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Abstract

We discuss and solve a model for a game with many players, where a subset

of truely deciding players is embedded into a hierarchy of dependent agents.

These interdependencies modify the game matrix and the Nash equilibria

for the deciding players. In a concrete example, we recognize the partition

function of the Ising model and for high dependency we observe a phase tran-

sition to a new Nash equilibrium, which is the Pareto-efficient outcome.

An example we have in mind is the game theory for major shareholders in

a stock market, where intermediate companies decide according to a majority

vote of their owners and compete for the final profit. In our model, these

interdependency eventually forces cooperation.
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1 Introduction

Roughly 20 years ago, an exciting new set of methods has been introduced into

game theory: An underlying game G, such as the Minority Game, played by a large

ensemble of players, can be analyzed and often solved using methods from statis-

tical physics. For comprehensive overviews on the development of this subject, see

[CMZ05] or [Coolen05]. The analysis exhibits critical points where phase transi-

tions appear in the thermodynamic limit of many players and it provides models

for the emergence of mutual cooperation. The evolution of a large set of agents

with prescribed strategies or learning mechanisms have been studied as dynamical

systems e.g. in [CZ97], [Coolen05] or [NM92].

In this article, we want to focus on the influence of a large ensemble of agents on

the game theory of a given game G, including game matrix and Nash equilibria. In

the model we study, the game G is embedded into a hierarchy of automata/agents,

that pass decisions by majority votes. The top of the hierarchy remains a set of

new active/deciding players, which now play a new transformed game Γ. We then

wish to understand how the game theory of Γ compared to G changes, depending

on the given intermediate hierarchy. This has been solved by the first author as

part of her diploma thesis [Kraus11].

More specifically, in section 2 we suppose that we are given a weighted directed

graph H and a game G = 〈L, S, u〉 played by a subset of the vertices HV of H

called executive players L ⊂ HV . We define a transformed game Γ = 〈Λ,Σ, ν〉 with

new players Λ ⊂ HV . The graph hereby is imagined as a hierarchy of agents with

executive players L at the bottom of the hierarchy, while new deciding players Λ at

the top of the hierarchy successively control the behaviour of the agents according

to their influence. Conversely, the payoff of G for all executive players L is finally

collected by the deciding players according to the natural bargaining process in this

situation (Shapely value). Other payoff mechanisms are possible and got discussed

in [Kraus11] as well.

The main example for this model we have in mind is the stock market, where the

deciding players Λ send instructions through a graph that represents the structure

of the mutual ownerships of the companies. Finally, some executive companies

L play a executive game G in “reality”, such as prisoner’s dilemma or minority

game. So we ask, how the stock market and mutual ownerships of the intermediate
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agents/companies have altered the game G to Γ.

To solve Γ thermodynamically, we need more than a partition function summing

over all possible strategies as done e.g. in [Coolen05]. Rather, the conditional prob-

abilities of one agent’s decision influencing another one have to be calculated. They

correspond physically to k-point correlation functions (see definition 8) and espe-

cially for Λ = ∅ (no deciding players) the overall expression reduces to the partition

function.

In section 3, we recognize that for treelike hierarchy graphs our k-point correlation

functions coincide with a generalized Ising model on the graph H. This enables us

in principle to write down the game matrix, Nash equilibria and phase transitions

of the game Γ for a given game G whenever the Ising model for H is accessible. Of

particular interest to us is the case where H is a random graph, which has been

solved in [DGH10].

In section 4 we demonstrate the approach and methods developed in this article.

We solve and thoroughly analyse an example of an executive prisoners dilemma G

being transformed to a hierarchical game Γ with again two deciding players, but

with a certain hierarchy of agents between deciders and executive G-players.

Especially, we can establish a phase transition in the game Γ, if the branching factor

of the tree is sufficiently high (otherwise we get only a tipping point) as the mutual

influence approaches a critical threshold. The phase transition in Γ separates a

phase with the (defecting) Nash equilibrium in G from a phase corresponding to

the (cooperating) Pareto-efficient outcome. Roughly spoken, if the mutual depen-

dency in decision making gets high, egoistic strategies become unstable and mutual

cooperation emerges.

2 Definition Of The Hierarchical Game

In the following we suppose to be given a weighted directed graph H, whose vertices

contain among others executive players L playing a game G. We suppose G to have

only two moves. The graph should be imagined as a hierarchy with executive players

L at the bottom of the hierarchy. The key notion of this article is then a transformed

game Γ = 〈Λ,Σ, ν〉 with new deciding players Λ at the top of the hierarchy, who

successively control the behaviour of the agents and collect the G-payoff according

to their influence.
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1 2 3
executive
players L:

deciding
players Λ:

λ1 λ2 λ3

L playing the executive game G

instructions for G-moves payoff floating back

Definition 1 (Executive Game G). From now on, let G = 〈L, {Si}i∈L, {ui}i∈L〉 be

a game in normal form with players L = {1 . . . n} and each player i ∈ L having two

strategies Si = S = {±1}. The overall strategy set is hence SL = ×
i∈L

Si = {±1}n

and we denote the payoff for each player i ∈ L by ui : S
L −→ R.

We denote by AB the set of all maps between A and B and by RA the vector space

spanned by the set A.

Definition 2 (Hierarchy Graph H). Let H = (HV ,HE , {fvw}vw∈HE
) be a con-

nected, directed, weighted graph with vertex set HV and directed edges vw ∈ HE

with positive weights fvw > 0 for v, w ∈ HV .

We denote the direct predecessors and successors of vertices w, v ∈ HV by

pre(w) = {v ∈ HV | vw ∈ HE} suc(v) = {w ∈ HV | vw ∈ HE}.

We further denote by H0 ⊂ HV all vertices without predecessors and without loss

of generality we assume the predecessor weights to be normed:

∀ w ∈ HV \ H0 :
∑

v∈pre(w)

fvw = 1

Definition 3. (Hierarchical Game Γ = HG) Suppose a fixed game G = 〈L, S, u〉

and a fixed hierarchy graph H with L ⊂ HV . The transformed hierarchical game

Γ = HG := 〈Λ,Σ, ν〉 consists of

• A set of deciding players Λ := H0 = {λ1 . . . λm}.

• A strategy set Σλ = Σ = SL for each deciding player λ ∈ Λ. Such a strategy

formulates a G-strategy-command to each executive player i ∈ L. The overall

strategy set is hence ΣΛ.

• A payoff function νλ : ΣΛ → R for each deciding player λ ∈ Λ given by

νλ =

(
∑

i∈L

φ
(i)
λ · ui

)

◦ π ◦ PL|Λ. (1)
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The function π : RΣL = R(SL)L → RSL is given by restricting a set of G-

strategy-commands for each executive player
(

σ
(j)
i

)

i,j∈L
∈ ΣL to the strategies

chosen for the respective player
(

σ
(i)
i

)

i∈L
∈ SL.

The functions PL|Λ : RΣΛ → RΣL and φλ : Λ → R
L depending on the

hierarchy H will be defined in what follows:

– PB|A : RΣA → RΣB for subsets A,B ⊂ Σ denotes the conditional influ-

ence of players A on players B and should be read as a (|A|+ |B|)-point-

function. A deciding player λ ∈ Λ has been defined to have a strategy

σλ = (σ
(i)
λ )i∈L ∈ SL =: Σ

formulating the aim to have each executive player i using strategy σ
(i)
λ .

These G-strategy-commands σ = (σλ)λ∈Λ ∈ Σ of all deciding players

λ compete along the hierarchy graph and determine an overall outcome

probability distribution PL|Λ(σ) ∈ RΣL as described in the next section.

– φλ : Λ → R
L describes, how much of the payoff earned by each of the

executive player i ∈ L can be finally collected by a deciding player λ.

The condition
∑

λ∈Λ φ
(i)
λ = 1 is needed. In [Kraus11] we have discussed

different payoff collection mechanisms, but in the following we will re-

strict ourselves to the natural result of a bargaining process between the

deciding players Λ determined by the the Shapely value ([OR94]). This

particular choice has moreover the nice property to only depend on the

conditional influences PL|Λ.

Remark 4. Stock Market

An easy application of this model is a stock market. The game Γ = 〈Λ,Σ, ν〉 is

played by deciding players Λ (e.g. major stockholders). The graph represents mu-

tual ownerships of companies that pass the instructions of the deciding players via

(2) to the executive players: These equations represent a voting in each node, that

weights the possessions of the direct predecessors (respective direct owners) together

with a small percentage D, the free float of randomly voting minor stockholders.

The executive players L play the game G = 〈L, S, u〉 according to the instructions

they get - they act as agents and aren’t players in a game theoretical sense. The

payoff which the executive players get is returned to the deciding players weighted

by the Shapely value: The more influence deciding player λ has on executive player

i, the more is λ getting of i’s payoff ui.

So we ask how the stock market and mutual ownerships of the intermediate agents/

companies have altered the game G to Γ. Roughly we find that if the mutual depen-

dency in decision making gets high, egoistic strategies become unstable and mutual

cooperation emerges.
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2.1 Conditional Influences

We yet have to explain the function PL|Λ : RΣΛ → RΣL. First consider a neigh-

bourhood graph Hp,P consisting of a point p with predecessors P . Suppose a yes-

no-decision process, where σ
(p)
v ∈ {±1} represents commands of each v ∈ P to p.

The process shall be a vote in p, where every predecessor v has votes according to

the weight fvp and a percentage of D ∈ ]0, 1[ votes randomly ∼ N (0, σ2
N ).

Lemma 5 (Single Vote). For the neighbourhood graph Hp,P the probability for a

result +1 in the point p under some given condition (σ
(p)
v )v∈P is

P
single

p|P

(

σ(p)
v = +1 | (σ(p)

v )v∈P

)

= 1− PN (0, σ2
N )(−C) ≈

1

2
−

1

2
tanh(−aC)

at which C =
1−D

D

∑

v∈P

fvpσ
(p)
v and a =

√

2

πσ2
N

. (2)

Proof. Denote by X(p) ∼ N (0, σ2
N ) the Gaussian random variable of the random

voters.

P
single

p|P

(

σv(p) = +1 | (σ(p)
v )v∈P

)

= P
single

p|P

(

DX(p) + (1−D)
∑

v∈P

fvpσ
(p)
v ≥ 0

)

= P
single

p|P









X(p) ≥ −
1−D

D

∑

v∈P

fvpσ
(p)
v

︸ ︷︷ ︸

C









= 1− PN (0, σ2
N )(−C)

≈
1

2
−

1

2
tanh(−aC) with a =

√

2

πσ2
N

For approximation we use the similarity of the normal distribution and the tangens

hyperbolicus (see [Kraus11]).

Provided that H does not contain directed cycles, the entire voting process goes on

iteratively and we obtain straight-forward by induction for any A ⊂ H0, B ⊂ H:

PB|A(σ) =
∑

τ∈{±1}HV , τ |A=σ

τ |B ·
∏

p∈HV \H0

P
single

p|pre(p)

(

τ |p

∣
∣
∣
∣
τ |pre(p)

)

If H does contain directed cycles then there is no terminating voting process. We

nevertheless propose in complete analogy to statistical mechanics to assign in such

a situation the conditional probabilities, which clearly reduce to the previous ex-

pression when no directed cycle is present:

PB|A(σ) =
1

ZB|A

∑

τ∈{±1}HV , τ |A=σ

τ |B ·
∏

p∈HV \H0

P
single

p|pre(p)

(

τ |p

∣
∣
∣
∣
τ |pre(p)

)
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with the following now nontrivial normalization constant called partition function

ZB|A(σ) :=
∑

τ∈{±1}HV , τ |A=σ

∏

p∈HV \H0

P
single

p|pre(p)

(

τ |p

∣
∣
∣
∣
τ |pre(p)

)

.

This expression can be justified by a random experiment as follows: Let the prob-

ability space be Ω := {±1}HV with product measure

P (τ) :=
∏

p∈HV \H0

P
single

p|pre(p)

(

τ |p

∣
∣
∣
∣
τ |pre(p)

)

.

Take as events ΩA(σ) ⊂ Ω to be the event that holds τ |A = σ and analogously for

ΩB(σ
′). Then the conditional probability for ΩB(σ

′) under the condition ΩA(σ) is

defined as

PB|A =
P (ΩB(σ

′) ∩ΩA(σ))

P (ΩA(σ))
.

Plugging in the product measure P (τ) and taking a formal linear combination over

the outcome σ′ = τ |B yields the formula above.

2.2 Payoff Mechanisms

Once the conditional probabilities PL|Λ(σ) ∈ RΣL for given strategies σλ of each

deciding player λ ∈ Λ have been evaluated, this determines the behaviour of the

executive players to

τ =
(
π ◦ PL|Λ

)
(σ) ∈ RSL.

This strategy produces in the game G a payoff ui(τ) for each executive player i ∈ L.

So how is this payoff collected finally by the executive players in Λ? Denote by φ
(i)
λ

the percentage of payoff of executive player i that is collected by deciding player λ,

the payoff collecting mechanism. Then the overall payoff function of the game Γ is

νλ : ΣΛ −→ R

νλ(σ) =

(
∑

i∈L

φ
(i)
λ · ui

)

◦ π ◦ PL|Λ(σ). (3)

Example 6 (Payoff by shares). The most intuitive payoff collecting mechanism

for treelike hierarchy graphs is payoff proportional to the amount of shares of the

executive player i indirectly held by deciding player λ:

φ
(i)
λ =

∑

paths from λ to i

∏

vw ∈ path

fvw

This fulfills
∑

λ∈Λ φ
(i)
λ = 1 ∀i (see [Kraus11]). An example for this payoff collecting

mechanism is the paying of dividends proportional to the amount of stocks held by

an owner.

However, in the following we will restrict ourselves to the natural result of a bargai-
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ning process between the deciding players Λ according to their influence - the payoff

is hence determined by the Shapely value [OR94] of the obvious coalition function:

zi : 2
|Λ| −→ R

K 7−→
P (si = 1|σ

(i)
λ = 1 ∀λ ∈ K,σ

(i)
λ = −1 ∀λ6∈K)− P (si = 1|r

(i)
λ = −1 ∀λ)

2P (si = 1|r
(i)
λ = 1 ∀λ)− 1

This particular choice for a payoff collection mechanism has moreover the nice pro-

perty to only depend on the conditional influences PL|Λ.

Lemma 7. For the payoff function by Shapely value we get

φ
(i)
λ =

∑

K⊆Λ,λ∈K

(|K| − 1)!(|Λ| − |K|)!

|Λ|
(zi(K)− zi(K \ {λ})) . (4)

Proof. The necessary scaling condition
∑

λ∈Λ φ
(i)
λ = 1 is fulfilled (see [OR94]).

3 Hierarchical Games On Trees Are Ising Models

In the following section we prove that the conditional influence can be calculated

by using an isomorphic Ising model. For the common definition of the Ising model,

see for example [Nolting07]. Some first analogies are obvious:

Ising model hierarchical game

particles in a graph H same graph H

spin of particle v: strategy of v ∈ HV :

σv ∈ {±1} σv = (σ
(1)
v . . . σ

(n)
v ) ∈ {±1}n

interaction Jvw (with D modified) weights fvw · 1−D
D

external magnetic field (is set to 0) some systematic bias (not treated)

In addition to that, k-point-functions are needed for conditional probabilities.

Definition 8. Let A,B be disjoint subsets of the nodes in the Ising model. Let

the nodes beyond A, named N(A), be the nodes of HV \ (A ∪ B), that fulfill the

following condition: Every path to any v′ ∈ B hits at least one v ∈ A. With

nodes beyond B (named N(B)) defined analogously, the nodes between A and B

are N(A,B) := HV \ (N(A) ∪N(B)).

With k = |A|+ |B| the k-point-function is

{±1}|B| × {±1}|A| −→ R

(σ′, σ) 7−→ 〈σ′ | N(A,B) | σ〉

=
∑

σ′,σ fixed

exp(−βHN(A,B)) (5)

where HN(A,B) is the Hamiltonian function of the restricted graph just containing

the nodes N(A,B) and β = 1
kBT

is the inverse temperature in the Ising model.
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Lemma 9. Let σv ∈ {±1} be the spin of particle v, σ ∈ {±1}|A| the spins of parti-

cles in A and let the external magnetic field be 0. Then the conditional probability

for σv given σ is

P (σv = 1 | σ) =
〈σv = 1 | NA,{v} | σ〉
∑

σv
〈σv | NA,{v} | σ〉

(6)

Proof. See [Kraus11].

Remark 10. The Ising model without external magnetic field and with constant

interaction J is exactly solvable in one dimension, see [Nolting07]. In this case, the

conditional probability for two particles v, v′ with spins σ, σ′ and distance a is

P (σ′ | σ) =
cosha(βJ) ± sinha(βJ)

2 cosha(βJ)
(7)

where the case ”+” occurs when σ = σ′ and ”−” if σ 6= σ′. This remark will be

needed for the example in subsection 4.2.

Theorem 11. Every hierarchical game on a graph (as defined in section 2) that

fulfills the condition, that ∀i ∈ L the restricted graph of the nodes NΛ,i is a tree,

is isomorphic to an Ising model such that a process in the game that leads from

fixed σ
(i)
λ ∀λ ∈ Λ to the strategy σ

(i)
i = si of one i ∈ L is equivalent to a process

in an Ising model on the same graph with interactions Jvw = fvw
1−D
D

, inverse

temperature β =
√

2
πσ2

N

and no external magnetic field.

Isomorphic hereby means that the conditional influence and the k-point-functions

coincide.

Proof. For details, see section 4 in [Kraus11].

As the graph had to be specified to a tree-like graph, the process fixates the strate-

gies step by step. Therefore is it enough to look at the local fixation of a strategy

in one node and to compare (2) and (6). Doing this gives the interactions and the

inverse temperature as mentioned above.

Remark 12. The restriction to tree-like graphs seems harsh on the first sight.

However even a one-dimensional model shows interesting behaviour (see subsection

4.2) and also the calculation of Ising models on random graphs as done in [DGH10]

typically requires the graph to be at least locally treelike.

4 Solution Of The Hierarchical Game

4.1 Steps For The Solution

Let Γ = 〈Λ,Σ, ν〉 be a hierarchical game as defined in section 2 with Λ = {λ1, λ2}

and L = {1, 2}. (The restriction to two players allows the use of payoff matrices.)

1. Determining the conditional influence

With two players in each Λ and L, the conditional influence depends on only

9



four variables obtained from the Ising model and equation (6).

conditional influence on 1 : x = PL|Λ(s1 = 1 | σ
(1)
λ1

= −1, σ
(1)
λ2

= 1)

y = PL|Λ(s1 = 1 | σ
(1)
λ1

= 1, σ
(1)
λ2

= 1)

conditional influence on 2 : x = PL|Λ(s2 = 1 | σ
(2)
λ1

= 1, σ
(2)
λ2

= −1)

y = PL|Λ(s2 = 1 | σ
(2)
λ1

= 1, σ
(2)
λ2

= 1)

2. Building up the pre-payoff matrix

The pre-payoffmatrix assigns to every combination of strategies σ = (σλ1 , σλ2 )

in ΣΛ the expected payoff ui to executive player i ∈ L in game G:

E[(u1, u2) | σ] = (u1, u2) ◦ π ◦ PL|Λ(σ)

=
∑

s∈S

PL|Λ(s | σλ1 , σλ2) · u(s)

=
∑

s1

∑

s2

PL|Λ(s1 | σ
(1)
λ1

, σ
(1)
λ2

) · PL|Λ(s2 | σ
(2)
λ1

, σ
(2)
λ2

) · u(s1, s2)

3. Building up the payoff matrix

To get the payoff matrix νλ for Γ as defined in equation (3) multiply every

item in the pre-payoff matrix with

(

φ
(1)
λ1

φ
(1)
λ2

φ
(2)
λ1

φ
(2)
λ2

)

=

(
y−x
2y−1

x+y−1
2y−1

x+y−1
2y−1

y−x
2y−1

)

.

4. Usual methods

Now that there is a payoff matrix for the game, the usual game theoretical

methods can be applied to find Nash equilibria and phase transitions.

4.2 Example To Step 1: Easy Hierarchical Graph

λ1 : σλ1 = (σ
(1)
λ1

, σ
(2)
λ1

)

1 : s1 2 : s2

λ2 : σλ2 = (σ
(1)
λ2

, σ
(2)
λ2

)

1

1

1

1

1
2

1

1

1

1
2

1

1

1

1
2

1

1

1

1

1
2

a© d©

b© c©

Figure 1: One-dimensional hierarchical game
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In the one-dimensional hierarchical game, the deciding and executive players are

connected by chains of a, b, c or d edges. Therefore the weights are 1, except down

at the executive players (weights 1
2 ). Let D be 1

2 . The conditional influence can

now be calculated with equation (7) which leads to

x = PL|Λ(s1 = 1 | σ
(1)
λ1

= −1, σ
(1)
λ2

= 1) =
µ(−, a) · µ(+, c)

µ(−, a) · µ(+, c) + µ(+, a) · µ(−, c)

y = PL|Λ(s1 = 1 | σ
(1)
λ1

= 1, σ
(1)
λ2

= 1) =
µ(+, a) · µ(+, c)

µ(+, a) · µ(+, c) + µ(−, a) · µ(−, c)

where µ(±, k) = coshk−1(β) cosh(β2 )± sinhk−1(β) sinh(β2 ).

x(a,β)

 10

 20

 30

 40

 50

a

 0

 1

 2

 3

 4

 5

β

 0.4

 0.6

 0.8

y(a=c,β)

 10

 20

 30

 40

 50

a=c

 0

 1

 2

 3

 4

β

 0.5

 0.75

 1

 1.25

 1.5

Figure 2: Conditional influence x with fixed c (left) and conditional influence y with

a = c (right)

As x is a measure for player 1 obeying rather λ2 than λ1 if their instructions differ,

x is growing if a increases and the influence of λ1 therefore decreases as it can be

seen on the left. However, for small β (which means high temperature T ) x is close

to 1
2 no matter how far the deciding players are from each other. As y shows how

much player 1 is likely to obey λ1 and λ2 if they agree, the right graph shows how

y is close to 1 if both deciding players are near to 1 at a low temperature. If the

distance and the temperature increase, 1 tends to choose its strategy randomly with

probability 1
2 .

4.3 Example To Step 2-4: Prisoner’s Dilemma

Let the game G be the well-known prisoner’s dilemma with payoff matrix

C(ooperation) D(efection)

C (1, 1) (−3, 3)

D (3,−3) (−1,−1)

.

11



Let the conditional influence be symmetric, so it goes down to just two variables x

and y:

x = PL|Λ(s1 = C | σ
(1)
λ1

= D, σ
(1)
λ2

= C) = x

y = PL|Λ(s1 = C | σ
(1)
λ1

= C, σ
(1)
λ2

= C) = y

The complete payoff matrix has been calculated in [Kraus11].

Depending on x and y the hierarchical game Γ is isomorphic to one of the following

games with unique Nash equilibrium σ̂ and the tipping points for these three states

are x = 2−y
3 and x = y+1

3 :

y

x

prisoner’s dilemma
(version 2)

cooperation

prisoner’s dilemma
(version 1)

1
3

2
3

0.5
0

1

0.5

1.0

Figure 3: Illustration of the situation of Γ depending on x and y

1. Γ is a prisoner’s dilemma where

for λ1 : (C,C) ≃ Cooperation, (D,C) ≃ Defection

for λ2 : (C,C) ≃ Cooperation, (C,D) ≃ Defection

That means, λ1 identifies with 1 and λ2 identifies with 2.

Hence the unique Nash equilibrium is σ̂ = (σ̂λ1 , σ̂λ2 ) = ((D,C), (C,D)).

2. Γ is a prisoner’s dilemma where

for λ1 : (C,C) ≃ Cooperation, (C,D) ≃ Defection

for λ2 : (C,C) ≃ Cooperation, (D,C) ≃ Defection

That means, λ1 identifies with 2 and λ2 identifies with 1.

Hence the unique Nash equilibrium is σ̂ = ((C,D), (D,C)).

3. Cooperation:

For λ1 and λ2, the strategy (C,C) dominates every other strategy and there-

fore σ̂ = ((C,C), (C,C)).
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Because of the symmetry the payoffs of λ1 and λ2 coincide: ν
x,y
λ1

(σ̂) = ν
x,y
λ2

(σ̂).

Hence the value of the game, i.e. the payoff in the Nash equilibrium σ̂, is as follows:

ν
x,y
λ1

(σ̂) =







−1 + 2x x < 2−y
3

−1 + 2y 2−y
3 < x < y+1

3

1− 2x x > y+1
3

Remark 13. In the 1-dimensional hierarchy considered in section 4.2 we had

x =
µ(−, a) · µ(+, c)

µ(−, a) · µ(+, c) + µ(+, a) · µ(−, c)

y =
µ(+, a) · µ(+, c)

µ(+, a) · µ(+, c) + µ(−, a) · µ(−, c)

where µ(±, k) = coshk−1(β) cosh(β2 )± sinhk−1(β) sinh(β2 ) and the inverse tempera-

ture β =
√

2
πσ2

N

depended on the random minority voters.

Hence in the one-dimensional hierarchy we get the tipping points above, but x and

y are still smooth functions in β. On the contrary, for a two-dimensional hierarchy,

x and y would exhibit proper non-analytical phase transitions in the thermodynamic

limit, turning the tipping points into proper phase transitions.

5 Open Questions

Question 14. If we choose the Shapely value as payoff mechanism as above, the

overall transformed game Γ depends only on the game G and the correlators. What

can be said in general about the game theory of Γ compared to G without explicit

knowledge of the correlators (under some reasonable, general assumptions)?

Question 15. It would be interesting to derive closed expressions for the correlators

of an Ising model on a locally treelike random graph, similarly to the partition

functions obtained in this case in [DGH10]; it is to be expected that e.g. the 2-point

correlator depends only on the distance. This would yield a very nice explicitly

solvable model with phase transition for games on randomly dependent agents.

Question 16. Our model does not necessarily require the graph to be a directed

tree, see end of section 2.1. In fact, mutual dependencies might be more realistic.

Then the following issues arise:

• Even in the easiest case, the partition sum does (to our surprise) not coincide

with the partition sum of the Ising model. Rather, there are corrections for

every directed loop. It would be nice to explain this behaviour and/or derive

expressions for the partition sum, phase transition etc. in this modified ver-

sions using the same techniques from statistical physics as for the Ising model

(transfer matrix for small dimension, mean field method for large dimension

resp. branching number).
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• Alternatively, one might introduce a relaxation time, so the model gains a time

dependence. This could be interesting to study non-stationary behaviour.

Question 17. Can there be obtained statistical real-world evidence (and quantified),

that the existence of inter-dependency on the path between deciding players and

actual decision (as modelled in this article) increases cooperation?
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