
CANONICAL TREE-DECOMPOSITIONS OF A GRAPH

THAT DISPLAY ITS k-BLOCKS

JOHANNES CARMESIN AND J. PASCAL GOLLIN

Abstract. A k-block in a graph G is a maximal set of at least k vertices
no two of which can be separated in G by removing less than k vertices.
It is separable if there exists a tree-decomposition of adhesion less than
k of G in which this k-block appears as a part.

Carmesin, Diestel, Hamann, Hundertmark and Stein proved that ev-
ery finite graph has a canonical tree-decomposition of adhesion less than
k that distinguishes all its k-blocks and tangles of order k. We construct
such tree-decompositions with the additional property that every sepa-
rable k-block is equal to the unique part in which it is contained. This
proves a conjecture of Diestel.

1. Introduction

Tangles in a graph G are orientations of the low order separations that
consistently point towards some ‘highly connected piece’ of G. As a fun-
damental tool for their graph minors project, Robertson and Seymour [8]
proved that every finite graph has a tree-decomposition that distinguishes
every two maximal tangles.

More recently, k-profiles were introduced as a common generalisation of
k-tangles and k-blocks [7]. Here, a k-block in a graph G is a maximal set of
at least k vertices no two of which can be separated in G by removing less
than k vertices. Carmesin, Diestel, Hamann and Hundertmark showed that
every graph has a canonical tree-decomposition of adhesion less than k that
distinguishes all its k-profiles [2].

In [3], these authors asked how one could improve the above tree-decompo-
sitions further so that they also display the structure of the k-blocks: it
would be nice if we could compress any part containing a k-block so that it
does not contain any ‘junk’.

In this paper, we prove that this is possible simultaneously for all k-blocks
that can be isolated at all in a tree-decomposition, canonical or not. More
precisely, we call a k-block separable if it appears as a part in some tree-
decomposition of adhesion less than k of G. We prove the following, which
was conjectured by Diestel [5] (see also [3]).

Theorem 1. Every finite graph G has a canonical tree-decomposition T
of adhesion less than k that distinguishes efficiently every two distinct
k-profiles, and which has the further property that every separable k-block
is equal to the unique part of T in which it is contained.
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We also prove the following related result:

Theorem 2. Every finite graph G has a canonical tree-decomposition T
that distinguishes efficiently every two distinct maximal robust profiles, and
which has the further property that every separable block inducing a maximal
robust profile is equal to the unique part of T in which it is contained.

See Section 2 for a definition of robust and [4] for an example showing that
Theorem 2 fails if we leave out ‘robust’. Theorem 2 without its description of
the separable blocks is a result of Hundertmark and Lemanczyk [7], which
implies the aforementioned theorem of Robertson and Seymour. In Sec-
tion 4, we give an example showing that it is impossible to ensure that non-
maximal robust separable blocks are also displayed by a tree-decomposition
which distinguishes all the maximal robust profiles efficiently.

After recalling some preliminaries in Section 2, we develop the necessary
tools in Section 3. Then we prove our main result in Section 4.

2. Preliminaries

Unless otherwise mentioned, G will always denote a finite, simple and
undirected graph with vertex set V (G) and edge set E(G). Any graph-
theoretic term and notation not defined here are explained in [6].

A vertex is called central in G if the greatest distance to any other vertex
is minimal. It is well known that a finite tree T has either a unique central
vertex or precisely two central adjacent vertices v and w. In the second case
vw is called a central edge. For a vertex or edge to be central is obviously a
property invariant under automorphisms of G.

Let us recall some notations from [2].

2.1. Separations. An ordered pair (A,B) of subsets of V (G) is a separation
of G if A ∪B = V (G) and if there is no edge e = vw ∈ E(G) with v ∈ A\B
and w ∈ B\A. The cardinality |A ∩B| of the separator A∩B of a separation
(A,B) is the order of (A,B) and a separation of order k is a k-separation.

A separation (A,B) is proper if neither A ⊆ B nor B ⊆ A. Otherwise
(A,B) is improper. A separation (A,B) is tight if every vertex in A∩B has
a neighbour in A\B and a neighbour in B\A.

The set of separations of G is partially ordered via

(A,B) ≤ (C,D) :⇔ A ⊆ C ∧ D ⊆ B.
For no two proper separations (A,B) and (C,D), the separation (A,B) is

≤-comparable with (C,D) and (D,C). In particular we obtain that (A,B)
and (B,A) are not ≤-comparable.

A separation (A,B) is nested with a separation (C,D) if (A,B) is
≤-comparable with either (C,D) or (D,C). Since

(A,B) ≤ (C,D) ⇐⇒ (D,C) ≤ (B,A),

being nested is symmetric and reflexive. Separations that are not nested are
called crossing.
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A separation (A,B) is nested with a set S of separations if (A,B) is
nested with every (C,D) ∈ S. A set S of separations is nested with a set
S′ of separations if every (A,B) ∈ S is nested with S′ or equivalently every
(C,D) ∈ S′ is nested with S.

A set N of separations is nested if its elements are pairwise nested. A
set S of separations is symmetric if for every (A,B) ∈ S it also contains its
inverse separation (B,A). A symmetric set S of separations is also called a
separation system or a system of separations, and if all its separations are
proper, S is called a proper separation system. For a set S of separations
the separation system generated by S is the separation system consisting of
the separations in S and their inverses. A set S of separations is canonical
if it is invariant under the automorphisms of G, i.e. for every (A,B) ∈ S
and for every ϕ ∈ Aut(G) we obtain (ϕ[A], ϕ[B]) ∈ S.

A separation (A,B) separates a vertex set X ⊆ V (G) if X meets both
A\B and B\A. Given a set S of separations a vertex set X ⊆ V (G) is
S-inseparable if no separation (A,B) ∈ S separates X. A maximal S-
inseparable vertex set is an S-block of G.

For k ∈ N let S<k denote the set of separations of order less than k of G.
The (< k)-inseparable sets are the S<k-inseparable sets. So the k-blocks are
exactly the S<k-blocks of size at least k.

For two separations (A,B) and (C,D) not equal to (V (G), V (G)) con-
sider a cross-diagram as in Figure 1. Every pair (X,Y ) ∈ {A,B} × {C,D}
denotes a corner of this cross-diagram, which we also denote by cor(X,Y ).
Let X ∈ {A,B}\{X} and Y ∈ {C,D}\{Y }. In the diagram we consider
the center c:=A ∩B ∩ C ∩D and for a corner cor(X,Y ) as above the in-
terior int(X,Y ):=(X ∩ Y )\(X ∪ Y ) and the links `X :=(X ∩ Y ∩ Y )\c and
`Y :=(Y ∩X ∩X)\c. The vertex set X ∩ Y is the disjoint union of int(X,Y )
with `X , `Y and c and thus can be associated with the corner cor(X,Y ).

A B

C

D

int(A,C) int(B,C)

int(A,D) int(B,D)

c`A `B

`C

`D

Figure 1. cross-diagram for (A,B) and (C,D)

Remark 2.1. Two separations (A,B) and (C,D) are nested, if and only if
for one of their corners cor(X,Y ) the interior int(X,Y ) and its links `X and
`Y are empty. �
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For a corner cor(X,Y ) there is a corner separation (X ∩ Y,X ∪ Y ), which
is again a separation of G.

Lemma 2.2. [4, Lemma 2.2] For two crossing separations (A,B) and (C,D)
any of its corner separation is nested with every separation that is nested
with both (A,B) and (C,D).

In particular a corner separation is nested with (A,B), (C,D) and all
corner separations. A double counting argument yields:

Remark 2.3. For any two separations (A,B) and (C,D), the orders of the
separations (A∩C,B∪D) and (B∩D,A∪C) sum to |A∩B|+ |C ∩D|. �

2.2. Tree-decompositions. Recall that a tree-decomposition T of G is a
pair

(
T, (Pt)t∈V (T )

)
of a tree T and a family of vertex sets Pt ⊆ V (G) for

every node t ∈ V (T ), such that

(T1) V (G) =
⋃
t∈V (T ) Pt;

(T2) for every edge e ∈ E(G) there is a node t ∈ V (T ) such that both
end vertices of e lie in Pt;

(T3) whenever t2 lies on the t1 – t3 path in T we obtain Pt1 ∩ Pt3 ⊆ Pt2 .

The sets Pt are the parts of T . For an edge tt′ ∈ E(T ) the intersection
Pt ∩ Pt′ is the corresponding adhesion set and the maximum size of an
adhesion set of T is the adhesion of T . A node t ∈ V (T ) is a hub node if
the corresponding part Pt is a subset of Pt′ for some neighbour t′ of t. If t
is a hub node, then Pt is a hub. A tree-decomposition T =

(
T, (Pt)t∈V (T )

)
of G and a tree-decomposition T ′ =

(
T ′, (P ′t)t∈V (T ′)

)
of G′ are isomorphic

if there is an isomorphism ϕ : G→ G′ and an isomorphism ψ : T → T ′ such
that for every part Pt of T we obtain ϕ[Pt] = P ′ψ(t). We say ϕ induces an

isomorphism between T and T ′. A tree-decomposition T is canonical if it
is invariant under the automorphisms of G, i.e. every automorphism of G
induces an automorphism of T .

Let
(
T, (Pt)t∈V (T )

)
be a tree-decomposition of G. For t ∈ V (T ) the torso

Ht is the graph obtained from G[Pt] by adding all edges joining two vertices
in a common adhesion set Pt ∩ Pu for any tu ∈ E(T ). A separation (A,B)
of G[Pt] is a separation of Ht if and only if it does not separate any adhesion
set Pt ∩ Pt′ for tt′ ∈ E(T ). A separation (A,B) of G with A ∩ B ⊆ Pt for
some node t ∈ V (T ) that does not separate any adhesion set Pt ∩ Pt′ for
tt′ ∈ E(T ) induces the separation (A ∩ Pt, B ∩ Pt) of Ht.

Every oriented edge ~e = t1t2 of T divides T − e in two components T1
and T2 with t1 ∈ V (T1) and t2 ∈ V (T2). By [6, Lemma 12.3.1] ~e induces the
separation

(⋃
t∈V (T1)

Pt,
⋃
t∈V (T2)

Pt
)

of G such that the separator coincides

with the adhesion set Pt1 ∩ Pt2 . We say a separation is induced by T if it is
induced by an oriented edge of T .

The set of separations induced by a tree-decomposition T (of adhesion
less than k) is a nested system N(T ) of separations (of order less than k).
We say N(T ) is induced by T . Clearly if T is canonical, then so is N(T ).
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Conversely, as proven in [4], every nested separation system N induces a
tree-decomposition T (N):

Theorem 2.4. [4, Theorem 4.8] Let N be a canonical nested separation
system of G. Then there is a canonical 1 tree-decomposition T (N) of G such
that

(i) every N -block of G is a part of T (N);
(ii) every part of T (N) is either an N -block of G or a hub;
(iii) the separations of G induced by T (N) are precisely those in N ;
(iv) every separation in N is induced by a unique oriented edge of T (N).

2.3. Profiles. Let S be a separation system. A subset O ⊆ S is an ori-
entation of S if for every (A,B) ∈ S exactly one of (A,B) and (B,A) is
an element of O. An orientation O of S is consistent if for every (A,B),
(C,D) ∈ S with (A,B) ∈ O and (C,D) ≤ (A,B) we obtain (C,D) ∈ O as
well. A consistent orientation P of S<k is called a k-profile if it satisfies

(P) for all (A,B), (C,D) ∈ P we have (B ∩D,A ∪ C) /∈ P .

In particular if the order |(A ∪ C) ∩ (B ∩D)| of this corner separation is less
than k, we have (A ∪ C,B ∩D) ∈ P . Sometimes we omit the k and call P
a profile.

It is easy to check that every k-block b induces a k-profile via

Pk(b):=
{

(A,B) ∈ S<k
∣∣ b ⊆ B}.

Also tangles of order k (or k-tangles), as introduced by Robertson and Sey-
mour [8], are k-profiles. For more background on profiles, see [7].

For r ∈ N, a k-profile P is r-robust if for any (A,B) ∈ P and any
(C,D) ∈ S<r+1 one of (A ∪ C,B ∩ D), (A ∪ D,B ∩ C) either has order
at least k−1, or is in P . If P is r-robust for all r ∈ N, then we call P robust.

A robust k-profile P is maximal if there does not exist a robust `-profile Q
with P ( Q and ` > k. Then P is just called a maximal robust profile.

Remark 2.5. (i) Every k-profile is `-robust for all ` < k;
(ii) if a k-block b contains a complete graph on k vertices, then the

induced k-profile Pk(b) is robust. �

The next lemma basically states that every k-profile induces a k-haven,
as introduced by Seymour and Thomas [9].

Lemma 2.6. Let X ⊆ V (G) with |X| < k and let Q be a k-profile. Then
there exists a component C of G−X such that (V (G)\C,C ∪X) ∈ Q.

Furthermore, (V (G)\C,C ∪N(C)) ∈ Q as well.

Proof. Let C1, . . . , Cn denote the components of G−X and for i ∈ {1, . . . , n}
let (Ai, Bi):=(V (G)\Ci, Ci ∪X). To reach a contradiction suppose that
(Bi, Ai) ∈ Q for all i ∈ {1, . . . , n}. Then (P) yields inductively for all m ≤ n

1In the original paper this theorem is stated without the canonicity since it holds in a
greater generality. But it is clear from the proof that if N is canonical, then so is T (N).
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that
(⋃

i≤mBi,
⋂
i≤mAi

)
∈ Q, since their separators all equal X. Hence for

m = n, we obtain (V (G), X) ∈ Q, contradicting the consistency of Q with
(X,V (G)) ≤ (V (G), X). Thus there is a component C of G −X such that
(A,B):=(V (G)\C,C ∪X) ∈ Q.

Now suppose (C ∪ N(C), V (G)\C) ∈ Q. Then (P) with (A,B) yields
that

(
(V (G)\C) ∪ C ∪N(C), (C ∪X) ∩ (V (G)\C)

)
= (V (G), X) ∈ Q, con-

tradicting the consistency of Q again. �

A k-profile Q inhabits a part Pt of a tree-decomposition
(
T, (Pt)t∈V (T )

)
if

for every (A,B) ∈ Q we obtain that (B\A) ∩ Pt is not empty. Note that if
for a node t every separation induced by an oriented edge ut of T has order
less than k, then Q inhabits Pt if and only if all those separations are in Q.

Corollary 2.7. Let
(
T, (Pt)t∈V (T )

)
be a tree-decomposition and let Q be a

k-profile. If Q inhabits a part Pt, then |Pt| ≥ k.

Proof. Our aim is to show that if |Pt| < k, then any k-profile Q does not
inhabit Pt. By Lemma 2.6 there is a component C of G − Pt such that
(V (G)\C,C ∪ Pt) ∈ Q. Since (C ∪ Pt)\(V (G)\C) = C and since C ∩ Pt is
empty, we obtain that Q does not inhabit Pt. �

A set P of profiles is canonical if for every P ∈ P and every automor-
phism ϕ of G the profile

{(
ϕ[A], ϕ[B]

) ∣∣ (A,B) ∈ P
}

is also in P.
Two profiles P and Q are distinguishable if there is a separation (A,B)

with (A,B) ∈ P and (B,A) ∈ Q. Such a separation distinguishes P and Q.
It is said to distinguish P and Q efficiently if its order |A ∩B| is mini-
mal among all separations distinguishing P and Q. A set P of profiles is
distinguishable if every two distinct P,Q ∈ P are distinguishable. A tree-
decomposition T distinguishes two profiles P and Q (efficiently) if some
(A,B) induced by T distinguishes them (efficiently).

For our main result of this paper, we will build on the following theorem.

Theorem 2.8. [7, Theorem 2.6]2 Every graph G has a canonical tree-
decomposition of adhesion less than k that distinguishes every two distin-
guishable (k − 1)-robust `-profiles of G for some values ` ≤ k efficiently.

Moreover, every separation induced by the tree-decomposition distinguishes
some of those profiles efficiently.

3. Construction methods

3.1. Sticking tree-decompositions together. Given a tree-decomposi-
tion T of G and for each torso Ht a tree-decomposition T t, our aim is to
construct a new tree-decomposition T of G by gluing together the tree-
decompositions T t of the torsos along T in a canonical way.

2Since [7] is unpublished, see also [4, Theorem 6.3] for a version just concerning robust
blocks or [1, Theorem 9.2] for a version also dealing with infinite graphs.
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Example 3.1. First we shall give the construction of T for a particular
example: G is obtained from three edge-disjoint triangles intersecting in
a single vertex by identifying two other vertices of distinct triangles. The
tree-decomposition T of G and the tree-decompositions of the torsos are de-
picted in Figure 2 (a). In order to stick the tree-decompositions of the torsos
together in a canonical way, we first have to refine them, see Figure 2 (b).

(a) (b)

Figure 2. (a) shows the tree-decomposition T of G, drawn
in black, and the tree-decompositions of the torsos, drawn in
grey. (b) shows the canonically glued tree-decomposition T .

Before we can construct T , we need some preparation.

Construction 3.2. Given a tree-decomposition T =
(
T, (Pt)t∈V (T )

)
of G,

we construct a new tree-decomposition T̃ =
(
T̃ , (Pt)t∈V (T̃ )

)
of G by con-

tracting every edge tu of T where Pt = Pu.3 In this tree-decomposition two

adjacent nodes never have the same part. Let F ⊆ E(T̃ ) be the set of edges
tu where neither Pt ⊆ Pu nor Pu ⊆ Pt. By subdividing every edge tu ∈ F
and assigning to the subdivided node x the part Px:=Pt ∩ Pu, we obtain a

new tree-decomposition T̂ =
(
T̂ , (Pt)t∈V (T̂ )

)
.

Remark 3.3. T̂ defined as in Construction 3.2 satisfies the following:

(i) every separation induced by T̂ is also induced by T ;
(ii) for every edge tu ∈ E(T ) that induces a separation not induced by

T̂ we have Pt = Pu;

(iii) for every edge tu ∈ E(T̂ ) precisely one of Pt or Pu is a proper subset
of the other;

(iv) if T distinguishes two profiles Q1 and Q2 efficiently, then so does T̂ ;

(v) if T is canonical, then T̂ is canonical as well. �

Lemma 3.4. Let K be a complete subgraph of G and T̂ as in Construc-

tion 3.2. Then there is a node t of T̂ with V (K) ⊆ Pt such that Pt is fixed
by every automorphism of G fixing K.

3Here we understand the nodes of T̂ to be nodes of T , where a node obtained through
the contraction of an edge tu to be identified with either t or u.
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Proof. As K is complete, there is a node u ∈ V (T̂ ) with V (K) ⊆ Pu.

Let W be the subforest of nodes w with K ⊆ Pw, which is connected as T̂
is a tree-decomposition. Now W either has a central vertex t or a central
edge tu such that Pu is a proper subset of Pt (cf Remark 3.3 (iii)). In both
cases Pt is fixed by the automorphisms of G that fix K. �

Construction 3.5. Let T =
(
T, (Pt)t∈V (T )

)
be a tree-decomposition of G.

For each t ∈ V (T ) let T t =
(
T t, (P tu)u∈V (Tt)

)
be a tree-decomposition of the

torso Ht. For each T t let T̂ t be as in Construction 3.2. For e = tu ∈ E(T )
let Ae denote the adhesion set Pt ∩ Pu. Since Ht[Ae] is complete, we can

apply Lemma 3.4: there is a node γ(t, u) of T̂ t with Ae ⊆ P tγ(t,u) such that

P tγ(t,u) is fixed by every automorphism of Ht fixing K.

We obtain a tree T from the disjoint union of the trees T̂ t for all t ∈ V (T )
by adding the edges γ(t, u)γ(u, t) for each tu ∈ E(T ). Let P u be P tu for

the unique t ∈ V (T ) with u ∈ V (T̂ t). Then T :=
(
T , (P t)t∈V (T )

)
is a tree-

decomposition of G.

Two torsos Ht and Hu of T are similar, if there is an automorphism of G
that induces an isomorphism between Ht and Hu. The family

(
T t
)
t∈V (T )

is

canonical if all the T t are canonical and for any two similar torsos Ht and
Hu of T every automorphism of G that witnesses the similarity of Ht and
Hu induces an isomorphism between T t and T u.

Lemma 3.6. The tree-decomposition T as in Construction 3.5 satisfies the
following:

(i) for t ∈ V (T ) every node u ∈ V (T t) is also a node of T and P u = P tu;
(ii) every node u ∈ V (T ) that is not a node of any T t is a hub node;
(iii) every separation (A,B) induced by T is either induced by T or there

is a node t ∈ V (T ) such that (A ∩ Pt, B ∩ Pt) is induced by T t;
(iv) every separation induced by T is also induced by T ;

(v) for every separation (C,D) induced by T̂ t there is a separation (A,B)
induced by T such that A ∩B ⊆ Pt and (A ∩ Pt, B ∩ Pt) = (C,D);

(vi) if T and the family of the T t are canonical, then T is canonical.

Proof. Whilst (i) is true by construction, the nodes added in the construc-

tion of T̂ t are hub nodes by definition, yielding (ii). Furthermore, (iii), (iv)
and (v) follow by construction with Remark 3.3 (i) and the observation that
for all tu ∈ E(T ) the adhesion sets P γ(t,u) ∩ P γ(u,t) and Pt ∩ Pu are equal.
Finally, (iv) follows with Remark 3.3 (v) and Lemma 3.4 from the construc-
tion. �

3.2. Obtaining tree-decompositions from almost nested sets of sep-
arations. Theorem 2.4 gives a way how to transform a nested set of sepa-
rations into a tree-decomposition. In this subsection, we extend this to sets
of ‘almost nested’ separations.
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For a separation (A,B) of G and X ⊆ V (G), the pair (A ∩ X,B ∩ X)
is a separation of G[X], which we call the restriction (A,B)�X of (A,B)
to X. Note that (A,B)�X is proper if and only if (A,B) separates X. The
restriction S�X to X of a set S of separations of G to X consists of the
proper separations (A,B)�X with (A,B) ∈ S.

For a set S of separations of G let minord(S) denote the set of those
separations in S with minimal order. Note that if S is non-empty, then so
is minord(S), and that minord commutes with graph isomorphisms.

A finite sequence (β0, . . . , βn) of vertex sets of G is called an S-focusing
sequence if

(F1) β0 = V (G);
(F2) for all i < n, the separation system Nβi generated by minord(S�βi)

is non-empty and is nested with the set S�βi;
(F3) βi+1 is an Nβi-block of G[βi] .

An S-focusing sequence (β0, . . . , βn) is good if

(F∗) the separation system Nβn generated by minord(S�βn) is nested with
the set S�βn.

Note that for an S-focusing sequence (β0, . . . , βn) we obtain βn ⊆ βn−1 ⊆
. . . ⊆ β0. The set of all S-focusing sequences is partially ordered by ex-
tension, where (V (G)) is the smallest element. The subset FS of all good
S-focusing sequences is downwards closed in this partial order.

Lemma 3.7. Let (β0, . . . , βn) ∈ FS and let (A,B) ∈ S. If (A,B)�βn is
proper, then A ∩B ⊆ βn.

Proof. By assumption (A,B)�βn is proper, hence there are a ∈ (βn ∩A) \B
and b ∈ (βn∩B)\A. Since βn ⊆ βi for all i ≤ n the separations (A,B)�βi are
proper as well. Suppose for a contradiction there is a vertex v ∈ (A∩B)\βn.
Let j < n be maximal with v ∈ βj . Since βj+1 is an Nβj -block of G[βj ], there
is a separation (C,D) ∈ Nβj with v ∈ C\D and {a, b} ⊆ βn ⊆ βj+1 ⊆ D.

Now a, b and v witness that (A,B)�βj and (C,D) are not nested: Indeed,
a witnesses that D is not a subset of B ∩ βj . Similarly, b witnesses that D
is not a subset of A ∩ βj . But v witnesses that neither A ∩ βj nor B ∩ βj is
a subset of D. Thus we get a contradiction to the assumption that Nβj is
nested with the set S�βj . �

A set S of separations of G is almost nested if all S-focusing sequences
are good. In this case the maximal elements of FS in the partial order
are exactly the S-focusing sequences (β0, . . . , βn) with Nβn = ∅, and hence
S�βn = ∅.
Lemma 3.8. Let S be an almost nested set of separations of G.

(i) If (β0, . . . , βn) ∈ FS is maximal, then βn is an S-block.
(ii) If b is an S-block, there is a maximal (β0, . . . , βn) ∈ FS with βn = b.

Proof. Let (β0, . . . , βn) ∈ FS be maximal. Then S�βn is empty, i.e. no
(A,B) ∈ S induces a proper separation of G[βn]. Hence βn is S-inseparable.
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For every v ∈ V (G)\βn there is an i < n and a separation in Nβi separating
v from βn. Hence βn is an S-block.

Conversely given an S-block b, let (β0, . . . , βn) ∈ FS be maximal with
the property b ⊆ βn, which exists since (V (G)) ∈ FS and since FS is finite.
Since b is Nβn-inseparable, there is some Nβn-block βn+1 containing b. The
choice of (β0, . . . , βn) implies that (β0, . . . , βn+1) /∈ FS and hence Nβn = ∅,
i.e. (β0, . . . , βn) is a maximal element of FS . Thus βn is an S-block with
b ⊆ βn and hence b = βn. �

Construction 3.9. Let S be an almost nested set of separations of G.
We recursively construct for every S-focusing sequence (β0, . . . , βn) a tree-

decomposition T βn of G[βn] so that the tree-decomposition T V (G)=:T (S)
for the smallest S-focusing sequence (V (G)) is a tree-decomposition of G.

For each maximal S-focusing sequence (β0, . . . , βm) we take the trivial
tree-decomposition of G[βm] with only a single part. Suppose that T β has
already been defined for every successor (β0, . . . , βn, β) of (β0, . . . , βn). To
define T βn we start with the tree-decomposition T (Nβn) of G[βn] as given by
Theorem 2.4. For each hub node h we take the trivial tree-decomposition of
Hh and for each node t whose part is an Nβn-block β, we take T β given from
the S-focusing sequence (β0, . . . , βn, β). This is indeed a tree-decomposition
of the torso Ht, which we will show in Theorem 3.10. Hence we can apply
Construction 3.5 to T (Nβn) and the family of tree-decompositions of the

torsos to get T βn .

Given an S-focusing sequence (β0, . . . , βn), any two separations in Nβn

have the same order `. We call ` the rank of (β0, . . . , βn). If Nβn is empty,
we set the rank to be ∞.

For an almost nested set S of separations of G two S-focusing sequences
(β0, . . . , βn) and (α0, . . . αm) are similar if there is an automorphism ψ of G
inducing an isomorphism between G[βn] and G[αm]. Similar S-focusing
sequences clearly have the same rank. If S is canonical, then ψ induces an
isomorphism between T (Nβn) and T (Nαm) as obtained from Theorem 2.4.

Theorem 3.10. The tree-decomposition T (S) as in Construction 3.9 is
well-defined and satisfies the following:

(i) every S-block of G is a part of T (S);
(ii) every part of T (S) is either an S-block of G or a hub;
(iii) for every separation (A,B) induced by T (S) there is a separation

(A′, B′) ∈ S such that A ∩B = A′ ∩B′;
(iv) if S is canonical, then so is T (S).

Proof. We show inductively that for any S-focusing sequence (β0, . . . , βn)
the tree-decomposition T βn has the following properties:

(a) every S-block included in βn is a part of T βn ;
(b) every part of T βn is either an S-block or a hub;
(c) every separation (A,B) induced by T βn is proper;
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(d) and for every separation (A,B) induced by T βn there is a separation
(A′, B′) ∈ S and an S-focusing sequence (β0, . . . , β) ≥ (β0, . . . , βn)
such that (A′, B′)�β = (A,B).

Furthermore we show for canonical S by induction, that

(e) if (α0, . . . , αm) and (β0, . . . , βn) are similar, then T αm and T βn are
isomorphic;

(f) T βn is canonical.

The tree-decompositions for the maximal S-focusing sequences satisfy
(a) and (b) by Lemma 3.8, and (c) and (d) since their trees do not have
any edges. If for two S-blocks b1 and b2 there is an isomorphism between
G[b1] and G[b2] induced by an automorphism of G, then clearly the tree-
decompositions are isomorphic. Hence (e) and (f) hold for all S-focusing
sequences of rank ∞.

Suppose for our induction hypothesis that for every S-focusing sequence
(α0, . . . , αm) with rank greater than r the tree-decomposition T αm of G[αm]
has the desired properties. Let (β0, . . . , βn) be an S-focusing sequence of
rank r. Then for each successor (β0, . . . , βn, β) the tree-decomposition T β
is indeed a tree-decomposition of the corresponding torso: for a separation
(A,B) induced by T β consider (A′, B′) as given in (d). By (F∗) we obtain
that (A′, B′)�βn = (A,B) is nested with Nβn , hence (A,B) does not separate

any adhesion set in Ht. Hence T βn is indeed well-defined.
Lemma 3.6 (i), (ii) and (iii) and the induction hypothesis yield (a), (b)

and (c) for T βn . Also by Lemma 3.6 (iii) for a separation (A,B) induced by
T βn either (A,B) ∈ Nβn ⊆ S�βn or (A,B) induces a separation in T β for
an Nβn-block β on the corresponding torso. In the first case (β0, . . . , βn) is
the desired S-focusing sequence for (d) and in the second case the induction
hypothesis yields (A′, B′) ∈ S and the desired S-focusing sequence extending
(β0, . . . , βn, β). Hence (d) holds for T βn .

Suppose S is canonical. Let (α0, . . . , αm) be similar to (β0, . . . , βn). Then
every automorphism of G that witnesses the similarity also witnesses that
T (Nαm) and T (Nβn) are isomorphic. Hence any torso of T (Nαm) is simi-
lar to the corresponding torso of T (Nβn) and by induction hypothesis the
tree-decompositions of the torsos are isomorphic. Therefore following Con-
struction 3.5 yields (e). If two torsos Ht and Hu of T (Nβn) are similar, then
either V (Ht) and V (Hu) are N(βn)-blocks whose corresponding S-focusing
sequences are similar and have rank greater than r, or they are hubs. If they
are Nβn-blocks, the chosen tree-decompositions are isomorphic by the induc-
tion hypothesis. If they are hubs, the chosen trivial tree-decompositions are
isomorphic as witnessed by every automorphism of G witnessing the simi-
larity of Ht and Hu. Hence this family of tree-decompositions of the torsos
of T (Nβn) is canonical and with Lemma 3.6 (vi) we get (f).

Inductively the tree-decomposition T V (G) = T (S) of G satisfies (i), (ii)
and (iv) by (a), (b) and (f). Finally, (iii) follows from (c), (d) and Lemma 3.7.

�
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3.3. Extending a nested set of separations. In this subsection we give
a condition for when we can extend a nested set of separations so that it
distinguishes any two distinguishable profiles in a given set P efficiently.

Let N be a nested separation system of G and T (N) =
(
T, (Pt)t∈V (T )

)
be the tree-decomposition of G as in Theorem 2.4. Recall that a separation
(A,B) of G nested with N induces a separation (A ∩ Pt, B ∩ Pt) of each

torso Ht. An `-profile Q̃ of Ht is induced by a k-profile Q of G if for every

(A′, B′) ∈ Q̃ there is an (A,B) ∈ Q which induces (A′, B′) on Ht.

Construction 3.11. Let t ∈ V (T ) and let Q be a k-profile of G. We

construct a profile Q̃t of the torso Ht which is induced by Q.
Case 1: Q inhabits Pt.

Let (A,B) be a proper separation of Ht of order less than k. By Lemma 2.6,
there is a unique component C of G−(A∩B) with (V (G)\C,C ∪N(C)) ∈ Q.
As Q is consistent and inhabits Pt, the set C ∩ Pt is non-empty and either
a subset of A\B or B\A, but not both. If (C ∩ Pt) ⊆ (B\A), then we let

(A,B) ∈ Q̃t. Otherwise we let (B,A) ∈ Q̃t.
Case 2: Q does not inhabit Pt and (V (G)\C,C ∪N(C)) /∈ Q for all com-

ponents C of G− Pt.
Let (A,B) be a proper separation of Ht of order less than k. By Lemma 2.6,
there is a unique component C of G−(A∩B) with (V (G)\C,C ∪N(C)) ∈ Q.
Since C is not a component of G − Pt, the set C ∩ Pt is non-empty by as-

sumption, and we define Q̃t as above.
Case 3: Q does not inhabit Pt and there is a component C of G−Pt such

that (V (G)\C,C ∪N(C)) ∈ Q.
Let m denote the size of the neighbourhood of C. Let b be the m-block

of Ht containing N(C). For Q̃t we take the m-profile induced by b.

The following is straightforward to check:

Remark 3.12. The set Q̃t as in Construction 3.11 is a profile of Ht induced

by Q. Moreover, if Q is r-robust, then so is Q̃t. �

The next remark is a direct consequence of the relevant definitions.

Remark 3.13. Let Q1 and Q2 be profiles of G.

(i) If a separation (A,B) of G nested with N distinguishes Q1 and
Q2 efficiently, then the induced separation (A ∩ Pt, B ∩ Pt) of Ht

distinguishes Q̃t1 and Q̃t2 efficiently for any part Pt where it is proper;

(ii) if a separation (A,B) of some torso Ht distinguishes Q̃t1 and Q̃t2,
then any separation of G that induces (A,B) on Ht distinguishes Q1

and Q2. �

Lemma 3.14. Let Q1 and Q2 be profiles of G which are not already dis-
tinguished efficiently by N . Let (A,B) distinguish them efficiently such that
it is nested with N . Then there is a part Pt of T (N) such that the induced
separation (A ∩ Pt, B ∩ Pt) of the torso Ht is proper.
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Proof. Since (A,B) is nested withN , there is a part Pt such thatA ∩B ⊆ Pt.
Suppose that (A ∩ Pt, B ∩ Pt) is not proper. Without loss of generality let
(B\A) ∩ Pt be empty and let (A,B) ∈ Q1.

By Lemma 2.6 we obtain a component K of G − (A ∩ B) such that
(A,B) ≤ (V (G)\K,K ∪N(K)) ∈ Q1. By consistency of Q2 the separation
(V (G)\K,K ∪N(K)) still distinguishes Q1 and Q2, and since (A,B) dis-
tinguishes Q1 and Q2 efficiently, the neighbourhood of K is A ∩B. Let u
be the neighbour of t such that the by tu induced separation (Ct, Dt) ∈ N
satisfies K ∪N(K) ⊆ Dt. If (B\A) ∩ Pu is empty, we obtain (Cu, Du) ∈ Q1

as before and by construction we obtain (Ct, Dt) < (Cu, Du).
Among all parts Pt containing A ∩ B such that (B\A) ∩ Pt is empty,

we choose a part Px such that (Cx, Dx) is maximal with respect to the
ordering of separations. Let y denote the neighbour of x such that xy induces
(Cx, Dx). There is a vertex v ∈ (Cx ∩Dx)\(A ∩B), since otherwise (Cx, Dx)
would distinguish Q1 and Q2 efficiently. Since we assumed that (B\A)∩Px
is empty, we deduce that v ∈ A\B. Therefore (A\B) ∩ Py is not empty.
Hence if (A ∩ Py, B ∩ Py) on Hy were improper, then (B\A) ∩ Py would be
empty and (Cy, Dy) would contradict the maximality of (Cx, Dx). �

For a nested separation system N let SN<k be the set of separations of
order less than k of G nested with N .

Construction 3.15. Let N ⊆ S<r+1 be a nested separation system of G
and let P be a set r-robust `-profiles of G for some values ` ≤ r + 1, such
that SN<r+1 distinguishes any two distinguishable profiles in P efficiently.

Let T (N) =
(
T, (Pt)t∈V (T )

)
be as in Theorem 2.4 and let Pt be the set of

profiles Q̃t of Ht for Q ∈ P. Applying Theorem 2.8 to the graphs Ht and the
maximal k of any k-profile in Pt, we get a tree-decomposition T t of Ht that
distinguishes every two distinguishable profiles in Pt efficiently. Note that if
P is canonical, then the family (T t)t∈V (T ) is canonical as well. By applying

Lemma 3.6 we obtain a tree-decomposition T and the corresponding nested
system N of separations of order at most r induced by T .

Theorem 3.16. The nested separation system N as in Construction 3.15
satisfies the following.

(i) N ⊆ N ;
(ii) N distinguishes every two distinguishable profiles in P efficiently;
(iii) if N and P are canonical, then so is N .

Proof. Lemma 3.6 (iv) yields (i). For (ii), consider two distinguishable pro-
files Q1, Q2 ∈ P not already distinguished efficiently by N . By assumption,
there is some (A,B) ∈ SN<r+1 distinguishing Q1 and Q2 efficiently.

By Lemma 3.14 and Remark 3.13 (i) there is a part Pt of T (N) such

that Q̃t1 and Q̃t2 are distinguished efficiently by (A ∩ Pt, B ∩ Pt). Hence
Theorem 2.8, Remark 3.3 (iv), Lemma 3.6 (v) and Remark 3.13 (ii) yield a
separation of order |A ∩B| in N distinguishing Q1 and Q2, yielding (ii).
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Finally, (iii) holds by construction. �

4. Proof of the main result

Given a k-block b and a component C of G−b, then (C∪N(C), V (G)\C) is
a separation. By Sk(b) we denote the set of all those separations. Note that
Sk(b) is a nested set of separations, while for different (r-robust) k-blocks b,
b′ the union Sk(b) ∪ Sk(b′) need not to be nested [3].

Lemma 4.1. Let b be a k-block of G. Then b is separable if and only if
every separation in Sk(b) has order less than k.

Proof. For the ‘only if’-implication, let T =
(
T, (Pt)t∈V (T )

)
be a tree-decom-

position of adhesion less than k of G with Pt = b for some t ∈ V (T ). Let C
be a component of G − b. There is a separation (A,B) induced by T with
C⊆A\B and b⊆B. Hence N(C)⊆A ∩B, and so has less than k vertices.

For the ‘if’-implication, just consider the star-decomposition induced by
Sk(b), whose central part is b. This tree-decomposition has adhesion less
than k if and only if all separations in Sk(b) have order less than k. �

Remark 4.2. Let b be a k-block of G. For all (A,B) ∈ Sk(b) the separator
A ∩B is a subset of b. �

Given some r ∈ N and a set B of distinguishable4 r-robust k-blocks for
some values k ≤ r + 1, we define

S(B):=
⋃{

Sk(b) ∩ S<k
∣∣ b is a k-block in B

}
.

Note that if the set of profiles induced by B is canonical, then so is S(B).

Lemma 4.3. Every separable k-block b ∈ B is an S(B)-block.

Proof. Suppose for a contradiction there is a k′-block b′ ∈ B and a separation
(A,B) ∈ Sk′(b′) ∩ S<k′ ⊆ S(B) separating b. Consider a separation (C,D)
distinguishing b and b′ efficiently with b ⊆ C and b′ ⊆ D. Since |C ∩D| < k,
there is a vertex v ∈ b\(C ∩D). And since (A ∩ B) ⊆ b′ ⊆ D, the link `C
is empty. Therefore we deduce that either v ∈ A\B or v ∈ B\A. Let w
denote a vertex of b such that (A,B) separates v and w. Both the corner
separations (A∩C,B∪D) and (B∩C,A∪D) have order at most |C∩D| < k.
But one of them separates v from w, contradicting the (< k)-inseparability
of b. Hence b is S(B)-inseparable.

Let X be an S(B)-inseparable set including b and let v ∈ V (G)\b. Then
there is some (A,B) ∈ Sk(b) separating b from v. Lemma 4.1 implies that
(A,B) ∈ Sk(b) ∩ S<k ⊆ S(B) and thus v is not in X. Hence X = b. �

Lemma 4.4. Let (A,B) and (C,D) be tight separations of G such that A\B
is connected and the link `A is empty. Then (A,B) and (C,D) are nested.

4A set of blocks is distinguishable if the set of induced profiles is distinguishable.
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Proof. Since A\B is connected, either int(A,C) or int(A,D) is empty, say
int(A,C). Thus there cannot be a vertex in the link `C because it would
have a neighbour in A\B, which is impossible. Hence (A,B) and (C,D) are
nested by Remark 2.1. �

Lemma 4.5. Let (A,B), (C,D) ∈ S(B) be crossing. Then the links `B and
`D are empty.

Moreover, the separation (K ∪N(K), V (G)\K) for every component K
of G[int(B,D)] is in S(B) and its order is strictly less than the orders of
both (A,B) and (C,D).

Proof. Let b1 and b2 be blocks in B such that (A,B) ∈ Sk1(b1) ∩ S<k1 and
(C,D) ∈ Sk2(b2) ∩ S<k2 . We may assume that the order k2 of b2 is at most
the order k1 of b1. By Lemma 4.4, there are vertices vA ∈ `A and vC ∈ `C .
By Remark 4.2, vC ∈ b1. As (C,D) cannot separate b1, the block b1 is
contained in B ∩ C. In particular, the link `D is empty.

Let X be a component of G−C ∩D that contains a vertex w of b2. Note
that X is unique as b2 is a k2-block. As `D is empty, X must be contained in
D∩A or D∩B. Since b2 contains vA, it must be contained in D∩A. Indeed,
otherwise the corner separation of B∩D would separated w from vA. Hence
`B is empty.

Let K be an arbitrary component of G[int(B,D)]. Let E:=K ∪N(K) and
F :=V (G)\K. Since the center c is a subset of b1 ∩ b2 and since K ∩ (b1 ∪ b2)
is empty, K is a component of both G− b1 and G− b2. Hence (E,F ) is in
both Sk1(b1) and Sk2(b2). And since E ∩ F ⊆ c and since `A and `C are not
empty, we deduce that |E ∩ F | < min{|A ∩B|, |C ∩D|}. �

Lemma 4.6. S(B) is almost nested.

Proof. We have to show that every S(B)-focusing sequence (β0, . . . , βn) is
good, i.e. Nβn is nested with S(B)�βn. Let (β0, . . . , βn) be an S(B)-focusing
sequence. Let (A,B)�βn ∈ Nβn and (C,D)�βn ∈ S(B)�βn. If (A,B) and
(C,D) are nested, then so are (A,B)�βn and (C,D)�βn. Suppose (A,B) and
(C,D) are crossing. By Lemma 4.5 `B and `D are empty. If int(B,D) ∩ βn
is empty, then by Remark 2.1 (A,B)�βn and (C,D)�βn are nested. Hence
by Lemma 4.5 it suffices to show that (E\F ) ∩ βn is empty for every
(E,F ) ∈ S(B) with E ⊆ B ∩ D whose order is strictly smaller than the
order of (A,B).

Since (A,B)�βn is proper, there is a v ∈ βn\B ⊆ βn\E ⊆ (F\E) ∩ βn.
Since (A,B)�βn has minimal order among all separations in S(B)�βn, we
deduce that (E,F )�βn is improper and hence either (F\E)∩βn or (E\F )∩βn
is empty. Now v witnesses that (E\F ) ∩ βn is empty, as desired. �

Lemma 4.7. Given r ∈ N, let P be a set of r-robust distinguishable k-
profiles for some values k ≤ r + 1. Let N be a nested separation system
such that for every (C,D) ∈ N , there is some `-profile in P induced by an
`-block b with (C ∩D)⊆b. Then any two distinct P,Q ∈ P are distinguished
efficiently by a separation nested with N .
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Proof. Let (A,B) distinguish P,Q ∈ P efficiently such that the number of
separations in N nested with (A,B) is maximal. Without loss of generality
let (A,B) ∈ P . Let k:=|A ∩B|. We prove that (A,B) is nested with N .

Suppose for a contradiction that there is some (C,D) ∈ N not nested
with (A,B). Let b be an (`+ 1)-block such that (C ∩D)⊆b whose induced
profile P`+1(b) is in P.
Case 1: k ≤ `. Remark 4.2 implies that C ∩ D is (≤ `)-inseparable and

hence one of the links `A or `B is empty. Without loss of generality let
`B be empty. The orders of the corner separations (A ∪ D,B ∩ C) and
(A ∪ C,B ∩D) are less or equal than |A ∩B|. Hence they are oriented by
P and Q. Applying Lemma 2.6 to X:=A ∩B and P yields a component K
of G − X with (V (G)\K,K ∪N(K)) ∈ P . In particular we get K ⊆ B\A
by consistency. Since `B is empty and K is connected, we obtain K ⊆ C\D
or K ⊆ D\C. Therefore either (A ∪D,B ∩ C) or (A ∪ C,B ∩D) is in P by
consistency to (V (G)\K,K ∪N(K)), and not in Q by consistency to (B,A).

Hence there is a corner separation of (A,B) and (C,D) distinguishing P
and Q efficiently. By Lemma 2.2 it is nested with every separation in N that
is also nested with (A,B), as well as with (C,D). Hence it crosses strictly
less separations of N than (A,B), contradicting the choice of (A,B). Thus
(A,B) is nested with N .
Case 2: k ≥ `. We prove this case by induction on k with Case 1 as

the base case. By the efficiency of (A,B), the separation (C,D) does not
distinguish P and Q. Thus we may assume that (C,D) is in both P and Q.
If one of the corner separations (A∩D,B ∪C) or (B ∩D,A∪C) had order
at most k, then it would violate the maximality of (A,B) by Lemma 2.2.
Indeed, it would be nested with every separation in N that is also nested
with (A,B), as well as with (C,D).

Hence we may assume that both these corner separations have order larger
than k and therefore both links `A and `B are not empty. By Remark 2.3,
the opposite corner separations (A ∩ C,B ∪ D) and (B ∩ C,A ∪ D) have
order strictly less than |C ∩D| and are in P`+1(b) since C ∩D⊆b. As b is
r-robust, (C,D) ∈ P`+1(b). Hence (C,D) distinguishes P and P`+1(b).

By the induction hypothesis, there is a separation (E,F ) of order at
most ` distinguishing P and P`+1(b) efficiently that is nested with N . We
may assume that (E,F ) ∈ P`+1(b) and (F,E) ∈ P . Furthermore, (E,F )
does not distinguish P and Q, since |E ∩ F | < |A ∩ B|. We claim that
(C,D) ≤ (F,E). Indeed, since (C,D) and (F,E) are nested and P contains
both of them, either (C,D) ≤ (F,E) or (F,E) ≤ (C,D). By consistency of
P`+1(b), we can conclude that (C,D) ≤ (F,E).

If the order of (E ∩ B,F ∪ A) is at most k, then it would distinguish P
and Q efficiently. It would violate the maximality of (A,B) by Lemma 2.2
since it is nested with every separation in N that is also nested with (A,B),
as well as with (C,D) itself as (C,D) ≥ (E,F ) ≥ (E ∩B,F ∪A). Thus we
may assume that (E ∩B,F ∪A) has order larger than k. Similarly we may
assume that (E ∩A,F ∪B) has order larger than k.
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Again by Remark 2.3, the opposite corner separations (F ∩A,E ∪B)
and (F ∩B,E ∪A) have order less than |E ∩ F |. But by construction they
separate `A and `B and hence b, contradicting the fact that b is (≤ `)-
inseparable. �

Theorem 4.8. Let G be a finite graph, r ∈ N and let P be a canonical set
of r-robust distinguishable `-profiles for some values ` ≤ r + 1.

Then G has a canonical tree-decomposition T that distinguishes efficiently
every two distinct profiles in P, and which has the further property that every
separable block whose induced profile is in P is equal to the unique part of T
in which it is contained.

Proof. Let B be the set of blocks whose induced profiles are in P. We
consider S(B) as above. Lemma 4.6 and Construction 3.9 yield a canoni-
cal tree-decomposition T (S(B)) where by Lemma 4.3 and Theorem 3.10 (i)
every separable b ∈ B is equal to the unique part in which it is contained.

Let N be the nested separation system induced by T (S(B))). With
Lemma 4.7 we can apply Construction 3.15 to obtain N , which by The-
orem 3.16 (ii) distinguishes the profiles in P efficiently.

It is left to show that no separation (A,B) ∈ N\N separates a separable
k-block b ∈ B. Suppose for a contradiction that (A,B) ∈ N\N separates b.
Let Pt be the part of T (S(B)) with Pt = b. Note that since the adhesion
sets Pt ∩ Pu for any edge tu have size strictly smaller than k and since
the only profile in P inhabiting Pt is Pk(b), no profile in P induces an `-
profile for some ` ≥ k + 1 on the torso Ht. Then by Construction 3.15 and
Lemma 3.6 (iii) the induced separation (A∩Pt, B∩Pt) is a proper separation
of Ht distinguishing two (≤ k)-profiles of Ht efficiently. But since Ht has no
proper (< k)-separation, it has no two distinguishable (≤ k)-profiles.

Hence Theorem 2.4 yields a tree-decomposition T (N) with the desired
properties. �

Corollary 4.9. Every finite graph G has a canonical tree-decomposition T
that distinguishes efficiently every two distinct maximal robust profiles, and
which has the further property that every separable block inducing a maximal
robust profile is equal to the unique part of T in which it is contained.

Proof. Since the set of maximal robust profiles is by definition distinguish-
able, we can apply Theorem 4.8. �

Corollary 4.10. Every finite graph G has a canonical tree-decomposition T
of adhesion less than k that distinguishes efficiently every two distinct k-
profiles, and which has the further property that every separable k-block is
equal to the unique part of T in which it is contained.

Proof. By Remark 2.5 (i) any k-profile is (k− 1)-robust. Since the set of all
k-profiles is by definition distinguishable, we can apply Theorem 4.8. �

Theorem 4.8 fails if we do not require that P is distinguishable:
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Example 4.11. Consider the graph obtained by two cliques K1 and K2 of
size at least k+ 1 ≥ 7 sharing k− 1 vertices, together with a vertex v joined
to two vertices of K1 −K2 and to two vertices of K2 −K1, see Figure 3.

Then K1 ∪ K2 is a separable 5-block, as witnessed by the separation
({v} ∪N(v),K1 ∪K2). But the two (k+ 1)-blocks K1 and K2 are only dis-
tinguished efficiently by (K1 ∪ {v},K2 ∪ {v}). Since this separation crosses
any separation separating v from K1 ∪ K2, there is no tree-decomposition
that distinguishes K1 and K2 efficiently such that there is a part equal to
K1 ∪K2. Moreover, even the union of the parts inhabited by P5(K1 ∪K2)
in any tree-decomposition that distinguishes K1 and K2 efficiently contains
with v a vertex outside the block.

k − 1

K1

K2

v

Figure 3. The graph of Example 4.11
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