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Abstract. We translate the concept of restriction of an arrangement in terms
of Hopf algebras. In consequence, every Nichols algebra gives rise to a simplicial
complex decorated by Nichols algebras with restricted root systems. As applica-
tions, some of these Nichols algebras provide Weyl groupoids which do not arise
for Nichols algebras over finite groups and in fact we realize all root systems of
finite Weyl groupoids of rank greater than three. Further, our result explains
the root systems of the folded Nichols algebras over nonabelian groups and of
generalized Satake diagrams.
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1. Introduction

Nichols algebras are Hopf algebras in a braided category, that enjoy certain uni-
versal properties and appear naturally in every pointed Hopf algebra. The most
prominent examples are the Borel parts uq(g)± of the small quantum groups. In fact
the Lie-theoretical flavour is retained in general, and we know from [AHS10] that
any Nichols algebra is controlled by a Weyl groupoid. This is a natural generaliza-
tion of a Weyl group, where different Dynkin diagrams are attached to the different
groupoid objects. Since [Cun11] we have a good perception of a Weyl groupoid as
an arrangement of hyperplanes, and in [CH13] all finite Weyl groupoids were clas-
sified: There are infinitely many finite Weyl groupoids of rank 2, an additional
infinite series between Dn and Cn, as well as 74 sporadic cases up to rank 8.

However, compared to the theory of semisimple Lie algebras where root systems
provide a complete classification (at least over the complex numbers), for Nichols
algebras the situation is more complicated: There are non-isomorphic Nichols alge-
bras whose corresponding Weyl groupoids are equivalent, and it is not known yet
whether all Weyl groupoids arise as symmetry structures of Nichols algebras (not
even in the case of finite Weyl groupoids). The latter problem has been brought up
on several occasions, notably by the first author at the Oberwolfach Mini-Workshop
on “Nichols Algebras and Weyl Groupoids” in 2012:

Question 1.1. Is there a Weyl groupoid which does not occur as symmetry structure
of a Nichols algebra?1 Is there a characterization of those root systems that cannot
appear as root systems of Nichols algebras?

One way to answer part of these questions is to introduce constructions produc-
ing new Nichols algebras (and hopefully new Weyl groupoids as well). For example,
folding of root systems has been investigated by the second author to construct
new large rank Nichols algebras over nonabelian groups [Len14a]. As proven re-
cently by Heckenberger and Vendramin [HV14], these Nichols algebras are the only
examples in large rank and characteristic zero. There are four exceptions of rank

1For Nichols algebras over groups, the answer is positive.
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two and three which are not obtained by this folding construction, and for rank
one the classification is still largely open. The second author hence asked at the
Oberwolfach Mini-Workshop on “Infinite dimensional Hopf algebras” in 2014:

Question 1.2. Systematically explain the impact of the folding contruction on the
root system2. Are there more general folding constructions on the root system
of a Nichols algebra? Is there a closed construction of all Nichols algebras over
nonabelian groups in this way?

In this article we discuss such a construction, which partly answers the previous
questions, namely restriction on the arrangement of hyperplanes given by the root
system. More precisely we proceed as follows:

The set A of hyperplanes α⊥ ⊂ V orthogonal to the roots is a crystallographic ar-
rangement and this induces an equivalence between crystallographic arrangements
and finite root systems. For details see the preliminaries in Section 2.

Let X be a subspace of V . Then the restriction AX is the set of hyperplanes
in A of the form X ∩H for H ∈ A. This construction is discussed in Section 3.
Typically, not all hyperplanes H ∈ A give rise to hyperplanes X ∩H in AX , and
several hyperplanes in A may give rise to the same hyperplane in AX .
There are two important special cases:
● The case when X is an intersection of some hyperplanes of A, we call this par-
abolic restriction. Then AX is automatically again crystallographic. In fact, most
finite Weyl groupoids appear in this way, including examples which are not at-
tained from Nichols algebras over groups.
● The case when X is the fixpoint set of an automorphism g of A. In general, AX

must not be crystallographic, but in several cases it is. In the special case where g
permutes a set of simple roots (called permutation restriction), these restrictions
describe the root system of the folded Nichols algebra over the centrally extended
group.

In Section 4 we turn our attention to Weyl groupoids of Nichols algebras. Let
J ⊂ I be a subset of simple roots for some Nichols algebra B(M), denote byMJ ⊂M

the corresponding sub-Yetter-Drinfel’d module and consider the associated Nichols

2This has previously been calculated by hand.
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algebra of coinvariants
B(M̄) ∶= B(M)coin(B(MJ)).

This is a Nichols algebra in the category of B(MJ)-Yetter-Drinfel’s modules. The
key result of this article in Theorem 4.13 is that the root system of B(M̄) is the
parabolic restriction AX , X = J⊥. Moreover, B(MJ) (determining the category)
corresponds precisely to the sub-arrangement of hyperplanes in A that do not give
rise to hyperplanes in AX , while the number of different hyperplanes in A that
give rise to the same hyperplane in AX , determines the dimensions of the Yetter-
Drinfel’d modules in the PBW-basis of B(M̄).

In Section 5 we conclude by viewing the set of all parabolic restrictions of a
Nichols algebra as a simplicial complex. In this picture, the reflection operation
for Nichols algebras has a particularly nice interpretation in terms of restrictions
and dualization.

We now discuss applications :

As first result, we obtain Nichols algebras with Weyl groupoids, which were not
attained from a previously known Nichols algebra over a group:
Theorem (4.14).

(1) There exist Nichols algebras whose corresponding crystallographic arrange-
ments are the sporadic arrangements of rank three labeled 7,13,14,15,20,23,
although these Nichols algebras do not exist over any finite group.

(2) Since every crystallographic arrangement of rank greater than three is a
restriction of a Weyl arrangement, every crystallographic arrangement of
rank greater than three is symmetry structure of some Nichols algebra.

Example 1.3. Let B(M) = uq(E7)+, which is a Nichols algebra of dimension ord(q2)63.
We consider the parabolic restriction indicated in the diagram:
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Then the restriction of the Weyl group arrangement E7 with 63 roots has a Weyl
groupoid of sporadic type 7 and 13 roots (one of which is nonreduced), namely

R̄a
+

ᾱ3 ᾱ4 ᾱ5 (1,1,0) (0,1,1) (1,1,1) +2(1,1,1)

multiplicity 2 2 3 4 6 12 +3
R̄a
+

(1,2,1) (2,2,1) (1,2,2) (2,3,2) (2,3,3) (2,4,3) (3,4,3)

multiplicity 6 3 6 6 2 1 2

This yields a Nichols algebra B(M̄) of dimension ord(q2)58 over an object M
of rank 3 and dimension 2 + 2 + 3 in the braided category B(MJ)

B(MJ)
YD with J =

{α1, α2, α6, α7}, where B(MJ) is an ordinary Borel part uq(A1 ×A1 ×A2)+.

The graphical representation using black dots is suggested by Satake diagrams
of Lie algebras3. Indeed, we define folding of a crystallographic arrangement (resp.
the root system of a Weyl groupoid) as the restriction to the fixed-point set X of
some automorphism group of the root system, and we prove a respective Lemma
3.9 that enables us to classify such scenarios again by Satake diagrams. Note that
we even get new Satake diagrams for ordinary Lie algebras, where the restricted
root system corresponds to a Weyl groupoid. This gives rise to the following po-
tential applications:

First, it points to the more general folding construction for Nichols algebras: In
this article we do not define the respective (non-parabolic) restriction of Nichols
algebras, that should come with an additional group action on the root spaces
Mα, but in the cases in [Len14a] the restriced root system AX yields precisely
the correct root system. In Example 4.12 we identify an inclusion chain of three
Nichols algebra, for which restriction would reproduce the correct root system
and root space dimensions for the exceptional Nichols algebras of rank 3,2,1 over
nonabelian groups involving S3 in [HV14]:

Secondly, Satake diagrams for Nichols algebras of Lie type appear prominently
in the theory of quantum symmetric pairs, introduced by Noumi, Sugitani, and
Dijkhuizen for g of classical type in connection with the reflection equation and

3We thank S. Kolb for having brought up this topic to our attention at the Oberwolfach
miniworkshop mentioned above.
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in theoretical physics (see e.g. [NS95]) and independently by G. Letzter from the
Iwasawa decomposition for the quantum group (see e.g. [Let97]), generalized to
Kac Moody algebras by [Kolb14]. Our results show that one can consider more
general Satake diagrams for Lie type root systems, which do not yield Lie type
root systems anymore, as in the example above. On the other hand they allow
Satake diagrams to be considered for arbitrary Nichols algebras, in particular for
super Lie algebras and color Lie algebras. Conversely, these authors have explicit
methods to construct coideal subalgebras corresponding to the fixed-point set of
the root system automorphism. This might give the right inspiration for con-
structing the respective restricted Nichols algebra in the general (non-parabolic,
non-permutation) case.

2. Weyl groupoids and crystallographic arrangements

2.1. Simplicial arrangements. Let r ∈ N, V ∶= Rr. For α ∈ V ∗ we write α⊥ =
ker(α). We first recall the definition of a simplicial arrangement (compare [OT92,
1.2, 5.1]).

Definition 2.1. An arrangement of hyperplanes A is a finite set of hyperplanes
in V . Let K(A) be the set of connected components (chambers) of V /⋃H∈AH. If
every chamber K is an open simplicial cone, i.e. there exist α∨1 , . . . , α∨r ∈ V such
that

K = {
r

∑
i=1

aiα
∨

i ∣ ai > 0 for all i = 1, . . . , r} =∶ ⟨α∨1 , . . . , α
∨

r ⟩>0,

then A is called a simplicial arrangement.
Example 2.2.

(1) The picture on the left is a simplicial arrangement in R2. The picture on
the right is a representation of a three dimensional simplicial arrangement
in the projective plane. The simplicial cones become triangles in this rep-
resentation.
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(2) Let W be a real reflection group, R the set of roots of W . Then A = {α⊥ ∣

α ∈ R} is a simplicial arrangement.

2.2. Crystallographic arrangements. Let A = {H1, . . . ,Hn}, ∣A∣ = n be simpli-
cial. For each Hi, i = 1, . . . , n we choose an element xi ∈ V ∗ such that Hi = x

⊥

i and
let R ∶= {±x1, . . . ,±xn} ⊆ V ∗.

For each chamber K ∈ K(A) set

∆K = { normal vectors in R of the walls of K pointing to the inside }.

If α∨1 , . . . , α∨r is the dual basis to ∆K = {α1, . . . , αr}, then K = ⟨α∨1 , . . . , α
∨

r ⟩>0 since
A is simplicial.

We are now ready for the main definition.

Definition 2.3. Let A be a simplicial arrangement and R ⊆ V ∗ a finite set such that
A = {α⊥ ∣ α ∈ R} and Rα∩R = {±α} for all α ∈ R. We call (A,R) a crystallographic
arrangement if for all K ∈ K(A):

R ⊆ ∑
α∈∆K

Zα.

Two crystallographic arrangements (A,R), (A′, R̄) in V are called equivalent if
there exists ψ ∈ Aut(V ∗) with ψ(R) = R̄. We then write (A,R) ≅ (A′, R̄).

Example 2.4. (1) Let R be the set of roots of the root system of a crystallo-
graphic Coxeter group. Then ({α⊥ ∣ α ∈ R},R) is a crystallographic ar-
rangement.

(2) If R+ ∶= {(1,0), (3,1), (2,1), (5,3), (3,2), (1,1), (0,1)}, then
({α⊥ ∣ α ∈ R+},R+∪̇ −R+) is a crystallographic arrangement.

As most crystallographic arrangements are not defined by reflection groups, they
have less symmetries in general. As a substitute for this large symmetry group, it
turns out that a corresponding Weyl groupoid is the right symmetry structure.

2.3. Cartan graphs and Weyl groupoids. We now define the notion of a Weyl
groupoid which was introduced by Heckenberger and Yamane [HY08] and refor-
mulated in [CH09]. But before we present the axioms, let us look at an example.

Example 2.5. Let α1 = (1,0,0), α2 = (0,1,0), α3 = (0,0,1), and

Ra
+
∶= {α1, α2, α3, (0,1,1), (0,1,2), (1,0,1), (1,1,1), (1,1,2)}.
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For 1 ≤ i, j ≤ 3, define entries ci,j of a matrix C by

ci,j ∶= −max{k ∣ kαi + αj ∈ R
a
+
}, ci,i ∶= 2 for i ≠ j,

thus

Ca = (ci,j)i,j =

⎛
⎜
⎜
⎝

2 0 −1

0 2 −1

−1 −2 2

⎞
⎟
⎟
⎠

.

This is a generalized Cartan matrix. It defines reflections via

σi(αj) = αj − cijαi for j = 1,2,3.

For instance,

σ1 =

⎛
⎜
⎜
⎝

−1 0 1

0 1 0

0 0 1

⎞
⎟
⎟
⎠

and
σ1(R

a
+
) = {−α1, α2, (1,0,1), (1,1,1), (2,1,2), α3, (0,1,1), (1,1,2)}.

The elements of σ1(Ra
+
) are positive or negative. Let Ra = Ra

+
∪ −Ra

+
and Rb =

σ1(Ra) =∶ Rb
+
∪ −Rb

+
. Again, one can construct a Cartan matrix from Rb

+
and it

gives new reflections. In this example, we obtain a diagram:

⎛

⎜
⎜
⎜

⎝

2 0 −1

0 2 −1

−1 −1 2

⎞

⎟
⎟
⎟

⎠

σ3
⎛

⎜
⎜
⎜

⎝

2 −1 −1

−1 2 −1

−1 −1 2

⎞

⎟
⎟
⎟

⎠

σ2
⎛

⎜
⎜
⎜

⎝

2 −1 0

−1 2 −1

0 −1 2

⎞

⎟
⎟
⎟

⎠

σ1

⎛

⎜
⎜
⎜

⎝

2 0 −1

0 2 −1

−1 −2 2

⎞

⎟
⎟
⎟

⎠

σ1

⎛

⎜
⎜
⎜

⎝

2 −1 0

−1 2 −2

0 −1 2

⎞

⎟
⎟
⎟

⎠

For the general definition, we first recall:

Definition 2.6. Let I ∶= {1, . . . , r} and {αi ∣ i ∈ I} the standard basis of ZI . A
generalized Cartan matrix C = (cij)i,j∈I is a matrix in ZI×I such that

(M1) cii = 2 and cjk ≤ 0 for all i, j, k ∈ I with j /= k,
(M2) if i, j ∈ I and cij = 0, then cji = 0.

The above diagram of matrices is a Cartan graph4:

4In earlier papers, Cartan graphs were called Cartan schemes. The new term was chosen by
Andruskiewitsch, Heckenberger and Schneider to avoid confusion with geometric schemes.
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Definition 2.7. Let A be a non-empty set, ρi ∶ A → A a map for all i ∈ I, and
Ca = (cajk)j,k∈I a generalized Cartan matrix in ZI×I for all a ∈ A. The quadruple

C = C(I,A, (ρi)i∈I , (C
a)a∈A)

is called a Cartan graph if

(C1) ρ2
i = id for all i ∈ I,

(C2) caij = c
ρi(a)
ij for all a ∈ A and i, j ∈ I.

Definition 2.8. Let C = C(I,A, (ρi)i∈I , (Ca)a∈A) be a Cartan graph. For all i ∈ I and
a ∈ A define σai ∈ Aut(ZI) by

σai (αj) = αj − c
a
ijαi for all j ∈ I.(1)

The Weyl groupoid of C is the category W(C) such that Ob(W(C)) = A and the
morphisms are compositions of maps σai with i ∈ I and a ∈ A, where σai is considered
as an element in Hom(a, ρi(a)). The cardinality of I is the rank of W(C).

Definition 2.9. A Cartan graph is called connected if its Weyl groupoid is con-
nected, that is, if for all a, b ∈ A there exists w ∈ Hom(a, b). The Cartan graph
is called simply connected, if Hom(a, a) = {ida} for all a ∈ A. There is a straight
forward notion of equivalence of Cartan graphs which we skip here.

Let C be a Cartan graph. For all a ∈ A let

(Rre)a = {idaσi1⋯σik(αj) ∣k ∈ N0, i1, . . . , ik, j ∈ I} ⊆ ZI .

The elements of the set (Rre)a are called real roots (at a). The pair (C, ((Rre)a)a∈A)

is denoted by Rre(C). A real root α ∈ (Rre)a, where a ∈ A, is called positive (resp.
negative) if α ∈ NI

0 (resp. α ∈ −NI
0).

Definition 2.10. Let C = C(I,A, (ρi)i∈I , (Ca)a∈A) be a Cartan scheme. For all a ∈ A
let Ra ⊆ ZI , and define ma

i,j = ∣Ra ∩ (N0αi +N0αj)∣ for all i, j ∈ I and a ∈ A. We say
that

R =R(C, (Ra)a∈A)

is a root system of type C, if it satisfies the following axioms.

(R1) Ra = Ra
+
∪ −Ra

+
, where Ra

+
= Ra ∩NI

0, for all a ∈ A.
(R2) Ra ∩Zαi = {αi,−αi} for all i ∈ I, a ∈ A.
(R3) σai (Ra) = Rρi(a) for all i ∈ I, a ∈ A.
(R4) If i, j ∈ I and a ∈ A such that i /= j and ma

i,j is finite, then (ρiρj)
mai,j(a) = a.
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The root system R is called finite if for all a ∈ A the set Ra is finite. By [CH09,
Prop. 2.12], if R is a finite root system of type C, then R = Rre, and hence Rre is
a root system of type C in that case.

Remark 2.11. If C is a Cartan graph and there exists a root system of type C, then
C satisfies

(C3) If a, b ∈ A and id ∈ Hom(a, b), then a = b.

Example 2.12 (Lie type). Let g be a semisimple finite-dimensional complex Lie al-
gebra. Then this is uniquely determined (up to isomorphisms) by its corresponding
root system, which is the root system of a finite Weyl groupW . The corresponding
Cartan graph has exactly one object a where Ca is the Cartan matrix of W . The
set Ra is the root system of W .

2.4. Classification of finite Weyl groupoids. Connected simply connected
Cartan graphs for which the real roots are a finite root system (these are also
called universal finite Weyl groupoids) are in one-to-one correspondence with crys-
tallographic arrangements. Under the correnspondence, every chamber of the ar-
rangements corresponds to an object; the sets Ra are the coordinates of R with
respect to the basis ∆K where K corresponds to a.

Theorem 2.13. [see [Cun11]] Let A be the set of all crystallographic arrangements
and C be the set of all connected simply connected Cartan graphs for which the real
roots are a finite root system. Then the map

C/≅ → A/≅, C = C(I,A, (ρi)i∈I , (Ca)a∈A)↦ ({α⊥ ∣ α ∈ Ra},Ra),

where a is any object of C, is a bijection.

A series of five papers by the first author and Heckenberger culminates in the
following complete classification of finite Weyl groupoids and thus equivalently of
crystallographic arrangements.

Theorem 2.14 (see [CH13]). There are exactly three families of irreducible crys-
tallographic arrangements:

(1) The family of rank two parametrized by triangulations of convex n-gons by
non-intersecting diagonals.

(2) For each rank r > 2, arrangements of type Ar, Br, Cr and Dr, and a further
series of r − 1 arrangements denoted Akr(2) in [OT92, 6.4].
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(3) Further 74 “sporadic” arrangements of rank r, 3 ≤ r ≤ 8.

Remark 2.15. Theorem 2.14 classifies simply-connected Cartan graphs. Every Car-
tan graph has a simply-connected cover. For example the Cartan graph of Lie type
has a single Cartan matrix and the Weyl groupoid has a single object with auto-
morphism group the Weyl group W . The simply-connected cover has ∣W ∣ Cartan
matrices, all of the same type, and its Weyl groupoid has ∣W ∣ objects and no non-
trivial automorphisms.
Automorphism groups and minimal quotients of finite Weyl groupoids have all
been determined in [CH13]. Whether one can consider such non-simply-connected
quotients depends on additional data in the application. For example, the Lie alge-
bra sl3 resp. the Lie superalgebra sl(2∣1) have the same associated arrangement A2,
but in the first case one usually considers the Weyl group (one object), while in the
latter case some roots are labeled differently, so there are two types of chambers.

3. Restrictions of arrangements and root systems

Definition 3.1 ([OT92, 1.12-1.14]). Let A be an arrangement in V . We denote
L(A) the set of all nonempty intersections of elements of A.

For a subspace X ≤ V , define a subarrangement AX of A called the localization
at X by

AX = {H ∈ A ∣X ⊆H}.

Define an arrangement AX in X called the restriction to X by

AX = {X ∩H ∣H ∈ A/AX and X ∩H ≠ ∅}.

If A is a reflection arrangement of a Coxeter group W , then localizations of A
are the reflection arrangements of parabolic subgroups of W . Thus localizations
are easy to understand from the algebraic point of view. Restrictions AX however
are not reflection arrangements in general, even in the case when X is in the
intersection lattice L(A). For crystallographic restrictions on the other hand, we
get our first class of examples:

3.1. Parabolic restriction. In this subsection we discuss the following case of
restriction:

Definition 3.2. A parabolic restriction of an arrangement A is a restriction AX to
an intersection of existing hyperplanes X ∈ L(A).
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In contrast to parabolic localization AX this corresponds to quotienting out a
parabolic subgroup and the result is in general not a reflection arrangement. Note
that any parabolic restriction can be obtained by repeatedly restricting to a single
hyperplane H ∈ A.

It is an easy fact that (see [CRT12], [BC12]):

Lemma 3.3. Let (A,R) by a crystallographic arrangement, then any parabolic
restriction AX to some X ∈ L(A) is again a crystallographic arrangement.
More precisely, a root system R̄ for AX is given as follows: Suppose without loss
of generality X ∈ A a single hyperplane and a chamber K chosen adjacient to X,
say by suitable numbering X = α⊥1 . Then the restriction of A to X = α⊥1 is

Aα
⊥
1 = {β′⊥ ∣ β ∈ R, β ≠ α1},

where if β = ∑α∈∆K bαα, then

β′ =
1

gcd(bα ∣ α1 ≠ α ∈ ∆K)
∑

α1≠α∈∆K

bαα.

Thus we obtain the restriction by deleting the coordinate to α1 and reducing to the
shortest vector in the lattice.

Example 3.4. Let α1 = (1,0,0), α2 = (0,1,0), α3 = (0,0,1).

a) Let Ra
+
∶= {α1, α2, α3, (0,1,1), (1,1,0), (1,1,1)}, and let A ∶= {α⊥ ∣ α ∈ Ra

+
} be

the crystallographic arrangement of Lie type A3. Then the restriction AH of
A to any hyperplane H = α⊥i is the crystallographic arrangement of type A2

defined by R̄a
+
= {(1,0), (0,1), (1,1)}.

b) Let Ra
+
∶= {α1, α2, α3, (0,1,1), (0,1,2), (1,0,1), (1,1,1), (1,1,2)}, and let A ∶=

{α⊥ ∣ α ∈ Ra
+
} (which is not of Lie type). Then the restriction AH of A to the

hyperplane H = α⊥1 is the crystallographic arrangement of Lie type B2 (or C2

depending on the used definition) defined by R̄a
+
= {(1,0), (0,1), (1,1), (1,2)}.

c) Now let

Ra
+
= {(0,0,1), (0,1,0), (0,1,1), (0,1,2), (1,0,0), (1,1,0), (1,1,1), (1,1,2), (1,2,2)},

A ∶= {α⊥ ∣ α ∈ Ra
+
}, thus Ra is a root system of type B3. Choose H ∶= (1,0,0)⊥.

Then AH is the set of kernels of

R̄a
+
= {(0,1), (1,0), (1,1), (1,2)}.
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Looking more closely, we notice that there are several hyperplanes in A which
restrict to the same element of AH . For example, three different roots map to
the root (1,1), namely (0,1,1),(1,1,1),(1,2,2).

We can see two effects at this last example:

(1) It may be useful to keep track of the number of hyperplanes falling together
under restriction. Thus instead of considering arrangements of hyperplanes,
one should consider arrangements of hyperplanes with multiplicities (these
are called multiarrangements).

(2) A-priori, the vectors with the deleted coordinate do not form a reduced root
system, i.e. they may have the form kα for k ∈ Z/{±1} and α in the lattice.
The reduction requires to rescale a root, for example (1,2,2)↦ 1

2(2,2).

It would make sense to include the information of these two situations into the set-
ting of Cartan graphs, but this would possibly make things more complicated than
necessary. Notice that in the connected simply-connected case, crystallographic ar-
rangements, Weyl groupoids, or Cartan graphs are all uniquely determined by the
roots at a single object, hence by a single set Ra

+
⊆ Zr.

Definition 3.5 (compare [CH13]). We will say that a finite set Φ ⊆ Zr is a reduced
root set of rank r if there exists a Cartan graph C of rank r and an injective linear
map w ∶ Zr → Zr such that w((Rre)a) = Φ for some object a.

Definition 3.6. A (nonreduced) root set of rank r is a set Φ ⊆ Zr such that

{
1

gcd(a1, . . . , ar)
α ∣ α = (a1, . . . , ar) ∈ Φ}

is a reduced root set. The simple roots of Φ are the simple roots of the root system
at the object of the Cartan graph given by the definition of ‘root set’.

A root multiset is a root set Φ together with a map Φ→ N, α ↦mα.

3.2. All parabolic restrictions of finite root systems. By Theorem 2.13 the
root systems are in 1 ∶ 1 correspondence with crystallographic arrangements. Thus
Theorem 2.14 is a complete classification of simply-connected Cartan graphs.

In the following we compute all restrictions to existing hyperplanes (parabolic
restrictions, see Definition 3.2) of all root systems in terms of their arrangement:

Theorem 3.7. In rank three, the only crystallographic arrangements which are
(parabolic) restrictions from higher dimensional crystallographic arrangements are
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those labeled
1,2,3,6,7,8,9,13,14,15,20,23

in [CH13]. From rank four to rank eight, only the reflection arrangements of types
E6, E7, and E8 are not restrictions of higher dimensional Weyl arrangements of
the infinite series. Every crystallographic arrangement of rank greater than 8 is
restriction of a Weyl arrangement.

Proof. The first two assertion are straightforward calculation performed by the
computer using the classification, see Theorem 2.14. The last assertion is proven
as follows: Every crystallographic arrangement in dimension greater than 8 is either
a Weyl arrangement or an arrangement denoted Ak` (2) in [OT92, 6]. But according
to [OT92,Table 6.2], Ak` (2) is the restriction of an arrangement A0

`′ for some `′ large
enough, and A0

`′ is the arrangement of type D`′ . �

3.3. Folding restriction. A second important source of examples is as follows:
We say that a finite group G acts on an arrangement A if G acts on V such that
g.A = A for any g ∈ G. Moreover we say G acts on a crystallographic arrangement
(A,R) if g.R = R for all g ∈ G, where g acts on V ∗ by (g.α)(v) = α(g−1(v)) for
α ∈ V ∗.
If there exists a chamber K where G permutes the simple roots, we call the action
a permutation action and it is equivalent to a permutation action of G on the
Dynkin diagram resp. Cartan matrix of R in K.

Definition 3.8. A folding restriction of an arrangement A with an action of G is
the restriction AX to the subspace X = V G of fixed points. We similarly define a
folding restriction and a permutation restriction of a crystallographic arrangement
(A,R).

In the sequel we will use the following notation. If (A,R) is crystallographic and
K is a chamber of A, then

RK
+
∶=

⎧⎪⎪
⎨
⎪⎪⎩

α ∈ R ∣ α ∈ ∑
γ∈∆K

N0γ

⎫⎪⎪
⎬
⎪⎪⎭

.

Thus R = RK
+
∪̇ −RK

+
for every K. The sets RK

+
should not be confused with the

positive roots Ra
+
at an object of a Weyl groupoid. If a is the object corresponding

to the chamber K, then Ra ⊆ Zr is the set of coordinate vectors with respect to
∆K .
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We show the following easy characterization which generalizes the approach in
[Ar62] for Lie type arrangements to classify real Lie algebras:

Lemma 3.9. Let g be an involutive automorphism of the crystallographic arrange-
ment (A,R). Then the folding restriction can be decomposed into two steps: First
a parabolic restriction of A to X1 ∈ L(A) where X1 is a suitable subspace invari-
ant under g, then by a permutation restriction of AX1 with respect to a suitable
chamber K2.

Proof. The proof yields X1, a2 and the explicit permutation action, and provides
an efficient diagrammatic description of the possible actions of cyclic groups on
crystallographic arrangements (comparable to Satake diagrams in [Ar62]):

a) Let K be a chamber, such that ∣g.RK
+
∩ −RK

+
∣ is minimal, which surely exists.

Denote ∆ = ∆K the positive simple roots at K.
b) If α ∈ ∆, then g.α ∈ RK

+
or g.α = −α: Otherwise, consider the chamber K ′

adjacent to K with RK′
+

= (RK
+
/{α})∪ {−α}. If g.α = −β ∈ −RK

+
and β ≠ α, then

∣g.RK′

+
∩ −RK′

+
∣ = ∣g.RK

+
∩ −RK

+
∣ − 1,

which contradicts the assumed minimality. Note that we use here that g is
involutive, such that g.α = −β also imples g−1.α = −β, so no root in RK

+
maps

to α.
c) Let ∆1 ∶= (−g−1.∆) ∩∆, thus the set of α ∈ ∆ with g.α = −α. Define X1 ∶= ∆⊥1 ∈

L(A). Since g.α = −α for α ∈ ∆1, X1 is invariant under g. Further, if v ∈X = V G,
then g.v = v. Hence α(v) = (−α)(v) for all α ∈ ∆1, i.e. X ⊆X1.

d) Consider the partition ∆ ∶= ∆1 ∪ ∆2, in particular g.∆2 ⊂ RK
+
. We claim that

there is a permutation g(_) of the set ∆2, such that g.αi = αg(i) +N∆1. Indeed,
modulo R∆1 the actions of g, g−1 are inverse positive integer matrices, hence
permutation matrices.

e) Consider the parabolic restriction AX1 and let K2 ∶= K ∩X1 be the respective
chamber, then by the above, g acts as a permutation on the crystallographic
arrangement AX1 and the full restriction toX = V G ⊆X1 is hence a permutation
restriction.

�

Remark 3.10. Even if (AX , R̄) is not crystallographic, it could be crystallographic
with respect to a different choice of roots.
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It is not true that every parabolic restriction can be obtained from a folding
restriction for some suitable automorphism g:

Lemma 3.11. For J ⊂ I, there exists an automorphism g, such that parabolic
restriction to X = J⊥ coincides with folding restriction by g, if and only if the per-
mutation automorphism (i.e. diagram automorphism) fJ ∶= −wJ (on the parabolic
subsystem generated by J with wJ the longest element), together with the identity
permutation on all simple roots I/J is a permuatation automorphism for the entire
arrangement.

Take as counterexample A2 ⊂ A3 or also A2 ⊂ A4. The condition is however
always fulfilled for parabolic restrictions by one simple root!

Proof. Let f be such an extension of fJ = −wJ and consider the automorphism
g ∶= wJf . On the subsystem RK

J it acts as −id, while on the remaining positive
roots it acts by adding terms in RK

J,+ i.e. as the identity modulo RK
J . We now

apply Lemma 3.9: We see that for a simple root αi ∈ ∆K , by construction we have
g.α ∈ RK

+
for i ∈ I/J or g.αi = −αi for i ∈ J . Hence ∆1 = J and thus the first

parabolic restriction X1 = J⊥ is the parabolic restriction in question. Furthermore,
since g acts on the remaining simple roots by identity modulo RK

J , the second
permutation restriction is trivial.

Vice-versa, for any automorphism g by Lemma 3.9 we have a chamber K and a
set of simple roots ∆1 ⊂ ∆ with the property g.αi = −αi, and a permutation π on
the other roots ∆/∆1 such that g.α ∈ π(α) +RK

+,J . The folding restriction by g is
a parabolic restriction to ∆1 and then a permutation restriction.

Since it needs to coincide by assumption with parabolic restriction to J , we have
J ⊂ ∆, moreover J = ∆ and σ = id. We can consider w−1

J g, which is a permutation
automorphism f . On the subsystem J , f is equal to −wJ =∶ fJ and on the remaining
roots the identity, as claimed. �

Remark 3.12. Compare the condition of this Lemma to the condition fulfilled by
the quotient root systems used for parabolic induction of cuspidal representations
in Lusztig’s character theory of finite Lie groups.

Note that the permutation induces a permutation automorphism of root systems
already on the localization to ∆2, in particular a diagram automorphism of the
sub-Dynkin diagram. One may hence enumerate all possible automorphism by
listing root systems, where for some object a, Ra has a symmetric sub-diagram
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(and say color all nodes in ∆1 black) as done for Satake diagrams. Alternatively
(and maybe more feasible for us) one may compute all parabolic restrictions as
done below and then enumerate all full permutation automorphisms. A different
way to classify root system automorphisms (even if g is not involutive) is

Lemma 3.13. For any automorphism g of a crystallographic arrangement and
any chamber K we can write g = wf , where w is the Weyl groupoid element de-
fined by w(K) = g(K) and f is a permutation automorphism of the object K (so
in particular a diagram automorphism of the respective Dynkin diagram, possibly
trivial).

Proof. This is easily proven as for Lie algebras: The autmorphism g has to send
a chamber K to some chamber K ′. By transitivity of the Weyl groupoid on the
set of chambers we find a (unique) w with w(K) =K ′. Then both w−1g and g−1w

leave K invariant and act hence as mutually inverse, integral positive matrix on
RK
+
. They are hence again permutation matrices. �

It is not as easy as for parabolic restriction to determine the resulting root
system of a folding restriction. In the special case of permutation restriction, the
new set of roots R̄ consists of the orbits of R under G:

Example 3.14. In all of the following examples, the diagram automorphism induc-
ing g is pictured, as well as the resulting root system including multiplicities. Note
that foldings for Lie type such as a)-c) are of course well-known.

a) Let Ra
+
= {(1,0), (0,1)} be of Lie type A1×A1 and g the permutation transposing

α1 ↔ α2. A basis for V is α∨1 , α∨2 , hence the invariant subspace is X = vR ∶=

(α∨1 + α
∨

2)R. The restriction of the arrangement is of course of type A1 (two of
the four chambers are intersected). The restrictions of the roots α1, α2 ∈ R to
(AX , R̄) are both ᾱ1 ∶= (v ↦ 1) which can be expressed in terms of the orbit
Gα1 = {α1, α2} as follows

ᾱ1 =
α1 + α2

2
= α{1,2} where αGα ∶=

1

∣G∣
∑
g∈G

g.α

(this also justifies our initial choice of scaling v = ᾱ∨1 ). Hence R̄a
+
is reduced of

Lie type A1 with root ᾱ1 = α{1,2} of multiplicity 2.
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b) Let Ra
+
= {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,0,1,0), (0,1,0,1)} be

of Lie type A2 × A2 and g the permutation transposing α1 ↔ α2, α3 ↔ α4.
Then the restriction is R̄a

+
= {(1,0), (0,1), (1,1)} with two simple roots and one

non-simple root each corresponding to an orbit of length 2:

ᾱ1 = α{1,2}

ᾱ2 = α{3,4}

ᾱ1 + ᾱ2 =
α1 + α2 + α3 + α4

2
= α{13,24}

The restriction is hence a reduced root system of Lie type A2 and all roots have
multiplicity 2.

c) Let Ra
+
= {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,1,1)} be of Lie type

A3 and g the permutation transposing α1 ↔ α3. Then the restriction is R̄a
+
=
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{(1,0), (0,1), (1,1), (2,1)} with the following roots:

ᾱ1 = α{1,3}

ᾱ2 = α2

ᾱ1 + ᾱ2 =
α1

2
+ α2 +

α3

2
= α{12,23}

2ᾱ1 + ᾱ2 = α1 + α2 + α3 = α123

The restriction is hence reduced of Lie type B2 with short roots of multiplicity
2 and long roots of multiplicity 1.

d) Let Ra
+
= {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)}, which is

not of Lie type, let g be the permutation transposing α1 ↔ α3. Then the
restriction is R̄a

+
= {(1,0), (0,1), (1,1), (2,0), (2,1)} and hence of Lie type B2

and multiplicities 1,2 as in the previous case, but this time non-reduced, i.e.

[Mᾱ1 ,Mᾱ1] =M2ᾱ1 ≠ 0

A similar effect appears already when folding a so-called loop A2, see [Len14a].

We finally give examples for general folding restrictions.
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Example 3.15. Similarly to Satake diagram (first example), according to the proof
of Lemma 3.9, we draw the permutation of the simple roots in ∆2 and denote the
simple roots in ∆1 by blackend dots.

a) Let RK
+

= {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,1,1)} be of Lie type
A3 and g the automorphism

g ∶=

⎛
⎜
⎜
⎝

0 0 1

1 −1 1

1 0 0

⎞
⎟
⎟
⎠

.

We have g.RK
+
∩ −RK

+
= {−α2} which is minimal (so K is already chosen suit-

ably) and thus ∆1 = {α2} and ∆2 = {α1, α3}. Moreover, modulo ∆1 we have a
permutation g ∶ α1 ↔ α2. The restriction to X1 = α⊥2 is of type A2 with mul-
tiplicities 2 for the two simple roots and 1 for the non-simple root. Note that
while the root system is of Lie type, the multiplicities are not invariant under
all reflections and we thus get a Weyl groupoid covering the Weyl group A3

(similar to a Lie superalgebra). As a second step, the permutation restriction
by the transposition g yields a non-reduced root system of Lie type A1 where
ᾱ1 has multiplicity 4 and 2ᾱ1 has multiplicity 1.

4. Arrangements and Nichols algebras

4.1. Nichols algebras. Let C be a braided category, then there is a straightfor-
ward notion of a Hopf algebra in C. For this and especially the notion of Yetter-
Drinfel’d modules in braided categories see e.g. [BLS14]. To simplify the discussion
we assume in this article C = h

hYD where h is a complex Hopf algebra.

Definition 4.1. Let M = M1 ⊕ ⋯ ⊕Mn be a semisimple object in C with simple
summands Mi. We call n the rank of M . The Nichols algebra B(M) is an N-
graded Hopf algebra in the category C with B(M)0 = 1C the identity object in C
and B(M)1 =M primitive elements ∆(m) = 1 ⊗m +m ⊗ 1 which generate B(M)
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as an algebra.
The Nichols algebra B(M) can be defined by the following equivalent properties:

● Every N-graded Hopf algebra B′ with the above properties admits a unique
graded Hopf algebra surjection B′ → B(M) which is the identity on M .
That is, B(M) is the quotient of the tensor algebra T (M) by the largest
Hopf ideal J in degree ≥ 2.

● The pairingM⊗M∗ → C induces a Hopf pairing B(M)⊗B(M∗)→ C which
is nondegenerate. That is, B(M) is the quotient of the tensor algebra T (M)

by the radical of the Hopf pairing T (M)⊗ T (M∗)→ C.
● More explicitly, B(M) is the quotient of T (M) in each degree k by the
kernel of the quantum symmetrizer, which is defined in terms of the braid
group action M⊗k →M⊗k.

While the last characterization enables one in principle to compute B(M) in each
degree, it is extremely difficult to find generators and relations for B(M) or even
determine for a given M if it is finite-dimensional.

Since B(M) is an N-graded algebra with finite-dimensional degree layers, we
may consider the Hilbert series, a formal power series

H(t) ∶=∑
k≥0

dim (B(M)k) t
k.

In particular, if the dimension is finite then dim(B(M)) = H(1). We frequently
use the symbol (n)t ∶= 1 + t + t2 +⋯ + tn−1.

The first examples serves to fix notation:

Example 4.2. Let h = C[Γ] and Γ be an abelian group. Then the braided category
C = h

hYD is semisimple. The finite-dimensional simple objects are 1-dimensional
vector spaces Mi = xiC together with a group element gi ∈ Γ and a linear character
χi ∶ G→ C×. The braiding is given by

Mi ⊗Mj →Mj ⊗Mi,

xi ⊗ xj ↦ qij xj ⊗ xi, qij ∶= χj(gi).

We call such a braiding diagonal and qij the braiding matrix. From the third char-
acterization we see that the Nichols algebra B(M) depends only on the braiding
matrix (qij)i,j ofM . Conversely, every diagonal braiding can be realized as Yetter-
Drinfel’d module, say over Γ = Zn.



A SIMPLICIAL COMPLEX OF NICHOLS ALGEBRAS 22

Example 4.3. Let q ∈ C×. Let M = M1 be the one-dimensional complex braided
vector space with basis x1 and braiding matrix (q11) = (q). The Nichols algebra is

B(M) ≅ C[x1]/(x
`
1)

if q is a primitive `-th root of unity, and B(M) ≅ C[x1] if q = 1 or not a root of
unity. In the first case, the Hilbert series is (`)t, in the second case 1

1−t .

The next example exhibits the role of Nichols algebras as quantum Borel parts.

Example 4.4. Let q be a primitive `-th root of unity and assume for simplification
2,3 ∤ ` and ` > 3. Let g be a complex finite-dimensional semisimple Lie algebra of
rank n, let α1, . . . αn be a set of simple roots, R+ the set of positive roots, and let
(, ) be the Killing form, normalized to (αi, αi) = 2 for short simple roots αi.
Consider the Yetter-Drinfel’d modules M = M1 ⊕⋯ ⊕Mn over the abelian group
Γ = Zn` generated by gi and Mi = EiC with group element gi and character
χi(gj) ∶= q(αi,αj).
Then B(M) is finite-dimensional with Hilbert series ∏α∈R+(`)tdeg(α) , thus of dimen-
sion `∣R+∣. In fact B(M) ≅ uq(g)+ is as an algebra the positive part of the small
quantum group.

4.2. TheWeyl groupoid of a Nichols algebra. The structure theory of Nichols
algebras is dominated by the structure of the Weyl groupoid, which generalizes the
role of reflection operators in quantum groups as introducted by Lusztig [Lusz90],
and allows to define a root system for the Nichols algebra. For M,qij diagonally
braided (see above) Heckenberger has introduced in a series of papers reflections
and an arithmetic root system in terms of the bicharacter induced by qij and fi-
nally classified all finite-dimensional Nichols algebras in terms of their root systems
in [Heck09]. More generally in [AHS10][HS10] Andruskiewitsch, Heckenberger, and
Schneider have introduced a Weyl groupoid and root system for arbitrary semisim-
ple M ∈ h

hYD. We shall sketch their approach in the form discussed in [HS13] or
[BLS14]:

LetM =M1⊕⋯⊕Mn be a finite-dimensional semisimple object in C = h
hYD and

assume for simplicity that B(M) is already finite-dimensional. For any i the pro-
jection M →Mi induces a projection πB(M) → B(Mi). By the Radford projection
theorem we may write

B(M) ≅K ⋊ B(Mi), K = B(M)coin B(Mi) ∶= {h ∣ (id⊗ πi)∆(h) = h⊗ 1}
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where the space of coinvariants K with respect to πi is a Hopf algebra in the
braided category B(Mi)

B(Mi)
YD(C) and ⋊ is the Radford biproduct.

By the second characterization of Nichols algebras we have a non-degenerate
Hopf pairing B(M) ⊗ B(M∗) → C. One can show that this induces a category
equivalence Ω ∶

B(M)

B(M)
YD →

B(M∗
)

B(M∗)YD. Now we may turn Ω(K) ∈
B(M∗

)

B(M∗)YD again
into a Hopf algebra in C, the reflection:

ri(B(M)) ∶= Ω(K) ⋊ B(M∗).

The previous operation is neither restricted to Nichols algebras nor to the category
C = h

hYD and was dubbed partial dualization in [BLS14]. In general H,r(H) can
be quite different although one can prove H

HYD ≅
r(h)

r(h)
YD.

For a Nichols algebra B(M), Andruskiewitsch, Heckenberger and Schneider de-
scribe this operation in much more detail: In particular, ri(B(M)) ≅ B(Ri(M)) is
again a Nichols algebra for some explicit Ri(M) ∈ C. We summarize some results
of [AHS10], [HS10], and [HS13]:

Theorem 4.5. Let h be a complex Hopf algebra. Let Mi be a finite collection of
simple h-Yetter-Drinfel’d modules. Consider M ∶=⊕n

i=1Mi ∈ h
hYD and assume that

the associated Nichols algebra H ∶= B(M) is finite-dimensional. Then the following
assertions hold:

● By construction, the Nichols algebras B(M), ri(B(M)) have the same di-
mension as complex vector spaces.

● For i ∈ I, denote by M̂i the braided subspace

M̂i =M1 ⊕ . . .⊕Mi−1 ⊕Mi+1 ⊕ . . .⊕Mn

ofM . Denote by adB(Mi)
(M̂i) the braided vector space obtained as the image

of M̂i ⊂ B(M) under the adjoint action of the Hopf subalgebra B(Mi) ⊂

B(M). Then, there is a unique isomorphism [HS13, Prop. 8.6]

Ki ≅ B(adB(Mi)
(M̂i))

of Hopf algebras in the braided category B(Mi)

B(Mi)
YD ( h

hYD) which is the iden-
tity on adB(Mi)

(M̂i).
● Define, with the usual convention for the sign,

−cij ∶= max{m ∣ admMi
(Mj) ≠ 0} cii = 2.
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Fix i ∈ I and denote for j ≠ i

Vj ∶= ad
−cij
Mi

(Mj) ⊂ B(M) .

The braided vector space

Ri(M) = V1 ⊕⋯M
∗

i ⋯⊕ Vn ∈
h
hYD

is called the the i-th reflection of the braided vector space M . Then there is
a unique isomorphism [HS13, Thm. 8.9] of Hopf algebras in h

hYD

ri(B(M1 ⊕⋯⊕Mn)) ≅ B(V1 ⊕⋯M
∗

i ⋯⊕ Vn)

which is the identity on M .
● With the same definition for cij for i ≠ j and cii ∶= 2, the matrix (cij)i,j=1,...n

is a generalized Cartan matrix [AHS10, Thm. 3.12]. Moreover, one has
r2
i (B(M)) ≅ B(M), and the Cartan matrices coincide, cMij = c

ri(M)

ij . One
obtains a Cartan graph where each object a ∈ A corresponds to some reflec-
tion B(Ma).

● The maps ri give rise to a Weyl groupoid: The objects are the different
isomorphism classes of tuples (M1, . . . ,Mn) and the formal morphisms
M → ri(M) are generated by reflections Zn → Zn with respect to cMij .

● Let Ra
+
the set of positive roots, and choose a reduced expression for the

longest element in the Weyl groupoid, then there is an isomorphism of N-
graded objects in C (not algebras), or PBW-basis:

B(Ma) = ⊗
α∈Ra+

Mα.

Here Mα are certain simple object in C, namely =Ma
i if Hα is adjacent to

the object a. For details, we refer to [AHS10, Sect. 3.5] and [HS10, Sect. 5].

Note that a crucial point is that the algebras B(M), ri(B(M)) can be quite
different and in particular their Cartan matrix (cij)ij may be different – in contrast
to quantum groups, where all reflections are isomorphic as algebras. This is why
we obtain a Weyl groupoid instead of a Weyl group, a Cartan graph instead of a
single Cartan matrix, and more root systems than for semisimple Lie algebras.

For (M, (qij)i,j) diagonal, Heckenberger had already described ri(M), q′ij as the
explicit base transformation of the bicharacter induced by the reflection αj ↦

αj −cijαi, αi ↦ −αi, where the Cartan matrix (cij)ij associated to (M, (qij)i,j) can
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be calculated by

cii = 2, cij = −min{m ∣ (m + 1)qii = 0 or qiiqijqji = 1}, i ≠ j.

Theorem 4.6 (Heckenberger, [Heck09]). Any finite-dimensional complex Nichols
algebra in the categoy of Yetter-Drinfel’d modules over an abelian group Γ

ΓYD

appears in Heckenberger’s list [Heck09].

The respective root systems are many, but not all possible root systems and
Weyl groupoids as classified by Heckenberger and the first author, see Section 2.4.
For instance, there are infinitely many Weyl groupoids of rank 2 and many more
exceptional Weyl groupoids in rank 3.

The following class of examples of type B2 contains as special case the Borel
part uq(B2)+ when the braiding matrix (qij)ij is chosen symmetric.

Example 4.7. Let q, q4 ≠ 1 be an `-th root of unity and Mα1 ,Mα2 be 1-dimensional
Yetter-Drinfel’d modules (say over Γ = Z2) such that the braiding matrix fulfills

qα1α1 = q
2, qαiαjqαjαi = q

−4, qα2α2 = q
4.

The previous formula yields the Cartan matrix and Dynkin diagram of Ma ∶=

Mα1 ⊕Mα2 :

(caij)i,j = (
2 −1

−2 2
)

The reflection on the short root α1 given by this Cartan matrix gives for r1(M)

α′1 = −α1 and α′2 = α2 + 2α1. For the braiding matrix of r1(M) we thus get by base
transformation of the bicharacter:

qα′1α′1 = qα1α1 = q
2

qα′2α′2 = qα2α2q
2
α1α2

q2
α2α1

q4
α1α1

= q4−8+8 = q4

qα′1α′2 = q
−1
α1α2

q−2
α1α1

qα′2α′1 = q
−1
α1α2

q−2
α1α1

We observe that in general the Yetter-Drinfel’d module r1(M) given by qα′iα′j is
not isomorphic to M (for the special case qij = qji appearing in uq(B2)+ it is!).
However we easily check

q′α1α2
q′α2α1

= q−1
α1α2

q−1
α2α1

q−4
α1α1

= q4−8 = qαiαjqαjαi ,
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so r1(M) =Mα′1
⊕Mα′2

has the same Cartan matrix as M (this can not be deduced
merely from the Dynkin diagram). The same can be checked for r2(M). We thus
obtain a Cartan graph with a single Cartan matrix for all reflections Ma. The
arrangement and set of positive roots is of Lie type B2:

Ra
+
= {α1, α2, α12, α112} = {(1,0), (0,1), (1,1), (2,1)}

with notation α12 ∶= α1 + α2, α112 ∶= 2α1 + α1. The self-braidings are

qα1α1 = qα12α12 = q
2, qα2α2 = qα112α112 = q

4.

Hence the PBW-basis Theorem gives an isomorphism of N-graded Γ-Yetter-Drinfel’d
modules:

B(Ma) ≅ ⊗
α∈Ra+

Mα

= C[t1]/(t
ord(q2)
1 )⊗C[t2]/(t

ord(q4)
2 )⊗C[t12]/(t

ord(q2)
12 )⊗C[t112]/(t

ord(q4)
112 ).

For ` odd, q2, q4 both have order `, hence the Hilbert series is (`)2
t (`)t2(`)t3 and in

particular the dimension is `4.

We also give an example which is not of Lie type and which we will use in the
following. It is a finite-dimensional Nichols algebra B(M) of diagonal type of rank
3 appearing in [Heck09, row 11]. The rows 9,10 define the same arrangement, but
different roots of unity involved and hence more types of objects with the same
Cartan matrix. The arrangement associated to this Nichols algebra as well as all
restrictions are calculated in Section 5.3.

Example 4.8. Let Mα1 ,Mα2 ,Mα3 be 1-dimensional Yetter-Drinfel’d modules (say
over Z3) such that the braiding matrix fulfills

qαiαi = −1, qαiαjqαjαi = ζ,

with i ≠ j and ζ a primitive third root of unity. The associated crystallographic
arrangement has 7 roots. It is called A1

3(2) and the first member of a series.

Ra
+
= {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)}.

From this we easily see the Dynkin diagram/Cartan matrix is a simply-laced tri-
angle and not of Lie type:
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The self-braidings of these roots are

qαiαi = −1, qαij ,αij = ζ, qα123 = −1.

Hence the Nichols algebra B(Ma), Ma = Mα1 ⊕Mα2 ⊕Mα3 has Hilbert series
(2)3

t (3)
3
t2
(2)t3 and dimension 432.

We calculate the reflection to an object a′ with respect to α2: The simple roots
at a′ are then α′1 ∶= α12, α′2 ∶= −α2, α′3 ∶= α23 and the braiding matrix fulfills

qα′1α′1 = qα′3α′3 = ζ, qα′2α′2 = −1,

qα′1α′2qα′2α′1 = qα′2α′3qα′3α′2 = ζ
−1, qα′1α′3qα′3α′1 = 1.

The respective roots in the basis α′1, α′2, α′3 can easily be either again calculated or
directly read off from transforming Ra

+
:

Ra′

+
= {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,2,1)}

which has Dynkin diagram/Cartan matrix A2, but is not of Lie type, since it has
a different root system.

The Hilbert series is now (2)t(3)2
t (2)

2
t2
(2)t3(3)t4 but of course the dimension is

still 432.

We finally give an example over the nonabelian dihedral group D4. It has been
constructed first in [MS00] in the context of Coxeter groups. Later, in [Len14a] it
has been constructed by the second author as smallest example of a new family
of large-rank finite-dimensional indecomposable Nichols algebras, introducing the
folding construction of non-diagonal Nichols algebras from diagonal ones (in this
case A2 ×A2 with q = −1). The reader may compare the root system below with
the root system in 3.14 b). A similar construction for c) returns a decomposable
Nichols algebra of type B2.



A SIMPLICIAL COMPLEX OF NICHOLS ALGEBRAS 28

Example 4.9. Let Γ = D4 = ⟨a, b⟩/(a4 = b2 = 1, ba = a−1b) then one can define 2-
dimensional simple Yetter-Drinfel’d modulesMα1 ,Mα2 associated to the conjugacy
classes [ab], [b]. In fact, the Nichols algebra B(M) for M =Mα1 ⊕Mα2 has a root
system of type A2 and Mα12 is also 2-dimensional and associated to the conjugacy
class [a]. Altogether this Nichols algebra has Hilbert series (2)4

t (2)
2
t2

and thus
dimension 26, indeed just like uq(A2 ×A2)+ with q = i.

Note that in [Heck09] all finite-dimensional complex Nichols algebras over abelian
groups (equivalently with diagonal braiding) have been classified, and very re-
cently in [HV14] all finite-dimensional complex indecomposable Nichols algebras
over nonabelian groups. For later use we note that only a subset of all finite Weyl
groupoids (Theorem 2.14) appear in these cases:

Corollary 4.10. Using the labeling introduced in [CH13], the following crystallo-
graphic arrangements of rank three come from Weyl groupoids of finite-dimensional
Nichols algebras of diagonal type,

types A3,B3,C3,A
1
3(2),A

2
3(2), and the sporadic ones labeled 1,2,3,6,8,9,

and the following come from complex finite-dimensional indecomposable Nichols
algebras over nonabelian groups,

types A3,C3, and the sporadic one labeled 9.

Note that by Theorem 3.7, all of these are (parabolic) restrictions of Weyl arrange-
ments.

Question 4.11. As already mentioned in the previous example, all such Nichols
algebras of rank < 4 over nonabelian groups had been uniformly constructed in
[Len14a] by folding ; they have root systems of type An,Cn,E6,E7,E8, F4. The
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resulting root system was calculated by hand and can now be understood as a
restriction. It would be interesting to give a larger class of constructions:

● By considering foldings of Nichols algebras of non-Lie type, such as Exam-
ple 3.14 d).

● By considering Satake-type foldings with nontrivial ∆1, which tends to
drastically decrease the rank. This leads a-priori to Nichols algebras in
other braided categories.

● In the affine setting, compare with the quantum affine algebra foldings in
[Len14b].

In particular one would like to construct via some generalized folding the remaining
exceptional cases of low-rank 2,3 classified in [HV14] and known (and possibly new)
cases of rank 1.

Example 4.12. In rank 3, apart from A3,C3, there is only one finite dimensional
exceptional Nichols algebra over a nonabelian group (defined for any field with a
third root of unity or any field characteristic 3). It is not of Lie type, but has the
root system rank 3 no. 9 with 13 roots and root space dimensions (in the first
object a with B3 Cartan matrix, see [HV14, Lm. 8.8]):

α ∈ Ra
+

dim(Mα)

1,2,12,12234,12334,122334 1
232,1232,12232 2
3,23,123,12233 3

The rank 2 parabolic generated by α2, α3 is an exceptional Nichols algebra over a
nonabelian group and has a standard root system of typeB2. The three-dimensional
rank 1 parabolics are the Nichols algebras of dimension 12 over the nonabelian
group S3, which was the first known Nichols algebra over a nonabelian group
[MS00].

Ideally one would want to construct also these Nichols algebras via restriction,
and we start our search with purely parabolic restrictions (no diagram automor-
phism). Indeed we find, that a restriction of the sporadic root system of rank 4
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no. 7 with 25 roots (and the parabolics rank 3 no. 2 and B2) have precisely the
right multiplicities. Moreover, they can be realized (in characteristic 0 with ζ a
primitive third root of unity) by an inclusion chain of diagonal Nichols algebras,
namely row 17, row 16 and row 6 for q = −1:5

Hence we can obtain Nichols algebras with the right root system and root space
dimensions in the category of C[x]/(x3)-Yetter-Drinfel’d modules. However the
Hilbert series’ do not coincide completely, e.g. in the smallest example we obtain
a Nichols algebra with Hilbert series (2)t(3)t(6)t instead of (2)t(3)t(2)t over the
group S3, which suggests to somehow consider a subalgebra of graded index (3)t2 .
If and how our Nichols algebras above can indeed be turned into Nichols algebras
over the respective nonabelian groups is not clear at this point (for the folding in
[Len14a] this was a central extension, but this cannot be true for S3).

4.3. Restrictions of Nichols algebras. Let B(Ma) be the Nichols algebra of
a semisimple object Ma = Mα1 ⊕ ⋯ ⊕Mαn in a braided category C, and assume
for now C = h

hYD. Let (A,R) be the associated n-dimensional crystallographic
arrangement where the chamber a has positive simple roots ∆a = {α1, . . . , αn}.

Fix some αi. Recall that in the construction of the reflection rαi in Section 4.2
we have considered the algebra of coinvariants B(M̄) of the Hopf algebra map
π ∶ B(Ma)→ B(Mαi), which is a Hopf algebra in a different braided category

B(M̄) ∶= B(Ma)coin B(Mi) ∈
B(Mαi)

B(Mαi)
YD(C),

and by Theorem 4.5 it is a Nichols algebra B(M̄) in this category and thus has
an associated root system. The aim of the next theorem is to show that the root
system of B(M̄) is precisely the restricted root system (AX , R̄) with X = α⊥i . It
moreover gives interpretations for the restriction multiplicities and possible non-
reducedness of (AX , R̄) in terms of B(M̄). Repeating this argument for a subset
J of simple roots, we get a similar statement for an arbitrary intersection of hy-
perplanes X = J⊥.

5Images from Heckenberger’s list modified by adding a black dot.



A SIMPLICIAL COMPLEX OF NICHOLS ALGEBRAS 31

Let us give in advance a heuristic argument, that underlies the proof below: The
restriction to X induces a map of sets (additive where appropriate) between the
set of roots R → R̄∪{0} and we denote by ᾱ ∈ R̄a

+
∪{0} the image of a root α ∈ Ra

+
.

● The preimage of 0 are all roots α where X ⊂ α⊥, i.e. in terms of arrange-
ments the localization AX , i.e. in terms of roots the parabolic subsystem
generated by J .

In the PBW-basis of B(M) =⊗α∈Ra+
B(Mα) the respective factors B(Mβ)

for all β with β̄ = 0 hence form precisely the PBW-basis of the subalgebra
B(MJ) with MJ =⊕i∈JMαi .

● The preimage of any ᾱ ≠ 0 is a root α up to addition of roots in J .
Hence morally, adding all preimages of ᾱ should yield an irreducible
B(MJ)-Yetter-Drinfel’d submodule, with rank, as h-Yetter-Drinfel’d mod-
ule, given by the number of preimages and hence the restriction multiplicity.

M̄ᾱ ∶= ⊕
β,β̄=ᾱ

Mβ.

However, since in general Mαi+β ≠ adMαi
(Mβ) this is not true, but we can

argue similarly with other M̄ᾱ defined via the right hand side expression.
● Finally, in the PBW-decomposition of B(M̄) only the roots ᾱ with 1

k ᾱ /∈

R̄+ appear. The other factors B(Mβ), β̄ ∈ Nᾱ appear implicitly as higher
commutators of B(M̄ᾱ). This is why we work with the non-reduced system.

Finally this yields a PBW-decomposition of B(M̄) according to (AX , R̄a
+
):

B(M̄ᾱ) = ⊗
β,β̄∈Nᾱ

B(Mβ), B(M̄) = ⊗
ᾱ∈R̄a+

B(M̄ᾱ).

We now turn to the exact proof:

Theorem 4.13.

a) Assume Ma =Mi⊕Mj is of rank 2 and B(M) is finite-dimensional. Then there
is an isomorphism of N-graded B(Mi)

B(Mi)
YD(C)-objects

⊗
αi≠α∈Ra+

B(Mα) ≅ B(M̄ᾱj), M̄ᾱj ∶= adB(Mi)
(Mj).

(Note that the tensor factors are not B(Mi)-Yetter-Drinfel’d modules.)
b) In the previous case the restricted root systems of Aα⊥i and of B(M̄) are trivially

coinciding (type A1), but moreover the restriction multiplicity of ᾱj ∈ R̄a
+
equals

the rank of the new simple summand M̄ᾱj as semisimple object in C. Non-
reducedness, i.e. 2ᾱj ∈ R̄a

+
, implies [M̄ᾱj , M̄ᾱj] ≠ 0.
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c) Let Ma =⊕i∈IMi and assume B(M) is finite-dimensional with root system Ra
+
.

For J ⊂ I let MJ = ⊕i∈JMi and let (AX , R̄),X = J⊥ be the restricted root
system. Then there exists an isomorphism

⊗
ᾱ∈R̄a+

B(M̄ᾱ) ≅ B(M
a)coin B(MJ)

of NI/J-graded objects in B(MJ)

B(MJ)
YD(C) for suitable M̄ᾱ ∈

B(MJ)

B(MJ)
YD(C) where in

particular M̄ᾱj ∶= adB(MJ)
(Mj) for j /∈ J . Moreover, the restriction multiplicity

of ᾱ determines the rank of the new simple summand Mᾱ as semisimple object
in C and non-reducedness, i.e. 2ᾱ ∈ R̄a

+
implies [M̄ᾱ, M̄ᾱ] ≠ 0.

d) In the previous situation, for the Nichols algebra B(M̄) ∶= B(Ma)coin B(MJ) in
the category B(MJ)

B(MJ)
YD(C), the associated root system (crystallographic arrange-

ment) in the sense of the Theorem 4.5 coincides with the reduced crystallo-
graphic arrangement of the restricted root system (AX , R̄) with X = J⊥ in the
sense of Lemma 3.3.

Proof.
a) By Theorem 4.5 (PBW basis) we have an isomorphism of N2-graded C-objects

⊗
α∈Ra+

B(Mα) ≅ B(M),

and since the map is multiplication in B(M) it is an isomorphism in B(Mi)

B(Mi)
YD(C)

(of course the tensor factors are no submodules in this matter).
By the same theorem we have an isomorphism of N-graded B(Mi)

B(Mi)
YD(C)-objects

B(adB(Mαi)
(Mαj)) ≅ B(M)coin B(Mi).

By the Radford projection theorem we have an isomorphism of C-algebras

B(M) ≅ B(Mi)⊗ B(M)coin B(Mi),

x↦ π(x(1))⊗ π(S(x(2)))x(3),

ab↤ a⊗ b.

and since the N-grading in the rank 1 Nichols algebra B(adB(Mαi)
(Mαj)) is given

by the radical filtration and the B(Mi)-action by the adjoint action, this is even
an isomorphism of N-graded B(Mi)

B(Mi)
YD(C)-objects.

Altogether we get a surjective map of N-graded B(Mi)

B(Mi)
YD(C)-objects

⊗
α∈Ra+

B(Mα)
mult.
Ð→ B(M)

x↦π(S(x(1)))x(2)

Ð→ B(M)coin B(Mi) ≅ B(adB(Mi
(Mj)).
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We immediately see that ⋯⊗B(Mi)+ is in the kernel. Hence this factorizes to the
following surjective map, which is even an isomorphism since the dimensions are
equal:

⊗
αi≠α∈Ra+

B(Mα)
≅

Ð→ B(adB(Mi)
(Mj)).

b) By definition

M̄ = adB(Mi)
(Mj) =

∞

⊕
k=0

adkMi
(Mj) =

−cij

⊕
k=0

adkMi
(Mj)

and by Theorem 4.5 all adkMi
(Mj) are simple C-objects. Hence the rank of M̄ as

C-object is 1 − cij. On the other hand the roots restricting to ᾱj in Aα⊥i are all
elements in the root string αj, αj + αi, . . . , αj − cijαi, so the two numbers coincide
as claimed. The claim about non-reducedness comes from considering the dimen-
sions, since M̄ generates B(M̄).

c) Since both parabolic restriction and taking coinvariants can be performed root-
by-root it suffices to treat the case J = {α1}. As in a) we have by the PBW basis
theorem an isomorphism of NI/J -graded objects in B(MJ)

B(MJ)
YD(C)

⊗
α∈Ra+

B(Mα) ≅ B(M
a)

and by the Radford projection theorem an isomorphism of NI/J -graded objects in
B(MJ)

B(MJ)
YD(C)

⊗
α∈Ra+/R

a
J,+

B(Mα) ≅ B(M
a)coin B(MJ)

where Ra
J,+ ∶= R

a
+
∩ JN is the parabolic subsystem (localization). Now restriction

to (AJ
⊥
, R̄) defines a surjective map (even compatible with addition where appro-

priate)
Ra
+
/Ra

J,+ → R̄a
+

where the preimages of ᾱj is the root string (αj + Nαi) ∩ Ra
+
. Similarly all other

preimages of ᾱ are root strings after reflection, i.e. in some other object a′ where
α is in a parabolic subsystem ⟨αi, αj⟩. Reordering (which is clearly isomorphism)
and using for each ᾱ the rank 2 result of a) yields the desired isomorphism. The
claims on multiplicities and nonreducedness follow from c).
d) Since we obtained in c) a decomposition

⊗
ᾱ∈R̄a+

B(Mᾱ) ≅ B(M̄)
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of the Nichols algebra in NI/J -graded B(MJ)-Yetter-Drinfel’d modules, and the
degrees of this decomposition is by construction given by AX , we can apply the
uniqueness result in [HS10] Theorem 4.5 (2).6 �

4.4. Nichols algebras with new Weyl groupoids. Recall from Corollary 4.10
that only certain root systems appear as root systems of Nichols algebras in
C[G]

C[G]
YD. Parabolic restriction produces Nichols algebras in other braided categories

B(M̄) ∶= B(M)coin B(MJ) ∈
B(MJ)

B(MJ)
YD(C)

and by Theorem 4.13 the root system and Weyl groupoid corresponds to the
restricted root system (AX , R̄), X = J⊥. We hence find an answer to Question 1.1:

Theorem 4.14.

(1) There exist Nichols algebras whose corresponding crystallographic arrange-
ment are the sporadic arrangements of rank three labeled 7,13,14,15,20,23,
although such a Nichols algebra does not exist over any finite group. These
have 13,16,17,17,19,19 positive roots respectively, and are restrictions of
the reflection arrangements of type E7,E8,E8,E8,E8,E8 respectively.

(2) Since every crystallographic arrangement of rank greater than three is a
(parabolic) restriction of a Weyl arrangement, every crystallographic ar-
rangement of rank greater than three is symmetry structure of some Nichols
algebra.

Question 4.15. Do all root systems appear as root systems of some Nichols algebra
in some braided category C?

We now give first an example with a new sporadic Weyl groupoid of rank three
labeled 7:

Example 4.16. Let B(M) = uq(E7)+, which is a Nichols algebra of dimension
ord(q2)63. We consider the parabolic restriction indicated in the diagram:

6We thank Jing Wang for pointing out this uniqueness result for the root system.
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Then the restriction of the Weyl group arrangement E7 with 63 roots has a Weyl
groupoid of sporadic type 7 and 13 roots (one of which is nonreduced), namely

Ra
+

ᾱ3 ᾱ4 ᾱ5 (1,1,0) (0,1,1) (1,1,1) +2(1,1,1)

multiplicity 2 2 3 4 6 12 +3
Ra
+

(1,2,1) (2,2,1) (1,2,2) (2,3,2) (2,3,3) (2,4,3) (3,4,3)

multiplicity 6 3 6 6 2 1 2

This yields a Nichols algebra B(M̄) of dimension ord(q2)58 over an object M
of rank 3 and dimension 2 + 2 + 3 in the braided category B(MJ)

B(MJ)
YD with J =

{α1, α2, α6, α7}, where B(MJ) is an ordinary Borel part uq(A1 ×A1 ×A2)+.

We continue with some smaller, more explicit examples with common Weyl
groupoids that illustrate the impact of parabolic restriction:

Example 4.17. Let M1 = x1C and M2 = x2C be Yetter-Drinfel’d modules over
Z2 ×Z2 = ⟨g1, g2⟩ with

χ1(g1) = −1, χ2(g1) = −1,

χ1(g2) = 1, χ2(g2) = −1.

Then the Nichols algebra B(M1 ⊕M2) is of Lie type A2,

Ra
+
= {(1,0), (0,1), (1,1)},

and multiplication in the Nichols algebra induces an isomorphism of graded vector
spaces

B(x1)⊗ B(x1x2 + x2x1)⊗ B(x2) ≅ B(M ⊕N).

The Hilbert series is (2)2
t (2)t2 and the dimension is 23. Consider the coinvari-

ants K = B(M)coin B(M1) with respect to the projection B(M ⊕ N) → B(M), it
is generated by x2, x1x2 + x2x1. By Theorem 4.5, K is the Nichols algebra of the
B(M) ⋊ k[Γ]-Yetter-Drinfel’d module

K = adB(M)(N) = ad1(x2) + adx1(x2) = x2C⊕ (x1x2 + x2x1)C

which is simple as such; hence the root system of B(K) is of type A1 with node
multiplicity 2. This is in agreement with the root system (AHα1 , R̄) of the restric-
tion, where α1 = (1,0) is removed and both α2, α12 restricted to Hα1 yield the
simple root in R̄.

We next consider an example which is not of Lie type:
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Example 4.18. Consider the diagonal Nichols algebra B(M) of rank 3, thoroughly
treated in Example 4.8, which has braiding matrix

qαiαi = −1, qαiαjqαjαi = ζ,

and the following root system and vector space PBW-basis:

Ra
+
= {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)},

B(M) ≅ B(xα1)⊗ B(xα2)⊗ B(xα3)⊗ B(xα12)⊗ B(xα13)⊗ B(xα23)⊗ B(xα123)

≅ C[xα1]/(x
2
α1

)⊗C[xα2]/(x
2
α2

)⊗C[xα3]/(x
2
α3

)

⊗C[xα12]/(x
3
α12

)⊗C[xα13]/(x
3
α13

)⊗C[xα23]/(x
3
α23

)

⊗C[xα123]/(x
2
α123

).

Consider the projection to the Nichols algebra

B(Mα2) ≅ C[xα2]/(x
2
α2

).

The action and coaction of xα2 span the following simple 2-dimensional Yetter-
Drinfel’d submodules over B(Mα2) ⋊C[Γ]:

Mᾱ1 ∶=Mα1 ⊕Mα12 ,

Mᾱ2 ∶=Mα3 ⊕Mα23 ,

Mᾱ12 ∶=Mα13 ⊕Mα123 .

We obtain the new generating Yetter Drinfel’d according to Theorem 4.5:

B(M)coin B(Mα2) = B((̄M)), M̄ = adB(Mα2)
(Mα1 ⊕Mα3) =Mᾱ1 ⊕Mᾱ2 .

Altogether, this agrees with the crystallographic arrangement (AHα2 , R̄) which is
of type A2 and all multiplicities 2. We get a new PBW-basis and Hilbert series

B(M̄) ≅ B(Mᾱ1)⊗ B(Mᾱ2)⊗ B(Mᾱ12),

H
B(M̄)

(t) = (2)2
t (3)

2
t (3)t2(2)t2 .

5. A simplicial complex of Nichols algebras

5.1. The simplicial complex. As in [CMW15], to a crystallographic arrange-
ment (A,R) of rank n we associate the simplicial complex S on V whose (n − 1)-
cells are the chambers of A intersected with the n− 1-sphere. This complex S ⊆ V

is topologically isomorphic to a sphere. Sometimes it will be convenient to add a
single (−1)-cell corresponding to the origin 0 ∈ V . We need the following facts (see
[CMW15] for proofs and more details):
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Lemma 5.1.

a) Let K be a chamber and ∆K be the associated set of simple roots. Then the
adjacent (k −1) cells x ⊆K are in bijection with the subsets Jx,K ⊆ ∆K of order
n − k. Moreover x ⊆Xx ∶= J

⊥

x,K is of dimension k.
b) Let K1 ≠ K2 be chambers and let w be the Weyl groupoid element with w.K1 =

K2. Then the intersection K1∩K2 is a common adjacent (k−1)-cell x ⊆K1,K2,
w is contained in the Weyl groupoid of the localization AXx, and w.Jx,K1 = Jx,K2.

5.2. The decoration by Nichols algebras in braided categories. Suppose
we have a Nichols algebra B(M), for now in the braided category C = h

hYD. We
consider the crystallographic arrangement (A,R) with roots α ∈ R labeled by
objects Mα ∈ C from Theorem 4.5. More precisely, the initial Nichols algebra is
B(Ma) associated to some chamber a of A and one set of positive simple roots
∆+

a such that Ma = ⊕α∈∆+
a
Mα, while the other chambers correspond to Weyl

equivalent Nichols algebras B(Ma′). Thus it would be better to think of (A,R)

being associated to the entire Weyl equivalence class and a specific representing
Nichols algebra B(Ma) ∈ C being associated to each (n−1)-cell a. We now wish to
associate Nichols algebra data to all (k − 1)-cells x.

Definition 5.2. As in Lemma 5.1, let x be a (k−1)-cell, letXx ∈ L(A) the associated
subspace of V , let a be any adjacent chamber with simple roots ∆a and Jx,a ⊆ ∆a.
Then we associate to the pair (x, a) the braided category of the localized Nichols
algebra

Cx ∶=
B(Mx,a)

B(Mx,a)
YD, Mx ∶= ⊕

α∈Jx,a

Mα

and the restricted Nichols algebra in this category as in Theorem 4.13

B(M)x ∶= B(Ma)coinB(Mx,a) ≅ B(Mx,a), Mx,a ∶= adB(Mx,a)

⎛

⎝
⊕

α∈∆a/Jx,a

Mα

⎞

⎠
.

Remark 5.3. The previous definition is independent of the chosen adjacient cham-
ber a in the following sense: Let a1, a2 be chambers adjacent to x, then by Lemma
5.1 b) we have an element w in the Weyl groupoid of A, which is contained in the
localization to Xx, such that w.a1 = a2 and w.Jx,a1 = Jx,a2 . Thus Rw(Mx,a1) =Mx,a2

and the Nichols algebras B(Mx,a1),B(Mx,a2) are Weyl equivalent. By [BLS14] Thm.
4.4 this implies there is a category isomorphism

rw ∶
B(Mx,a1)

B(Mx,a1)
YD ≅

B(Mx,a2)

B(Mx,a2)
YD,
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rw ∶ B(M
x,a1)↦ B(Mx,a2).

In particular, the vector space, the root system and Dynkin diagram, and the vector
space dimension of the nodes ⊕iMᾱi =M

x,a (multiplicities) are independent of a
(in contrast to Mx,a).

Corollary 5.4. In this sense, the simplicial complex is decorated by sets of equiv-
alent Nichols algebras in an equivalence class of braided categories and by Dynkin
diagrams and root multiplicities.

We first give the two extremal examples:

Example 5.5. The chambers x = a ∈ A are the (n−1)-cells. Each corresponds to the
empty subsets Ja,a = {} and is contained only in the chamber a itself. It is hence
decorated with the unique category

Ca =
B(Mx,a)

B(Mx,a)
YD = 1C

1C
YD = 1C

and the following Nichols algebra in this category:

B(M)a = B(Ma)coin1B(Ma) = B(Ma) ∈ C.

Hence as expected we associate to each (n − 1)-cell a the Nichols algebra B(Ma)

in the base category C.

Example 5.6. The center point 0 is a (−1)-cell adjacent to any chamber a. It
corresponds to the full set of simple roots depending on the chamber J0,a = ∆a and
is hence decorated with the equivalence class of categories

C0 =
B(M0,a)

B(M0,a)
YD =

B(Ma
)

B(Ma)
YD

and the following Nichols algebras in each category:

B(M)0 = B(Ma)coinB(M
a
) = 1 B(Ma)

B(Ma)YD
.

Hence we associate to the (−1)-cell in the center the trivial Nichols algebras, i.e.
on unit objects in all braided categories B(Ma

)

B(Ma)
YD over some Weyl equivalence

representative of the full Nichols algebra B(Ma).

We also note that simple reflection can be visualized nicely from this picture:
Let a1, a2 be adjacent chambers, meaning a1 ∩ a2 is an (n− 2)-cell, i.e. in a unique
hyperplane Hα, α ∈ ∆a1 . Then the reflection rα ∶ B(Ma1) → B(Ma2) constitutes of
the following steps:
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● Restriction to the hyperplane Hα yields the restricted Nichols algebra K ∶=

B(Ma1)coinB(Mα) ∈
B(Mα)

B(Mα)
YD = Cx.

● The orientation chance Hα = H−α i.e. Jx,a1 = {α} ↦ {−α} = Jx,a2 is sim-
ply a dualization B(Mα) ↦ B(M∗

α), yielding equivalent categories Cx =
B(Mα)

B(Mα)
YD ≅

B(Mα)
∗

B(Mα)
∗YD and especially as image of K a Nichols algebra

L ∈
B(M∗

α)

B(M∗
α)
YD.

● Now K is the restriction of the reflected Nichols algebra B(Ma2) to the
hyperplane x = H−α and we may conversely obtain the reflected Nichols
algebra from K by a Radford biproduct.

5.3. Example: A Nichols algebra of rank 3. Consider the Nichols algebra
thoroughly treated in Example 4.8. It was of rank 3, and had two types of chambers
a, a′ with the following sets of 7 positive roots

Ra
+
= {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)}

Ra′

+
= {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,2,1)}

where α′1 = α12, α2 = −α2, α
′

3 = α23

The following picture now shows the arrangement in perspective: It is basically
a cuboctahedron (an archimedian solid) with 8 equilateral triangles and 6 squares,
which has each square subdivided into 4 right triangles (by the three orthogonal
planes Hαij). There are hence 7 hyperplanes and 8 + 24 = 32 chambers.
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So we have a spherical simplicial complex of dimension 3−1. We now calculate the
categories and Nichols algebras associated to each (k − 1)-cell:

● 2-Cells: There are two types of chambers:
– There are 8 chambers associated to equilateral triangles as the example
x = a bounded by Hα1 ,Hα2 ,Hα3 . It is associated to the Nichols algebra
B(Ma) in the base category Cx = C with Dynkin diagram a cycle and
Hilbert series (2)3

t (3)
3
t2
(2)t3

– There are 24 chambers associated to right triangles as in the exam-
ple x = a′ bounded by Hα12 ,H−α2 ,Hα23 (note H−α2 = Hα2). It is as-
sociated to the Nichols algebra B(Ma′) in the base category Cx =

C with Dynkin diagram A2 (but one more root) and Hilbert series
(2)t(3)2

t (2)
2
t2
(2)t3(3)t4 .

● 1-Cells: There are two types of edges:
– There are 24 edges between an equilateral and right triangle (the edges
of the cuboctahedron) as in the examples a, a′ the common hyperplane
x = Hα2 . It is associated to the following restricted Nichols algebra
B(Mx,a) in the category

Cx =
B(Mα2)

B(Mα2)
YD, where B(Mα2) ≅ C[tα2]/(t

2
α2

)

Note that we calculate the restriction from the chamber a, but the
calculation from a′ would return the same result except α2 → −α2.
The generating Yetter- Drinfel’d modules is Mx,a = Mx,a

1 ⊕Mx,a
2 , the

Nichols algebra is of Lie type A3. More precisely, the simple summands
are

Mx,a
1 =Mα1 ⊕Mα12 Mx,a

2 =Mα3 ⊕Mα23 ,

[Mx,a
1 ,Mx,a

2 ] =Mα13 ⊕Mα123 .

In particular, the Hilbert series of B(Mx,a) is (2)2
t (3)

2
t (3)t2(2)t2 .
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– There are 24 edges between two right triangles (half subdividing di-
agonals in the cuboctahedron squares) as in the examples a′ the hy-
perplane x = Hα23 . It is associated to the following restricted Nichols
algebra B(Mx,a) in the category

Cx =
B(Mα23)

B(Mα23)
YD, where B(Mα23) ≅ C[tα23]/(t

3
α23

)

The generating Yetter-Drinfel’d modules is Mx,a = Mx,a
1 ⊕Mx,a

2 , the
Nichols algebra is of type B2. More precisely, the simple summands
are

Mx,a
1 =M−α2 ⊕Mα1 Mx,a

2 =Mα23

[Mx,a
1 ,Mx,a

2 ] =Mα3 ⊕Mα123 [Mx,a
1 , [Mx,a

1 ,Mx,a
2 ]] =Mα13

In particular, the Hilbert series of B(Mx,a) is (2)2
t (3)t(2)

2
t2
(3)t3 .

● 0-Cells: There are two types of 0-cells:
– There are 12 vertices with altogether three intersecting hyperplanes
(the cuboctahedron vertices) as in the examples a the bounding hy-
perplanes x = Hα1 ∩ Hα3 . It is associated to the following restricted
Nichols algebra B(Mx,a) in the category

Cx =
B(Mα1⊕Mα3)

B(Mα1⊕Mα3)
YD

where B(Mα1 ⊕Mα3) is a Nichols algebra of dimension 223 = 12 with
Dynkin diagram A2 (the Borel part of sl(2∣1) at q = ζ): The generating
Yetter-Drinfel’d moduleMx,a is simple, the Nichols algebra of type A1:

Mx,a =Mα2 ⊕Mα12 ⊕Mα23 ⊕Mα123

In particular, the Hilbert series of B(Mx,a) is (2)2
t (3)

2
t .

– There are 6 vertices with two orthogonally intersecting hyperplanes
(the subdivision centers of the cuboctahedron squares) as in the ex-
amples a′ the bounding hyperplanes x = Hα12 ∩Hα23 . It is associated
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to the following restricted Nichols algebra B(Mx,a) in the category

Cx =
B(Mα12⊕Mα23)

B(Mα12⊕Mα23)
YD, where

B(Mα12 ⊕Mα23) ≅ C[tα12]/(t
3
α12

)⊗C[tα23]/(t
3
α23

)

is a Nichols algebra of type A1 ×A1. The generating Yetter-Drinfel’d
modules Mx,a is simple, the Nichols algebra of non-reduced type A1:

Mx,a =M−α2 ⊕Mα12 ⊕Mα23 ⊕Mα123 [Mx,a,Mx,a] =Mα13

In particular, the Hilbert series of B(Mx,a) is (2)4
t (3)t2 .

● Again the (−1)-cell x = 0 in the center is the trivial Nichols algebra 1C over
any Weyl representative of the full Nichols algebra Cx =

B(Ma
)

B(Ma)
YD.
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