero are determined similarly as in (a).

In fact, we have to solve

Px = ε(Rx +Ly)(2k + 1) mod LP (2k + 1),
where P = 2p + 1, L = 2l, R = ε′a and ε′ = ε′(g(w) is as follows

ε′(g(w)) = { 1 if g(w) = e iπx
l

−1 if g(w) = je iπx
l

Summarizing, we obtain

W(C) = {0} ∪Re(Zms),
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where

m = gcd(2p + 1 − εε′(2k + 1)a,2l(2k + 1),2l(2p + 1)(2k + 1)), ε ∈ {−1,1},
and

s = 2l(2k + 1)
gcd(2l(2k + 1),2l(2p + 1)(2k + 1)) .

This leads to the conditions stated in the theorem after absorbing the sign

ǫ′ into ǫ.

Now, let l = 2 and recall that any automorphism of 2D4 is obtained by

conjugation ϕw with an element w ∈ 2O. The maps defining C are:

α(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if z = e
2πix
(2k+1)

ϕw(j) if z = je
2πix
(2k+1)

ϕw(i) if z = e
iπ(1+4x)
2(2k+1)

−ϕw(k) if z = je
iπ(1+4x)
2(2k+1)

−1 if z = e
iπ(1+2x)
(2k+1)

−ϕw(j) if z = je
iπ(1+2x)
(2k+1)

−ϕw(i) if z = e
iπ(3+4x)
2(2k+1)

ϕw(k) if z = je
iπ(3+4x)
2(2k+1)

β(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if z = e
2πiy

(2p+1)

j if z = je
2πiy

(2p+1)

i if z = e
iπ(1+4y)
2(2p+1)

−k if z = je
iπ(1+4y)
2(2p+1)

−1 if z = e
iπ(1+2y)
(2p+1)

−j if z = je
iπ(1+2y)
(2p+1)

−i if z = e
iπ(3+4y)
2(2p+1)

k if z = je
iπ(3+4y)
2(2p+1)

Observe that for any choice of w we have that α(eiπ) = β(eiπ) = −1, and so

D = Zm with 2 ∤m. Moreover, since

α(e 2πix
(2k+1) ) = β(e 2πiy

(2p+1) ) = 1,
we have Z2k+1 × Z2p+1 ⊂ C. It follows that Re(Zgcd(2k+1,2p+1)) ⊂ W(C), and
hence the necessity to have

1 = gcd(2k + 1,2p + 1,m) = gcd(4(2k + 1),4(2p + 1),m).
(d) Now, consider C = G(2D2(2k+1),Z2k+1,Z4p,Zp, ϕ(r)). The group C is

equal to one of the following groups:

{(e 2πix
2k+1 , e

2πiy

p ), (je 2πix
2k+1 , e

πi(1+4y)
2p ), (e iπx

2k+1 , e
iπ(1+2y)

p ), (je iπx
2k+1 , e

iπ(3+4y)
2p ) ∶ x, y ∈ Z},

{(e 2πix
2k+1 , e

2πiy

p ), (je iπx
2k+1 , e

πi(1+4y)
2p ), (e iπx

2k+1 , e
iπ(1+2y)

p ), (je 2πix
2k+1 , e

iπ(3+4y)
2p ) ∶ x, y ∈ Z}.
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Let us distinguish according to the parity of p. If p is odd, then for any

choice of ϕ(r) we get −1 ∈W(C) and also

Re(Zgcd(2k+1,p)) ⊂W(C).
In order for C ×D to act freely on M , it is necessary to have D = Zm with

2 ∤m and

1 = gcd(2k + 1, p,m) = gcd(2(2k + 1),4p,m).
This shows that C ×D is a subgroup of a freely acting splittable group. Let

now p be even. In this case 0 ∉W(C) and
W(C) ⊃ Re(Zgcd(2k+1,p)).

The rest of the elements in W(C) are obtained by solving the following

equations

px = ε(2k + 1)(1 + 2y) mod 2p(2k + 1),
for any ε ∈ {1,−1}. Because p is even, these equations have no solution. In

other words, W(C) = Re(Zgcd(2k+1,p)) .
(e) The group C = G(2D2(2k+1),Z2k+1,2D2(2p+1),Z2p+1, ϕ(r)) is either one

of the following groups

{(e 2πix
2k+1 , e

2πiy

2p+1 ), j(e 2πix
2k+1 , e

2πiy

2p+1 ), (e iπ(1+2x)
2k+1 , e

iπ(1+2y)
2p+1 ), j(e iπ(1+2x)

2k+1 , e
iπ(1+2y)

2p+1 ) ∶ x, y ∈ Z},
{(e 2πix

2k+1 , e
2πiy

2p+1 ), j(e iπ(1+2x)
2k+1 , e

2πiy

2p+1 ), (e iπ(1+2x)
2k+1 , e

iπ(1+2y)
2p+1 ), j(e 2πix

2k+1 , e
iπ(1+2y)

2p+1 ) ∶ x, y ∈ Z}.
As in the first part of (d), we see that −1 ∈W(C) and W(C) ⊃ Zgcd(2k+1,2p+1).

Therefore, we must have D = Zm with m odd and

1 = gcd(2k + 1,2p + 1,m) = gcd(2(2k + 1),2(2p + 1),m).
Again this shows that C ×D is a subgroup of a freely acting splittable group.

(f) The group C = G(Z2(2k+1),Z2k+1,2O,2T, Id) is given by

{(e 2πix
2k+1 , z1)) ,(eπi(1+2x)

2k+1 , z2) ∶ z1 ∈ 2T, z2 ∈ e iπ
4 2T} .
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From this, one can verify that W(C) ⊂ {1,−1
2
}. This shows the claim.

(g) Let C = G(Z2(2k+1),Z2k+1,2D4p 2D2p, Id). It is readily seen that −1 ∈
W(C) and that the latter set contains Re(Zgcd(2(2k+1),2p)). We conclude the

necessity to impose the conditions: D = Zm with m odd and

1 = gcd(2(2k + 1),2p,m) = gcd(2(2k + 1),4p,m).
No new freely acting group is obtained in this way.

The following theorem ends up our classification of freely acting finite

subgroups C ×D ⊂ SU(2)3.
Theorem 4.8. Let C ×D be a type III freely acting group different from any

group occurring in Theorem 4.7. Then, either C ×D is a subgroup of a freely

acting splittable group, or it is one of the following groups.

G(A,A0,B,B0, θ) × Zm, 2 ∤m
A A0 B B0 Conditions
2I Z2 2I Z2 3 ∤m

2D6k Z2k 2O 2D4 3∣k
2D2kl Z2k 2D2pl Z2p gcd(m̃s,m) = 1

Where the above conditions for the group G(2D2kl,Z2k,2D2pl,Z2p, cw ○
τa,b) × Zm, are required for both values of

m̃ = m̃ε = gcd(p − εka, kl, lpk)),
for ε = ±1, and

s = kl

gcd(kl, lpk) .
Proof. We are left with the case D = Zm for m ∈ Z odd, see Proposition

4.5. It suffices again to find suitable elements in W(C). Since we have

numerous choices for C = G(A,A0,B,B0, θ), let us proceed by considering all
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possible candidates for F = B/B0 according to Tables 15 and 16, which were

not considered in Theorem 4.7.

(a) Let F ∈ {T,O, I}. In those cases A = B ∈ {2T,2O,2I} and A0 = B0 =
Z2. Let α ∶ A ↦ F and β ∶ B ↦ F be the maps defining C. Since the

automorphisms θ of B/Z2, for B = 2T,2O, is induced by conjugation with a

class [w] ∈ 2O/Z2 , we have α(x) = β(cw(x)) for any element x ∈ B. It follows

that W(C) = Re(B). This shows that C ×D is a subgroup of a freely acting

splittable group.

We treat now the case B = 2I. Because of the argument above, it suffices

to consider the (only) non-trivial outer automorphism of F in the construc-

tion of C. Since two elements [z], [w] in 2I/Z2 are conjugate (precisely) when

Re(z) = ±Re(w), see Table 11, the group 2I/Z2 has five conjugacy classes

C([yi]), i = 1, ...,5, with representatives yi ∈ 2I having (up to sign) every

possible real part of an element in 2I. On the other hand, if ϕ ∶ 2I/Z2 ↦
2I/Z2 is

the representative of the generator of Out(2I/Z2) described in item (6) Section

3.2, then it fixes all conjugacy classes except of the two conjugacy classes of

order 12, which are exchanged. It follows that W(C) = {0,±1,±1
2
}. This

leads to the additional condition 3 ∤m.

(b) Groups G(A,A0,B,B0, θ) ⊂ SU(2)2 giving rise to F ≅ 2D2l were ana-

lyzed in Theorem 4.7.

(c) Let F ≅ D2l for some integer l ≥ 2. Let C = G(2O,2D4,2O,2D4, cw ○
τa,b), where (a, b) ∈ Z×6 × Z6 and w ∈ 2O. We easily check that

(−1
2
(1 + i + j + k), cw (−1

2
(1 + i + j + k))) ∈ C,

whence a = 1 mod 6. As for if a = 5 mod 6, then

(−1
2
(1 + i + j + k), cw (1

2
(−1 + i + j + k))) ∈ C.

This implies that −1
2
∈ W(C) for any homomorphism cw ○ τa,b. This shows

that C ×D is a subgroup of a freely acting splittable group.
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Now, consider C = G(2D6p,Z2p,2O,2D4, cg(w) ○ τa,b), where (a, b) ∈ Z×6 ×Z6

and g(w) ∈ 2D6p = {e iπw
3p , je

iπw
3p ∶ w ∈ Z}. For a = 1 mod 6, we have

α (e 2πi
3 ) =

⎧⎪⎪⎨⎪⎪⎩
(1
2
(1 + i + j + k))2p 2D4 g(w) = e iπw

3p

(1
2
(1 + i + j + k))4p 2D4 g(w) = je iπw

3p ,

whereas for a = 5 mod 6

α (e 2πi
3 ) = ⎧⎪⎪⎨⎪⎪⎩

(1
2
(1 + i + j + k))4p 2D4 g(w) = e iπw

3p

(1
2
(1 + i + j + k))2p 2D4 g(w) = je iπw

3p ,

where β ∶ 2O ↦ 2O/2D4 is in both cases the natural map. Using the fact that

the order of the element

1

2
(1 + i + j + k)2D4 ∈ 2O/2D4

is 3, it follows that −1
2
∈ W(C) precisely if 3 ∤ p. In that case C ×D is a

subgroup of a freely acting splittable group. OtherwiseW(C)∩Re(D) = {1},
and so the group

G(2D6p,Z2p,2O,2D4, cg(w) ○ τa,b) ×D
acts freely on M .

Lastly, consider the case in which C = G(2D2kl,Z2k,2D2pl,Z2p, cw ○ τa,b).
To determine the elements ofW(C) different from zero, it suffices to consider

the subset of C ⊂ SU(2)2 given by

{(e iπx
kl , e

iπ(ax+ly)
pl ) ∶ x, y ∈ Z},

and so solve the equation

px = kε(ax + ly) mod 2kpl.

In fact, because m is odd, and hence

gcd(2kl,2pl,m) = gcd(kl, pl,m),
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we can consider

px = kε(ax + ly) mod kpl

instead. This situation was encountered in part (a) of Theorem 4.7, which

applied to this situation shows the claim.

(d) Let F ≅ Z2. For the group C = G(2O,2T,2O,2T, Id), we haveW(C) =
Re(2O), and so no new freely acting group will be obtained.

Consider the group C = G(2O,2T,Z2k,Zk, Id) and let

α ∶ z ↦ α(z) = { 1 if z ∈ 2T
−1 if z ∈ e iπ

4 2T
, β (e iπx

k ) = { 1 if x = 0 mod 2
−1 if x = 1 mod 2

be the maps defining it. We check that −1
2
lies in W(C) precisely if 3∣k.

It follows the necessity to impose on C × D the condition 3 ∤ gcd(k,m),
which implies that 3 ∤ gcd(2k,m), and so no new freely acting group will be

obtained in this fashion.

The group C = G(2D4k,2D2k,2O,2T, Id) is given by

{(e iπx
k , z), (je iπx

k , z), (e iπ(2x+1)
2k , e

iπ
4 z), (je iπ(2x+1)

2k , e
iπ
4 z) ∶ z ∈ 2T, x ∈ Z}.

A necessary condition to impose on C × D to act freely on M reads 3 ∤
gcd(k,m) = gcd(4k,m). Therefore, no new freely acting subgroup will be

found in this way.

The group C = G(Z2k,Zk,2D4p,2D2p, Id) is given as follows

{(e 2iπx
k , e

iπy

p ), (e 2iπx
k , je

iπy

p ), (e iπ(2x+1)
k , e

iπ(2y+1)
2p ), (e iπ(2x+1)

k , je
iπ(2y+1)

2p ) ∶ x, y ∈ Z}.
In consequence, W(C) = Re(Zgcd(k,2p)). Therefore the necessity to impose

1 = gcd(k,2p,m) = gcd(2k,4p,m),
and so there is no new freely acting subgroup.

Analogously, for any group C = G(2D4k,2D2k,2D4p,2D2p, Id), we have to

have

1 = gcd(4k,4p,m),
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and so no new freely acting subgroup is obtained in this fashion.

(e) Let F ≅ Z3. The analysis for G(Z3k,Zk,2T,2D4, ϕ(r)) was performed

in part (b) of Theorem 4.7, whereas for C = G(2T,2D4,2T,2D4, ϕ(r)), it is
not difficult to see that W(C) = Re(2T), and so no new freely acting groups

are obtained in this case.

(f) The groups C ⊂ SU(2)2 leading to F ≅ Zl for l ∉ {2,3} were analyzed

in Theorem 4.7.
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