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EMBEDDING TETRAHEDRA INTO QUASIRANDOM HYPERGRAPHS

CHRISTIAN REIHER, VOJTĚCH RÖDL, AND MATHIAS SCHACHT

Abstract. We investigate extremal problems for quasirandom hypergraphs. We say that a

3-uniform hypergraph H “ pV,Eq is pd, η, q-quasirandom if for any subset X Ď V and every

set of pairs P Ď V ˆV the number of pairs px, py, zqq P XˆP with tx, y, zu being a hyperedge

of H is in the interval d |X| |P | ˘ η |V |3. We show that for any ε ą 0 there exists η ą 0 such

that every sufficiently large p1{2` ε, η, q-quasirandom hypergraph contains a tetrahedron,

i.e., four vertices spanning all four hyperedges. A known random construction shows that

the density 1{2 is best possible. This result is closely related to a question of Erdős, whether

every weakly quasirandom 3-uniform hypergraph H is with density bigger than 1{2, i.e.,

every large subset of vertices induces a hypergraph with density bigger than 1{2, contains a

tetrahedron.

§1. Introduction

1.1. Extremal problems for graphs and hypergraphs. Given a fixed graph F a typical

problem in extremal graph theory asks for the maximum number of edges that a (large)

graph G on n vertices containing no copy of F can have. More formally, for a fixed graph F

let the extremal number expn, F q be the number |E| of edges of an F -free graph G “ pV,Eq

on |V | “ n vertices with the maximum number of edges. It is well known and not hard to

observe that the sequence expn, F q{
`

n
2

˘

is decreasing. Consequently one may define the Turán

density

πpF q “ lim
nÑ8

expn, F q
`

n
2

˘

which describes the maximum density of large F -free graphs. The systematic study of these

extremal parameters was initiated by Turán [24], who determined expn,Kkq for complete

graphs Kk. Thanks to his work and the results from [6] by Erdős and Stone it is known that

the Turán density of any graph F with at least one edge can be explicitly computed using

2010 Mathematics Subject Classification. 05C35 (primary), 05C65, 05C80 (secondary).

Key words and phrases. quasirandom hypergraphs, extremal graph theory, Turán’s problem, tetrahedron.

The second author was supported by NSF grants DMS 1301698 and 1102086.

The third author was supported through the Heisenberg-Programme of the DFG.

1
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the formula

πpF q “ χpF q´2
χpF q´1

. (1)

Already in his original work [24] Turán asked for hypergraph extensions of these extremal

problems. We restrict ourselves to 3-uniform hypergraphs H “ pV,Eq, where V “ V pHq is a

finite set of vertices and the set of hyperedges E “ EpHq Ď
`

V
3

˘

is a collection of 3-element

sets of vertices. In this paper we shall only consider graphs and 3-uniform hypergraphs and

when we are referring simply to a hypergraph we will always mean a 3-uniform hypergraph.

Despite considerable effort no formula similar to (1) is known or conjectured to hold for

general 3-uniform hypergraphs F . Determining the value of πpF q is a well known and hard

problem even for “simple” hypergraphs like the complete 3-uniform hypergraph K
p3q
4 on four

vertices, which is also called the tetrahedron. Currently the best known bounds for its Turán

density are
5

9
ď πpK

p3q
4 q ď 0.5616 ,

where the lower bounds is given by what is believed to be an optimal construction due to

Turán (see, e.g., [4]). The upper bound is due to Razborov [14] and Baber and Talbot [1]

and their proofs are based on the flag algebra method introduced by Razborov [13]. For a

thorough discussion of Turán type results and problems for hypergraphs we refer to the recent

survey of Keevash [10].

1.2. Quasirandom graphs and hypergraphs. We consider a variant of Turán type ques-

tions in connection with quasirandom hypergraphs. Roughly speaking, a quasirandom hyper-

graph “resembles” a random hypergraph of the same edge density, by sharing some of the key

properties with it, i.e., properties that hold true for the random hypergraph with probability

close to 1.

The investigation of quasirandom graphs was initiated with the observation that several

such properties of randomly generated graphs are equivalent in a deterministic sense. This

phenomenon turned out to be useful and had a number of applications in combinatorics.

The systematic study of quasirandom graphs was initiated by Thomason [21, 22] and by

Chung, Graham, and Wilson [2]. A pivotal feature of random graphs is the uniform edge

distribution on “large” sets of vertices and a quantitative version of this property is used to

define quasirandom graphs. More precisely, a graph G “ pV,Eq is quasirandom with density

d ą 0 if for every subset of vertices U Ď V the number epUq of edges contained in U satisfies

epUq “ d
`

|U |
2

˘

` op|V |2q , (2)
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where op|V |2q{|V |2 Ñ 0 as |V pGq| tends to infinity. Strictly speaking, we consider here a

sequence of graphs Gn “ pVn, Enq where the number of vertices |Vn| tends to infinity, but for

the sake of a simpler presentation we will suppress the sequence in the discussion here. The

main result in [2] asserts, that satisfying (2) is deterministically equivalent to several other

important properties of random graphs. In particular, it implies that for any fixed graph F

with vF vertices and eF edges the number NF pGq of labeled copies of F in a quasirandom

graph G “ pV,Eq of density d satisfies

NF pGq “ deF |V |vF ` op|V |vF q . (3)

In other words, the number of copies of F is close to the expected value in a random graph

with edge density d.

The analogous statement for hypergraphs fails to be true and uniform edge distribution

on vertex sets is not sufficient to enforce a property similar to (3) for all fixed 3-uniform

hypergraphs F (see, e.g., Example 1.6 below). A stronger notion of quasirandomness for

which such an embedding result actually is true, was considered in connection with the

regularity method for hypergraphs (cf. Definition 1.4 and 2.3).

In fact below we consider four different notions of quasirandom hypergraphs. The first and

weakest concept that we consider here is pd, η, q-quasirandomness.

Definition 1.1. A 3-uniform hypergraph H “ pV,Eq on n “ |V | vertices is pd, η, q-

quasirandom if for every triple of subsets X, Y, Z Ď V the number e pX, Y, Zq of triples

px, y, zq P X ˆ Y ˆ Z with tx, y, zu P E satisfies

ˇ

ˇe pX, Y, Zq ´ d |X| |Y | |Z|
ˇ

ˇ ď η n3 .

The central notion for the work presented here, however, is the following stronger concept

of quasirandom hypergraphs, where we “replace” the two sets Y and Z by an arbitrary set

of pairs P .

Definition 1.2. A 3-uniform hypergraph H “ pV,Eq on n “ |V | vertices is pd, η, q-

quasirandom if for every subset X Ď V of vertices and every subset of pairs of vertices

P Ď V ˆ V the number e pX,P q of pairs px, py, zqq P X ˆ P with tx, y, zu P E satisfies

ˇ

ˇe pX,P q ´ d |X| |P |
ˇ

ˇ ď η n3 . (4)

Since for any hypergraph H “ pV,Eq and sets X, Y , Z Ď V we have

e pX, Y, Zq “ e pX, Y ˆ Zq ,
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it follows from these definitions that any pd, η, q-quasirandom hypergraph is also pd, η, q-

quasirandom.

We also remark that the three vertices appearing in (resp. the vertex and the edge

depicted in ) symbolically represent the possible choices for the sets X, Y , Z (resp. the set

of vertices X and for the set of pairs P ). Next we come to a notion where rather than a “set

of vertices and a set of pairs” we consider “two sets of pairs”.

Definition 1.3. A 3-uniform hypergraph H “ pV,Eq on n “ |V | vertices is pd, η, q-

quasirandom if for any two subsets of pairs P , Q Ď V ˆ V the number e pP,Qq of pairs

of pairs ppx, yq, px, zqq P P ˆQ with tx, y, zu P E satisfies
ˇ

ˇe pP,Qq ´ d |K pP,Qq|
ˇ

ˇ ď η n3 ,

where K pP,Qq denotes the set of pairs in P ˆQ of the form ppx, yq, px, zqq.

Finally we will introduce the following strongest notion of quasirandomness that plays an

important rôle in the hypergraph regularity method.

Definition 1.4. A 3-uniform hypergraph H “ pV,Eq on n “ |V | vertices is pd, η, q-

quasirandom if for any three subsets P , Q, R Ď V ˆ V the number e pP,Q,Rq of triples

ppx, yq, px, zq, py, zqq P P ˆQˆR with tx, y, zu P E satisfies
ˇ

ˇe pP,Q,Rq ´ d |K pP,Q,Rq|
ˇ

ˇ ď η n3 ,

where K pP,Q,Rq denotes the set of triples in P ˆQˆR with ppx, yq, px, zq, py, zqq.

For a symbol ‹ P t , , , u we sometimes write a hypergraph H is ‹-quasirandom to

mean that it is pd, η, ‹q-quasirandom for some positive d and some small η. More precisely, we

imagine a sequence of pd, ηn, ‹q-quasirandom hypergraphs with ηn Ñ 0 as nÑ 8. Moreover,

for ‹ P t , , , u we denote by Qpd, η, ‹q the class of all pd, η, ‹q-quasirandom hypergraphs

and one can observe that

Qpd, η, q Ď Qpd, η, q Ď Qpd, η, q Ď Qpd, η, q (5)

holds for all d P r0, 1s and η ą 0. We are interested in Turán densities for quasirandom

hypergraphs given by the following functions.

Definition 1.5. Given a 3-uniform hypergraph F and a symbol ‹ P t , , , u we set

π‹pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists

an F -free 3-uniform hypergraph H P Qpd, η, ‹q with |V pHq| ě n
(

.
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Due to the inclusions (5) we have

π pF q ě π pF q ě π pF q ě π pF q (6)

for any 3-uniform hypergraph F . The last among those four parameters is trivial because we

have π pF q “ 0 for any graph F . This follows directly from the results in [11] (alternatively,

it can be easily deduced by the regularity method for hypergraphs via a combined application

of Theorems 2.2 and 2.3).

Moreover, when F is tripartite or linear it can be shown that all four of these quantities

vanish (in fact, a full characterisation of this event is going to appear in [15]). For F “ K
p3q´
4 ,

the 3-uniform hypergraph consisting of three hyperedges on four vertices, it is known that

π pK
p3q´
4 q “ π pK

p3q´
4 q “ 1{4 and π pK

p3q´
4 q “ 0 .

In fact, Glebov, Krá
,
l, and Volec established π pK

p3q´
4 q ď 1{4 in [8] (see also [16] for an

alternative proof). On the other hand, one can check that the hypergraph corresponding to

the cyclically oriented triangles of a random tournament, which provides π pK
p3q´
4 q ě 1{4, is

also -quasirandom, and by (6) we get

1

4
ď π pK

p3q´
4 q ď π pK

p3q´
4 q ď

1

4
,

which establishes our first claim. The second identity follows from π pK
p3q
4 q “ 0, which will

appear in [17].

The next case one might wish to study is the tetrahedron. The following random construc-

tion from [18] was used to show that π pK
p3q
4 q ě 1{2 and Erdős [5] suggested that this might

be best possible.

Example 1.6. Given any map ϕ :
`

rns
2

˘

Ñ tred, greenu we define the 3-uniform hyper-

graph Hϕ with vertex set rns “ t1, . . . , nu by putting a triple ti, j, ku with i ă j ă k

into EpHϕq if and only if the colours of ij and ik differ.

Irrespective of the choice of the colouring ϕ, the hypergraph Hϕ contains no tetrahedra: for

if a, b, c, and d are any four distinct vertices, say with a “ minpa, b, c, dq, then it is impossible

for all three of the pairs ab, ac, and ad to have distinct colours, whence not all three of the

triples abc, abd, and acd can be hyperedges of Hϕ.

It was noticed in [18] that if the colouring ϕ is chosen uniformly at random, then for any

η ą 0 the hypergraph Hϕ is with high probability p1{2, η, q-quasirandom as n tends to

infinity. This is easily checked using standard tail estimates for binomial distributions and
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similar arguments show that we may replace by in this observation. In other words, this

example shows that

π pK
p3q
4 q ě

1
2
.

holds.

Our main contribution here provides a matching upper bound and shows that for K
p4q
3 -free

-quasirandom hypergraphs the construction given in Example 1.6 is best possible.

Theorem 1.7 (Main result). For every ε ą 0 there exists an η ą 0 and an integer n0 such

that every 3-uniform p1
2
`ε, η, q-quasirandom hypergraph H with at least n0 vertices contains

a tetrahedron.

The proof of Theorem 1.7 will be based on the regularity method for 3-uniform hypergraphs

which is summarised to the necessary extent in the following section. The details of the proof

of Theorem 1.7 appear in Section 3. We close with a few remarks on extremal problems

involving the tetrahedron for related notions of quasirandomness in Section 4.

§2. Hypergraph regularity method

A key tool in the proof of Theorem 1.7 is the regularity lemma for 3-uniform hypergraphs.

We follow the approach from [19, 20] combined with the results from [9] and [12] and below

we introduce the necessary notation.

For two disjoint sets X and Y we denote by KpX, Y q the complete bipartite graph with

that vertex partition. We say a bipartite graph P “ pX 9YY,Eq ist pδ2, d2q-regular if for all

subsets X 1 Ď X and Y 1 Ď Y we have

ˇ

ˇepX 1, Y 1q ´ d2|X
1
||Y 1|

ˇ

ˇ ď δ2|X||Y | ,

where epX 1, Y 1q denotes the number of edges of P with one vertex in X 1 and one vertex in Y 1.

Moreover, for k ě 2 we say a k-partite graph P “ pX1 9Y . . . 9YXk, Eq is pδ2, d2q-regular, if all

its
`

k
2

˘

naturally induced bipartite subgraphs P rXi, Xjs are pδ2, d2q-regular. For a tripartite

graph P “ pX 9YY 9YZ,Eq we denote by K3pP q the triples of vertices spanning a triangle in P ,

i.e.,

K3pP q “ ttx, y, zu Ď X Y Y Y Z : xy, xz, yz P Eu .

If the tripartite graph P is pδ2, d2q-regular, then the so-called triangle counting lemma implies

|K3pP q| ď d32|X||Y ||Z| ` 3δ2|X||Y ||Z| . (7)
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We say a 3-uniform hypergraph H “ pV,EHq is regular w.r.t. a tripartite graph P if it

matches approximately the same proportion of triangles for every subgraph Q Ď P . This we

make precise in the following definition.

Definition 2.1. A 3-uniform hypergraph H “ pV,EHq is pδ3, d3q-regular w.r.t. a tripartite

graph P “ pX 9YY 9YZ,EP q with V Ě X Y Y Y Z if for every tripartite subgraph Q Ď P we

have
ˇ

ˇ|EH XK3pQq| ´ d3|K3pQq|
ˇ

ˇ ď δ3|K3pP q| .

Moreover, we simply say H is δ3-regular w.r.t. P , if it is pδ3, d3q-regular for some d3 ě 0. We

also define the relative density of H w.r.t. P by

dpH|P q “
|EH XK3pP q|

|K3pP q|
,

where we use the convention dpH|P q “ 0 if K3pP q “ H. If H is not δ3-regular w.r.t. P , then

we simply refer to it as δ3-irregular.

The regularity lemma for 3-uniform hypergraphs, introduced by Frankl and Rödl in [7],

provides for every hypergraph H a partition of its vertex set and a partition of the edge sets

of the complete bipartite graphs induced by the vertex partition such that for appropriate

constants δ3, δ2, and d2

(1 ) the bipartite graphs given by the partitions are pδ2, d2q-regular and

(2 ) H is δ3-regular for “most” tripartite graphs P given by the partition.

In many proofs based on the regularity method it is convenient to “clean” the regular partition

provided by the regularity lemma. In particular, we shall disregard hyperedges of H that

belong to K3pP q when H is not δ3-regular or when dpH|P q is very small. These properties

are rendered in the following somewhat standard corollary of the regularity lemma.

Theorem 2.2. For every d3 ą 0, δ3 ą 0 and m P N, and every function δ2 : NÑ p0, 1s, there

exist integers T0 and n0 such that for every n ě n0 and every n-vertex 3-uniform hypergraph

H “ pV,Eq the following holds.

There exists a subhypergraph Ĥ “ pV̂ , Êq Ď H, an integer ` ď T0, a vertex partition

V1 9Y . . . 9YVm “ V̂ , and for all 1 ď i ă j ď m there exists a partition

P ij
“ tP ij

α “ pVi 9YVj, E
ij
α q : 1 ď α ď `u

of KpVi, Vjq satisfying the following properties

(i ) |V1| “ ¨ ¨ ¨ “ |Vm| ě p1´ δ3qn{T0,
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(ii ) for every 1 ď i ă j ď m and α P r`s the bipartite graph P ij
α is pδ2p`q, 1{`q-regular,

(iii ) Ĥ is δ3-regular w.r.t. P ijk
αβγ for all tripartite graphs (which will be later referred to as

triads)

P ijk
αβγ “ P ij

α 9YP ik
β 9YP jk

γ “ pVi 9YVj 9YVk, E
ij
α 9YEik

β 9YEjk
γ q , (8)

with 1 ď i ă j ă k ď m and α, β, γ P r`s, where either dpH|P q “ 0 or dpH|P q ě d3,

and

(iv ) for every 1 ď i ă j ă k ď m there are at most δ3 `
3 triples pα, β, γq P r`s3 such that H

is δ3-irregular with respect to the triad P ijk
αβγ.

The standard proof of Theorem 2.2 based on a refined version of the regularity lemma

from [19, Theorem 2.3] can be found in [16, Corollary 3.3]. Actually the statement there

differs from the one given here in the final clause, but the proof from [16] shows the present

version as well. (In fact, the new version of (iv ) is explicitly stated as clause (a) in the

definition of the hypergraph R in [16, Proof of Corollary 3.3].)

We shall use a so-called counting/embedding lemma, which allows us to embed hypergraphs

of fixed isomorphism type into appropriate and sufficiently regular and dense triads of the

partition provided by Theorem 2.2. The following statement is a direct consequence of [12,

Corollary 2.3].

Theorem 2.3 (Embedding Lemma). For every 3-uniform hypergraph F “ pVF , EF q with

vertex set VF “ rf s and every d3 ą 0 there exists δ3 ą 0, and functions δ2 : N Ñ p0, 1s and

N : NÑ N such that the following holds for every ` P N.

Let P “ pV1 9Y . . . 9YVf , EP q be a pδ2p`q,
1
`
q-regular, f -partite graph with |V1| “ ¨ ¨ ¨ “ |Vf | ě

Np`q and suppose H is an f -partite, 3-uniform hypergraph satisfying for every edge ijk P EF

(a ) H is δ3-regular w.r.t. to the tripartite graph P rVi 9YVj 9YVks and

(b ) dpH|P rVi 9YVj 9YVksq ě d3

then H contains a copy of F , where for every i P rf s “ VF the image of i is contained in Vi.

In an application of Theorem 2.3 the tripartite graphs P rVi 9YVj 9YVks in (a ) and (b ) will be

given by triads P ijk
αβγ from the partition given by Theorem 2.2.

For the proof of Theorem 1.7 we consider a -quasirandom hypergraph H of density 1{2`ε.

We will apply the regularity lemma in form of Theorem 2.2 to H. In the main part of the proof

concerns the appropriate selection of dense and regular triads, that are ready for application

of the embedding lemma with F “ K
p3q
4 . This will be the focus in Section 3.
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§3. Embedding tetrahedra

In this section we deduce Theorem 1.7. The proof will be based on the regularity method

for hypergraphs in form of Theorem 2.2 and the embedding lemma (Theorem 2.3). Below

we reduce the proof of Theorem 1.7 to a lemma (see Lemma 3.1 below) which locates in a

sufficiently regular partition of a -quasirandom hypergraph with density ą 1{2 a collection

of triads that are ready for an application of the embedding lemma for K
p3q
4 .

Proof of Theorem 1.7. Given ε ą 0 we have to find appropriate η ą 0 and n0 P N. For this

purpose we start by choosing some auxiliary constants δ3, d3, δ, and m obeying the hierarchy

δ3 ! d3, δ,m
´1
! ε . (9)

For these choices of δ3 and d3 and F “ K
p3q
4 we appeal to Theorem 2.3 and obtain δ2 : NÑ N

and N : NÑ N. Without loss of generality we may assume that for all ` P N we have

δ2p`q ! `´1, ε .

Applying Theorem 2.2 to d3, δ3, m, and δ2 we get two integers T0 and n10. Now we claim that

any

η ! T´10 and n0 " maxpT0 ¨NpT0q, n
1
0q

are as desired.

To justify this, we let any p1{2` ε, η, q-quasirandom hypergraph H on n ě n0 vertices be

given. Since n ě n10 holds as well, we may apply Theorem 2.2, thus getting a subhypergraph

Ĥ Ď H with vertex partition V̂ “ V1 9Y . . . 9YVm and edge partitions P ij “ tP ij
α : α P r`su of

KpVi, Vjq for 1 ď i ă j ď m.

In view of the embedding lemma (Theorem 2.3) the task that remains to be done is now

reduced to the task of locating four vertex classes Vi1 , . . . , Vi4 with i1 ă i2 ă i3 ă i4 and six

bipartite graphs P ab P P iaib for 1 ď a ă b ď 4 from the regular partition, such that all triads

P abc
“ P ab 9YP ac 9YP bc

with 1 ď a ă b ă c ď 4 are dense and regular, i.e., dpH|P abcq ě d3 and H is δ3-regular

w.r.t. P abc. For this purpose we reformulate our current situation in terms of a “reduced

hypergraph” A. The work we will then have to perform on A is deferred to Lemma 3.1

stated below.

The reduced hypergraph A is going to be 3-uniform and
`

m
2

˘

-partite with vertex classes P ij

for 1 ď i ă j ď m. Among its
`

pm2 q
3

˘

naturally induced tripartite 3-uniform subhypergraphs

only
`

m
3

˘

ones are inhabited by hyperedges: these are the hypergraphs Aijk with vertex
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classes P ij, P ik, and Pjk for 1 ď i ă j ă k ď m. They are defined to have precisely those

hyperedges P ijP ikP jk with P ij P P ij, P ik P P ik, and P jk P Pjk for which the triad

pVi 9YVj 9YVk, P
ij 9YP ik 9YP jk

q

has Ĥ-density at least d3. To see that Lemma 3.1 is applicable (with ε{2 instead of ε), it is

enough to verify that given 1 ď i ă j ă k ď m the following is true. There are at most δ |P ij|

vertices P ij P P ij whose degree in Aijk is smaller than p1{2 ` ε{2q`2, and similarly for P ik

and Pjk.

Since the proofs of all three of these statements are the same, we just deal with P ij

in the sequel. Let X ij
k denote the set of all those P ij P P ij for which there are more

than δ `2 pairs pP ik, P jkq P P ik ˆ Pjk such that H is δ3-irregular with respect to the triad
`

Vi 9YVj 9YVk, P
ij 9YP ik 9YP jk

˘

. Consequently the total number of triads involving Vi, Vj, and Vk

with respect to which H is δ3-irregular is on the one hand at least δ `2 |X ij
k |. On the other hand

it is at most δ3`
3 by clause (iv ) of Theorem 2.2. Consequently we have |X ij

k | ď δ3 `{δ ď δ`

(by the hierarchy given in (9)). It suffices to check that any P ij P P ijzX ij
k belongs to at least

p1{2` ε{2q`2 hyperedges of Aijk.

To verify this, we fix any P ij P P ijzX ij
k for the remainder of the argument. Let us apply

the p1{2` ε, η, q-quasirandomness of H to Vk and the set of pairs

Qij
“ tpx, yq P Vi ˆ Vj : tx, yu P EpP ij

qu

in the rôle of X and P of Definition 1.2. Concerning the number e pVk, Q
ijq of pairs

pv, px, yqq P Vk ˆQ
ij with tv, x, yu P EpHq this tells us

e pVk, Q
ij
q ě

`

1
2
` ε

˘

|Vk| |EpP
ij
q| ´ η ¨ n3 .

Set M “ |Vi| “ |Vj| “ |Vk|. Since

|EpP ij
q| ě

ˆ

1

`
´ δ2p`q

˙

M2

follows from (ii ), we get

e pVk, Q
ij
q ě

ˆ

1

2
` ε

˙ˆ

1

`
´ δ2p`q

˙

M3
´ η n3 .

As we have M ě n
2T0

by (i ), the hierarchy imposed on η leads to

e pVk, Q
ij
q ě

ˆ

1

2
`

9ε

10

˙

¨
M3

`
.
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On the other hand, we have

e pVk, Q
ij
q “

ÿ

pP ik,P jkqPPikˆPjk

ˇ

ˇEpHq XK3pP
ij
Y P ik

Y P jk
q
ˇ

ˇ . (10)

The terms corresponding to triads
`

Vi 9YVj 9YVk, P
ij 9YP ik 9YP jk

˘

with respect to which H has

at most the density d3 contribute at most d3p`
´3 ` 3δ2p`qqM

3`2 (see (7)) and by δ2p`q ! `´1

this is at most 2d3M
3{`.

Further, by P ij R X ij
k there are at most δ `2 terms on the right hand side of (10) corre-

sponding to δ3-irregular triads, and each of them contributes, for the same reason as above,

at most 2M3

`3
to the right hand side of (10).

The remaining terms from (10) satisfy P ijP ikP jk P EpAijkq and each of them contributes

at most
`

1` ε
5

˘

¨ M
3

`3
. So if degpP ijq denotes the degree of P ij in Aijk we arrive at

e pVk, Q
ij
q ď

ˆ

´

1`
ε

5

¯ degpP ijq

`2
` 2d3 ` 2δ

˙

¨
M3

`
.

Comparing both estimates for e pVk, Q
ijq we deduce

1

2
`

9ε

10
ď

´

1`
ε

5

¯ degpP ijq

`2
` 2d3 ` 2δ .

We may assume d3, δ ď
ε
40

, thus getting

1

2
`

4ε

5
ď

´

1`
ε

5

¯ degpP ijq

`2

and by ε ! 1 this implies
1` ε

2
¨ `2 ď degpP ij

q ,

as desired. This concludes the reduction of Theorem 1.7 to Lemma 3.1. �

Lemma 3.1. For every ε ą 0 there exist δ ą 0 and an integer m such that the following

holds. If A is an
`

m
2

˘

-partite 3-uniform hypergraph with

(i ) nonempty vertex classes P ij for 1 ď i ă j ď m such that

(ii ) for each triple 1 ď i ă j ă k ď m the restriction Aijk of A to P ij Y P ik Y Pjk

has the property that all but at most δ|P ij| vertices of P ij are contained in at least

p1{2 ` εq|P ik||Pjk| hyperedges of Aijk and the corresponding property holds for the

vertex classes P ik and Pjk as well,

then there are four distinct indices i1, i2, i3, and i4 from rms together with six vertices P ab P

P iaib for 1 ď a ă b ď 4 such that all four P 12P 13P 23, P 12P 14P 24, P 13P 14P 34, and P 23P 24P 34

are triples of A.
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Proof. For a given ε ą 0 we set

δ “
ε

4
and m “ 3` 21{δ3 .

We will find the desired configuration with i1 “ 1 and i2 “ 2. The argument splits into three

steps. In the first step we select the indices i3 and i4. After that step it remains to select the

six vertices P iaib with 1 ď a ă b ď 4. In the second step we shall fix the three vertices P iai4

with a “ 1, 2, 3 and in the third step we fix the remaining three vertices.

Step 1: Selecting i3 and i4. We commence by assigning a colour to each integer between 3

and m, the idea being that the colour of an index i P r3,ms encodes the sizes of holes

(independent sets) in A12i. More precisely, for positive integers p, q, and r we say, that A12i

has a pp, q, rq-hole if there are three sets I12 Ď P12, I1i Ď P1i, and I2i Ď P2i with

|I12| ě p ¨ δ |P12
| , |I1i| ě q ¨ δ |P1i

| , and |I2i| ě r ¨ δ |P2i
|

such that I12 Y I1i Y I2i is independent in A12i. Evidently, such a hole can only exist if

p, q, r ď δ´1.

Let Ξi be the set of all integer triples pp, q, rq P
“

1, δ´1
‰3

for which A12i contains a pp, q, rq-

hole. We think of the set Ξi as a colour that has been attributed to the index i P r3,ms

and obviously there are at most 21{δ3 possible colours. Since m ´ 2 exceeds the number of

possible colours, the pigeonhole principle tells us that there exist two distinct integers i3

and i4 between 3 and m of the same colour. For the rest of the proof only the parts of A
accessible via the indices 1, 2, i3, and i4 are relevant and so without loss of generality we may

henceforth assume i3 “ 3, i4 “ 4, and

Ξ3 “ Ξ4 . (11)

Step 2: Choosing P 14, P 24, and P 34. For any three distinct indices i, j, and k we denote

the set of all vertices from P ij whose degree in Aijk is less than
`

1
2
` ε

˘

|P ik| |Pjk| by X ij
k . In

view of assumption (ii ) of Lemma 3.1 we have

|X ij
k | ď δ |P ij

| . (12)

Given two vertices P and P 1 of A, we write codegpP, P 1q for their codegree, i.e., for the size

|NpP, P 1q| of their common neighbourhood

NpP, P 1q “
 

P 2 P V pAq : tP, P 1, P 2u P EpAq
(

.

It follows from the partite structure of A that NpP, P 1q is not empty only when P P P ij and

P 1 P P ik for some distinct indices i, j, and k and in this case we have NpP, P 1q Ď Pjk.
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We fix P 14 and P 24 by selecting a pair

pP 14, P 24
q P pP14

zX14
3 q ˆ pP24

zX24
3 q

with maximum codegree in A. Let p be the largest integer such that

codegpP 14, P 24
q ě p ¨ δ|P12

| . (13)

It follows from assumption (ii ) that the average codegree among all pairs in P14 ˆ P24 is at

least

p1´ δqp1{2` εq|P12
|

and, since X14
3 and X24

3 are small, a similar lower bound holds for the average (and hence the

maximum) codegree in pP14zX14
3 q ˆ pP24zX24

3 q. In fact, the number of hyperedges in A124

avoiding vertices in X14
3 and X24

3 is at least

p1{2` εq|P12
| ¨ p1´ δq|P14

||P24
| ´ |P12

||X14
3 ||P24

| ´ |P12
||P14

||X24
3 |

ě
`

p1{2` εqp1´ δq ´ 2δ
˘

|P12
||P14

||P24
| .

Note that we may assume that ε ď 1{2, as otherwise the lemma is void. Consequently, the

average codegree of the pairs in pP14zX14
3 q ˆ pP24zX24

3 q is at least p1{2 ` ε ´ 3δq|P12| and

since pP 14, P 24q maximises the codegree we also have

p δ ě 1
2
` ε´ 4δ ě 1

2
. (14)

Having selected P 14 and P 24 we now select P 34. Due to P 14 R X14
3 and P 24 R X24

3 we have
ÿ

PPP34

codegpP 14, P q ě p1
2
` εq|P13

| |P34
|

as well as
ÿ

PPP34

codegpP 24, P q ě p1
2
` εq|P23

| |P34
| ,

whence
ÿ

PPP34

ˆ

codegpP 14, P q

|P13|
`

codegpP 24, P q

|P23|

˙

ě p1` 2εq|P34
| .

For this reason, we may choose a vertex P 34 P P34 in such a way that

codegpP 14, P 34q

|P13|
`

codegpP 24, P 34q

|P23|
ě 1` 2ε . (15)

Because of NpP 14, P 34q Ď P13 and NpP 24, P 34q Ď P23 it follows that

|NpP 14, P 34
q| ě 2 ε |P13

| and |NpP 24, P 34
q| ě 2 ε |P23

| . (16)
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This concludes the selection of P 14, P 24, and P 34, which by (13), (14), and (16) guarantees

that all three possible codegrees of these vertices are reasonable large. It is left to select P 12,

P 13, and P 23. These three vertices have to form a hyperedge in A and each of them must be

chosen from the common neighbourhood of two vertices chosen already, i.e., we have to make

sure that there is a hyperedge P 12P 13P 23 of A with P 12 P NpP 14, P 24q, P 13 P NpP 14, P 34q,

and P 23 P NpP 24, P 34q. This is the content of the last step.

Step 3: Choosing P 12, P 13, and P 23. As mentioned above it suffices to find a hyperedge

with each vertex coming from one of the common neighbourhoods

I12 “ NpP 14, P 24
q , I13 “ NpP 14, P 34

q , and I23 “ NpP 24, P 34
q ,

since this would give rise to a choice of P 12, P 13, and P 23 with the desired properties.

Suppose to the contrary that A123rI12, I13, I23s is independent, i.e., it gives rise to a pp, q, rq-

hole in A123, where q and r are the largest integers such that

|I13| ě q ¨ δ|P13
| and |I23| ě r ¨ δ|P23

|

(for the definition of p see (13)). Owing to (15) and the maximality of q and r we have

pq ` 1qδ ` pr ` 1qδ ą 1` 2ε .

Since qδ and rδ are bounded by 1 we also have

qδ ą 2pε´ δq and rδ ą 2pε´ δq . (17)

Without loss of generality we may assume q ě r and since δ ă ε we then have

qδ ą 1{2 . (18)

Since the sets I12, I13, and I23 form a pp, q, rq-hole in A123, we have pp, q, rq P Ξ3 and owing

to (11) we know that pp, q, rq is also in Ξ4, i.e., A124 also contains a pp, q, rq-hole. This gives

rise to an independent set in A124 formed by J12 Ď P12, J14 Ď P14, and J24 Ď P24 with

|J12
| ě p ¨ δ|P12

| , |J14
| ě q ¨ δ|P14

| , and |J24
| ě r ¨ δ|P24

| .

We will use the fact that the chosen pair pP 14, P 24q maximises the codegree in A124 over all

pairs in pP14zX14
3 q ˆ pP24zX24

3 q. Owing to the maximal choice of p in (13) we have

codegpP 14, P 24
q ă pp` 1q ¨ δ|P12

| .

We consider the set

J24
0 “ J24

zpX24
3 YX24

1 q .
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We will arrive at a contradiction by considering a vertex from J24
0 . It follows from (17)

and (12) that

|J24
0 | ě |J

24
| ´ |X24

3 | ´ |X
24
1 | ě 2pε´ 2δq|P24

| ą 0 .

Therefore, there exists at least a vertex Q24 P J24
0 , which we fix for the rest of the proof. We

estimate the degree degpQ24q of Q24 in A124 in two ways. Since Q24 R X24
1 we have

degpQ24
q ě p1{2` εq|P12

||P14
| . (19)

On the other hand, we write degpQ24q as the sum of all codegrees of Q24 with a vertex

from P14, i.e.,

degpQ24
q “

ÿ

QPP14

codegpQ,Q24
q

and consider three cases depending on Q. If Q P J14, then all common neighbours of Q24

and Q must lie outside J12, as J12, J14, and J24 form a hole in A124. In particular, in this

case we have

codegpQ,Q24
q ď |P12

| ´ |J12
| ď p1´ pδq|P12

| .

For the second case, we consider Q P X14
3 in this case we use the trivial upper bound

codegpQ,Q24
q ď |P12

| .

However, due to (12) we know that this will only contribute little to degpQ24q.

In the remaining case we have Q R J14 and Q R X14
3 . Then we have pQ,Q24q P pP14zX14

3 qˆ

pP24zX24
3 q and by the maximal choice of pP 14, P 24q we infer

codegpQ,Q24
q ď codegpP 14, P 24

q ă pp` 1qδ|P12
| .

Putting the three cases together and we obtain

degpQ24
q ď |J14

| ¨ p1´ pδq|P12
| ` |X14

3 | ¨ |P12
| ` p|P14

| ´ |J14
|q ¨ pp` 1qδ|P12

|

Let x, y P R be given by x “ pδ and y “ |J14|{|P14|. Recalling (14) and (18) we note that x,

y ě 1{2 and we can rewrite the last inequality as

degpQ24q

|P12||P14|
ď yp1´ xq ` δ ` p1´ yqx` δ .

Comparing this with (19) we arrive at

1

2
` ε´ 2δ ď yp1´ xq ` p1´ yqx ,

which due to x, y ě 1{2 leads to the contradiction

0 ď 1
2
p2x´ 1qp2y ´ 1q ď 2δ ´ ε ă 0
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and concludes the proof of Lemma 3.1. �

§4. Concluding remarks

Continuing the discussion from the introduction we mention related concepts of quasir-

andom hypergraphs. In fact, for 3-uniform hypergraphs one can define for any antichain

A ‰ tt1, 2, 3uu from the power set of t1, 2, 3u a notion of A -quasirandom hypergraphs (see,

e.g., [3, 23]) and these concepts differ for non-isomorphic antichains. Having this in mind,

three more concepts of quasirandom hypergraphs arise, in addition to the four notions defined

in Section 1. In view of our earlier notation, we depict these three new concepts by , ,

and .

Definition 4.1. A 3-uniform hypergraph H “ pV,Eq on n “ |V | vertices is

(i ) pd, η, q-quasirandom if for any subset X Ď V the number e pXq of triples px, v, v1q P

X ˆ V ˆ V with tx, v, v1u P E satisfies
ˇ

ˇe pXq ´ d |X|n2
ˇ

ˇ ď η n3 .

(ii ) pd, η, q-quasirandom if for any subsets Y , Z Ď V the number e pY, Zq of triples

pv, y, zq P V ˆ Y ˆ Z with tv, y, zu P E satisfies
ˇ

ˇe pY, Zq ´ d |Y | |Z|n
ˇ

ˇ ď η n3 .

(iii ) pd, η, q-quasirandom if for any subset P Ď V ˆ V the number e pP q of triples

pv, y, zq P V ˆ P with tv, y, zu P E satisfies
ˇ

ˇe pP q ´ d |P |n
ˇ

ˇ ď η n3 .

With these definitions at hand we may extend the notions Qpd, η, ‹q and π‹ to any symbol

‹ P t , , u (see Definition 1.5 and the paragraph before). It follows directly from the

definitions that for any d P r0, 1s and η ą 0 we have

Qpd, η, q Ď Qpd, η, q Ď Qpd, η, q Ď Qpd, η, q and Qpd, η, q Ď Qpd, η, q . (20)

However, there exist examples of hypergraphs that show that Qpd, η, q and Qpd, η, q in-

comparable in general. Consequently, we can extend (6) for every hypergraph F to

πpF q ě π pF q ě π pF q ě π pF q ě π pF q ě π pF q ě π pF q “ 0

and

π pF q ě π pF q ě π pF q .
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Note that in the hierachy given in (20) the weakest concept is -quasirandomness. It

follows from its definition, that any 3-uniform pd, η, q-quasirandom hypergraph H “ pV,Eq

on n vertices has the property, that all but at most 2
?
ηn vertices have its degree in the

interval d n2{2 ˘
?
η n2. In fact, -quasirandom hypergraphs are the class of hypergraphs

with approximately regular degree sequence. Owing to this, it is not hard to show that

π pF q “ πpF q

for any hypergraph F .

We conclude our discussion with an overview of the Turán densities of the tetrahedron.

For that the well known Turán conjecture asserts

πpK
p4q
3 q “

5
9

and Theorem 1.7 and a result from [17] yield

π pK
p4q
3 q “

1
2

and π pK
p4q
3 q “ 0 .

Moreover, Example 1.6 implies

π pK
p4q
3 q ě

1
2

and π pK
p4q
3 q ě

1
2

and it is tempting to conjecture for both cases that a matching upper bound holds. Maybe

an interesting first step in that direction is to combine both incomparable assumptions given

by - and -quasirandomness.

Question 4.1. Is it true that for every ε ą 0 there exist η ą 0 such that every sufficiently

large hypergraph

H P Qp1{2` ε, η, q XQp1{2` ε, η, q

contains a tetrahedron?

In view of (5) and (20) a positive resolution of this question would strengthen our main

result Theorem 1.7.

We close with the remark that concerning -quasirandomness to our knowledge it is only

known that the validity of Turán’s conjecture and Examaple 1.6 imply that π pK
p3q
4 q is in the

interval r1{2, 5{9s.
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l, and J. Volec, A problem of Erdős and Sós on 3-graphs, Israel J. Math. to appear.

Ò1.2

[9] W. T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab.

Comput. 15 (2006), no. 1-2, 143–184, DOI 10.1017/S0963548305007236. MR2195580 (2008b:05175) Ò2

[10] P. Keevash, Hypergraph Turán problems, Surveys in combinatorics 2011, London Math. Soc. Lecture

Note Ser., vol. 392, Cambridge Univ. Press, Cambridge, 2011, pp. 83–139. MR2866732 Ò1.1
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[18] V. Rödl, On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), no. 1-2,

125–134, DOI 10.1016/0012-365X(86)90076-2. MR837962 (88b:05098) Ò1.2, 1.6
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