
HAMBURGER BEITRÄGE
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Abstract

We estimate Ramsey numbers for bipartite graphs with small bandwidth and
bounded maximum degree. In particular we determine asymptotically the two
and three color Ramsey numbers for grid graphs. More generally, we determine
asymptotically the two color Ramsey number for bipartite graphs with small
bandwidth and bounded maximum degree and the three color Ramsey number
for such graphs with the additional assumption that the bipartite graph is bal-
anced.
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1. Introduction

For graphs G1, G2, . . . , Gr, the Ramsey number R(G1, G2, . . . , Gr) is the
smallest positive integer n such that if the edges of a complete graph Kn are
partitioned into r disjoint color classes giving r graphs H1, H2, . . . ,Hr, then
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at least one Hi (1 ≤ i ≤ r) contains a subgraph isomorphic to Gi. The exis-
tence of such a positive integer follows from Ramsey’s theorem. The number
R(G1, G2, . . . , Gr) is called the Ramsey number of the graphs G1, G2, . . . , Gr.
Determining R(G1, G2, . . . , Gr) for general graphs appears to be a difficult prob-
lem (see e.g. [9] or [19]). For r = 2, a well-known theorem of Gerencsér and
Gyárfás [8] states that

R(Pn, Pn) =

⌊
3n− 2

2

⌋
,

where Pn denotes the path with n ≥ 2 vertices. In [13] more general trees were
considered. For a tree T , we write t1 and t2, with t2 ≥ t1, for the sizes of the
vertex classes of T as a bipartite graph. Note thatR(T, T ) ≥ 2t1+t2−1, since the
following edge-coloring of K2t1+t2−2 has no monochromatic copy of T . Partition
the vertices into two classes V1 and V2 such that |V1| = t1−1 and |V2| = t1+t2−1,
then use color “red” for all edges inside the two classes and use color “blue” for
all edges between the classes. Furthermore, a similar edge-coloring of K2t2−2
with two classes both of size t2 − 1 shows that R(T, T ) ≥ 2t2 − 1. Thus

R(T, T ) ≥ max{2t1 + t2, 2t2} − 1. (1)

Haxell,  Luczak and Tingley provided in [13] an asymptotically matching upper
bound for trees T with ∆(T ) = o(t2).

We partially extend this to bipartite graphs with small bandwidth and a
more restrictive maximum degree condition. A graph H = (W,EH) is said to
have bandwidth at most b, if there exists a labelling of the vertices by numbers
1, . . . , n such that for every edge ij ∈ EH we have |i − j| ≤ b. We focus our
attention on the following class of bipartite graphs.

Definition 1.1. A bipartite graph H is called a (β,∆)-graph if it has bandwidth
at most β|V (H)| and maximum degree at most ∆. Furthermore, we say that
H is a balanced (β,∆)-graph if it has a proper 2-coloring χ : V (H)→ [2] such
that

∣∣|χ−1(1)| − |χ−1(2)|
∣∣ ≤ β|χ−1(2)|.

For example, it was shown in [5] that sufficiently large planar graphs with
maximum degree at most ∆ are (β,∆)-graphs for any fixed β > 0. Our first
theorem is an analogue of the result in [13] for (β,∆)-graphs.

Theorem 1.2. For every γ > 0 and natural number ∆, there exist a constant
β > 0 and natural number n0 such that for every (β,∆)-graph H on n ≥ n0
vertices with a proper 2-coloring χ : V (H) → [2] where t1 = |χ−1(1)| and
t2 = |χ−1(2)|, with t1 ≤ t2, we have

R(H,H) ≤ (1 + γ) max{2t1 + t2, 2t2}.

For more recent results on the Ramsey number of graphs of higher chromatic
number and sublinear bandwidth, we refer the reader to the work of Allen,
Brightwell and Skokan [1].

For r ≥ 3 colors less is known about Ramsey numbers. Let T be a tree
and consider t1 and t2, with t1 ≤ t2, the sizes of the vertex classes of T as a
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bipartite graph. For r = 3 colors the following construction gives a lower bound
for R(T, T, T ). Partition the vertices of Kt1+3t2−3 into four classes, one special
class V0 with |V0| = t1 and three classes V1, V2 and V3 of size t2 − 1. The color
for edges inside V0 is arbitrary. Use color i inside the classes Vi and color i
between Vi and V0 for 1 ≤ i ≤ 3. Finally, use color k ∈ [3] \ {i, j} for edges
between the classes Vi and Vj for 1 ≤ i < j ≤ 3. It is easy to check that this
coloring yields no monochromatic copy of T . Thus

R(T, T, T ) ≥ t1 + 3t2 − 2. (2)

Proving a conjecture of Faudree and Schelp [6], it was shown in [10] that
this construction is optimal for large paths, i.e., for sufficiently large n we have

R(Pn, Pn, Pn) =

{
2n− 1 for odd n,
2n− 2 for even n.

Asymptotically this was also proved independently by Figaj and  Luczak [7].
Benevides and Skokan [2] proved that R(Cn, Cn, Cn) = 2n for sufficiently large
even n. Our second result extend the two above ones asymptotically to balanced
(β,∆)-graphs.

Theorem 1.3. For every γ > 0 and every natural number ∆, there exist a
constant β > 0 and natural number n0 such that for every balanced (β,∆)-graph
H on n ≥ n0 vertices we have

R(H,H,H) ≤ (2 + γ)n.

In particular, Theorems 1.2 and 1.3 give the asymptotics for two and three
color Ramsey numbers of grid graphs. The 2-dimensional grid graph Ga,b is the
graph with vertex set V = [a]× [b] and there is an edge between two vertices if
they are equal in one coordinate and consecutive in the other. Note that any
grid graph Ga,b on ab vertices has bandwidth at most min{a, b} and satisfies
∆(G) ≤ 4. Moreover, Ga,b is a balanced (β, 4)-graph for any fixed β > 0 and
sufficiently large ab. Consequently, Theorems 1.2 and 1.3 combined with (1)
and (2) give the following corollary.

Corollary 1.4. For grid graphs Ga,b we have

R(Ga,b, Ga,b) =
(
3/2 + o(1)

)
ab

and

R(Ga,b, Ga,b, Ga,b) =
(
2 + o(1)

)
ab,

where o(1) tends to 0 as ab→∞.

We remark that similar bounds follow for bipartite planar graphs with
bounded degree and grids of higher dimension.
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This paper is organized as follows. We first give the necessary tools in
Section 2 and then present a detailed proof of Theorem 1.3 in Section 3. The
proof of Theorem 1.2 is very similar and here we only present an outline, in
Section 4.

2. Auxiliary results

The main purpose of this section is to present the tools for the proof of
Theorem 1.3. A main tool in the proof is Szemerédi’s Regularity Lemma [22].
We discuss the Regularity Method in Section 2.1. In Sections 2.2 and 2.3 we
give some results that allow us to make use of the regularity method.

2.1. The Regularity Method

Given an graph G on n vertices, the density of G is given by dG = e(G)/
(
n
2

)
.

Furthermore, ifA, B ⊂ V (G) are non-empty and disjoint, we denote by eG(A,B)
the number of edges of G with one endpoint in A and the other in B and

dG(A,B) =
eG(A,B)

|A||B|

is the density of G between A and B.
The bipartite graph G = (A,B;E) is called ε-regular if for all X ⊂ A, Y ⊂ B

with |X| > ε|A| and |Y | > ε|B| we have

|dG(X,Y )− dG(A,B)| < ε.

Furthermore, we say that G is (ε, d)-regular if it is ε-regular and dG(A,B) ≥ d.
An ε-regular bipartite graph (A,B;E) is called (ε, d)-super-regular if we have
degG(a) > d|B| for all a ∈ A and degG(b) > d|A| for all b ∈ B.

For a graph G = (V,E), a partition (Vi)i∈[s] of V is said to be (ε, d)-regular
(resp. super-regular) on a graph R with vertex set contained in [s] if the bipartite
subgraph of G induced by the pair {Vi, Vj} is (ε, d)-regular (resp. super-regular)
whenever ij ∈ E(R). We say that a graph R on vertex set [s] is the (ε, d)-reduced
graph of (Vi)i∈[s] (or of G) if ij is an edge of R if and only if the bipartite graph
defined by the pair {Vi, Vj} is (ε, d)-regular in G.

The proof of Theorem 1.3 is based on the following three color version of the
Regularity Lemma.

Lemma 2.1 (Regularity Lemma). For every ε > 0 and every integer k0 > 0
there is a positive integer K0(ε, k0) such that for n ≥ K0 the following holds.
For all graphs G1, G2 and G3 with V (G1) = V (G2) = V (G3) = V , |V | = n,
there is a partition of V into k + 1 classes V = V0, V1, V2, . . . , Vk such that

(i) k0 ≤ k ≤ K0,

(ii) |V1| = |V2| = · · · = |Vk|,

(iii) |V0| < εn,
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(iv) apart from at most ε
(
k
2

)
exceptional pairs, the pairs {Vi, Vj} are ε-regular

in G1, G2 and G3.

For extensive surveys on the Regularity Lemma and its applications see
[17, 16]. A key component of the regularity method is the Blow-up Lemma
[14] (see also [15, 20, 21] for alternative proofs). This lemma guarantees that
bipartite spanning subgraphs of bounded degree can be embedded into super-
regular pairs. In fact, the statement is more general and allows the embedding of
r-chromatic graphs into the union of r vertex classes that form

(
r
2

)
super-regular

pairs.
Here we will use a version of the Blow-up lemma that allows us to embed

graphs H of bounded-degree in a graph G when G and H have “compatible”
partitions, in the sense explained in the definition below. In our proof we will
embed H in parts, considering a partition of a monochromatic subgraph G
of KN with corresponding reduced graph containing a tree T that contains a
“large” matching M , where the bipartite subgraphs of G corresponding to the
matching edges are super-regular pairs.

Definition 2.2. Let H = (W,EH) be a graph. Let T = ([s], ET ) be a tree and
M = ([s], EM ) be a subgraph of T where EM is a matching. Given a partition
(Wi)i∈[s] of W , let Ui, for i ∈ [s], be the set of vertices in Wi, with neighbors in
some Wj with ij ∈ ET \ EM . Set U =

⋃
Ui and U

′
i = NH(U) ∩ (Wi \ U).

We say that (Wi)i∈[s] is (ε, T,M)-compatible with a vertex partition (Vi)i∈[s]
of a graph G = (V,E) if the following holds.

(i) xy ∈ EH for x ∈Wi and y ∈Wj implies ij ∈ ET for all i, j ∈ [s],

(ii) |Wi| ≤ |Vi| for all i ∈ [s],

(iii) |Ui| ≤ ε|Vi| for all i ∈ [s],

(iv) |U ′i |, |U ′j | ≤ εmin{|Vi|, |Vj |} for all ij ∈ EM .

We remark that for connected graphs H and for every vertex i of T which
is not covered by M we have Ui = Wi and U ′i = ∅.

The following corollary of the Blow-up Lemma (see [3]) asserts that in the
setup of Definition 2.2 graphs H of bounded degree can be embedded into G, if
G admits a partition being sufficiently regular on T and super-regular on M .

Lemma 2.3 (Embedding Lemma [3, 4]). For all d,∆ > 0 there is a constant
ε = ε(d,∆) > 0 such that the following holds. Let G = (V,E) be an N -vertex
graph that has a partition (Vi)i∈[s] of V with (ε, d)-reduced graph T on [s] which is
(ε, d)-super-regular on a graphM ⊂ T . Further, let H = (W,EH) be an n-vertex
graph with maximum degree ∆(H) ≤ ∆ and n ≤ N that has a vertex partition
(Wi)i∈[s] of W which is (ε, T,M)-compatible with (Vi)i∈[s]. Then H ⊂ G.

We close this section with two simple facts. They follow easily by the defi-
nitions of regular and super-regular pairs.
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Fact 2.4. Let B = (V1, V2;E) be an ε-regular bipartite graph and let V ′1 ⊂ V1
and V ′2 ⊂ V2 with |V ′1 | ≥ α|V1| and |V ′2 | ≥ α|V2| for some α > ε. Then the graph
B′ =

(
V ′1 , V

′
2 ;EB(V ′1 , V

′
2)
)
is ε′-regular such that |dB(V1, V2)− dB′(V ′1 , V

′
2)| < ε,

where ε′ = max{ε/α, 2ε}.

Fact 2.5. Consider a graph G = (V,E) with an (ε, d)-regular partition (Vi)i∈[s]
of V with |Vi| = m for 1 ≤ i ≤ s. Let T be a graph on vertex set [s] contained
in the corresponding (ε, d)-reduced graph of (Vi)i∈[s] and let M be a matching
contained in T . Then for each vertex i of M , the associated set Vi in G contains
a subset V ′i of size (1−εr)m such that for every edge ij of M the bipartite graph
(V ′i , V

′
j ;EG(V ′i , V

′
j )) is (ε/(1− εr), d− (1 + r)ε)-super-regular.

2.2. Regular blow-up of a tree

In this section we show, in Lemma 2.8, that for any coloring of E(KN ) there
exists a dense, regular, monochromatic subgraph of KN with some structural
properties that allow us to embed H into this subgraph. Here the notion of a
connected matching in the reduced graph (originating in [18], see also [7, 10,
11, 12]) plays a central role. A connected matching in a graph R is a matching
M such that all edges of M are in the same connected component of R. The
following lemma, proved in [7], states that in a 3-colored almost complete graph
we can always find a connected matching that covers almost half of the vertices
and it is contained in a monochromatic tree.

Lemma 2.6. For every δ > 0 there exist an ε0 > 0 and a natural number k0
such that for every ε < ε0 and k ≥ k0 and for every 3-edge colored graph R on
k vertices with density at least (1 − ε) there exists a matching M with at least
(1− δ)k/4 edges in R that is contained in a monochromatic tree T ⊂ R.

This lemma can be found in a stronger structural form in [10]. In fact, there
it is proved that either there is a monochromatic connected matching covering
more than half of the vertices, or the graph R is close to one of two extremal
cases. It is not hard to see that in both extremal cases there is a monochromatic
connected matching M of size at least (1− δ)|V (R)|/4. We will also make use
of the following simple fact.

Fact 2.7. If a tree T contains a matching M with ` edges then the vertices cov-
ered by the matching can be labelled in such way that EM = {xiyi : i = 1, . . . , `}
and xi and xj are at an even distance in T for all 1 ≤ i < j ≤ `.

Indeed, consider a proper two-coloring χ : V (T )→ [2]. Label those endpoints
of the matching edges with xi that are in χ−1(1) and label the other endpoints
by yi. Clearly, the distance in T between any xi and xj is even, since they
belong to the same color class.

Given a coloring χKN
: E(Kn)→ [3], we denote byG1 the spanning subgraph

of Kn such that ij ∈ E(G1) if and only if χKN
(ij) = 1.

Lemma 2.8. For every γ > 0 there exists an ε0 such that for every ε ≤ ε0,
there exists a natural number K0 such that for all N = (2 + γ)n ≥ K0 and
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for every coloring χKN
: E(KN ) → [3], there exist a color (say color 1), in-

tegers `, `′, k with `, `′ ≤ k ≤ K0 and ` ≥ (1 − γ/4)k/4, a tree T on vertex
set {x1, . . . , x`, y1, . . . , y`, z1, . . . , z`′} containing a matching M with edge set
EM = {xiyi : i = 1, . . . , `} with an even distance in T between any xi and xj
for all i and j, such that there exists a partition (Vi)i∈[k] of V (KN ) such that
G1 is (ε, 1/3)-regular on T and |V1| = . . . = |Vk| ≥ (1− ε)N/k.

Proof. Fix γ > 0 and set δ = γ/4. Let ε0 and k0 be the constants obtained from
Lemma 2.6 applied with δ. Fix ε < ε0 and let K0 be obtained by an application
of the Regularity Lemma (Lemma 2.1) with parameters ε and k0. Finally let
N = (2 + γ)n ≥ K0 be given.

Consider an arbitrary 3-coloring χKN
: E(KN ) → [3] of the edges of KN

and spanning subgraphs G1, G2 and G3 of KN where ij ∈ Gs if and only
if χKN

(ij) = s, for s = 1, 2, 3. Owing to the Regularity Lemma, there is a
partition V0, V1, . . . , Vk of the vertices of KN such that |Vi| = m ≥ (1 − ε)N/k
for 1 ≤ i ≤ k and more than (1 − ε)

(
k
2

)
pairs {Vi, Vj} for 1 ≤ i < j ≤ k are

ε-regular in G1, G2 and G3, where k0 ≤ k ≤ K0.
We define the following reduced graph: let R be the graph with vertex set

[k] where ij ∈ E(R) if and only if {Vi, Vj} is ε-regular in each of G1, G2 and G3.

Thus, |E(R)| ≥ (1− ε)
(
k
2

)
. Therefore, we know that R is a graph on k vertices

with density at least (1 − ε). Now we define a coloring χR : E(R) → [3] of the
edges of R such that χR(i, j) = s if s ∈ [3] is the biggest integer in [3] such that
|EGs

(Vi, Vj)| ≥ |EGr
(Vi, Vj)| for 1 ≤ r ≤ 3, i.e., the edge ij receives one of the

colors that appears in most edges of EKN
(Vi, Vj) with respect to the coloring

χKN
of E(KN ). Clearly, if χR(ij) = s, then |EGs

(Vi, Vj)| ≥ |Vi||Vj |/3.
Since k ≥ k0 and the density of R is at least (1−ε), by Lemma 2.6, we know

that R contains a monochromatic tree T that contains a matching M of size
` ≥ (1− δ)k/4. Without loss of generality we may assume that the edges of T
are colored with color 1. By Fact 2.7 we can label M = ({xi, yi})i such that xi
and xj are at even distance in T for 1 ≤ i < j ≤ `.

Let {z1, . . . , z`′} be the vertices of T that are not covered by edges of the
matching M . Since all the edges of T are present in R we know that, for all
ij ∈ E(T ), the pairs {Vi, Vj} are ε-regular in G1 with |EG1(Vi, Vj)| ≥ |Vi||Vj |/3.
Thus we are done, since we can consider the graph composed of the classes Vi
for every i ∈ V (T ) and with edge set EG1

(Vi, Vj) between every pair.

2.3. Balanced intervals

By definition, given β > 0 and a natural ∆, a balanced (β,∆)-graph H has
a 2-coloring of its vertices that uses both colors similarly often in total, but this
does not have to be true locally. In this section we show how to balance H so
that the two colors appear in approximately the same number of vertices also
locally.

Given a graph H = (W,E) with W = {w1, . . . , wn}, let χ : W → [2] be a
2-coloring. Define the function Ci such that if W ′ ⊂ W then, for i = 1, 2, we
have Ci(W

′) = |χ−1(i) ∩W ′|. We say that χ is a β-balanced coloring of W if
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1−β ≤ C1(W )/C2(W ) ≤ 1+β. A subset I ⊂W is called interval if there exists

p < q such that I = {wp, wp+1, . . . , wq}. Finally, let `′ and ˆ̀be positive integers

with `′ ≤ ˆ̀ and let σ : [`′]→ [ˆ̀] be an injection. Consider a partition of W into
a set of intervals I = {I1, . . . , Iˆ̀}. We define Ci(I, σ, a) =

∑a
j=1 Ci(Iσ(j)) for

i = 1, 2. If it is clear what partition we are considering then we write Ci(σ, a)
for simplicity.

Given a graph H = (W,E), let c : W → [2] be a coloring of W such that
H is globally balanced. Roughly speaking, the next lemma states that every
partition of W into intervals of almost the same size can be rearranged in some
way that, after the rearrangement, if we remove the “last” intervals, then, in
the subgraph of H induced by the remaining vertices, the difference between
the number of vertices w with c(w) = 1 and those w with c(w) = 2 is “small”.

Lemma 2.9. For every integer ˆ̀≥ 1 there exists n0 such that if H = (W,E) is
a graph with W = {w1, . . . , wn} with n ≥ n0, then every β-balanced 2-coloring

χ of W with β ≤ 2/ˆ̀, and every partition of W into intervals I1, . . . , Iˆ̀ with

sizes |I1| ≤ . . . ≤ |Iˆ̀| ≤ |I1|+ 1 there exists a permutation σ : [ˆ̀]→ [ˆ̀] such that

for every 1 ≤ i ≤ ˆ̀ we have

|C1(σ, i)− C2(σ, i)| ≤ n

ˆ̀
+ 1.

Proof. Fix ˆ̀ ≥ 1 and set n0 = 2ˆ̀3. Let H = (W,E) be a graph such that
W = {w1, . . . , wn} with n ≥ n0. Fix a β-balanced coloring χ of W and a
partition of W into intervals I1, . . . , Iˆ̀ with |I1| ≤ . . . ≤ |Iˆ̀| ≤ |I1| + 1 where

β ≤ 2/ˆ̀.
Let us construct the permutation σ iteratively. We can take any integer on

[ˆ̀] to be σ(1), because the size of the intervals is at most n/ˆ̀+ 1. Now suppose

we have defined σ(1), . . . , σ(i) in such a way that |C1(σ, i)−C2(σ, i)| ≤ n/ˆ̀+ 1,

where i ≤ ˆ̀− 1.
If C1(σ, i) = C2(σ, i), then clearly σ(i+1) can be defined as being any of the

remaining integers on [ˆ̀]. So, w.l.o.g. assume that C1(σ, i) = C2(σ, i) + k, with

1 ≤ k ≤ n/ˆ̀+ 1. But since C1(σ, i) + C2(σ, i) ≤ i(n/ˆ̀+ 1), we can conclude
that

C2(σ, i) ≤ in

2ˆ̀
− k − i

2
. (3)

We will prove that there exists some r ∈ [ˆ̀] \
⋃i
j=1 σ(j) with C2(Ir) ≥ k/2.

Suppose by contradiction that C2(Ir) < k/2 for all integers r ∈ [ˆ̀] \
⋃i
j=1 σ(j).
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This fact together with (3) implies the following.

C2(W ) ≤ C2(σ, i) + (ˆ̀− i)k
2

=
in

2ˆ̀
+ (ˆ̀− i− 1)

k

2
+
i

2

≤

(
ˆ̀− 1

ˆ̀

)
n

2
+

ˆ̀

2

=

(
n(ˆ̀− 1) + ˆ̀2

nˆ̀

)
n

2
,

(4)

where the last inequality holds because k ≤ n/ˆ̀+ 1 and i ≤ ˆ̀− 1.
Since C1(W ) + C2(W ) = n, using (4) we know that

C1(W )

C2(W )
=

n

C2(W )
− 1

≥ 1 +
2(n− ˆ̀2)

n(ˆ̀− 1) + ˆ̀2

> 1 + β,

where the last inequality follows by the choice of n0, because β ≤ 2/ˆ̀. But this
contradicts the β-balancedness of the coloring χ of W . Therefore, we know that
there exists r ∈ [ˆ̀] \

⋃i
j=1 σ(j) with C2(Ir) ≥ k/2. Set σ(i+ 1) = r. Then

C1(σ, i+ 1) = C1(σ, i) + C1(Ir)

≤ (C2(σ, i) + k) +

(
n

ˆ̀
+ 1− k

2

)
=

(
C2(σ, i) +

k

2

)
+
n

ˆ̀
+ 1

≤ C2(σ, i+ 1) +
n

ˆ̀
+ 1.

From the above inequality, since C1(σ, i + 1) ≥ C2(σ, i + 1) − (n/ˆ̀ + 1), we

conclude that |C1(σ, i+ 1)− C2(σ, i+ 1)| ≤ n/ˆ̀+ 1.

Let H = (W,E) be a graph with W = {w1, . . . , wn} and let χ : W → [2] be a
coloring of W . Consider a partition of W into a set of intervals I = {I1, . . . , Iˆ̀}.
We define Ci(I, σ, a, b) =

∑b
j=a Ci(Iσ(j)) for i = 1, 2. If it is clear what partition

we are considering then we write Ci(σ, a, b) for simplicity.

Corollary 2.10. For every integer ˆ̀≥ 1 there exists n0 such that if H = (W,E)
is a graph with W = {w1, . . . , wn} with n ≥ n0, then every β-balanced 2-coloring

χ of W with β ≤ 2/ˆ̀, and every partition of W into intervals I1, . . . , Iˆ̀ with

9



sizes |I1| ≤ . . . ≤ |Iˆ̀| ≤ |I1|+ 1 there exists a permutation σ : [ˆ̀]→ [ˆ̀] such that

for every pair of integers 1 ≤ a < b ≤ ˆ̀,

|C1(σ, a, b)− C2(σ, a, b)| ≤ 2

(
n

ˆ̀
+ 1

)
. (5)

Proof. Fix ˆ̀≥ 1 and let n0 be obtained from Lemma 2.9 applied with ˆ̀. Let
H = (W,E) be a graph with W = {w1, . . . , wn} with n ≥ n0. Now fix a
β-balanced 2-coloring χ of W and a partition of W into intervals I1, . . . , Iˆ̀ with

|I1| ≤ . . . ≤ |Iˆ̀| ≤ |I1|+ 1, where β ≤ 2/ˆ̀.

Let σ be the permutation given by Lemma 2.9. Fix integers 1 ≤ a < b ≤ ˆ̀

and suppose w.l.o.g. that C1(σ, a, b) ≥ C2(σ, a, b). Therefore

C1(σ, a, b) = C1(σ, b)− C1(σ, a− 1)

≤ (C2(σ, b) + n/ˆ̀+ 1)− (C2(σ, a− 1)− (n/ˆ̀+ 1))

= C2(σ, a, b) + 2(n/ˆ̀+ 1).

The next result, the main result of this subsection, guarantees the local
balancedness that we need.

Lemma 2.11. For every ξ > 0 and every integer ˆ̀ ≥ 1 there exists n0 such
that if H = (W,E) is a graph with W = {w1, . . . , wn} with n ≥ n0, then for

every β-balanced 2-coloring χ of W with β ≤ 2/ˆ̀, and every partition of W into
intervals I1, . . . , Iˆ̀ with |I1| ≤ . . . ≤ |Iˆ̀| ≤ |I1| + 1 there exists a permutation

σ : [ˆ̀]→ [ˆ̀] such that for every pair of integers 1 ≤ a < b ≤ ˆ̀ with b− a ≥ 7/ξ,
we have

|C1(σ, a, b)− C2(σ, a, b)| ≤ ξC2(σ, a, b),

Proof. Fix ξ > 0, ˆ̀ ≥ 1 and let n′0 be obtained by Corollary 2.10 applied

with ˆ̀. Let H = (W,E) be a graph with W = {w1, . . . , wn} with n ≥ n0 =

max{n′0, ((4 + 2ξ)/(3 − 2ξ))ˆ̀} and fix a β-balanced 2-coloring χ of W and a
partition of W into intervals I1, . . . , Iˆ̀ with |I1| ≤ . . . ≤ |Iˆ̀| ≤ |I1| + 1 where

β ≤ 2/ˆ̀.

Let σ be the permutation given by Corolary 2.10. Fix integers 1 ≤ a < b ≤ ˆ̀

such that b− a > 7/ξ. Note that, by Corollary 2.10,

|C1(σ, a, b)− C2(σ, a, b)| ≤ 2(n/ˆ̀+ 1). (6)

The above inequality and the fact that C1(σ, a, b) + C2(σ, a, b) ≥ (b − a)(n/ˆ̀)
implies

C2(σ, a, b) ≥
(
b− a

2

)
n

ˆ̀
− (n/ˆ̀+ 1).

10



By the choice of a, b and n0, we have

C2(σ, a, b) ≥ (2/ξ)(n/ˆ̀+ 1). (7)

Putting inequalities (6) and (7) together we conclude the proof.

3. Proof of the main result

Before going into the details of the proof of Theorem 1.3 we give some brief
overview discussing the main ideas of the proof and explaining how to connect
the results of Section 2.

Overview of the proof of Theorem 1.3

For every γ > 0 and sufficiently large n, given an arbitrary edge coloring
of KN with 3 colors for N = (2 + γ)n we want to prove that if H is a (β,∆)-
balanced graph on n vertices, then we always find a monochromatic copy of H
in KN .

The strategy to prove Theorem 1.3 is to apply the Embedding Lemma
(Lemma 2.3) to find the desired copy of H in KN . In order to do this we use
Lemma 2.8 to find a monochromatic subgraph G of KN composed of sufficiently
dense regular pairs. So, using Facts 2.4 and 2.5 it is easy to see that deleting
some vertices of G we can find a monochromatic graph G′ ⊂ G which has a
regular partition containing super-regular pairs covering (1 + o(1))n vertices.

In the second part of the proof we carefully construct a partition of V (H)
and, since H has small bandwidth, we make use of Lemma 2.11 to show that
this partition is compatible with the partition of G′. Then, we can apply the
Embedding Lemma to find the monochromatic copy of H, concluding the proof.

Proof of Theorem 1.3

Let γ > 0 and ∆ ≥ 1 be given. Lemma 2.8 applied with γ gives ε0. Next we
apply Lemma 2.3 with d = 1/4 and ∆ to get ε1. Set

ε = min{ε0, ε1/2, γ/19}.

Since ε ≤ ε0, Lemma 2.8 gives to us a natural number K0. Fix ξ = γ/304 and
let n0 be obtained by an application of Lemma 2.11 with parameters ξ and K0.
Set

β = εξ(1 + 2ξ)/36∆2K2
0 .

Let H = (W,EH) be a balanced (β,∆)-graph on n vertices. Now put
N = b(2 + γ)nc, where N ≥ max{n0,K0}. Consider an arbitrary coloring
χKN

: E(KN ) → [3] of the edges of KN . We want to show that every such
coloring yields a monochromatic copy of H.

Partitioning the vertices of KN .

11



Next we find a monochromatic and sufficiently regular subgraph G′ of KN .
By Lemma 2.8, there are a color (say color 1), integers `, `′, k with `, `′ ≤ k ≤ K0

and ` ≥ (1 − γ/4)k/4, a tree T on vertex set {x1, . . . , x`, y1, . . . , y`, z1, . . . , z`′}
containing a matching M with edge set EM = {xiyi : i = 1, . . . , `} with an
even distance in T between any xi and xj for all i and j, such that there exists
a partition (Vi)i∈[k] of V = V (KN ) such that K1

N is (ε, 1/3)-regular on T and
|V1| = . . . = |Vk| = m, where m ≥ (1− ε)N/k. Let GT be the subgraph of K1

N

induced by the classes in (Vi)i∈[k] corresponding to the vertices of T .
In order to apply the Embedding Lemma, we need the classes of GT that

correspond to the matching edges to form super-regular pairs and the other
pairs of classes should be sufficiently regular. We can ensure this by deleting
some vertices of GT . In fact, applying Fact 2.5 and, after that, Fact 2.4, it is
easy to see that we find a subgraph G′ ⊂ GT with classes A1, . . . , A`, B1, . . . , B`,
C1, . . . , C`′ of size at least (1− ε)m corresponding, respectively, to the vertices
x1, . . . , x`, y1, . . . , y`, z1, . . . , z`′ of the tree T , such that the bipartite graphs
induced by Ai and Bi are (2ε, 1/3 − ε)-super-regular and the bipartite graphs
induced by all the other pairs are (2ε, 1/3−ε)-regular. Furthermore, let Dmin be
the set with the smallest cardinality among the sets in A1, . . . , A`, B1, . . . , B`,
C1, . . . , C`′ . Since ε ≤ γ/19, N = b(2 + γ)nc, m ≥ (1 − ε)N/k and ` ≥ (1 −
γ/4)k/4, one can see that

|Dmin| ≥ (1 + γ/152)n/2`. (8)

Partitioning the vertices of H.

Now it is time to construct a partition of W ready for the application
of Lemma 2.3. Since H is a balanced (β,∆)-graph, there exists a coloring
χH : V (H)→ [2] such that

∣∣|χ−1(1)| − |χ−1(2)|
∣∣ ≤ β|χ−1(2)|.

Let w1, . . . , wn be an ordering of W such that |i− j| ≤ βn for every wiwj ∈
EH and let ˆ̀be the smallest integer dividing n with ˆ̀≥ (7K0/ξ) + ` ≥ `(7/ξ + 1).

Consider the partition of V (H) into intervals I1, . . . , Iˆ̀with |I1| = . . . = |Iˆ̀| = n/ˆ̀

taking this ordering into account, i.e., Ii = w(i−1)n/ˆ̀+1, . . . , win/ˆ̀ for i = 1, . . . , ˆ̀.

By Lemma 2.11, since β ≤ 2/ˆ̀, there exists a permutation σ : [ˆ̀]→ [ˆ̀] such that

|C1(σ, a, b)− C2(σ, a, b)| ≤ ξC2(σ, a, b)

for all integers 1 ≤ a < b ≤ ˆ̀ with b − a ≥ 7/ξ. Define ai = (i− 1)ˆ̀/`+ 1 and

bi = iˆ̀/` and consider the blocks Ji = {Iσ(ai), Iσ(ai+1), . . . , Iσ(bi)} for i = 1, . . . , `.
We write C1(Ji) for C1(σ, ai, bi) and C2(Ji) for C2(σ, ai, bi). Thus, for i = 1, . . . , `,

since bi − ai = ˆ̀/`+ 1 ≥ 7/ξ, we have

|C1(Ji)− C2(Ji)| ≤ ξC2(Ji), (9)

Recall we have found a tree T on vertex set {x1, . . . , x`, y1, . . . , y`, z1, . . . , z`′}
containing matching edges EM = {xiyi : i = 1, . . . , `} such that the distance in
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T between any xi and xj for all i and j is even. Our partition of W will be com-
posed of clusters X1, . . . , X`, Y1, . . . , Y`, Z1, . . . , Z`′ corresponding, respectively,
to x1, . . . , x`, y1, . . . , y`, z1, . . . , z`′ .

For every i = 1, . . . , `, we will put most of the vertices of Ji in the clusters Xi

and Yi, depending on the color they received from χH . The remaining vertices
will be distributed in order to make it possible to “walk” between the matching
clusters.

We divide each interval Ii in two parts. The first one, called link of Ii, is
denoted by Li. The links are responsible to make the connections between the
matching clusters. For the last interval, we set Lˆ̀ = ∅. For 1 ≤ i ≤ ˆ̀− 1, if Ii
and Ii+1 are in the same block Jr, then Li = ∅.

Suppose that Ii ∈ Jr and Ii+1 ∈ Js with r 6= s and 1 ≤ i ≤ ˆ̀−1. Let PT (r, s)
be the path of T between xr and xs and consider the path P int

T (r, s) ⊂ PT (r, s)
obtained by excluding the vertices of the set {xr, yr, xs, ys} from PT (r, s), i.e.,
P int
T (r, s) is the “internal” part of the path of T that one should use to reach xs

from xr. For ease of notation set tr,s = |P int
T (r, s)|. We divide the (tr,s + 1)βn

last vertices of Ii in tr,s + 1 “pieces” of size βn, respecting their sequence in the
interval, where the j-th piece is denoted by Li(j) for 1 ≤ j ≤ tr,s + 1, that is,

Li(j) = w(i−(tr,s+2−j)β ˆ̀)n/ˆ̀+1, . . . , w(i−(tr,s+1−j)β ˆ̀)n/ˆ̀.

We put Li = {Li(1), . . . , Li(tr,s), Li(tr,s + 1)}.
Since we have described the links, we can now define the main part of the

intervals. We define KEi = Ii \Li as the kernel of the interval Ii, which will be
placed on the matching clusters Xi and Yi.

We have to construct the clusters that will compose the partition of H.
Initially, let each cluster in {X1, . . . , X`, Y1, . . . , Y`, Z1, . . . , Z`′} be empty. Con-
sider the block Ji for every 1 ≤ i ≤ `. For each interval Ip ∈ Ji we include in
Xi all the vertices w of the kernel KEp with χH(w) = 1 and we include in Yi
all the vertices w of KEp with χH(w) = 2.

The next step is to accommodate all the links. Consider the interval Ii for
1 ≤ i ≤ ˆ̀− 1 and assume that Ii is in Jr and Ii+1 is in Js with r 6= s, otherwise
the link we are looking for is empty and there is nothing to do. Denote the
internal path P int

T (r, s) of PT (r, s) by {u1, . . . , utr,s} and let u0 and utr,s+1 be,
respectively, the vertices of T connected to u1 and utr,s in PT (r, s).

Now we will show how it is possible to “walk” between the matching clusters.
note that u0 can be either xr or yr. Without loss of generality we assume that
u0 = xr. For 1 ≤ j ≤ tr,s + 1, we put the vertices w of Li(j) with χH(w) = 1 in
the corresponding class of uj−1 if j is even, and in the corresponding class of uj if
j is odd. For those w with χH(w) = 2, we do the other way around, i.e., we put
them in the corresponding class of uj if j is even, and in the corresponding class
of uj−1 if j is odd. Since xi and xj are at an even distance for all 1 ≤ i < j ≤ `
and the links have size βn, we know that there is no edges inside the clusters
and if there is an edge between two clusters, then the corresponding edge is
present in T .
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Applying the Embedding Lemma.

Here we will show that the vertex partition of W is (2ε1, T,M)-compatible
with the partition of V (G′) we constructed before. Thus, we can apply the
Embedding Lemma to find the desired monochromatic copy of H in KN .

The first step is to bound by above the size of each cluster in the partition
{X1, . . . , X`, Y1, . . . , Y`, Z1, . . . , Z`′} of W . Note that, for every 1 ≤ i ≤ `, we
have C1(Ji) + C2(Ji) = n/`. Using this fact and (9) one can easily obtain that,
for every 1 ≤ i ≤ `,

(1− ξ) n
2`
≤ C1(Ji), C2(Ji) ≤ (1 + ξ)

n

2`
. (10)

By the construction, every Xi (Yi) is composed only of vertices v with χ(v) =
1 (χ(v) = 2). Furthermore, these vertices can come from one kernel and at most
two pieces of each link. Then,

|Xi|, |Yi| ≤ (1 + ξ)
n

2`
+ 2ˆ̀βn

=
(

1 + ξ + 4`ˆ̀β
) n

2`
≤ |Dmin|,

(11)

where the last inequality follows by inequality (8) and the choice of ξ, β and ˆ̀.
For the clusters Zi, for 1 ≤ i ≤ `′, we know that they are composed only of

vertices in at most two pieces of each link. Thus,

|Zi| ≤ 2ˆ̀βn

= (4`ˆ̀β)
n

2`

≤ ε

∆2
|Dmin|,

(12)

where the last inequality follows by inequality (8) and the choice of β and ˆ̀.
Now we can check that the partitions of W and V (G′) are compatible. Based

on Definition 2.2 we define the sets Uj and U ′j for 1 ≤ j ≤ 2`+ `′ with respect
to the partition {X1, . . . , X`, Y1, . . . , Y`, Z1, . . . , Z`′} of W . Define Wj = Xj if
1 ≤ j ≤ `, Wj = Yj−` if `+ 1 ≤ j ≤ 2`, and Wj = Zj−2` if 2`+ 1 ≤ j ≤ 2`+ `′.
Then, we will verify that the four conditions of Definition 2.2 hold:

(i) By the construction of the partition of W , if there is an edge between two
clusters, then the corresponding edge is present in T .

(ii) By (8), we know that every set D in the partition {A1, . . . , A`, B1, . . . , B`,
C1, . . . , C`′} of V (G′) has size |D| ≥ (1+γ/152)n/2`. So, inequalities (11)
and (12) show that condition (ii) holds.

(iii) Fix 1 ≤ j ≤ 2`+ `′. Define Uj as the set of vertices of Wj with neighbors
in some Wk with j 6= k and {j, k} /∈M . We divide in two cases:
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(a) 2`+1 ≤ j ≤ 2`+`′: We have Uj = Zj−2`. By (12), |Uj | ≤ ε|Dmin|/∆.

(b) 1 ≤ j ≤ 2`: In this case, Uj is composed only of neighbors of vertices
in exactly one set of {Z1, . . . , Z`′}. Thus, since ∆ if the maximum
degree of H, by (12), we conclude that |Uj | ≤ ε|Dmin|/∆.

Thus, for every j = 1, . . . , 2`+ `′ we have

|Uj | ≤
ε

∆
|Dmin|, (13)

which shows that condition (iii) holds.

(iv) Define the set U ′j = NH(U) ∩ (Wj \ U), where U =
⋃2`+`′

i=1 Ui. Consider
the following cases.

(a) 2` + 1 ≤ j ≤ 2` + `′: Note that since every vertex of Zj−2` belongs
to Uj , we have U ′j = ∅. Thus, it is obvious that |U ′j | ≤ |Dmin|.

(b) ` + 1 ≤ j ≤ 2`: Here, U ′j ⊂ Wj = Yj−`. Then, U ′j is com-
posed only of neighbors of Uj−` ⊂ Xj−`. Then, using (13), we have
|U ′j | ≤ ∆|Uj−`| ≤ ε|Dmin|.

(c) 1 ≤ i ≤ `: This case is analogous to case (b).

Since we proved that the four conditions of Definition 2.2 hold, the partition
{X1, . . . , X`, Y1, . . . , Y`, Z1, . . . , Z`′} of W is (2ε, T,M)-compatible (then, it is
clearly (ε1, T,M)-compatible) with {A1, . . . , A`, B1, . . . , B`, C1, . . . , C`′}, which
is a partition of V (G′). Then, by Lemma 2.3, we conclude that H ⊂ G′. This
finishes the proof, since G′ is a monochromatic subgraph of KN .

4. Sketch of the proof of Theorem 1.2

We want to prove that for every γ > 0 and natural number ∆, there exists
a constant β > 0 such that for every sufficiently large (β,∆)-graph H with a
proper 2-coloring χH : V (H) → [2] where t1 = |χ−1H (1)| and t2 = |χ−1H (2)|,
with t1 ≤ t2, we can find a monochromatic copy of H in every edge coloring
of E(KN ) with N = (1 + γ) max{2t1 + t2, 2t2}. Let H be such a graph and
assume 2t1 ≥ t2 (the complementary case can be solved in a similar way).

The proof of Theorem 1.2 is very similar to the proof of Theorem 1.3. Here
we also embed H in parts, considering a partition of a monochromatic subgraph
G of KN . The partition we need is composed of a special cluster W and clusters
X1, Y1, . . . , Xm, Ym corresponding to a “large” matching M with matching edges
EM = {xi, yi : i = 1, . . . ,m} such that the pairs {Xi, Yi} are super-regular and
the pairs {Xi,W} are regular, for i = 1, . . . ,m. The special cluster W is needed
to allow us to “walk” between the clusters X1, Y1, . . . , Xm, Ym.

The problem in the preparation of the host monochromatic graph G is the
fact that H is not as balanced as it is in the setup of Theorem 1.3. So, in
order to embed H in G we need that |Yi|/|Xi| = t2/t1. Fortunately, by [13,
Theorem 3], since t2/t1 ≤ 2 in the case we are considering, we can find such a
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monochromatic graph G. Using Fact 2.5 we can easily make the matching pairs
super-regular.

Now we have to prepare the graph H for the embedding. We consider the
ordering of its vertices respecting the bandwidth condition and divide the set of
vertices into intervals. Thus, we can find a permutation of such intervals such
that blocks of intervals fit into the super-regular pairs of G. Then, using few
vertices we can “walk” from one super-regular pair to another as done in the
proof of Theorem 1.3 and we are done.
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