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Free Actions of Compact Groups

on C∗-Algebras, Part I

Kay Schwieger ∗ Stefan Wagner †

Abstract

We study free and compact group actions on unital C∗-algebras. In particular, we
provide a complete classification theory of these actions for compact abelian groups
and explain its relation to the classical classification theory of principal bundles.

Keywords: Free actions on C∗-algebras, noncommutative principal bundles.
MSC2010: 46L87, 37B05 (primary), 55R10, 17A60 (secondary).

1 Introduction

In this article we study free actions of compact groups on unital C∗-algebras. This class
of actions was first introduced under the name saturated actions by Rieffel [44] and
equivalent characterizations where given by Ellwood [19] and by Gottman, Lazar, and
Peligrad [20] (see also [6]). Other related notions of freeness were studied by Phillips
[41] in connection with K-theory (see also [42]).

Free actions do not admit degeneracies that may be present in general actions. For this
reasons they are easier to understand and to classify. In fact, free ergodic actions, i. e.,
free actions with trivial fixed point algebra, were completely classified by the remarkable
work of Wassermann [56, 57, 58]. According to [56], for a compact group G there is a
1-to-1 correspondence between free ergodic actions of G and 2-cocycles of the dual group.
Extending this result beyond the ergodic case is however not straightforward because,
even for a commutative fix point algebra, the action cannot necessarily be decomposed
into a bundle of ergodic actions. For compact abelian groups our results about free, but
not necessary ergodic actions may be regarded as a generalization of the classification
given by Wasserman.
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The study of non-ergodic free actions is also motivated by the established theory of
principal bundles. By a classical result, having a free action of a compact group G on a
compact Hausdorff space P is equivalent saying that P carries the structure of a principal
bundle over the quotient X := P/G with structure group G. Very well-understood is
the case of locally trivial principal bundles, that is, if P is glued together from spaces of
the form U ×G with an open subset U ⊆ X. This gluing immediatly leads to G-valued
cocycles. The corresponding homology, called Čech cohomology, then gives a complete
classification of locally trivial principal bundles with base space X and structure group G
(see [50]). For principal bundles that are not locally trivial, however, there is no obvious
classification available. Our results provide such a classification in the case of an abelian
structure group.

Passing to noncommutative geometry poses the question how to extend the concept
of principal bundles to noncommutative geometry. In the case of vector bundles the
Theorem of Serre and Swan (cf. [48]) gives the essential clue: The category of vector
bundles over a compact space X is equivalent to the category of finitely generated and
projective C(X)-modules. This observation leads to a notion of noncommutative vector
bundles and is the connection between the topological K-theory based on vector bundles
and the K-theory for C∗-algebras. For principal bundles, free and proper actions offer a
good candidate for a notion of noncommutative principal bundles (see e. g. [5, 6, 19, 42]).
A similar geometric approach based on transformation groups was developed by one of
the authors [53, 54]. In a purely algebraic setting, the well-established theory of Hopf–
Galois extensions provides a wider framework comprising coactions of Hopf algebras
(e. g. [23, 29, 46]). We also would like to mention the related notion of noncommutative
principal torus bundles proposed by Echterhoff, Nest, and Oyono-Oyono [18] (see also
[24]), which relies on a noncommutative version of Green’s Theorem. Considering free
actions as noncommutative principal bundles, the present article characterizes principal
bundles in terms of associated vector bundles. This leads to a complete classification
of all principal bundles over a compact noncommutative base space with a (classical)
compact abelian structure group.

Extending the classical theory of principal bundles to noncommutative geometry is not of
purely mathematical interest. In fact, noncommutative principal bundles become more
and more prevalent in geometry and physics. For instance, Ammann and Bär [2, 3] study
the properties of the Riemannian spin geometry of a smooth principal U(1)-bundle. Un-
der suitable hypotheses, they relate the spin structure and the Dirac operator on the
total space to the spin structure and the Dirac operator on the base space. A noncom-
mutative generalization of these results was developed by Dabrowski, Sitarz, and Zucca
[13, 14] using ideas from the theory of Hopf–Galois extensions. Noncommutative princi-
pal bundles also appear in the study of 3-dimensional topological quantum field theories
that are based on the modular tensor category of representations of the Drinfeld double
(cf. [30]). In this context, special types of Hopf–Galois extensions correspond to symme-
tries of the theory or, equivalently, to invertible defects. As such, they are connected
to module categories and in particular to the Brauer–Picard group of pointed fusion
categories. Furthermore, T-duality is considered to be an important symmetry of string
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theories ([1, 10]). It is known that a circle bundle with H-flux given by a Neveu–Schwarz
3-form admits a T-dual circle bundle with dual H-flux. However, it is also known that in
general torus bundles with H-flux do not necessarily have a T-dual that is itself a clas-
sical torus bundle. Mathai and Rosenberg [32, 33] showed that this problem is resolved
by passing to noncommutative spaces. For example, it turns out that every principal
T

2-bundle with H-flux does indeed admit a T-dual but its T-dual is non-classical. It is a
bundle of noncommutative 2-tori, which can (locally) be realized as a noncommutative
principal T2-bundle in the sense of [18]. Our classification result may lead to a better
understanding of T-duals and the question of their existence.

The present article investigates the structure of free actions of compact groups from a
geometrical point of view. One of our main objectives in the first part of the article is to
provide methods to construct or deconstruct examples of free actions. It turns out that
the isotypic components of the action admit a Morita equivalence bimodule structure.
For compact abelian groups this allows us to completely classify free actions on unital
C∗-algebras. The resulting classification is the main objective for the later part of the
article. More detailedly, the paper is organized as follows.

After briefly introducing the necessary tools from geometry, representation theory, and
operator algebras in Section 2, the first part of Section 3 discusses the different equiv-
alent characterizations of freeness (Theorem 3.10). In the second part of Section 3 we
provide some methods to construct new free actions from given ones. As an example
we present a one-parameter family of free SU2(C)-actions related to the Connes–Landi
spheres (cf. [29]).

Section 4 is devoted to the study of Hilbert structures on modules which are naturally
associated to a C∗-dynamical system. We would like to point out that these modules have
a natural interpretation as noncommutative vector bundles. Of particular importance
in this context are Theorem 4.10 and its Corollary 4.15, which characterize freeness in
terms of Hilbert bimodule maps. This will be the foundation of our later classification
results.

The aim of Section 5 is to give a deeper insight into the theory for compact abelian groups.
To get more comfortable we first present some examples, among them the noncommu-
tative tori, the group C∗-algebra of the discrete two-dimensional Heisenberg group and
Woronowicz’s twisted SU(2). Furthermore, we show how Morita self-equivalences over
the corresponding fixed point algebra enter the game in form of the Picard group. This
leads to an invariant of the action given by a group homomorphism ϕ : Ĝ → Pic(B)
between the corresponding dual group Ĝ and the Picard group of the fixed point algebra
B (Proposition 5.11).

The map ϕ alone does not distinguish all free actions. However, using some additional
data, Section 6 provides a universal construction of, firstly, a unital C∗-algebra and,
secondly, a free G-action on this C∗-algebra with fixed point algebra B (Theorem 6.17
and Proposition 6.20). We then classify all free actions by the map ϕ and the additional
data used for the construction. Our approach is to some extend similar to the classical
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theory of group extensions (cf. [31]). For this reason we call the underlying classification
data a factor system.

Section 7 is finally dedicated to a classification of free action of compact abelian group
on unital C∗-algebras. For this purpose we additionally fix a group homomorphism
ϕ : Ĝ → Pic(B) and restrict our attention to C∗-dynamical system with the given
ϕ as invariant, as discussed in Section 5. The main result is that, if such dynamical
systems exist, all free actions associated to the triple (B, G, ϕ) are parametrized, up to
2-coboundaries, by 2-cocycles on the dual group Ĝ with values in the group UZ(B) of
central unitary elements in B (Theorem 7.8 and Corollary 7.9). In other words, the
set in question is a principal homogenous space with respect to a classical cohomology
group H2(Ĝ, UZ(B)). In the remaining part of this section we provide a group theoretic
criterion for the existence of free action with invariant ϕ, i. e., factor system associated
to the triple (B, G, ϕ).

As already mentioned, for a Hausdorff space X and a compact group G, locally trivial
principal G-bundles over X are classified by the Čech cohomology of the pair (X,G).
Since each locally trivial principal bundle gives rise to a free action in our sense, it is
natural to ask how the Čech cohomology for the pair (X,G) is related to the classification
theory presented in Section 7. This question is the main drive for Section 8. Finally, in
Section 9 we discuss a few examples.

We would like to point out that with little effort the arguments and the results which
are presented in this article for actions of compact abelian groups extend to coactions
of group C∗-algebras of finite groups. We also would like to mention that this article
is the first part of a larger program aiming at classifying more general free actions
on C∗-algebras. This classification could be used to develope a fundamental group for
C∗-algebras or an approach to noncommutative gerbes (cf. [35, 36]).
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2 Preliminaries and Notations

Our study is concerned with free and compact group actions on C∗-algebras and their
classification. As a consequence, we use and blend tools from geometry, representation
theory and operator algebras. In this preliminary section we provide the most important
definitions and notations which are repeatedly used in this article.

Principal Bundles and Free Group Actions

Let P and X be compact spaces. Furthermore, let G be a compact group. A locally
trivial principal bundle is a quintuple (P,X,G, q, σ), where q : P → X is a continuous
map and σ : P ×G → P a continuous action, with the property of local triviality: Each
point x ∈ X has an open neighbourhood U for which there exists a homeomorphism ϕU :
U ×G → q−1(U) satisfying q ◦ ϕU = prU and additionally the equivariance property

ϕU (x, gh) = ϕU (x, g).h

for x ∈ U and g, h ∈ G. It follows that the map q is surjective, that the action σ is free
and proper, and that the natural map P/G 7→ X, p.G 7→ q(p) is a homeomorphism. In
particular, we recall that the action σ is called free if and only if all stabilizer groups
Gp := {g ∈ G | σ(p, g) = p}, p ∈ P , are trivial. For a solid background on free group
actions and principal bundles we refer to [26, 28, 39].

Representations

All tensor products of vector spaces are taken with respect to the algebraic tensor product
denoted by ⊗ if not mentioned otherwise. For a finite-dimensional Hilbert space V with
inner product V 〈·, ·〉, we write trV for the canonical trace on L(V ) and θv,w ∈ L(V ) for
the rank one operator defined for two elements v,w ∈ V by θv,w(ξ) := V 〈ξ, w〉·v. For the
corresponding dual vector space we write V̄ . Moreover, we use of the linear isomorphisms
ϕV,V̄ : V ⊗ V̄ → L(V ), v ⊗ w̄ 7→ θv,w and ϕV,V̄ : V ⊗ V̄ → L(V ), v ⊗ w̄ 7→ θv,w. Given
a finite-dimensional unitary representation (π, V ) of a group G, we denote the dual
representation by (π̄, V̄ ) and the adjoint representation by (Ad[π],L(V )). Besides those,
the induced representation

R[π] : G× L(V ) → L(V ), (g, S) 7→ Sπ∗
g

of G on L(V ) is of particular interest to us.
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C∗-Dynamical Systems

Let A be a unital C∗-algebra and G a compact group that acts on A by ∗-automorphism
αg : A → A (g ∈ G) such that the map G × A → A, (g, a) 7→ αg(a) is continuous.
Throughout this paper we call such a triple (A, G, α) a C∗-dynamical system. We usually
denote by B := AG the corresponding fixed point C∗-algebra of the action α and we write
P : A → A for the conditional expectation given by

P (x) :=
∫

G
αg(x) dg.

At this point it is worth mentioning that all integrals over compact groups are understood
to be with respect to probability Haar measure. More generally, for a finite-dimensional
unitary representation (π, V ) of G we write Pπ : A → A for the continuous G-equivariant
projection onto the isotypic component A(π) := Pπ(A) given by

Pπ(x) := dim V ·
∫

G
trV (π∗

g) · αg(x) dg.

It is a consequence of the Peter–Weyl Theorem that the algebraic direct sum
⊕

π∈Ĝ
A(π)

is a dense ∗-subalgebra of A. Moreover, we point out that each continuous group action
σ : P ×G → P of a compact group G on a compact space P gives rise to a C∗-dynamical
system (C(P ), G, ασ) defined by

ασ : G× C(P ) → C(P ), (g, f) 7→ f ◦ σg.

Hilbert Module Structures

A huge part of this paper is concerned with Hilbert module structures. For the readers’
convenience we recall some of the central definitions. Let B be a unital C∗-algebra.
A right pre-Hilbert B-module is a vector space M which is a right B-module equipped
with a positive definite B-valued sesquilinear form 〈·, ·〉B satisfying

〈x, y.b〉B = 〈x, y〉Bb and 〈x, y〉∗
B = 〈y, x〉B

for all x, y ∈ M and b ∈ B. A right Hilbert B-module is a right pre-Hilbert B-module
M which is complete with respect to the norm given by ‖x‖2 = ‖〈x, x〉B‖ for x ∈ M . It
is called a full right Hilbert B-module if the ideal span{〈x, y〉B | x, y ∈ M} is dense in B.
Left (pre-) Hilbert B-modules are defined in a similar way. Next, let A and B be unital
C∗-algebras. A right (pre-) Hilbert A−B-bimodule is a right (pre-) Hilbert B-module M
that is also a left A-module satisfying

a.(x.b) = (a.m).b and 〈a.x, y〉B = B〈x, a∗.y〉B

for all x, y ∈ M , a ∈ A and b ∈ B. In other words, a right (pre-) Hilbert A−B-bimodule
is a right (pre-) Hilbert B-module M together with a ∗-representation of A as adjointable
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operators on M . For later purposes we recall that in this situation the right B-valued
inner product satisfies the inequality

〈a.x, a.x〉B ≤ ‖a‖2〈x, x〉B

for all x ∈ M and a ∈ A. Moreover, we point out that right Hilbert A−B-bimodules are
sometimes called A − B correspondences in the literature. Eventually we also need the
notion of (internal) tensor products. In fact, given a right (pre-) Hilbert A−B-bimodule
M and a right (pre-) Hilbert B−B-bimoduleM , their algebraic B-tensor productM⊗BN
carries a natural right pre-Hilbert A − B-bimodule structure with right B-valued inner
product given by

〈x1 ⊗B y1, x2 ⊗B y2〉B := 〈x1, 〈y1, y2〉B.x2〉B

for x1, x2 ∈ M and y1, y2 ∈ N . In particular, its completion M⊗̂BN (with respect to the
induced norm) is a right Hilbert A − B-bimodule. Left (pre-) Hilbert A − B-bimodules
are defined in a similar way. A (pre-)Hilbert A − B-bimodule is an A − B-bimodule M
which is a left (pre-) Hilbert A-module and a right (pre-) Hilbert B-module satisfying

〈a.x, y〉B = 〈x, a∗.y〉B, A〈x.b, y〉 = A〈x, y.b∗〉 and A〈x, y〉.z = x.〈y, z〉B

for all x, y, z ∈ M , a ∈ A and b ∈ B. As a consequence of the structure, the induced
norms are equal. A Morita equivalence A−B-bimodule is a Hilbert A−B-bimodule with
full inner products. In this context it is also important to mention that the algebraic
B-tensor product M ⊗B N of a (pre-) Hilbert A − B-bimodule M and a (pre-) Hilbert
B − B-bimodule N carries a natural pre-Hilbert A − B-bimodule structure with inner
products given by

A〈x1 ⊗B y1, x2 ⊗B y2〉 := A〈x1.B〈y1, y2〉, x2〉

and

〈x1 ⊗B y1, x2 ⊗B y2〉B := 〈y1, 〈x1, x2〉B.y2〉B

for x1, x2 ∈ M and y1, y2 ∈ N . Unsurprisingly, its completion M⊗̂BN is a Hilbert
A − B-bimodule. Last but not least, if M is a Morita equivalence A − B-bimodule and
N is a Morita equivalence B − B-bimodule, then it is easily checked that the completion
M⊗̂BN is a Morita equivalence A − B-bimodule. For a detailed background on Hilbert
module structures we refer to [4, 7, 17, 43].

3 On Free Group Actions: Some General Theory

The aim of this section is to discuss some of the forms of free and compact group actions
on C∗-algebras that have been used. In particular, we give some indications of their
strengths and relationships to each other. Furthermore, we provide some methods to
construct new free actions from given ones. As an example we present a one-parameter
family of free SU2(C)-actions which are related to the Connes–Landi spheres. We write
⊗min for the spatial tensor product of C∗-algebras.

7



Proposition 3.1. ([41, Proposition 7.1.3 ]). Let (A, G, α) be a C∗-dynamical system.
Then the following definitions make a suitable completion of A into a Hilbert A⋊αG−B-
bimodule:

(i) f.x :=
∫

G f(g)αg(x) dg for f ∈ L1(G,A, α) and x ∈ A.

(ii) x.b := xb for x ∈ A and b ∈ B.

(iii) A⋊αG〈x, y〉 is the function g 7→ xαg(y∗) for x, y ∈ A.

(iv) 〈x, y〉B :=
∫

G αg(x∗y) dg for x, y ∈ A.

It is easily seen that the module under consideration in the previous statement is almost
a Morita equivalenceA⋊αG−B-bimodule. In fact, the only missing condition is that the
range of 〈·, ·〉A⋊αG need not be dense. The imminent definition was originally introduced
by M. Rieffel and has a number of good properties that resemble the classical theory of
free and compact group actions as we will soon see below.

Definition 3.2. ([41, Definition 7.1.4 ]). We call a C∗-dynamical system (A, G, α) free
if the bimodule from Proposition 3.1 is a Morita equivalence bimodule, that is, the range
of 〈·, ·〉A⋊αG is dense in the crossed product A ⋊α G.

Remark 3.3. We point out that M. Rieffel used the notion “saturated” instead of free,
i. a., because of its relation to Fell bundles in the case of compact abelian group actions.
Moreover, we recall that [44, Definition 1.6] provides a notion for free actions of locally
compact groups which is consistent with Definition 3.2 for compact groups.

The next result shows that Definition 3.2 extends the classical notion of free and compact
group actions.

Theorem 3.4. ([41, Proposition 7.1.12 and Theorem 7.2.6 ]). Let P be a compact space
and G a compact group. A continuous group action σ : P×G → P is free if and only if the
corresponding C∗-dynamical system (C(P ), G, ασ) is free in the sense of Definition 3.2.

Another hint for the strength of Definition 3.2 comes from the following observation: Let
(P,X,G, q, σ) be a locally trivial principal bundle and (π, V ) a finite-dimensional unitary
representation of G. Then it is a well-known fact that the isotypic component C(P )(π)
is finitely generated and projective as a right C(X)-module (cf. [51, Proposition 8.5.2]).
In the C∗-algebraic setting a similar statement is valid.

Theorem 3.5. ([15, Theorem 1.2 ]). Let (A, G, α) be a free C∗-dynamical system and
(π, V ) a finite-dimensional unitary representation of G. Then the corresponding isotypic
component A(π) is finitely generated and projective as a right B-module.

We proceed with introducing two more notions which will turn out to be equivalent
characterizations of noncommutative freeness. The first notion is a C∗-algebraic version
of the purely algebraic Hopf–Galois condition (cf. [23, 46]) and is due to D. A. Ellwood.
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Definition 3.6. ([19, Definition 2.4 ]). We say that a C∗-dynamical system (A, G, α)
satisfies the Ellwood condition if the map

Φ : A ⊗ A → C(G,A), Φ(x⊗ y)(g) := xαg(y)

has dense range (with respect to the canonical C∗-norm on C(G,A)).

The second notion is of representation-theoretic nature and makes use of the so-called
generalized isotypic components of a C∗-dynamical system.

Definition 3.7. (Generalized isotypic components). Let (A, G, α) be a C∗-dynamical
system and (π, V ) a finite-dimensional unitary representation of G.

(a) We consider the C∗-algebra A ⊗ L(V ) equipped with the linear action α⊗R[π] of
G and denote by A2(π) the corresponding fixed point space, i. e.,

A2(π) := {s ∈ A ⊗ L(V ) | (αg ⊗R[πg])(s) = s for all g ∈ G}.

(b) We consider the C∗-algebra A ⊗ L(V ) equipped with the action α⊗ Ad[π] of G by
∗-automorphisms and denote by C(π) the corresponding fixed point algebra, i. e.,

C(π) := {s ∈ A ⊗ L(V ) | (αg ⊗ Ad[πg])(s) = s for all g ∈ G}.

Both spaces carry a natural B − B-bimodule structure induced by the algebra structure
of A. Furthermore, a simple calculation shows that A(π) = (idA ⊗ trV )(A2(π)) and that
B = (idA ⊗ trV )(C(π)).

Remark 3.8. Suppose that (π, V ) is an irreducible unitary representation of G. Then
the map idA ⊗ trV : A ⊗ L(V ) → A restricts to a topological G-equivariant isomorphism
between the spaces A(π) and A2(π). Indeed, the map q : A → A2(π) given by

q(x) := dimV ·
∫

G
αg(x) ⊗ π∗

g dg

satisfies (idA ⊗ trV ) ◦ q = Pπ and q ◦ (idA ⊗ trV ) = idA2(π), so that the restriction of q to
Aπ inverts the corestriction of idA ⊗ trV onto its image.

We are now ready to present the second notion which is of major relevance in our attempt
to classify free C∗-dynamical systems.

Definition 3.9. ([20, Definition 1.1 (b)]). Let (A, G, α) be a C∗-dynamical system. We
call the set

Sp(α) :=
{

[(π, V )] ∈ Ĝ
∣∣ span{x∗y | x, y ∈ A2(π)} = C(π)

}

the Averson spectrum of (A, G, α).
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As the following result finally shows, all the previous notions agree.

Theorem 3.10. Let (A, G, α) be a C∗-dynamical system. Then the following statements
are equivalent:

(a) The C∗-dynamical system (A, G, α) is free.

(b) The C∗-dynamical system (A, G, α) satisfies the Ellwood condition.

(c) The C∗-dynamical system (A, G, α) satisfies Sp(α) = Ĝ.

The equivalence between (a) and (b) was proved quite recently in [15], although it has
been known that these two conditions are closely related to each other (cf. [55] for the
case of compact Lie group actions). A proof of the equivalence between (a) and (c) can
be found in [20]. We point out that condition (c) means that the generalized isotypic
components A2(π) carry the structure of a Morita equivalence B⊗L(V )−C(π)-bimodule
(see Corollary 4.16 below).

In the remaining part of this section we provide some methods to construct new free
actions from given ones. As an application, we present a one-parameter family of free
SU2(C)-actions which are related to the Connes–Landi spheres.

Proposition 3.11. Let (A, G, α) be a free C∗-dynamical system and H a closed subgroup
of G. Then also the restricted C∗-dynamical system (A,H, α|H) is free.

Proof. Since (A, G, α) satisfies the Ellwood condition, the surjectivity of the restriction
map C(G,A) → C(H,A), f 7→ f|H implies that the map

Φ : A ⊗ A → C(H,A), Φ(x⊗ y)(h) := xαh(y)

has dense range. That is, (A,H, α|H) also satisfies the Ellwood condition.

Proposition 3.12. Let (A, G, α) be a free C∗-dynamical system and N a normal sub-
group of G. Then also the induced C∗-dynamical system (AN , G/N,α|G/N ) is free.

Proof. Since (A, G, α) satisfies the Ellwood condition, the map

Φ : A ⊗ A → C(G,A), Φ(x⊗ y)(g) := xαg(y)

has dense range. Moreover, the C∗-algebra C(G/N,AN ) is naturally identified with
functions in C(G,A) satisfying f(g) = αn1(f(gn2)) for all g ∈ G and n1, n2 ∈ N . In
other words, C(G/N,AN ) is the fixed point algebra of the action α ⊗ rt of N × N on
C(G)⊗min A = C(G,A), where rt : N ×C(G) → C(G), rt(n, f)(g) := f(gn) denotes the
right-translation action by N . Let PN : A → A and PN×N : C(G,A) → C(G,A) be the
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conditional expectations for the actions α|N and α ⊗ rt, respectively. Then we obtain
for x, y ∈ A

Φ(PN (x) ⊗ PN (y)) =
∫

N×N
αn1

(x)αgn2
(y) dn1dn2 =

∫

N×N
αn1

(x)αn2g(y) dn1dn2

=
∫

N×N
αn1

(xαn2g(y)) dn1dn2 =
∫

N×N
αn1

(xαgn2
(y)) dn1dn2

= PN×N (Φ(x⊗ y)).

It follows that the restricted map

Φ|AN ⊗AN : AN ⊗ AN → C(G,A), Φ(x⊗ y)(g) := xαg(y)

has dense range in the C∗-subalgebra C(G/N,AN ). That is, (AN , G/N,α|G/N ) also
satisfies the Ellwood condition.

Proposition 3.13. Let (A, G, α) and (C,H, γ) be free C∗-dynamical systems. Then also
their tensor product (A ⊗min C, G×H,α⊗ γ) is free.

Proof. We first note that the map

Φ : A ⊗ C ⊗ A ⊗ C → C(G×H,A ⊗min C),

Φ(x⊗ y ⊗ u⊗ v)(h) := xαh(y) ⊗ uγh(v)

is, up to a permutation of the tensor factors, an amplification of the corresponding maps
induced by (A, G, α) and (C,H, γ). Therefore, (A ⊗min C, G × H,α ⊗ γ) inherits the
Ellwood condition from (A, G, α) and (C,H, γ).

Remark 3.14. Let (A, G, α) be a free C∗-dynamical system. Furthermore, let C be any
unital C∗-algebra. Then Proposition 3.13 applied to the trivial group H implies that
the C∗-dynamical system (A ⊗min C, G, α ⊗ idC) is free. More generally, if (C, G, γ) is
any C∗-dynamical system, then is is not hard to check that the C∗-dynamical system
(A ⊗min C, G, α ⊗ γ) satisfies the Ellwood condition, i. e., (A ⊗min C, G, α ⊗ γ) is free.
This observation corresponds in the classical setting to the situation of endowing the
cartesian product of a free and compact G-space X and any compact G-space Y with
the free diagonal action of G.

We proceed with a construction which is slightly more involved. For this purpose, let
(A, G, α) and (A,H, β) be C∗-dynamical systems with commuting actions. Then it is
easily seen that the map

α ◦ β : (G×H) × A → A, ((g, h), x) 7→ (αg ◦ βh)(x)

defines a continuous action of G×H on A by algebra automorphisms and therefore leads
to the C∗-dynamical system (A, G×H,α◦β). Furthermore, let (C,H, γ) be any another
C∗-dynamical system. Then the fixed point algebra (A ⊗min C)H with respect to the
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tensor product action β ⊗ γ of H on A ⊗min C gives rise to the C∗-dynamical system(
(A ⊗min C)H , G, α ⊗ idC

)
. Indeed, since the actions α and β commute by assumption,

the action of G on (A ⊗min C)H given by α⊗ idC is well-defined.

Theorem 3.15. Let (A, G, α) and (C,H, γ) be free C∗-dynamical systems. Furthermore,
let (A,H, β) be any another C∗-dynamical system such that the actions α and β commute.
Then the following assertions hold:

(a) The C∗-dynamical system
(
(A ⊗min C), G ×H, (α ◦ β) ⊗ γ

)
is free.

(b) The C∗-dynamical system
(
(A ⊗min C)H , G, α ⊗ idC

)
is free.

Proof. (a) We first note that (A, G, α) and (C,H, γ) both satisfy the Ellwood condition
from which we conclude that the maps

Φ1 : A ⊗ A ⊗ C → C(G,A ⊗min C), Φ1(x1 ⊗ x2 ⊗ y)(g) := x1αg(x2) ⊗ y

and Φ2 : (A ⊗ C) ⊗ (A ⊗ C) → C(H,A ⊗ A ⊗ C) given by

Φ2
(
(x1 ⊗ y1) ⊗ (x2 ⊗ y2)

)
(h) := x1 ⊗ βh(x2) ⊗ y1γh(y2)

have dense range. It follows, identifying C(H,C(G,⊗A⊗minC)) with C(G×H,A⊗minC),
that also their amplified composition

Φ := (idC(H) ⊗Φ1) ◦ Φ2 : (A ⊗ C) ⊗ (A ⊗ C) → C(G×H,A ⊗min C)

given by

Φ
(
(x1 ⊗ y1) ⊗ (x2 ⊗ y2)

)
(g, h) = x1(αgβh)(x2) ⊗ y1γh(y2)

has dense range. That is,
(
(A⊗min C), G×H, (α◦β)⊗γ

)
satisfies the Ellwood condition.

(b) To verify the second assertion we simply apply Proposition 3.12 to the C∗-dynamical
system in part (a) and the normal subgroup {1G} ×H of G×H.

Example 3.16. The Connes-Landi spheres S
n
θ are extensions of the noncommutative

tori Tn
θ (cf. [29]). We are in particularly interested in the case n = 7. In this case there

is a continuous action of the 2-torus T
2 on the 7-sphere S

7 ⊆ C
4 given by

σ : S7 × T
2 → S

7,
(
(z1, z2, z3, z4), (t1, t2)

)
7→ (t1z1, t1z2, t2z3, t2z4).

Let (C(S7),T2, ασ) be the corresponding C∗-dynamical system. Furthermore, let
(T2

θ,T
2, α2

θ) be the free C∗-dynamical system associated to the gauge action on the
noncommutative 2-torus T

2
θ (see Example 5.2 below). The Connes–Landi sphere S

7
θ

is defined as the fixed point algebra of the tensor product action ασ ⊗ α2
θ of T

2 on
C(S7,T2

θ) = C(S7) ⊗min T
2
θ, i. e.,

S
7
θ := C(S7,T2

θ)T
2

.
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Our intention is to use Theorem 3.15 (b) to endow S
7
θ with a free SU2(C)-action. For this

purpose, we consider the free and continuous SU2(C)-action on the 7-sphere S
7 given by

µ : S7 × SU2(C) → S
7,

(
(z1, z2, z3, z4),M

)
7→ (z1, z2, z3, z4)

(
M 0
0 M

)
.

It follows from Theorem 3.4 that the corresponding C∗-dynamical system
(C(S7),SU2(C), αµ) is free. Moreover, it is easily verified that the actions αµ and
ασ commute. Therefore, Theorem 3.15 (b) implies that the C∗-dynamical system(
S

7
θ,SU2(C), αµ ⊗ idT2

θ

)
is free.

4 Hilbert Modules Associated to Free Actions

Throughout this section let (A, G, α) be a fixed C∗-dynamical system. Our intention is
to study Hilbert module structures on modules which are in a natural way associated to
(A, G, α). In particular, we obtain results which lay the foundation for our attempt to
classify free and compact group actions on C∗-algebras.

Definition 4.1. (Generalized spaces of sections). Let (π, V ) be a finite-dimensional
unitary representation of G. We consider the space A ⊗V equipped with the continuous
linear action α⊗ π of G and denote by ΓAV the corresponding fixed point space, i. e.,

ΓAV := {s ∈ A ⊗ V | (αg ⊗ πg)(s) = s for all g ∈ G}.

We point out that ΓAV comes equipped with a natural B − B-bimodule structure.

Remark 4.2. Let (P,X,G, q, σ) be a locally trivial principal bundle and (π, V ) be a
finite-dimensional unitary representation of G. Furthermore, let Vπ := P ×G V be
the associated vector bundle over X with bundle projection qπ : Vπ → X given by
qπ([p, v]) := q(p). Then it is not hard to see that the map

Tπ : C(P, V )G → ΓVπ, Tπ(f)(q(p)) := [p, f(p)]

is a topological isomorphism of C(X) − C(X)-bimodules. Since ΓC(P )V ∼= C(P, V )G

holds as C(X) − C(X)-bimodules, the previous discussion justifies to interpret the
spaces from Definition 4.1 as noncommutative vector bundles which are associated to
the C∗-dynamical system (A,G,α).

We proceed with two finite-dimensional unitary representations (π, V ) and (ρ,W ) of G.
For s =

∑
i xi ⊗ vi ∈ A ⊗ V and t =

∑
j yj ⊗ wj ∈ A ⊗W we define

mV,W (s⊗B t) :=
∑

i,j

xiyj ⊗ vi ⊗ wj and iV (s) :=
∑

i

x∗
i ⊗ v̄i

which give rise to maps

mV,W : (A ⊗ V ) ⊗B (A ⊗W ) → A ⊗ V ⊗W and iV : A ⊗ V → A ⊗ V̄ .
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Lemma 4.3. Restricting the maps mV,W and iV to the subspaces ΓAV ⊗B ΓAW and
ΓAV , respectively, provides well-defined maps

mV,W : ΓAV ⊗B ΓAW → ΓA(V ⊗W ) and iV : ΓAV → ΓAV̄ .

Proof. We first show that the map mV,W is well-defined. In fact, for g ∈ G, s ∈ ΓAV
and t ∈ ΓAW we obtain

(
αg ⊗ πg ⊗ ρg

)(
mV,W (s⊗B t)

)
= mV,W

(
(αg ⊗ πg)(s) ⊗B (αg ⊗ πg)(t)

)
= mV,W (s⊗B t).

It immediately follows that mV,W (s ⊗B t) ∈ ΓA(V ⊗ W ). To verify that the map iV is
well-defined we choose g ∈ G and s ∈ ΓAV . Then a short calculation gives

(
αg ⊗ π̄g

)(
iV (s)

)
= iV

(
(αg ⊗ πg)(s)

)
= iV (s)

from which we conclude that iV (s) ∈ ΓAV̄ .

Our next goal is to equip the generalized isotypic components with Hilbert module
structures. For this purpose, we fix a finite-dimensional unitary representation (π, V )
of G and point out that A⊗V carries a natural Morita equivalence A⊗L(V )−A-bimodule
structure with inner products given by

A⊗L(V )〈x⊗ v, y ⊗ w〉 := xy∗ ⊗ θv,w and 〈x⊗ v, y ⊗ w〉A := x∗y · V 〈w, v〉 (1)

for x, y ∈ A and v,w ∈ V . In particular, the induced norms A⊗L(V )‖ · ‖ and ‖ · ‖A are
equal.

Lemma 4.4. The space ΓAV is a closed subspace of the Banach space (A ⊗ V, ‖ · ‖A).

Proof. To verify the assertion it suffices to note that the action α⊗ π of G on A ⊗ V is
strongly continuous with respect ‖ · ‖A.

Proposition 4.5. The following definitions make ΓAV into a Hilbert C(π)−B-bimodule:

(i) c.s for c ∈ C(π) and s ∈ ΓAV .

(ii) s.b for s ∈ ΓAV and b ∈ B.

(iii) C(π)〈s, t〉 := A⊗L(V )〈s, t〉 for s, t ∈ ΓAV .

(iv) 〈s, t〉B := 〈s, t〉A for s, t ∈ ΓAV .

Proof. We first verify that the defining operations (i)-(iv) are well-defined.

(i) For g ∈ G, c ∈ C(π) and s ∈ ΓAV we obtain

(αg ⊗ πg)(c.s) =
(
(αg ⊗ Ad[πg])(c).(αg ⊗ πg)(s)

)
= c.s

14



(ii) For g ∈ G, s ∈ ΓAV and b ∈ B we obtain

(αg ⊗ πg)(s.b) =
(
(αg ⊗ πg)(s)

)
.αg(b) = s.b.

(iii) For g ∈ G and s, t ∈ ΓAV we obtain
(
αg ⊗ Ad[πg]

)(
C(π)〈s, t〉

)
= C(π)〈(αg ⊗ πg)(s), (αg ⊗ πg)(t)〉 = C(π)〈s, t〉.

(iv) For g ∈ G and s, t ∈ ΓAV we obtain

αg(〈s, t〉B) = 〈(αg ⊗ idV )(s), (αg ⊗ idV )(t)〉A

= 〈(idA ⊗π∗
g)(s), (idA ⊗π∗

g)(t)〉A

= 〈s, t〉A = 〈s, t〉B.

Moreover, we note that the algebraic properties that need to be checked follow from
the corresponding properties of the Morita equivalence A ⊗ L(V ) − A-bimodule A ⊗ V .
Finally, we show that ΓAV is complete with respect to the induced norms C(π)‖ · ‖ and
‖ · ‖B. Indeed, the construction of the inner products implies that the induced norms
are restrictions of the induced norms A⊗L(V )‖ · ‖ and ‖ · ‖A on A ⊗ V . In particular, we
conclude that C(π)‖ · ‖ and ‖ · ‖B are equal. The assertion is therefore a consequence of
Lemma 4.4.

Corollary 4.6. The space ΓAV carries a natural right Hilbert B −B-bimodule structure.

Adapting the operations in (1) leads to the following statement.

Corollary 4.7. Let (π̄, V̄ ) be the dual representation of (π, V ). Then the space ΓAV̄
carries a natural Hilbert B − C(π)-bimodule structure and therefore also a natural right
Hilbert B − B-bimodule structure.

We continue with studying the maps mV,W defined in Lemma 4.3. Our intention is to
show that these maps are actually isomorphisms of right Hilbert B − B-bimodules in the
case the C∗-dynamical system (A, G, α) is free. To this end, we first need the following
two results.

Lemma 4.8. The pointwise multiplication and the following inner product makes
L1(G,A) into a right pre-Hilbert B − B-bimodule:

〈f1, f2〉B :=
∫

G×G
αg(f∗

1 (h)f2(h))B dgdh

for f1, f2 ∈ L1(G,A).

Proof. The proof of this statement is straightforward by using the faithfulness and pos-
itivity of the Haar measure.
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Proposition 4.9. Consider A equipped with the right pre-Hilbert B − B-bimodule struc-
ture given in Proposition 3.1 (4 ) and L1(G,A) equipped with the right pre-Hilbert B −B-
bimodule structure given in Lemma 4.8. Then the map

Φ : A ⊗B A → L1(G,A), Φ(x⊗B y)(g) := xαg(y)

is an isometry of right pre-Hilbert B − B-bimodules.

Proof. It is obvious that the map Φ preserves the B − B-bimodule structure. Moreover,
an explicit computation using the invariance of the Haar measure shows that

〈Φ(x1 ⊗B y1),Φ(x2 ⊗B y2)〉B =
∫

G×G
αg(αh(y∗

1)x∗
1x2αh(y2)) dgdh

=
∫

G×G
αgh(y∗

1)αg(x∗
1x2)αgh(y2)) dgdh

=
∫

G
αg(y∗

1)
(∫

G
αh(x∗

1x2) dh
)
αg(y2) dg.

holds for all x1, x2, y1, y2 ∈ A and it is not hard to see that the last expression of this
equation is equal to

〈y1, 〈x1, x2〉B.y2〉B = 〈x1 ⊗B y1, x2 ⊗B y2〉B.

From this observation we immediately conclude that Φ is an isometry of right pre-Hilbert
B − B-bimodules.

As already mentioned in the beginning, the generalized isotypic components can be
interpreted as noncommutative vector bundles which are associated to the C∗-dynamical
system (A,G,α). Given two finite-dimensional unitary representations (π, V ) and (ρ,W )
of G, it is a well-known fact from the classical theory of free and compact group actions
that the space ΓA(V ⊗ W ) is isomorphic as a B − B-bimodule to the balanced tensor
product of ΓAV and ΓAW over the algebra of the base space (cf. [22, Proposition 2.6]).
In the C∗-algebraic setting we obtain a similar statement.

Theorem 4.10. Let (π, V ) and (ρ,W ) be two finite-dimensional unitary representations
of G. Then the map

mV,W : ΓAV ⊗̂BΓAW → ΓA(V ⊗W )

is an isometry of right Hilbert B − B-bimodules. Moreover, if the C∗-dynamical (A, G, α)
is free, then mV,W is an isomorphism of right Hilbert B − B-bimodules.

Proof. We first note that a straightforward computation shows that the map mV,W is an
isometry with respect to the B-valued inner products on ΓAV ⊗̂BΓAW and ΓA(V ⊗W ),
respectively. To verify the second assertion we have to make a small detour. Indeed,
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we consider A ⊗ V and A ⊗ W equipped with their natural right pre-Hilbert B − B-
bimodule structure induced by right pre-Hilbert B − B-bimodule structure on A given
in Proposition 3.1. Furthermore, we consider L1(G,A ⊗ V ⊗ W ) equipped with the
natural right pre-Hilbert B − B-bimodule structure induced by the right pre-Hilbert
B − B-bimodule structure on on L1(G,A) as described in Lemma 4.8. Then it follows
from Proposition 4.9 that the map

ΦV,W : (A ⊗ V ) ⊗B (A ⊗W ) → L1(G,A ⊗ V ⊗W )

(x⊗ v) ⊗B (y ⊗ w) 7→ Φ(x⊗B y) ⊗ v ⊗ w,

is an isometry of right pre-Hilbert B − B-bimodules. Moreover, it is easily checked that
ΦV,W is G ×G-equivariant with respect to the unitary action of G × G on (A ⊗ V ) ⊗B

(A ⊗W ) given for g1, g2 ∈ G, x, y ∈ A, v ∈ V and w ∈ W by

(g1, g2).
(
(x⊗ v) ⊗B (y ⊗ w)

)
:=
(
αg1

(x) ⊗ πg1
(v)
)
⊗B
(
αg2

(y) ⊗ ρg2
(w)

)

and the unitary action of G × G on L1(G,A ⊗ V ⊗ W ) given for g, g1, g2 ∈ G and
f ∈ L1(G,A ⊗ V ⊗W ) by

(
(g1, g2).f

)
(g) := (αg1

⊗ πg1
⊗ ρg2

)(f(g−1
1 gg2)).

The G×G-equivariance now implies that ΦV,W induces an isometry of right pre-Hilbert
B − B-bimodules between the corresponding fixed point spaces, i. e., between the pre-
Hilbert B − B-bimodules ΓAV ⊗B ΓAW and L1(G,A)G×G. Since the map

L1(G,A)G×G → ΓA(V ⊗W ), f 7→ f(1)

is an isomorphism of right pre-Hilbert B − B-bimodules, we conclude that their compo-
sition provides an isometry of right pre-Hilbert B − B-bimodules between ΓAV ⊗B ΓAW
and ΓA(V ⊗W ). This composition is precisely mV,W . We point out that this observation
gives an alternative proof for the assertion that mV,W is an isometry of right pre-Hilbert
B − B-bimodules. Suppose finally that the C∗-dynamical system (A, G, α) is free. Then
it is a consequence of Theorem 3.10 (a) ⇒ (b) that the map ΦV,W has dense image in
L1(G,A ⊗V ⊗W ), which in turn shows by the previous discussion that mV,W has dense
image in ΓA(V ⊗W ). Therefore, extending mV,W to the completion ΓAV ⊗̂BΓAW gives
rise to the desired isomorphism of right Hilbert B − B-bimodules.

As an important consequence we obtain the following result about the Morita equivalence
bimodule structure of the generalized isotypic components.

Corollary 4.11. Suppose that the C∗-dynamical system (A, G, α) is free and let (π, V )
be a finite-dimensional unitary representation of G. Then the space ΓAV carries the
structure of a C(π) − B-Morita equivalence bimodule.
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Proof. By Proposition 4.5 it remains to verify that the inner products C(π)〈·, ·〉 and 〈·, ·〉B

are full. Indeed, we first note that the C(π)-valued inner product C(π)〈·, ·〉 satisfies

C(π)〈s, t〉 =
((

idA ⊗ϕV,V̄

)
◦mV,V̄

)(
s⊗B iV (t)

)

for all s, t ∈ ΓAV . Therefore, Theorem 4.10 applied to the representations (π, V ) and
(π̄, V̄ ) implies that the range of C(π)〈·, ·〉 is dense in C(π) which is equivalent saying that

C(π)〈·, ·〉 is full. Next, we examine the inner product 〈·, ·〉B . In this situation a similar
observation shows that

〈s, t〉B :=
((

idA ⊗ trV
)
◦
(

idA ⊗ϕV̄ ,V

)
◦mV̄ ,V

)(
iV (s) ⊗B t

)

holds for all s, t ∈ ΓAV . Since B = (idA ⊗ trV )(C(π)), the assertion that 〈·, ·〉B is full
follows from Theorem 4.10 applied to the representations (π̄, V̄ ) and (π, V ).

Hilbert Module Structures on the Generalized Isotypic Components

We now turn our attention back to the generalized isotypic components described in
Definition 3.7. Given a finite-dimensional unitary representation (π, V ) of G, it is easily
seen that A2(π) carries a natural B ⊗L(V )−C(π)-Hilbert bimodule structure with inner
products given by

B⊗L(V )〈s, t〉 := st∗ and 〈s, t〉C(π) := s∗t

for s, t ∈ A2(π). Moreover, the operations restrict to a natural right Hilbert B − B-
bimodule structure with right B-valued inner product given by

〈s, t〉B := (idA ⊗ trV )(s∗t)

for s, t ∈ A2(π). Indeed, since s∗t ∈ C(π) for all s, t ∈ A2(π), the well-definedness of
the right B-valued inner product is a consequence of B = (idA ⊗ trV )(C(π)) and the fact
that the map idA ⊗ trV is faithful and positive. That A2(π) is also complete with respect
to the induced norm is, for example, shown in [15, Corollary 2.6 (3)]. As a matter of
fact, the completeness of A2(π) also follows from Proposition 4.13 below. Our goal is
to obtain a characterization of freeness in terms of the generalized isotypic components
and their natural right Hilbert B − B-bimodule structure. But before pursuing this goal,
we make a small detour and recall the topological isomorphism between the spaces A(π)
and A2(π) from Remark 3.8. The next proposition shows that this isomorphism actually
respects their right Hilbert B − B-bimodule structure in case the right B-valued inner
product on A2(π) is normalized by the factor 1

dim V .

Proposition 4.12. Let (π, V ) be an irreducible unitary representation of G and consider
the isotypic component A(π) equipped with the right pre-Hilbert B−B-bimodule structure
induced by Proposition 3.1. Then A(π) is complete with respect to the corresponding
norm and the map

q : A(π) → A2(π), q(x) := dim V ·
∫

G
αg(x) ⊗ π∗

g dg

from Remark 3.8 is an isomorphism of right Hilbert B − B-bimodules.
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Proof. In view of Remark 3.8 it suffices to show that B〈q(x), q(y)〉 = B〈x, y〉 holds for all
x, y ∈ A. This can easily be done by using the formula

αh(x) = dimV ·
∫

G
trV (π∗

gπh) · αg(x) dg

describing the action of G on A(π). In fact, an explicit computation shows that

〈q(x), q(y)〉B = dimV ·
∫

G×G
trV (πgπ

∗
h) · αg(x∗)αh(y) dgdh

=
∫

G
αg(x∗)

(
dim V ·

∫

G
trV (πgπ

∗
h) · αh(y) dh

)
dg

=
∫

G
αg(x∗)

(
dim V ·

∫

G
trV (π∗

hπg) · αh(y) dh
)
dg

=
∫

G
αg(x∗)αg(y) dg =

∫

G
αg(x∗y) dg = 〈x, y〉B.

We proceed with two finite-dimensional unitary representations (π, V ) and (ρ,W ) of G.
For elements s =

∑
i xi ⊗ Si ∈ A ⊗ L(V ) and t =

∑
j yj ⊗ Tj ∈ A ⊗ L(W ) we define

mπ,ρ(s⊗B t) :=
∑

i,j

xiyj ⊗ Si ⊗ Tj and iπ(s) :=
∑

i

x∗
i ⊗ T̄i

which similar as before give rise to well-defined maps

mπ,ρ : A2(π) ⊗B A2(ρ) → A2(π ⊗ ρ) and iπ : A2(π) → A2(π̄).

The next result establishes an identification between the spaces ΓA(V̄ ) ⊗ V and A2(π)
which can be used to obtain statements involving A2(π) by applying the results of the
first part of this section to ΓA(V̄ ) ⊗ V . The arguments are consist of straightforward
computations and therefore we omit the proofs.

Lemma 4.13. The map ϕπ : A ⊗ V̄ ⊗ V → A ⊗ L(V ) given on simple tensors by

ϕπ(x⊗ v̄1 ⊗ v2) := x⊗ θv2,v1

restricts to an isomorphism of Hilbert B ⊗ L(V ) − C(π)-bimodules between the spaces
ΓA(V̄ ) ⊗ V and A2(π), and, therefore, also to an isomorphism of right Hilbert B − B-
bimodules.

Corollary 4.14. The map ϕπ̄,π : A ⊗ L(V̄ ⊗ V ) → A ⊗ L(V ) ⊗ L(V ) given on simple
tensors and rank one operators by

ϕπ̄,π(x⊗ θv̄1⊗v2,v̄3⊗v4
) := x⊗ θv3,v4

⊗ θv2,v1

restricts to an isomorphism of right Hilbert B−B-bimodules between the spaces A2(π̄⊗π)
and C(π) ⊗ L(V ).
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We continue with pointing out a multiplicative relationship between the generalized
isotypic components. It follows from Theorem 4.10 and Lemma 4.13.

Corollary 4.15. Let (π, V ) and (ρ,W ) be two finite-dimensional unitary representations
of G. Then the map

mπ,ρ : A2(π)⊗̂BA2(ρ) → A2(π ⊗ ρ) (2)

is an isometry of right Hilbert B −B-bimodules. Moreover, if (A, G, α) is free, then mπ,ρ

is an isomorphism of right Hilbert B − B-bimodules.

We are finally ready to give a characterization of freeness in terms of the Hilbert B − B-
bimodule maps defined in Corollary 4.15 (2).

Corollary 4.16. The following statements are equivalent:

(a) The C∗-dynamical system (A, G, α) is free.

(b) For each π ∈ Ĝ the map mπ̄,π defined in Corollary 4.15 is an isomorphism of right
Hilbert B − B-bimodules.

(c) For each π ∈ Ĝ the space A2(π) carries the structure of a Morita equivalence
B ⊗ L(V ) − C(π)-bimodule.

Proof. The implication (a) ⇒ (b) is a direct consequence of Corollary 4.15. Moreover,
the implication (b) ⇒ (c) follows from an adaption of the argument in Corollary 4.11.
Indeed, we first note that the C(π)-valued inner product 〈·, ·〉C(π) satisfies

〈s, t〉C(π) = s∗t =
((

idA⊗L(V ) ⊗ trV
)
◦ϕπ̄,π ◦mπ̄,π

)(
iπ(s) ⊗B t

)

for all s, t ∈ A2(π). Therefore, Corollary 4.14 and Corollary 4.15 imply that the range of
〈·, ·〉C(π) is dense in C(π), i. e., 〈·, ·〉C(π) is full. A similar observation shows that also the
B ⊗ L(V )-valued inner product B⊗L(V )〈·, ·〉 is full. To verify the last implication, we only
point out that the assumption in (c) means that the C(π)-valued inner products 〈·, ·〉C(π),
π ∈ Ĝ, are full which is equivalent saying that Sp(α) = Ĝ. The assertion therefore
follows from Theorem 3.10 (c) ⇒ (a).

5 On Free Actions of Compact Abelian Groups: Some General

Theory

In the remaining part of this article we assume that G is a compact abelian group if
not mentioned otherwise. In this situation, given a C∗-dynamical system (A, G, α) and
a character π ∈ Ĝ = Homgr(G,T), we have

A(π) = {a ∈ A | αg(a) = πg · a for all g ∈ G}.

Moreover, it is easily seen that A2(π) = A(π) and that C(π) = B. Hence, Corollary 4.16
simplifies to the following statement.
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Corollary 5.1. Let (A, G, α) is a C∗-dynamical system. Then the following conditions
are equivalent:

(a) The C∗-dynamical system (A, G, α) is free.

(b) For each π ∈ Ĝ the space A(π) is a Morita equivalence B − B-bimodule.

(c) For each π ∈ Ĝ the multiplication map on A induces an isomorphism of Morita
equivalence B − B-bimodules between A(−π)⊗̂BA(π) and B.

As we will soon see below, Corollary 5.1 gives rise to a first invariant for free actions
of compact abelian groups. For the time being, we continue with some examples to get
more comfortable with free actions of compact abelian groups.

Example 5.2. Let θ be a real skew-symmetric n × n matrix. The noncommutative
n-torus T

n
θ is the universal unital C∗-algebra generated by unitaries U1, . . . , Un with

UrUs = exp(2πiθrs)UsUr for all 1 ≤ r, s ≤ n.

It carries a continuous action α of the n-dimensional torus Tn by algebra automorphisms
which is on generators defined by

αz
(
Uk
)
:= zk · Uk,

where zk := zk1

1 · · · zkn

n and Uk := Uk1

1 · · ·Ukn

n for z = (z1, . . . , zn) ∈ T
n and k :=

(k1, . . . , kn) ∈ Z
n. The isotypic component (Tn

θ )(k) corresponding to the character k ∈
Z

n is given by C·Uk. In particular, each isotypic component contains invertible elements
from which we conclude that the C∗-dynamical system (Tn

θ ,T
n, αn

θ ) is free.

Example 5.3. The group C∗-algebra C∗(H) of the discrete (three-dimensional) Heisen-
berg group H is the universal C∗-algebra generated by unitaries U , V and W satisfying

UW = WU, VW = WV and UV = WV U.

It carries a continuous action α of the 2-dimensional torus T2 by algebra automorphisms
which is on generators defined by

α(z,w)(U
kV lWm) := zkwl · UkV lWm,

where (z,w) ∈ T and k, l,m ∈ Z. The corresponding fixed point algebra B is the centre
of C∗(H) which is equal to the group C∗-algebra C∗(Z) of the center Z ∼= Z of H.
Moreover, the isotypic component C∗(H)(k,l) corresponding to the character (k, l) ∈ Z

2

is given by B·UkV l. In particular, each isotypic component C∗(H)(k,l) contains invertible
elements from which we conclude that the C∗-dynamical system (C∗(H),T2, α) is free.
We point out that C∗(H) serves as a “universal” noncommutative principal T2-bundle
in [18] and that its K-groups are isomorphic to Z3.
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Example 5.4. For q ∈ [−1, 1] consider the C∗-algebra SUq(2) from [59]. We recall
that it is the universal C∗-algebra generated by two elements a and c subject to the five
relations

a∗a+ cc∗ = 1, aa∗ + q2cc∗ = 1, cc∗ = c∗c, ac = qca and ac∗ = qc∗a.

It carries a continuous action α of the one-dimensional torus T by algebra automorphisms,
which is on the generators defined by

αz(a) := z · a and αz(c) := z · c, z ∈ T.

The fixed point algebra of this action is the quantum 2-sphere S2
q and we call the cor-

responding C∗-dynamical system (SUq(2),T, α) the quantum Hopf fibration. It is free
according to [49, Corollary 3]. In fact, the author shows that if E is a locally finite graph
with no sources and no sinks, then the natural gauge action on the graph C∗-algebra
C∗(E) is free.

Remark 5.5. We recall that Example 5.2 and Example 5.3 are special cases of so-called
trivial noncommutative principal bundles as discussed in [51, 52, 54]. In fact, it is not
hard to see that each trivial noncommutative principal bundle is free (cf. [47]).

We now turn our attention back to Corollary 5.1 which suggests the relevance of Morita
equivalence B − B bimodules. These objects have a natural interpretation as noncom-
mutative line bundles “over” B. In particular, just like in the classical theory of line
bundles, the set of their equivalence classes carry a natural group structure.

Definition 5.6. Let B be a C∗-algebra. Then the set of equivalence classes of Morita
equivalence B −B-bimodules form a group with respect to the internal tensor product of
Hilbert B −B-bimodules, which is called the Picard group of B and is denoted by Pic(B).

Example 5.7. Let B be a C∗-algebra and α ∈ Aut(B). Furthermore, let Mα be the
vector space B endowed with the canonical left Hilbert B-module structure, but with
the right action of B on Mα given by m.b := mα(b) for m ∈ Mα and b ∈ B, and the
right B-valued inner product given by 〈m1,m2〉B = α−1(m∗

1m2) for m1,m1 ∈ Mα. It is
straightforward from the construction that Mα is a Morita equivalence B − B-bimodule,
and if β ∈ Aut(B) is another automorphism, then Mα⊗̂BMβ is B − B-Morita equivalent
to Mα◦β . Hence, we obtain an group homomorphism from Aut(B) to Pic(B).

For u ∈ U(B) let Adu : B → B, b 7→ ubu∗ be the corresponding conjugation map. Then
Adu is an inner automorphism of B, i. e., Adu ∈ Inn(B) and it is easily seen that the
map B → MAdu

, b 7→ bu is an isomorphism of Morita equivalence B − B-bimodules.
Summarizing we have the following exact sequence

1 −→ Inn(B)−→ Aut(B)−→ Pic(B).

In particular, we have an injection Out(B) → Pic(B) which turns out to be an isomor-
phism in the case B is separable and stable (cf. [8, Section 3]).
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Example 5.8. ([8, Section 3]). Let B be a finite-dimensional C∗-algebra. Then Pic(B)
is isomorphic to the group of permutations of the spectrum of B.

Example 5.9. ([8, 9]). Let B = C(X) for some compact space X. Then Pic(B) is
isomorphic to the semi-direct product Pic(X) ⋊ Homeo(X), where Pic(X) denotes the
set of equivalence classes of complex line bundles over X and Homeo(X) the group of
homeomorphisms of X.

Example 5.10. ([27]). Let θ be an irrational number in [0, 1] and T
2
θ the corresponding

quantum 2-torus. Then Pic(T2
θ) is isomorphic to Out(T2

θ) in case θ is quadratic and to
Out(T2

θ) ⋊ Z otherwise.

The next statement is a first step towards finding invariants, i. e., classification data, for
free C∗-dynamical systems with a prescribed fixed point algebra.

Proposition 5.11. Each free C∗-dynamical system (A, G, α) with fixed point algebra B
gives rise to a group homomorphism ϕA : Ĝ → Pic(B) given by ϕA(π) := [A(π)].

Proof. To verify the assertion we choose π, ρ ∈ Ĝ and use Corollary 5.1 to compute

ϕA(π + ρ) = [A(π + ρ)] = [A(π)⊗̂BA(ρ)] = [A(π)][A(ρ)] = ϕA(π)ϕA(ρ).

This shows that the map ϕA is a group homomorphism.

Remark 5.12. Let K be the algebra of compact operators on some separable Hilbert
space. The C∗-algebra SUq(2) is described in [16] as an extension of C(T) by C(T) ⊗K,
i. e., by a short exact sequence

0 −→ C(T) ⊗ K −→ SUq(2) → C(T) −→ 0 (3)

of C∗-algebras. If we consider C(T) endowed with the canonical T-action induced
by right-translation, then a short observation shows that the sequence (3) is in fact
T-equivariant. In particular, it induces the following short exact sequence of C∗-algebras:

0 −→ (C(T) ⊗ K) ⋊ T −→ SUq(2) ⋊α T −→ C(T) ⋊ T −→ 0. (4)

Since

(C(T) ⊗ K) ⋊ T ∼= (C(T) ⋊ T) ⊗ K ∼= K ⊗ K ∼= K

and C(T) ⋊ T ∼= K by the well-known Stone-von Neumann Theorem, we conclude from
[45, Proposition 6.12] that the crossed product SUq(2) ⋊α T is stable. Moreover, the
fact that the C∗-dynamical system (SUq(2),T, α) is free implies that the crossed product
SUq(2) ⋊ T is Morita equivalent to the corresponding fixed-point algebra S2

q and thus
they are also stably isomorphic by a famous result of Brown, Green and Rieffel (cf. [8,
Theorem 1.2] or [43, Section 5.5]), i. e., SUq(2)⋊T ∼= S2

q ⊗K. The previous result affirms
a question of the second author in the context of a notion of freeness which is related to
Green’s Theorem (cf. [21, Corollary 15] and [18]).
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6 Construction of Free Actions of Compact Abelian Groups

Throughout this section let B be a fixed unital C∗-algebra and G a fixed compact abelian
group. Our goal is to construct a free C∗-dynamical system (A, G, α) with fixed point
algebra B from data which is only associated to the pair (B, G). Before we step into the
details, let us briefly review the adaption of the GNS-representation for C∗-dynamical
systems with arbitrary fixed point algebra. The constructions in later sections will es-
sentially reconstruct this representation from the isotypic components and the structure
among them. So let (A, G, α) be a C∗-dynamical system and P0 : A → A the conditional
expectation onto the fixed point algebra B. Then A can be equipped with the structure
of a right pre-Hilbert B − B-bimodule with respect to the usual multiplication and the
inner product given by 〈x, y〉B := P0(x∗y) for x, y ∈ A. Since P0 is faithful, this inner
product on A is definite and we may take the completion of A with respect to the norm
‖x‖2 := ‖P0(x∗x)‖1/2. This provides a right Hilbert B − B-bimodule L2(A) with A as a
dense subset. For each π ∈ Ĝ the projection Pπ onto the isotypic component A(π) can
be continuously extended to a self-adjoint projection on L2(A). In particular, the sets
A(π) are closed, pairwise orthogonal right Hilbert B − B-subbimodules of L2(A) and
L2(A) can be decomposed into

L2(A) =
⊕

π∈Ĝ

A(π)
‖·‖

2

as right Hilbert B−B-bimodules. For each element a ∈ A the left multiplication operator
λa : A → A, x 7→ ax, then extends to an adjointable operator on L2(A). The arising
representation

λ : A → L
(
L2(A)

)
, a 7→ λa

is called the left regular representation of A. For each g ∈ G the automorphism αg

extends from A to an automorphism Ug : L2(A) → L2(A) of right Hilbert B − B-
bimodules and the strongly continuous group (Ug)g∈G implements αg in the sense that

αg
(
λa
)

= Ug λa U
+
g

for all a ∈ A. The vector 1B = 1A ∈ L2(A) is obviously cyclic and separating for
this representation. In particular, the left regular representation is faithful and we may
identify A with the subalgebra λ(A). Since the sum of the isotypic components is dense
in A, the C∗-algebra λ(A) is in fact generated by the operators λa with a ∈ A(π), π ∈ Ĝ.
For such elements a in some fixed isotypic component A(π), π ∈ Ĝ, the operator λa

maps each subset A(ρ) ⊆ L2(A), ρ ∈ Ĝ, into A(π + ρ) and therefore it is determined by
the multiplication map

mπ,ρ : A(π) ⊗A(ρ) → A(π + ρ), mπ,ρ(x, y) := xy = λx(y).

It is easily verified that mπ,ρ factors to an isometry of the right Hilbert B − B-bimodules
A(π) ⊗B A(ρ) and A(π + ρ).
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6.1 Associativity and Factor Systems

In what follows we consider a fixed group homomorphism ϕ : Ĝ → Pic(B). Furthermore,
we choose for each π ∈ Ĝ a Morita equivalence B − B-bimodule Mπ in the isomorphism
class ϕ(π) ∈ Pic(B). Since ϕ is a group homomorphism, the Morita equivalence B − B-
bimodules Mπ⊗̂BMρ and Mπ+ρ must be isomorphic for all π, ρ ∈ Ĝ with respect to some
isomorphism

Ψπ,ρ : Mπ⊗̂BMρ → Mπ+ρ

of Morita equivalence B − B-bimodules. We additionally choose for each pair π, ρ ∈ Ĝ
such an isomorphism Ψπ,ρ : Mπ⊗̂BMρ → Mπ+ρ, which in turn provides a bilinear map

mπ,ρ : Mπ ×Mρ → Mπ+ρ, mπ,ρ(x, y) := Ψπ,ρ(x⊗B y).

The family of all such maps (mπ,ρ)
π,ρ∈Ĝ

now gives rise to a multiplication map m on the
algebraic vector space

A =
⊕

π∈Ĝ

Mπ.

Proposition 6.1. The following statements are equivalent:

(a) m is associative, i. e., A is an algebra.

(b) For all π, ρ, σ ∈ Ĝ we have

Ψπ+ρ,σ ◦ (Ψπ,ρ ⊗B idσ) = Ψπ,ρ+σ ◦ (idπ ⊗BΨρ,σ). (5)

Proof. For given π, ρ, σ ∈ Ĝ we explicitly compute for all x ∈ Mπ, y ∈ Mρ, z ∈ Mσ:

m
(
x, m(y, z)

)
= m

(
x,Ψρ,σ(y ⊗B z)

)
= Ψπ,ρ+σ

(
x,Ψρ,σ(y ⊗B z)

)

m
(
m(x, y), z

)
= m

(
Ψπ,ρ(x⊗B y), z

)
= Ψπ+ρ,σ

(
Ψπ,ρ(x⊗B y), z

)
.

Therefore, m is associative if and only if equation (5) holds for all π, ρ, σ ∈ Ĝ.

Definition 6.2. We call a family (Mπ,Ψπ,ρ)
π,ρ∈Ĝ

a factor system for ϕ if it satisfies
(M0,Ψ0,0) = (B, idB) and the condition in Proposition 6.1.

Remark 6.3. The normalization condition implies Ψπ,0 = Ψ0,π = idπ and

Ψπ,−π ⊗B idπ = idπ ⊗BΨ−π,π. (6)

for all π ∈ Ĝ. In particular, it follows that the algebra A equipped with the multiplication
map m is unital with unit 1B ∈ B ⊆ A. It also assures that on each subspace Mπ ⊆ A
the multiplication with elements of B coincides with the usual action of B.
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6.2 Construction of an Involution

We continue with a fixed factor system (Mπ,Ψπ,ρ)
π,ρ∈Ĝ

for ϕ and we write A for the
associated algebra. Our goal is to turn A into a ∗-algebra and right pre-Hilbert B − B-
bimodule. For this purpose we will involve the right Hilbert B −B-bimodule structure of
each direct summands Mπ of A, i. e., the right B-valued inner products 〈·, ·〉π on Mπ.

Lemma 6.4. The map 〈·, ·〉 : A×A → B defined for x =
⊕

π xπ, y =
⊕

π yπ ∈ A by

〈x, y〉B :=
∑

π∈Ĝ

〈xπ, yπ〉π

turns A into a right pre-Hilbert B − B-bimodule and satisfies

〈m(b, x),m(b, x)〉B ≤ ‖b‖2〈x, x〉B (7)

for all x ∈ A and b ∈ B.

Proof. The necessary computations are straightforward and thus left to the reader. We
only point out that the inequality (7) is a consequence of the corresponding inequalities
satisfied by the right B-valued inner products 〈·, ·〉π .

Lemma 6.5. For each y ∈ Mπ and every ρ ∈ Ĝ the left multiplication operator

ℓy : Mρ → Mπ⊗̂BMρ, x 7→ y ⊗B x

is adjointable (and hence bounded) with adjoint given by

ℓ+y : Mπ⊗̂BMρ → Mρ, z ⊗B x 7→ 〈y, z〉B.x.

Proof. To verify the assertion we first note that the linear span of elements z⊗B z
′ with

z ∈ Mπ and z′ ∈ Mρ is dense in Mπ+ρ. For such an element and x ∈ Mρ we obtain

〈ℓy(x), z ⊗B z
′〉B = 〈y ⊗B x, z ⊗B z

′〉B =
〈
x, 〈y, z〉.z′〉

B
=
〈
x, ℓ+y (z ⊗B z

′)
〉

B

which implies that ℓy is adjointable with adjoint given by the map ℓ+y .

Proposition 6.6. For each y ∈ Mπ and every ρ ∈ Ĝ the left multiplication operator

λy : Mρ → Mπ+ρ λy(x) := m(y, x)

is adjointable (and hence bounded) and satisfies

〈λy(x), λy(x)〉B ≤ ‖〈y, y〉B‖ · 〈x, x〉B (8)

for all x ∈ Mρ.
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Proof. That the left multiplication operator λy : Mρ → Mπ+ρ is adjointable for each
y ∈ Mπ and every ρ ∈ Ĝ is an immediate consequence of Lemma 6.5 and the unitarity
of the map Ψπ,ρ because λy = Ψπ,ρ ◦ ℓy. The asserted inequality (8) then easily follows
from a short computation involving inequality (7). Indeed, we obtain

〈λy(x), λy(x)〉B = 〈Ψπ,ρ(y ⊗B x),Ψπ,ρ(y ⊗B x)〉B = 〈y ⊗B x, y ⊗B x〉B

=
〈
x, 〈y, y〉B .x

〉
B

≤ ‖〈y, y〉B‖〈x, x〉B

for all x ∈ Mρ.

Corollary 6.7. For each a ∈ A the left multiplication operator

λa : A → A, λa(x) := m(a, x)

is adjointable and bounded.

We are now ready to introduce an involution on A which turns A into a ∗-algebra. Here
we use the fact that the involution is determined by the inner product if we impose that
the inner product on A takes it canonical form.

Definition 6.8. The adjoint map i : A → A, a 7→ i(a) is given by

i(a) := λ+
a (1B).

It is clearly antilinear and maps the subspace Mπ, π ∈ Ĝ, into M−π. Moreover, on the
subspace B ⊆ A the imap coincides with the usual adjoint, i. e., we have i(b) = b∗.

The following lemma shows that the adjoints of left multiplication operators commute
with right multiplication operators.

Lemma 6.9. For all x ∈ Mπ, y ∈ Mρ and z ∈ Mπ+σ with π, ρ, σ ∈ Ĝ we have

m(λ+
x (z), y) = λ+

x (m(z, y)).

Proof. It suffices to note that equation (5) implies that

λx ◦ Ψσ,ρ = Ψπ+σ,ρ ◦ (λx ⊗B idρ).

Indeed, taking adjoints then leads to

Ψ+
σ,ρ ◦ λ+

x = (λ+
x ⊗B idρ) ◦ Ψ+

π+σ,ρ

which verifies the asserted formula since the maps Ψσ,ρ and Ψπ+σ,ρ are unitary.
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Theorem 6.10. For all x ∈ A we have λ+
x = λi(x).

Proof. It suffices to show the assertion for elements in individual direct summands. For
this, let x ∈ Mπ, y ∈ Mρ, and z ∈ Mσ with π, ρ, σ ∈ Ĝ. Then using Lemma 6.9 gives

〈λi(x)(y), z〉B = 〈m(i(x), y), z〉B = 〈m(λ+
x (1B), y), z〉B = 〈λ+

x (m(1B, y), z〉B

= 〈m(1B, y),m(x, z)〉B = 〈y,m(x, z)〉B = 〈λ+
x (y), z〉B.

We conclude this section with a bunch of useful corollaries, e. g., we finally verify that
the map i : A → A from Definition 6.8 actually defines an involution.

Corollary 6.11. Let P0 : A → A be the canonical projection onto the subalgebra B.
Then for all x, y ∈ A we have

〈x, y〉B = P0(m(i(y), x)).

Proof. Since the element 1B is fixed by P0 we conclude from Theorem 6.10 that

〈x, y〉B = 〈m(i(y), x),1B〉B = 〈P0(m(i(y), x)),1B〉B = P0(m(i(y), x)).

Corollary 6.12. The algebra A is involutive, i. e., for all x, y ∈ A we have

i(i(x)) = x and i(m(x, y)) = m(i(y), i(x)).

Proof. Applying Theorem 6.10 twice gives

〈i
(
i(x)

)
, z〉B = 〈1B,m(i(x), z)〉B = 〈x, z〉B,

〈i(m(x, y)), z〉B = 〈1B,m(m(x, y), z)〉B = 〈i(x),m(y, z)〉B = 〈m(i(y), i(x)), z〉B

for all z ∈ A which in turn implies that i(i(x)) = x and i(m(x, y)) = m(i(y), i(x)).

6.3 Construction of a Free Action

In the last subsection we turned A =
⊕

π∈Ĝ
Mπ into a ∗-algebra and right pre-Hilbert

B −B-bimodule. We denote by Ā the corresponding completion of A with respect to the
norm

‖x‖2 := ‖〈x, x〉B‖1/2 = ‖P0(m(i(x), x))‖1/2

(cf. Corollary 6.11). By Corollary 6.7, left multiplication with an element a ∈ A extends
to an adjointable linear map on Ā. Therefore, the map

λ : A → L(Ā), a 7→ λa

is well-defined. Moreover, the characterization of the norm implies that the vector
1B ∈ Ā is separating the operators λ(A) ⊆ L(Ā), i. e., if λa(1B) = 0 for some a ∈ A then
a = 0. The intention of this section is to finally construct a free C∗-dynamical system
(A, G, α) with fixed point algebra B.
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Proposition 6.13. The map λ : A → L(Ā), a 7→ λa is a faithful representation of the
∗-algebra A by adjointable operators on the right Hilbert B − B-bimodule Ā. Moreover,
its restriction to each Mπ, π ∈ Ĝ, is isometric.

Proof. The necessary algebraic conditions are easily checked using Corollary 6.12. More-
over, the injectivity of the map λ is a consequence of the previous discussion about the
separating vector 1B ∈ Ā. To verify that the restriction of λ to each Mπ, π ∈ Ĝ, is
isometric, we fix π ∈ Ĝ and use inequality (8) of Proposition 6.6 which implies that
‖λy‖2

op ≤ ‖y‖2
2 holds for all y ∈ Mπ. On the other hand, the inequality

‖y‖2
2 = ‖λy(1B)‖2

2 ≤ ‖λy‖2
op

follows from the observation that 1B ∈ Ā satisfies ‖1B‖2 = 1. We conclude that ‖λy‖op =
‖y‖2 holds for each y ∈ Mπ, which finally shows that the restriction of λ to Mπ is
isometric and thus completes the proof.

Definition 6.14. We denote by A the C∗-algebra which is generated by the image of λ,
i. e., the closure of λ(A) with respect to the operator norm on L(Ā). In particular, we
point out that A contains A as a dense ∗-subalgebra.

To proceed we need to endow the C∗-algebra A with a continuous action of G by
∗-automorphisms. For this purpose we first construct a strongly continuous unitary
representation of G on the right Hilbert B − B-bimodule Ā.

Lemma 6.15. For each π ∈ Ĝ the map Uπ : G → U(Mπ), g 7→ (Uπ)g given by

(Uπ)g(x) := πg · x

is a strongly continuous unitary representation of G on the right B − B-Hilbert bimod-
ule Mπ. Moreover, taking direct sums and continuous extensions then gives rise to a
strongly continuous unitary representation U : G → U(Ā), g 7→ Ug of G on the right
Hilbert B − B-bimodule Ā.

Proof. The necessary computations are straightforward using the right B-valued inner
products 〈·, ·〉π and 〈·, ·〉 of the spaces Mπ and Ā, respectively.

Lemma 6.16. The map α : G → Aut(A), g 7→ αg given by

αg(λa) := Ug λaU
+
g

is a continuous action of G on A by ∗-automorphisms.

Proof. The action property is obviously satisfied by the definition of the map α. More-
over, its continuity follows from the strong continuity of the map U from Lemma 6.15.
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We are finally ready to present the main result of this section.

Theorem 6.17. The C∗-dynamical system (A, G, α) associated to the factor system
(Mπ,Ψπ,ρ)

π,ρ∈Ĝ
is free and satisfies A(π) = Mπ for all π ∈ Ĝ. In particular, its fixed

point algebra is given by B.

Proof. (i) Let π ∈ Ĝ. We first check that the corresponding isotypic component A(π)
is equal to Mπ. Indeed, using the separating vector shows that αg(a) = Ug(a) holds for
elements a ∈ A. In particular, the elements of Mπ ⊆ A are contained in A(π). Moreover,
the continuity of the projection Pπ : A → A onto A(π) implies that Mπ = Pπ(A) ⊆ A
is dense in A(π). Since the restriction of λ to Mπ is isometric (cf. Lemma 6.13), we
conclude that Mπ is closed in A(π) and hence that A(π) = Mπ as claimed. In particular,
the fixed point algebra of (A, G, α) is given by B.

(ii) Next we show that the C∗-dynamical system (A, G, α) is free. For this purpose, we
again fix π ∈ Ĝ. Since A(π) = Mπ holds by part (i) and

M−π ·Mπ := span{m(x, y) | x ∈ M−π, y ∈ Mπ}

is dense in B by construction, it follows that the multiplication map on A induces an
isomorphism of B − B-Morita equivalence bimodules between A(−π)⊗̂BA(π) and B. We
therefore conclude from Corollary 5.1 that the C∗-dynamical system (A, G, α) is free.

Remark 6.18. To emphasize the dependence on the factor system (M,Ψ) :=
(Mπ,Ψπ,ρ)

π,ρ∈Ĝ
, we will occasionally write

(
A(M,Ψ), G, α(M,Ψ)

)
for the associated free

C∗-dynamical system from Theorem 6.17.

We conclude this section with an “inverse construction”, i. e., we show how to associate
a factor system to a given free C∗-dynamical system. Moreover, we show that the
corresponding C∗-dynamical system is equivalent to the original one in the following
sense:

Definition 6.19. Let B be a unital C∗-algebra. Moreover, let (A, G, α) and (A′, G, α′)
be two free C∗-dynamical systems such that AG = (A′)G = B. We call (A, G, α) and
(A′, G, α′) equivalent if there is a G-equivariant ∗-isomorphism T : A → A′ satisfying
T|B = idB.

Proposition 6.20. Each free C∗-dynamical system (A, G, α) with fixed point algebra B
gives rise to a factor system (A(π),mπ,ρ)

π,ρ∈Ĝ
for ϕA (cf. Proposition 5.11) with

mπ,ρ : A(π)⊗̂BA(ρ) → A(π + ρ), x⊗B y 7→ xy.

Moreover, its associated C∗-dynamical system is equivalent to (A, G, α).

Proof. That the pair (A(π),mπ,ρ)
π,ρ∈Ĝ

defines a factor system for ϕA is a consequence
of Corollary 5.1 and the associativity of the multiplication map of A. Moreover, its
associated C∗-dynamical system is equivalent to (A, G, α), since they are isomorphic on
the dense *-subalgebra

⊕
π∈Ĝ

A(π).
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7 Classification of Free Actions of Compact Abelian Groups

In the previous section we have seen how a factor system gives rise to a free C∗-dynamical
system and vice versa. In this section we finally establish a classification theory for free
actions of compact abelian groups. If not mentioned otherwise, B denotes a fixed unital
C∗-algebra and G a fixed compact abelian group.

Definition 7.1. We write Ext(B, G) for the set of equivalence classes of free actions
with fixed point algebra B.

For a C∗-dynamical system (A, G, α) with fixed point algebra B we write [(A, G, α)] for
its equivalence class in Ext(B, G). The group homomorphism in Proposition 5.11 then
provides an invariant

I : Ext(B, G) → Homgr

(
Ĝ,Pic(B)

)
, I

(
[(A, G, α)]

)
:= ϕA

In particular, we may partition Ext(B, G) into the subsets

Ext(B, G, ϕ) := I−1(ϕ) = {[(A, G, α)] ∈ Ext(B, G) | ϕA = ϕ}

for a group homomorphism ϕ : Ĝ → Pic(B). For a fixed ϕ, set Ext(B, G, ϕ) may be
empty. We postpone this problem until the end of the section and concentrate first on
characterizing the set Ext(B, G, ϕ) and its C∗-dynamical systems. We start with a useful
statement about automorphisms of Morita equivalence bimodules. Although it might be
well-known to experts, we have not found such a statement explicitly discussed in the
literature.

Proposition 7.2. Let T be an automorphism of the Morita equivalence B − B-bimodule
M . Then there exists a unique unitary element u of the center of B, i. e., an element
u ∈ UZ(B), such that T (m) = u.m for all m ∈ M . In particular, the map

ψ : UZ(B) → AutME(M), ψ(u)(m) := u.m,

is an isomorphism of groups.

Proof. We divide the proof of this statement into two steps:

(i) In the first step we show that the assertion holds for the canonical Morita equivalence
B −B-bimodule B. To see that this is true, we choose u ∈ UZ(B) and note that the map
Tu : B → B, b 7→ u ·b defines an automorphism of the Morita equivalence B−B-bimodule
B. In particular, the assignment

ψ1 : UZ(B) → AutME(B), u 7→ Tu

is an isomorphism of groups. In fact, given T ∈ AutME(B), a short calculation shows
that T is uniquely determined by T (1B) which is an element in UZ(B).
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(ii) In the second step we show that Morita equivalence automorphisms of B are in one-
to-one correspondence with automorphisms of M . To begin with, we denote by M the
conjugate module and recall that the map

Ψ : M⊗̂BM → B, Ψ(m⊗B m′) := B〈m,m′〉

for m,m′ ∈ M defines an isomorphism of Morita equivalence B − B-bimodules (cf. [43,
Proposition 3.28]). Therefore, given an element T ∈ AutME(M), a short observation
shows that the composition map TΨ := Ψ ◦ (T ⊗ idM ) ◦ Ψ−1 defines an automorphism of
the Morita equivalence B − B-bimodule B. Next, we show that the map

ψ2 : AutME(B) → AutME(M), φ2(T )(m) := T (1B).m

is an isomorphism of groups. In fact, we first note that φ2 is a well-defined and injective
group homomorphism. The surjectivity of φ2 is a consequence of the equation

ψ2(TΨ)(m) = TΨ(1B).m = T (m)

which can be verified for all m ∈ M by using a sequence {mn}n∈N in M such that∑∞
n=1 B〈mn,mn〉 converges to 1B. The assertion thus follows from ψ = ψ2 ◦ ψ1.

Corollary 7.3. Let M be a Morita equivalence B − B-bimodule and u ∈ UZ(B). Then
there exists a unique element ΦM (u) ∈ UZ(B) such that ΦM(u).m = m.u holds for all
m ∈ M . Furthermore, the map

ΦM : UZ(B) → UZ(B), u 7→ ΦM(u)

is an automorphism of groups.

Proof. The first assertion is an immediate consequence of Proposition 7.2 applied to the
automorphism of M defined by m 7→ m.u. That the map ΦM is an automorphism of
groups follows from a short calculation.

Proposition 7.4. The map

Φ : Pic(B) → Aut(UZ(B)), [M ] 7→ ΦM

is a group homomorphism.

Proof. (i) We first show that Φ is well-defined. Therefore let Ψ : M → N be an
isomorphism of Morita equivalence B − B-bimodules and u ∈ UZ(B). Then

ΦM (u).Ψ(m) = Ψ(ΦM(u).m) = Ψ(m.u) = Ψ(m).u = ΦN (u).Ψ(m)

holds for all m ∈ M which implies that ΦM = ΦN .

32



(ii) To see that Φ is a group homomorphism, let M and N be Morita equivalence B − B-
bimodules and u ∈ UZ(B). Then

ΦM⊗̂BN (u).(m ⊗B n) = (m⊗B n).u = m⊗B (n.u) = m⊗B (ΦN (u).n)

= (m.ΦN (u)) ⊗B n = (ΦM (ΦN (u)).m) ⊗B n = (ΦM ◦ ΦN )(u).(m ⊗B n).

holds for all m ∈ M and n ∈ N which shows that ΦM⊗̂BN = ΦM ◦ ΦN .

Remark 7.5. We point out that the map Φ from Proposition 7.4 induces a map

Φ∗ : Homgr(Ĝ,Pic(B)) → Homgr

(
Ĝ,Aut(UZ(B)

)
, Φ∗(ϕ) := Φ ◦ ϕ.

In particular, each ϕ ∈ Homgr(Ĝ,Pic(B)) determines a Ĝ-module structure on UZ(B)
which enables us to make use of classical group cohomology. In fact, given an element
ϕ ∈ Homgr(Ĝ,Pic(B)), the cohomology groups

Hn
ϕ

(
Ĝ, UZ(B)

)
:= Hn

Φ◦ϕ

(
Ĝ, UZ(B)

)

are at our disposal (cf. [31, Chapter IV]).

We now return to our main goal and continue with treating the question which factor
systems give rise to equivalent free C∗-dynamical systems.

Definition 7.6. Let ϕ : Ĝ → Pic(B) be a group homomorphism. We call two factor
systems (Mπ,Ψπ,ρ)

π,ρ∈Ĝ
and (M ′

π,Ψ
′
π,ρ)

π,ρ∈Ĝ
for ϕ equivalent if there exists a family

(Tπ : Mπ → M ′
π)

π∈Ĝ
of Morita equivalence B − B-bimodule isomorphisms satisfying

Ψ′
π,ρ ◦ (Tπ ⊗B Tρ) = Tπ+ρ ◦ Ψπ,ρ (9)

for all π, ρ ∈ Ĝ.

Theorem 7.7. Let ϕ : Ĝ → Pic(B) be a group homomorphism. Furthermore, let
(Mπ,Ψπ,ρ)

π,ρ∈Ĝ
and (M ′

π,Ψ
′
π,ρ)

π,ρ∈Ĝ
be two factor systems for ϕ. Then the following

statements are equivalent:

(a) The factor systems are equivalent.

(b) The associated free C∗-dynamical systems are equivalent.

Proof. (a) Suppose first that the factor systems (Mπ,Ψπ,ρ)
π,ρ∈Ĝ

and (M ′
π,Ψ

′
π,ρ)

π,ρ∈Ĝ

are equivalent and let (Tπ : Mπ → M ′
π)

π∈Ĝ
be a family of B − B-Morita equivalence

bimodule isomorphisms such that equation (9) holds for all π, ρ ∈ Ĝ. Furthermore, let

A :=
⊕

π∈Ĝ

Mπ and A′ :=
⊕

π∈Ĝ

Mπ

33



be the corresponding ∗-algebras with involutions given by i and i′, respectively. Then
a short observation shows that the direct sum of the maps Tπ : Mπ → M ′

π, π ∈ Ĝ,
provides a G-equivariant ∗-isomorphism T : A → A′ of algebras. In fact, the map T is
clearly a G-equivariant isomorphism of right pre-Hilbert B−B-bimodules by construction.
Moreover, the assumption that equation (9) holds for all π, ρ ∈ Ĝ implies that T is
multiplicative. That it is also ∗-preserving, i. e., that T (i(x)) = i′(T (x)) holds for all
x ∈ A, now follows from Theorem 6.10. Passing over to the continuous extension of T
provides a G-equivariant isomorphism T̄ : Ā → Ā′ of right Hilbert B − B-bimodules and
it is easily checked with the help of the previous discussion that the relation

Ad[T̄ ] ◦ λ = λ′ ◦ T

holds, where λ : A → L(Ā) and λ′ : A′ → L(Ā′) denote the faithful ∗-representations
from Proposition 6.13. In particular, we conclude that the map Ad[T̄ ] : L(Ā) → L(Ā′)
restricts to a G-equivariant ∗-isomorphism between the associated free C∗-dynamical
systems (A, G, α) and (A′, G, α′) which completes the first part of the proof.

(b) Suppose, conversely, that the associated free C∗-dynamical systems ((A,m), G, α) and
((A′,m′), G, α′) are equivalent and let T : A → A′ be a G-equivariant ∗-isomorphism.
Then it is a consequence of the G-equivariance of the map T that the corresponding
restriction maps Tπ := T|Mπ

: Mπ → M ′
π, π ∈ Ĝ, are well-defined and B − B bimodule

isomorphisms. Moreover, the multiplicativity of T implies that equation (9) holds for all
π, ρ ∈ Ĝ. Hence it remains to show that the family (Tπ : Mπ → M ′

π)
π∈Ĝ

preserves the
B-valued inner products. To see that this is true, we first conclude from the ∗-invariance
of T that Tπ(x)∗ = T−π(x∗) holds for all π ∈ Ĝ and all x ∈ Mπ. It follows from a short
computation involving equation (9) that

〈Tπ(x), Tπ(y)〉B = m′(Tπ(x), Tπ(y)∗) = m′(Tπ(x), T−π(y∗)) = m(x, y∗) = 〈x, y〉B

holds for all π ∈ Ĝ and all x, y ∈ Mπ. The corresponding computation for the left
B-valued inner products can be verified in a similar way and completes the proof.

Theorem 7.8. Let ϕ : Ĝ → Pic(B) be a group homomorphism with Ext(B, G, ϕ) 6= ∅.
Furthermore, choose for all π ∈ Ĝ a Morita equivalence B −B-bimodule Mπ ∈ ϕ(π) such
that M0 = B. Then the following assertions hold:

(a) Each class in Ext(B, G, ϕ) can be represented by a free C∗-dynamical system of the
form

(
A(M,Ψ), G, α(M,Ψ)

)
.

(b) Any other free C∗-dynamical system (A(M,Ψ′), G, α(M,Ψ′)) representing an element

of Ext(B, G, ϕ) satisfies Ψ′ = ωΨ with (ωΨ)π,ρ := ω(π, ρ)Ψπ,ρ for all π, ρ ∈ Ĝ for
some 2-cocycle

ω ∈ Z2
ϕ(Ĝ, UZ(B)).
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(c) The free C∗-dynamical systems
(
A(M,Ψ), G, α(M,Ψ)

)
and

(
A(M,ωΨ), G, α(M,ωΨ)

)
are

equivalent if and only if

ω ∈ B2
ϕ(Ĝ, UZ(B)).

Proof. (a) Let (A, G, α) be a free C∗-dynamical system representing an element in
Ext(B, G, ϕ) and recall that (A, G, α) gives rise to a factor system for ϕ of the form
(A(π),mπ,ρ)

π,ρ∈Ĝ
(cf. Proposition 6.20). Then the assumption implies that there is

a family (Tπ : Mπ → A(π))
π∈Ĝ

of Morita equivalence B − B-bimodule isomorphisms
which can be used to define another family (Ψ′′

π,ρ : Mπ⊗̂BMρ → Mπ+ρ)
π,ρ∈Ĝ

of Morita
equivalence B − B-bimodule isomorphisms by

Ψ′′
π,ρ := T+

π+ρ ◦mπ,ρ ◦ (Tπ ⊗B Tρ).

In particular, it is not hard to see that the later family gives rise to a factor system
(Mπ,Ψ′′

π,ρ)
π,ρ∈Ĝ

for ϕ which is equivalent to (A(π),mπ,ρ)
π,ρ∈Ĝ

. Therefore, the assertion
is finally a consequence of Theorem 7.7.

(b) Let
(
A(M,Ψ′), G, α(M,Ψ′)

)
be any other free C∗-dynamical system representing an

element of Ext(B, G, ϕ) and choose π, ρ ∈ Ĝ. Then Proposition 7.2 implies that the
automorphism Ψ′

π,ρ ◦ Ψ−1
π,ρ of the Morita equivalence B − B-bimodule Mπ+ρ provides a

unique element ω(π, ρ) ∈ UZ(B) satisfying

Ψ′
π,ρ = ω(π, ρ)Ψπ,ρ.

Moreover, it is easily seen that the corresponding map ω : Ĝ×Ĝ → UZ(B) is a normalized
2-cochain. To see that ω actually defines a 2-cocycle, i. e., an element in Z2

ϕ(Ĝ, UZ(B)),
we repeatedly use the factor system condition equation (5) and Proposition 7.4. For
example, we find that

Ψ′
π,ρ+σ ◦ (idπ ⊗BΨ′

ρ,σ) = Ψ′
π,ρ+σ ◦ (idπ ⊗Bω(ρ, σ)Ψρ,σ)

= Ψ′
π,ρ+σ ◦ (idπ ω(ρ, σ) ⊗B Ψρ,σ)

= Ψ′
π,ρ+σ ◦ (Φπ(ω(ρ, σ)) idπ ⊗BΨρ,σ)

= Φπ(ω(ρ, σ))Ψ′
π,ρ+σ ◦ (idπ ⊗BΨρ,σ)

= Φπ(ω(ρ, σ))ω(π, ρ + σ)Ψπ,ρ+σ ◦ (idπ ⊗BΨρ,σ)

holds for all π, ρ, σ ∈ Ĝ, where idπ ω(ρ, σ) = Φπ(ω(ρ, σ)) idπ is understood in the sense
of Corollary 7.3.

(c) If ω = dϕh holds for some element h ∈ C1(Ĝ, UZ(B)), then the factor systems
(Mπ,Ψπ,ρ)

π,ρ∈Ĝ
and (Mπ, ω(π, ρ)Ψπ,ρ)

π,ρ∈Ĝ
are equivalent. Hence, the assertion follows

from Theorem 7.7. If, on the other hand, (Mπ,Ψπ,ρ)
π,ρ∈Ĝ

and (Mπ, ω(π, ρ)Ψπ,ρ)
π,ρ∈Ĝ

are equivalent, then we conclude from Proposition 7.2 that there exists an element h ∈
C1(Ĝ, UZ(B)) which implements the equivalence given by a family (Tπ)

π∈Ĝ
of Morita

equivalence B − B-bimodule isomorphisms Tπ : Mπ → Mπ, i. e., we have Tπ = Th(π) for
all π ∈ Ĝ. Moreover, a short observation shows that ω = dϕh ∈ B2

ϕ(Ĝ, UZ(B)).
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Corollary 7.9. Let ϕ : Ĝ → Pic(B) be a group homomorphism with Ext(B, G, ϕ) 6= ∅.
Then the map

H2
ϕ(Ĝ, UZ(B)) × Ext(B, G, ϕ) → Ext(B, Gϕ)
([
ω
]
,
[(

A(M,Ψ), G, α(M,Ψ)

)])
7→
[(

A(M,ωΨ), G, α(M,ωΨ)

)]

is a well-defined simply transitive action.

We conclude with a remark which shows that our constructions from Section 6 are, up
to isomorphisms, inverse to each other.

Remark 7.10. It is easily seen that Proposition 6.20 applied to the free C∗-dynamical
system

(
A(M,Ψ), G, α(M,Ψ)

)
in Theorem 6.17 recovers the original factor system

(Mπ,Ψπ,ρ)
π,ρ∈Ĝ

for ϕ. Indeed, Theorem 6.17 shows that A(M,Ψ)(π) = Mπ for all π ∈ Ĝ.
Moreover, the multiplication map of A(M,Ψ) is by construction uniquely determined by
the factor system, i. e., mπ,ρ = Ψπ,ρ for all π, ρ ∈ Ĝ. It follows that our constructions,
i. e., the procedure of associating a free C∗-dynamical system to a factor system and vice
versa, are, up to isomorphisms, inverse to each other:

(Mπ,Ψπ,ρ)
π,ρ∈Ĝ

C∗

7−→
(
A(M,Ψ), G, α(M,Ψ)

)

(A,G,α) F.S.
7−→ (A(π),mπ,ρ)

π,ρ∈Ĝ
.

Non-emptiness of Ext(B, G, ϕ)

As we have already discussed before, each group homomorphism ϕ : Ĝ → Pic(B) gives
rise to both a family (Mπ)

π∈Ĝ
of Morita equivalence B − B-bimodules and a family

(Ψπ,ρ : Mπ⊗̂BMρ → Mπ+ρ)
π,ρ∈Ĝ

of Morita equivalence B − B-bimodules isomorphisms. Given a group homomorphism
ϕ : Ĝ → Pic(B) and such a family (Mπ,Ψπ,ρ)

π,ρ∈Ĝ
satisfying M0 = B, Ψ0,0 = idB and

Ψπ,0 = Ψ0,π = idπ for all π ∈ Ĝ (which need not be a factor system), we can examine
for all π, ρ, σ ∈ Ĝ the automorphism

dM Ψ(π, ρ, σ) := Ψπ+ρ,σ ◦ (Ψπ,ρ ⊗B idσ) ◦ (idπ ⊗BΨ+
ρ,σ) ◦ Ψ+

π,ρ+σ

of the Morita equivalence B − B-bimodule Mπ+ρ+σ. The family of all such maps
(dM Ψ(π, ρ, σ))

π,ρ,σ∈Ĝ
can be interpreted as an obstruction to the associativity of the

multiplication (cf. Proposition 6.1). On the other hand, it follows from the construction
and from Proposition 7.2 that the map dM Ψ can also be considered as a normalized
UZ(B)-valued 3-cochain on Ĝ, i. e., as an element in C3(Ĝ, UZ(B)). In fact, even more
is true:
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Lemma 7.11. The map dM Ψ defines an element in Z3
ϕ(Ĝ, UZ(B)).

Proof. For the sake of brevity we omit the lengthy calculation at this point and refer
instead to [37, Lemma 1.10 (5)].

Lemma 7.12. The class [dM Ψ] in H3
ϕ(Ĝ, UZ(B)) is independent of all choices made.

Proof. (i) We first show that the class [dM Ψ] is independent of the choice of the family
(Ψπ,ρ)

π,ρ∈Ĝ
. Therefore, let (Ψ′

π,ρ)
π,ρ∈Ĝ

be another choice and note that Proposition 7.2

implies that there exists an element h ∈ C2(Ĝ, UZ(B)) satisfying Ψ′
π,ρ = h(π, ρ)Ψπ,ρ for

all π, ρ ∈ Ĝ. A short calculation then shows that

Ψ′
π+ρ,σ ◦ (Ψ′

π,ρ ⊗B idσ) = h(π + ρ, σ)h(π, ρ)dM Ψ(π, ρ, σ)(Ψπ,ρ+σ ◦ (idπ ⊗BΨρ,σ))

holds for all π, ρσ ∈ Ĝ. On the other hand, it follows from Proposition 7.4 that

dM Ψ′(π, ρ, σ)(Ψ′
π,ρ+σ ◦ (idπ ⊗BΨ′

ρ,σ))

=dM Ψ′(π, ρ, σ)h(π, ρ + σ)π.h(ρ, σ)(Ψπ,ρ+σ ◦ (idπ ⊗BΨρ,σ))

holds for all π, ρ, σ ∈ Ĝ. From these observations we can now easily conclude that the
3-cocycles dM Ψ′ and dM Ψ are cohomologous.

(ii) As a second step, we show that the class [dM Ψ] does not dependent on the choice of
the family (Mπ)

π∈Ĝ
. For this purpose, let (M ′

π)
π∈Ĝ

be another choice and note that the
construction implies that there is a family (Tπ : Mπ → M ′

π)
π∈Ĝ

of Morita equivalence
B − B-bimodule isomorphisms. This family can now be used to define another family
(Ψ′′

π,ρ : M ′
π⊗̂BM

′
ρ → M ′

π+ρ)
π,ρ∈Ĝ

of Morita equivalence B − B-bimodule isomorphisms by

Ψ′
π,ρ := Tπ+ρ ◦ Ψπ,ρ ◦ (T+

π ⊗B T
+
ρ ).

Then an explicit computation shows that

dM Ψ′(π, ρ, σ) = Ψ′
π+ρ,σ ◦ (Ψ′

π,ρ ⊗B idσ) ◦ (idπ ⊗BΨ′+
ρ,σ) ◦ Ψ′+

π,ρ+σ

= Tπ+σ+ρ ◦ Ψπ+ρ,σ ◦ (T+
π+ρ ⊗B T

+
σ )

◦ (Tπ+ρ ⊗B idσ) ◦ (Ψπ,ρ ⊗B idσ) ◦ (T+
π ⊗B T

+
ρ ⊗B idσ)

◦ (idπ ⊗BTρ ⊗B Tσ) ◦ (idπ ⊗BΨ+
ρ,σ) ◦ (idπ ⊗BT

+
ρ+σ)

◦ (Tπ ⊗B Tρ+σ) ◦ Ψ+
π,ρ+σ ◦ T+

π+ρ+σ

= dM Ψ(π, ρ, σ)

holds for all π, ρ, σ ∈ Ĝ. We conclude that dM Ψ′ = dM Ψ, i. e., that the 3-cocycle dM Ψ
is unchanged.
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Definition 7.13. Let ϕ : Ĝ → Pic(B) be a group homomorphism. We call

χ(ϕ) := [dM Ψ] ∈ H3
ϕ(Ĝ, UZ(B))

the characteristic class of ϕ.

The following result provides a group theoretic criterion for the non-emptiness of the set
Ext(B, G, ϕ).

Theorem 7.14. Let ϕ : Ĝ → Pic(B) be a group homomorphism. Then Ext(B, G, ϕ) is
non-empty if and only if the class χ(ϕ) ∈ H3

ϕ(Ĝ, UZ(B)) vanishes.

Proof. (⇒) Suppose first that Ext(B, G, ϕ) is non-empty and let (A, G, α) be a free
C∗-dynamical system representing an element in Ext(B, G, ϕ). Then (A, G, α) gives rise
to a factor system for ϕ of the form (A(π),mπ,ρ)

π,ρ∈Ĝ
(cf. Proposition 6.20) and the

associativity of the multiplication implies that the corresponding characteristic class
χ(ϕ) ∈ H3

ϕ(Ĝ, UZ(B)) vanishes.

(⇐) Let (Mπ)
π∈Ĝ

be a family of Morita equivalence B − B-bimodules and

(Ψπ,ρ : Mπ⊗̂BMρ → Mπ+ρ)
π,ρ∈Ĝ

a family of Morita equivalence B − B-bimodules isomorphisms as described in the intro-
duction. Furthermore, suppose, conversely, that the class

χ(ϕ) = [dM Ψ] ∈ H3
ϕ(Ĝ, UZ(B))

vanishes. Then there exists an element h ∈ C2(Ĝ, UZ(B)) with dM Ψ = dϕh
−1 which

can be use to define a family (Ψ′
π,ρ : Mπ⊗̂BMρ → Mπ+ρ)

π,ρ∈Ĝ
of Morita equivalence

bimodule B − B-isomorphism by

Ψ′
π,ρ := h(π, ρ)Ψπ,ρ.

The construction implies that dM Ψ′ = 1B. In particular, it follows that (Mπ,Ψ′
π,ρ)

π,ρ∈Ĝ

is a factor system for ϕ and we can finally conclude from Theorem 6.17 that the set
Ext(B, G, ϕ) is non-empty.

Remark 7.15. The intention of this remark is to describe the elements of the set
Ext(B, G, ϕ) for a given group homomorphism ϕ : Ĝ → Out(B) (cf. Example 5.7).
For this purpose, let (A, G, α) be a free C∗-dynamical system representing an element
of Ext(B, G, ϕ). Then it is not hard to see that each isotypic component contains an
invertible element. In fact, it follows from Corollary 5.1 that the map

A(−π)⊗̂BA(π) → B, x⊗B y 7→ xy (10)

is an isomorphism of Morita equivalence B − B-bimodules for all π ∈ Ĝ. Moreover, the
assumption on ϕ implies that for each π ∈ Ĝ there is an automorphism S(π) ∈ Aut(B)
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and an isomorphism Tπ : MS(π) → A(π) of Morita equivalence B − B-bimodules. If we
now define uπ := Tπ(1B), then a short observations shows that

A(π) = uπB = Buπ,

from which we conclude together with equation (10) that

uπBu−π = u−πBuπ = B.

Consequently, the element uπ ∈ A(π) is invertible (in A). Conversely, let (A, G, α)
be a C∗-dynamical system such that each isotypic component contains an invertible
element. Then it is easily verified that (A, G, α) is free and that the corresponding
group homomorphism ϕA : Ĝ → Pic(B) from Proposition 5.11 takes values in Out(B).
In particular, (A, G, α) represents an element in Ext(B, G, ϕA).

C∗-dynamical systems with the property that each isotypic component contains invertible
elements have been studied, for example, in [46, 52, 54, 58] and may be considered as a
noncommutative version of trivial principal bundles (cf. Example 5.5 and [47]).

Remark 7.16. The aim of the following discussion is to explain how to classify the
C∗-dynamical systems described in Remark 7.15. Indeed, let (A, G, α) be a C∗-dynamical
system such that each isotypic component contains an invertible element. Furthermore,
let (uπ)

π∈Ĝ
be a family of unitaries with uπ ∈ A(π) and u0 = 1B. Then the maps

S : Ĝ → Aut(B), S(π)(b) := uπbu
∗
π

and

ω : Ĝ× Ĝ → U(B), ω(π, σ) := uπuρu
∗
π+ρ,

give rise to an element

(S, ω) ∈ C1(Ĝ,Aut(B)) × C2(Ĝ, U(B))

satisfying

S(π)(ω(ρ, σ))ω(π, ρ + σ) = ω(π + ρ, σ)ω(π, ρ) (11)

for all π, ρ, σ ∈ Ĝ and

S(π)(S(ρ)(b)) = ω(π, ρ)S(π + ρ)(b)ω(π, ρ)∗ (12)

for all π, ρ ∈ Ĝ and b ∈ B. The corresponding families (Mπ)
π∈Ĝ

and (Ψπ,ρ)
π,ρ∈Ĝ

given
by Mπ := MS(π) and

Ψπ,ρ : Mπ⊗̂BMρ → Mπ+ρ, b⊗B b
′ 7→ bS(π)(b′)ω(π, ρ)
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are easily seen to provide a factor system for ϕA whose associated free C∗-dynamical
system is equivalent to (A, G, α). Conversely, each element

(S, ω) ∈ C1(Ĝ,Aut(B)) × C2(Ĝ, U(B))

satisfying equation (11) for all π, ρ, σ ∈ Ĝ and equation (12) for all π, ρ ∈ Ĝ and b ∈ B
leads in the described way to a free C∗-dynamical system representing an element of
Ext(B, G, ϕ) with

ϕ := prB ◦S : Ĝ → Out(B),

where prB : Aut(B) → Out(B) denotes the canonical quotient homomorphism. It is
worth pointing out that in this situation, the involution can be expressed explicitly in
terms of the pair (S, ω) (cf. [54, Construction A24]).

8 Principlal Bundles and Group Cohomology

Each locally trivial principal bundle (P,X,G, q, σ) can be considered as a geometric
object that is glued together from local pieces which are trivial, i. e., which are of the form
U×G for some small open subset U of X. This approach immediately leads to the concept
of G-valued cocycles and therefore to a cohomology theory, called the Čech cohomology
for the pair (X,G). This cohomology theory gives a complete classification of locally
trivial principal bundles with structure group G and base space X (cf. [50]). On the
other hand, Theorem 3.4 implies that each locally trivial principal bundle (P,X,G, q, σ)
gives rise to a free C∗-dynamical system (C(P ), G, ασ) and it is therefore natural to ask
how the Čech cohomology for the pair (X,G) is related to our previous classification
theory. But since our construction in Section 6 is global in nature, it is not obvious how
to encode local triviality in our factor system approach (though we recall that in the
smooth category there is a one-to-one correspondence between free and proper actions
and locally trivial principal bundles). For this reason we now focus our attention on
topological principal bundles, a notion of principal bundles which need not be locally
trivial.

Remark 8.1. Let P be a locally compact space and G a locally compact group. Fur-
thermore, let σ : P ×G → P be a continuous action which is free and proper and write
pr : P → P/G for the corresponding quotient map. Then each pair (p1, p2) ∈ P ×P with
pr(p1) = pr(p2) determines a unique element τ(p1, p2) ∈ G such that p1.τ(p1, p2) = p2

and it follows from [43, Lemma 4.63] that the surjective map

τ : P ×P/G P := {(p1, p2) ∈ P × P : pr(p1) = pr(p2)} → G

is continuous. It is called the translation map and is part of the definition of principal
bundles proposed in [26]. A short observation shows that each free and continuous action
σ : P × G → P has a continuous translation map is automatically proper. Therefore
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the class of principal bundles in [26] coincides with the class of free and proper G-spaces.
For this reason, it makes sense to call a continuous action σ : P × G → P which is free
and proper a topological principal bundle. As mentioned before these principal bundles
are, in general, not locally trivial (cf. [43, Remark 4.68]).

We now come back to our original setting. Let P be a compact space and G a compact
abelian group. Furthermore, let σ : P × G → P be a topological principal bundle and
π ∈ Ĝ. Then the corresponding isotypic component C(P )(π) is finitely generated and
projective as a C(P/G)-module according to Theorem 3.5. Therefore, the Theorem of
Serre and Swan (cf. [48]) gives rise to a (locally trivial) complex line bundle Vπ over
P/G such that C(P )(π) is isomorphic as a right C(P/G)-module to the corresponding
space ΓVπ of continuous sections. We point out that this isomorphism can be extended
to an isomorphism between Morita equivalence C(P/G) − C(P/G)-bimodules. In what
follows we identify the Morita equivalence C(P/G) − C(P/G)-bimodule C(P )(π) with
the corresponding complex line bundle Vπ defining an element in Pic(P/G). Then the
group homomorphism Ĝ → Pic(C(P/G)) induced by the topological principal bundle
σ : P ×G → P is given by

π 7→ [Vπ] ∈ Pic(P/G) ⊆ Pic(C(P/G))

(cf. Example 5.9 and Proposition 5.11). In particular, the Ĝ-module structure on
U(C(P/G)) = C(P/G,T) induced by this group homomorphism (cf. Remark 7.5) is
trivial since the left and right action of C(P/G) on C(P )(π) commute. Summarizing,
we have shown the following statement.

Lemma 8.2. Let X be a compact space. For a group homomorphism ϕ : Ĝ → Pic(C(X))
to define a topological principal G-bundle over X it is necessary that im(ϕ) ⊆ Pic(X)
and, therefore, that the induced module structure on C(X,T) is trivial.

We continue with a fixed group homomorphism ϕ : Ĝ → Pic(X) ⊆ Pic(C(X)) and a
factor system (Mπ,Ψπ,ρ)

π,ρ∈Ĝ
for ϕ. In this situation, the canonical flip

flπ,ρ : Mπ⊗̂C(X)Mρ → Mρ⊗̂C(X)Mπ, x⊗C(X) y 7→ y ⊗C(X) x

defines an isomorphism of Morita equivalence C(X) − C(X)-bimodules for all π, ρ ∈ Ĝ.
In particular, we can examine for all π, ρ ∈ Ĝ the automorphism

CM Ψ(π, ρ) := Ψρ,π ◦ flπ,ρ ◦ Ψ+
π,ρ (13)

of the Morita equivalence C(X) −C(X)-bimodule Mπ+ρ. According to Proposition 7.2,
the map CM Ψ can also be considered as a normalized C(X,T)-valued 2-cochain on Ĝ,
i. e., as an element in C2(Ĝ, C(X,T)). In fact, even more is true:

Lemma 8.3. The map CMΨ defines an antisymmetric element in Z2(Ĝ, C(X,T)).

41



Proof. It is obvious that the map CM Ψ satisfies CM Ψ(ρ, π) = CM Ψ(π, ρ)∗ for all π, ρ ∈ Ĝ.
In order to verify that CM Ψ defines an element in Z2(Ĝ, C(X,T)) we have to show that

CM Ψ(ρ, σ)CM Ψ(π, ρ+ σ) = CM Ψ(π + ρ, σ)CM Ψ(π, ρ)

holds for all π, ρ, σ ∈ Ĝ. Indeed, explicit computations using the factor system property
(cf. equation (5)) and (13) show that

Ψσ+ρ,π ◦ (Ψσ,ρ ⊗C(X) idπ) = CMΨ(ρ, σ)CM Ψ(π, ρ+ σ)Ψπ,σ+ρ ◦ (idπ ⊗C(X)Ψρ,σ)

and

Ψσ,ρ+π ◦ (idσ ⊗C(X)Ψρ,π) = CM Ψ(π, ρ)CM Ψ(π + ρ, σ)Ψπ+ρ,σ ◦ (Ψπ,ρ ⊗C(X) idπ)

hold for all π, ρ, σ ∈ Ĝ. Again using equation (5) to the right-hand side of the later
expression then leads to the desired 2-cocycle condition

CM Ψ(ρ, σ)CM Ψ(π, ρ+ σ) = CM Ψ(π + ρ, σ)CM Ψ(π, ρ)

for π, ρ, σ ∈ Ĝ.

Lemma 8.4. Let (Mπ,Ψπ,ρ)
π,ρ∈Ĝ

and (M ′
π,Ψ

′
π,ρ)

π,ρ∈Ĝ
be two equivalent factor systems

for ϕ. Then we have

CM ′Ψ′ = CM Ψ.

Proof. By assumption there is a family (Tπ : Mπ → M ′
π)

π∈Ĝ
of Morita equivalence

C(X) − C(X)-bimodule isomorphisms satisfying

Ψ′
π,ρ := Tπ+ρ ◦ Ψπ,ρ ◦ (T+

π ⊗B T
+
ρ ).

Therefore, an explicit computation shows that

CM ′Ψ′(π, ρ) = Ψ′
ρ,π ◦ fl′

π,ρ ◦ Ψ′+
π,ρ

= Tρ+π ◦ Ψρ,π ◦ (T+
ρ ⊗B T

+
π ) ◦ fl′

π,ρ ◦ (Tπ ⊗B Tρ) ◦ Ψ+
π,ρ ◦ T+

π+ρ

= Tρ+π ◦ Ψρ,π ◦ flπ,ρ ◦ Ψ+
π,ρ ◦ T+

π+ρ = CM Ψ(π, ρ)

holds for all π, ρ ∈ Ĝ.

Lemma 8.5. Let (Mπ,Ψπ,ρ)
π,ρ∈Ĝ

and (M ′
π,Ψ

′
π,ρ)

π,ρ∈Ĝ
be two factor systems for ϕ.

Then there exists an element ω ∈ Z2(Ĝ, C(X,T)) satisfying

CM ′Ψ′(π, ρ) = ω(π, ρ)ω(ρ, π)∗CMΨ(π, ρ)

for all π, ρ ∈ Ĝ.
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Proof. To verify the assertion we use Theorem 7.8 which implies that the factor system
(M ′

π,Ψ
′
π,ρ)

π,ρ∈Ĝ
is equivalent to a factor system of the form (Mπ, ω(π, ρ)Ψπ,ρ)

π,ρ∈Ĝ
for

some 2-cocycle ω ∈ Z2(Ĝ, C(X,T)). In particular, we can now conclude from Lemma 8.4
and a short calculation that

CM ′Ψ′(π, ρ) = CM(ωΨ)(π, ρ) = (ωΨ)ρ,π ◦ flπ,ρ ◦ (ωΨ)+
π,ρ = ω(ρ, π)ω(π, ρ)∗CM Ψ(π, ρ)

holds for all π, ρ ∈ Ĝ.

In what follows we denote the set of all biadditive maps Ĝ × Ĝ → C(X,T) that vanish
on the diagonal by Alt2(Ĝ, C(X,T)). A short observation shows that each element
ω ∈ Z2(Ĝ, C(X,T)) gives rise to an element λω ∈ Alt2(Ĝ, C(X,T)) defined by

λω(π, ρ) := ω(π, ρ)ω(ρ, π)∗

which only depends on the class [ω] ∈ H2(Ĝ, C(X,T)). In particular, we obtain a group
homomorphism

λ : H2(Ĝ, C(X,T)) → Alt2(Ĝ, C(X,T)), [ω] 7→ λω

whose kernel is given by the subgroup H2
ab(Ĝ, C(X,T)) of H2(Ĝ, C(X,T)) describing

the abelian extensions of Ĝ by C(X,T). We recall from [38, Proposition II.3] that the
corresponding short exact sequence

0 −→ H2
ab(Ĝ, C(X,T)) −→ H2(Ĝ, C(X,T)) λ

−→ Alt2(Ĝ, C(X,T)) −→ 0

is split. Moreover, we write prab : H2(Ĝ, C(X,T)) → H2
ab(Ĝ, C(X,T)) for the induced

projection map.

Proposition 8.6. The class prab([CM Ψ]) ∈ H2
ab(Ĝ, C(X,T)) does not depend on the

choice of the factor system and is therefore an invariant for the set Ext(C(X), G, ϕ).

Proof. Let (Mπ,Ψπ,ρ)
π,ρ∈Ĝ

and (M ′
π,Ψ

′
π,ρ)

π,ρ∈Ĝ
be two factor systems for ϕ. Then it

follows from Lemma 8.5 and the construction of the map prab that

prab([CM ′Ψ′]) = prab([λωCM Ψ]) = prab([λω ][CM Ψ]) = prab([CM Ψ]).

Definition 8.7. Let ϕ : Ĝ → Pic(X) be a group homomorphism. Then we call

χ2(ϕ) := prab([CM Ψ]) ∈ H2
ab(Ĝ, C(X,T))

the secondary characteristic class of ϕ.

The following result provides a group theoretic criterion for the existence of topological
principal G-bundle over X.
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Theorem 8.8. Let ϕ : Ĝ → Pic(X) be a group homomorphism. Then the following
statements are equivalent:

(a) The map ϕ defines a topological principal bundle σ : P×G → P over X, i. e., the set
Ext(C(X), G, ϕ) contains an element which can be represented by (C(P ), G, ασ).

(b) The map ϕ satisfies the following two conditions in the indicated order:

(b1) The class χ(ϕ) ∈ H3(Ĝ, C(X,T)) vanishes.

(b2) Furthermore, the class χ2(ϕ) ∈ H2
ab(Ĝ, C(X,T)) vanishes.

Proof. (a) ⇒ (b): Suppose first that the map ϕ defines a topological principal bundle
σ : P × G → P over X. Then the corresponding C∗-dynamical system (C(P ), G, ασ)
is free according to Theorem 3.4 and we conclude that Ext(C(X), G, ϕ) 6= ∅. This
observation is by Theorem 7.14 equivalent to the vanishing of the characteristic class
χ(ϕ) ∈ H3(Ĝ, C(X,T)). To verify that the class χ2(ϕ) ∈ H2

ab(Ĝ, C(X,T)) also vanishes,
we note that the canonical associated factor system is given by

Ψπ,ρ : C(P )(π)⊗̂C(X)C(P )(ρ) → C(P )(π + ρ), f ⊗C(X) g 7→ fg.

Therefore, the claim follows from the commutativity of C(P ) since we have

Ψπ,ρ(f ⊗C(X) g) = fg = gf = Ψρ,π(g ⊗C(X) f)

for all f ∈ C(P )(π) and g ∈ C(P )(ρ), i. e., CM Ψ = 1C(X).

(b) ⇒ (a): If condition (b1) is satisfied, then it follows from Theorem 7.14 that there is
a free C∗-dynamical system (A, G, α) representing an element of Ext(C(X), G, ϕ). Let
(Mπ,Ψπ,ρ)

π,ρ∈Ĝ
be its associated factor system (for ϕ). We then use condition (b2) to

find an element ω ∈ Z2(Ĝ, C(X,T)) such that

λω∗ = CM Ψ ∈ Alt2(Ĝ, C(X,T)).

Consequently, the corresponding factor system (Mπ, ω(π, ρ)Ψπ,ρ)
π,ρ∈Ĝ

for ϕ satisfies
CM (ωΨ) = 1C(X) meaning that its associated free C∗-dynamical system is equiva-
lent to one of the form (C(P ), G, ασ) induced by some topological principal bundle
σ : P ×G → P over X.

44



9 Examples

In the last section of this paper we present some examples.

Example 9.1. Let Mm(C) be the C∗-algebra of m×mmatrices and recall that its natural
representation on C

m is, up to equivalence, the only irreducible representation of Mm(C).
Therefore, it follows from Example 5.8 that Pic(Mm(C)) is trivial. In particular, there is
only the trivial group homomorphism from Ĝ to Pic(Mm(C)) and a possible realization
is given by the free C∗-dynamical system

(C(G,Mm(C)), G, rt ⊗ idMn(C)),

where

rt : G× C(G) → C(G), rt(g, f)(h) := f(hg)

denotes the right-translation action by G. Moreover, we conclude from Corollary 7.9
that all free actions of G with fixed point algebra Mm(C) are parametrized by the
cohomology group H2(Ĝ,T). In the case G = T

n, n ∈ N, this cohomology group is
isomorphic to T

1

2
n(n−1) and parametrizes the free actions given by tensor products of

the noncommutative n-tori endowed with their natural Tn-action (cf. Example 5.2) and
the C∗-algebra Mm(C).

Example 9.2. Consider the 2-fold direct sum M2(C)⊕M2(C) and notice that the group
UZ(M2(C)⊕M2(C)) is isomorphic to T

2. Since the spectrum of M2(C)⊕M2(C) contains
two elements, it follows from Example 5.8 that Pic(M2(C)⊕M2(C)) is isomorphic to Z2.
If ϕ : Z → Z2 denote the canonical group homomorphism with kernel 2Z, then it is a
consequence of [31, Chapter VI.6] that the cohomology groups H2

ϕ(Z,T2) and H3
ϕ(Z,T2)

are trivial. Therefore, Theorem 7.14 implies that the set Ext(M2(C) ⊕ M2(C),T, ϕ) is
non-empty and contains according to Corollary 7.9 exactly one element, namely the class
of the trivial system

(C(T,M2(C) ⊕ M2(C),T, rt ⊗ id).

Example 9.3. For the following discussion we recall the notation from Example 5.2. Let
T

n
θ be the noncommutative n-torus defined by the real skew-symmetric n× n matrix θ

and let ωn be the corresponding T-valued 2-cocycle on Z
n given for k,k′ ∈ Z

n by

ωn(k,k′) := exp(Cn〈θk,k′〉).

Furthermore, let S : Z
m → Aut(Tn

θ ) be a group homomorphism leaving the isotypic
components of T

n
θ (with respect to the canonical gauge action by T

n) invariant, i. e.,
such that for all l ∈ Z

m and k ∈ Z
n

S(l)Uk = cl,kUk

for some cl,k ∈ T. Then, given another T-valued 2-cocycle ωm on Z
m, it follows from

Remark 7.16, that the pair (S, ωm) gives rise to a factor system for the group homomor-
phism ϕ := prTn

θ

◦S : Z
m → Pic(Tn

θ ). Moreover, it is easily seen that the associated
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free C∗-dynamical system is equivalent to the free C∗-dynamical system (Tn+m
θ′ ,Tm, α),

where T
n+m
θ′ denotes the noncommutative (n + m)-torus determined by the T-valued

2-cocycle on Z
n+m given for k,k′ ∈ Z

n and l, l′ ∈ Z
m by

ωn+m
(
(k, l), (k′, l′)

)
:= cl,k′ωn(k,k′)ωm(l, l′)

and α is the restriction of the gauge action αn+m
θ′ to the closed subgroup T

m of Tn+m.
That (Tn+m

θ′ ,Tm, α) is actually free is a consequence of Proposition 3.11. In particular, it
represents an element in Ext(Tn

θ ,T
m, ϕ) which is according to Corollary 7.9 parametrized

by the cohomology group

H2
ϕ(Zm, UZ(Tn

θ )).

Remark 9.4. The previous example can be used to construct free C∗-dynamical systems
which are not C∗-algebraic bundles (cf. [18, 43]) over the fixed point algebra.

Example 9.5. Let θ be an irrational number in [0, 1] and T
2
θ the corresponding noncom-

mutative 2-torus from Example 5.2. We recall that in this case UZ(T2
θ) is isomorphic

to T. Furthermore, let ϕ : Z
2 → Pic(T2

θ) be any group homomorphism (note that
T

2 ⊆ Aut(T2
θ) to apply the construction in Example 9.3). Then it is a consequence of

[31, Chapter VI.6] that the cohomology group H3
ϕ(Z2,T) is trivial. Therefore, Theo-

rem 7.14 implies that the set Ext(T2
θ,T

2, ϕ) is non-empty and according to Corollary 7.9
parametrized by the cohomology group H2

ϕ(Z2,T). For its computation we refer, for
example, to [52, Proposition 6.2].

Example 9.6. Let H be the discrete (three-dimensional) Heisenberg group and let
(C∗(H),T2, α) the corresponding free C∗-dynamical system from Example 5.3. If

ϕ : Z2 → Pic(C(T)) ∼= Pic(T) ⋊ Homeo(T)

denotes the associated group homomorphism, then the class of (C∗(H),T2, α) is con-
tained in the set Ext(C(T),T2, ϕ) of equivalence classes of realizations of ϕ, which is by
Corollary 7.9 parametrized by the cohomology group H2

ϕ(Z2, C(T,T)). For its computa-
tion we refer, again, to [52, Proposition 6.2].

Example 9.7. For q ∈ [−1, 1] let (SUq(2),T, α) be the quantum Hopf fibration from
Example 5.4 and Lq(1) the isotypic component corresponding to 1 ∈ Z. If

ϕ : Z → Pic(Sq(2)), 1 7→ [Lq(1)]

denotes the associated group homomorphism, then the class of (SUq(2),T, α) is con-
tained in the set Ext(Sq(2),T, ϕ) of equivalence classes of realizations of ϕ, which is
by Corollary 7.9 parametrized by the cohomology group H2

ϕ(Z, UZ(Sq(2)). It follows,
for example, from [31, Chapter IV.6] that this cohomology group is trivial, i. e., up to
isomorphism the quantum Hopf fibration (SUq(2),T, α) is the unique realization of the
group homomorphism ϕ.
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