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Summary

Internal variability in regional climate models has been discussed in the literature
for more than a decade, but still many open questions remain. In this study, a ten
member ensemble of the regional climate model REMO is used to investigate inter-
nal variability on a European domain. The temporal evolution of internal variability
shows the typical episodic evolution known from other studies in the mid-latitudes.
In Europe, however, distinct maximums in seasonal mean internal variability of
mean-sea-level pressure and near-surface temperature appear in winter and spring
that have not been reported for domains of the size in the present study. A circu-
lation type analysis performed on the boundary data shows that the variability of
the large-scale forcing, namely the prevailing weather regime, is closely connected to
the domain average internal variability especially in winter. The most pronounced
differences are found between NAO negative and positive like circulation patterns.
A correlation between a daily NAO index and daily domain averaged internal vari-
ability produced a Pearson correlation of 0.51 over the extended winter season from
October to March. From the close connection between jet stream strength and
NAO a simple internal variability index is constructed using the zonal wind speed
in 500hPa from the forcing data. Results show a correlation of up to 0.7 between
zonal wind and domain averaged internal variability. This makes it possible to di-
agnose internal variability episodes already from the forcing data without running
an entire ensemble to get an estimate for the internal variability which is needed to
be able to judge on the significance of regional climate informations.





Zusammenfassung

Interne Variabilität in regionalen Klimamodellen war ein wichtiges Thema der Fach-
literatur während der vergangenen zehn Jahre. Viele Fragen sind dennoch offen
geblieben. Ein Ensemble des regionalen Klimamodells REMO bestehend aus zehn
Simulation wird verwendet, um die interne Variabilität regionaler Klimamodelle
über Europa zu untersuchen. Der zeitliche Verlauf der internen Variabilität zeigt
den von anderen Studien bekannten für die mittleren Breiten typischen episodis-
chen Charakter. In Europa jedoch treten sowohl im reduziertem Bodendruck im
Winter als auch der bodennahen Temperatur im Frühjahr ausgeprägte Maxima in
der saisonal gemittelten internen Variabilität auf. Maxima zu diesen Jahreszeiten
wurden bislang in keiner anderen Studie erwähnt, die Modellgebiete ähnlicher Größe
untersucht hat. Eine Wetterlagenklassifikation der Randdaten zeigt, dass besonders
im Winter die Variabilität der Randdaten eng mit der räumlich gemittelten internen
Variabilität des Modellgebiets zusammenhängt. Die größten Unterschiede ergeben
sich hierbei zwischen Zirkulationsmustern, die der positiven und negativen Phase
der NAO ähnlich sehen. Die Korrelation eines täglichen NAO Index und der in-
ternen Variabilität gemittelt über das Modellgebiet ergibt einen Koeffizienten von
0.51 für das Winterhalbjahr von Oktober bis März. Aus dem engen Zusammen-
hang zwischen der NAO und der stärke des polaren Strahlstroms wird mit Hilfe der
zonalen Windgeschwindigkeit in 500 hPa aus den Randdaten ein einfacher interner
Variabilitäts-Index entwickelt. Ergebnisse zeigen, dass eine Korrelation von bis zu
0.7 zwischen zonaler Windgeschwindigkeit und räumlich gemittelter interner Vari-
abilität besteht. Daraus ergibt sich die Möglichkeit, die interne Variabilität eines
regionalen Klimamodells nur mit Hilfe der Randdaten abzuschätzen, was für die
Einschätzung der Signifikanz regionaler Klimasignale wichtig ist.
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Chapter 1

Introduction

Regional climate models are frequently used and widely accepted tools for current
climate simulations and future climate change projections because of their consistent
representation of physical processes at a high resolution. These models are integrated
on a limited domain and obtain their initial and boundary conditions from global
climate models or gridded analysis of observations. In this way, a regional climate
model acts as a magnifying glass to deliver climate information on the regional to
local scale that are often needed in, e.g., climate change impact studies. To deliver
robust information, it is of importance to study their uncertainties. Apart from
uncertainties introduced by the boundary conditions and model formulations, it has
been shown that regional climate models are subject to uncertainties that stem from
processes intrinsic to the model (see, e.g., Laprise et al., 2008, 2012, and references
therein). In this study, this form of uncertainty, referred to as the internal variability
of a regional climate model, is investigated for a domain located over Europe. It
is shown, how internal variability changes with season and how it depends on the
variability of the boundary conditions. Furthermore, it is demonstrated how the
variability of the boundary conditions can be used to determine the strength of
internal variability from the prevailing weather regime.

Before climate change impacts can be assessed, typically an entire modeling chain
is followed (Jacob, 2009). The modeling chain usually starts with a climate change
scenario and continues with one global and one to multiple regional climate modeling
steps (see Figure 1.1). A large part of the uncertainty already lies in the construction
of the climate change scenarios because of unknown future human activities such as
the emission of greenhouse gases or land-use changes. In studies on future climate
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...
... ......

...

future human activity

scenario uncertainty

global model uncertainty

GCM internal variability

... ... ...... ...regional model uncertainty

RCM internal variability

GCM1 GCM2

RCM1 RCM2

...realization 1 realization 2

...
scenario 1 scenario 2

Figure 1.1: The model chain and it’s uncertainties from the perspective of a regional
climate modeler. Each climate modeling step (rectangular boxes) can be split up into
forcing uncertainty, model uncertainty, and internal variability. The three corresponding
components for a global climate model – scenario uncertainty, global model uncertainty,
and global model internal variability – form the forcing uncertainty for the regional model.
At the regional scale, regional model uncertainty and regional internal variability complete
the set of uncertainties that influence regional climate variability.

change that entered the fourth assessment report of the Intergovernmental Panel on
Climate Change (IPCC) the scenario uncertainty, as this is referred to, was tackled
by several equally plausible emission scenarios based on storylines of possible future
human activity (SRES, 2000). The problem of scenario uncertainty is tackled dif-
ferently in the upcoming fifth assessment report. In this report, only representative
concentration pathways (RCPs) are considered, which do not describe full scenarios
respectively storylines. The basis is formed by a range of radiative forcing values
for the year 2100 from which integrated assessment models calculate the necessary
input data for climate models such as land use and emissions (Vuuren et al., 2011).
This method enables a parallelization of the climate modeling and scenario develop-
ing process, but still results in a scenario uncertainty in the sense of an uncertainty
range of different radiative forcings.

For each climate modeling chain link, the uncertainties can be categorized into
three main parts: forcing, model response and internal variability (e.g., Tebaldi
and Knutti, 2007). For global climate models, the forcing uncertainty stems from
scenario uncertainty as well as from unknown changes in future natural forcings such
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as volcanic eruptions or changes in solar activity. Scenario uncertainty is tackled
simply by running multiple emission scenarios with the same global climate model.
Although it has been shown that large volcanic eruptions have the potential to
influence the climate on multidecadal time scales (see Timmreck, 2012, for a review),
changes in future natural forcings are typically not considered, as their influence is
usually treated as low compared to the influence from human activities.

Model uncertainty is expressed by different responses of climate models to the same
external forcing (Deser et al., 2012). Many processes in the climate system such as
convection or turbulence have to be parameterized as they can not be resolved. This
produces differences in the solutions of climate models and is sometimes referred to
as structural uncertainty (Palmer and Williams, 2009). Assuming that different
modeling centers develop their global climate models independently, and that their
errors are distributed randomly, a suit of models can be run in inter-comparison
projects to tackle the problem of structural uncertainty, as in the case of the Coupled
Model Intercomparison Project (CMIP). Although models are usually not developed
completely independently, this multi-model approach has proven to be a successful
tool to tackle model errors (e.g., Hagedorn et al., 2005; Tebaldi and Knutti, 2007).

Internal variability of a global climate model derives from the chaotic nature of the
climate system (e.g. Hasselmann, 1976), which is why it is also often referred to
as natural variability or natural internal variability. Complex interactions between
different components of the climate system such as atmosphere and ocean, result
in low frequency fluctuations around a mean state, thus causing internal variability.
Some prominent examples for these fluctuations are the El Nino Southern Oscillation
(ENSO) or the Atlantic Multidecadal Oscillation (AMO). Internal variability is
usually estimated from modeling studies as observational records are too short and
influenced by external forcings such as the solar cycle. In model studies, internal
variability is estimated from long time integrations with fixed (often preindustrial)
external forcings (Collins et al., 2001). In climate change projections, however,
internal variability is usually estimated from a couple of realizations from one model
using the same forcing but perturbed initial conditions.

In the case of regional climate models, the above listed uncertainties can be viewed
as the forcing uncertainty. The problem is that there is no metric of how to combine
these uncertainties and include them into the forcing of regional climate models. In
principle, one would have to run all scenarios from all global climate model realiza-
tions to cover the entire range of uncertainties for regional climate change studies.
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In practice, this procedure is not feasible. In addition, regional climate models are
subject to model uncertainty as well, although Deque et al. (2007) found that forcing
uncertainty is typically larger than model uncertainty in regional climate models.
Nevertheless model uncertainty is not negligible and a multi-model approach is fol-
lowed similar to CMIP. In the European Commission’s 6th Framework Programme
project ENSEMBLES, a global climate model/regional climate model matrix was
set up, to cover the uncertainty range of one scenario but different global climate
model/regional climate model combinations.

In the past decade, an awareness that regional climate models are subject to internal
variability has risen. This finding means that although a regional climate model
is constrained by it’s lateral boundary conditions that impose the large-scales on
to the regional model, the self-generated fine-scale motions do not have a unique
solution (Laprise et al., 2012). The term internal variability, in this manner, should
not be confused with the internal variability of a global climate model (Bellprat
et al., 2012). The most important difference between them is that regional climate
models are constantly forced by time-varying boundary conditions (or a time varying
external forcing), which is different to the definition for a global climate model that
requires a constant forcing (Collins et al., 2001). Still, a regional model shows a
certain sensitivity to its initial conditions that are intrinsic to the model similar to
global models and, therefore, the term internal variability is used for regional models
as well. In addition, the procedure to get an estimate of internal variability from
a regional model is similar to the method used to estimate internal variability in
global model climate change projections.

As long as model domains of regional climate models are small, their internal vari-
ability contributes only marginally to the entire modeling chain. In recent years,
with increasing computer power, domain sizes have grown larger. Lucas-Picher et al.
(2008b) and Braun et al. (2012) have shown that in such cases the internal variabil-
ity of a regional climate model can play an important role in the uncertainty of the
downscaled climate information. This uncertainty is especially true for parameters
important to the hydrological cycle. Christensen et al. (2001) already show that the
internal variability of a regional climate model can become as large as internal vari-
ability in a global climate model when only one season is considered. Weisse et al.
(2000) found in a sensitivity study that large differences between two ensembles
of slightly modified model versions, often occur simultaneously with large internal
variability within the ensembles themselves. They conclude that the comparison
between only two runs, e.g., in sensitivity studies, can be misleading due to internal
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variability.

The strength of internal variability in a regional climate model is sensitive to a
number of factors. Alexandru et al. (2007) showed that a sufficiently big domain can
enhance internal variability. If local processes play an important role, the internal
variability of certain parameters such as precipitation, mean-sea-level pressure or
near-surface temperature can grow large in a regional climate model (e.g., Giorgi
and Bi, 2000; Caya and Biner, 2004). In addition, the location of the domain on
the globe and the season plays a role for the strength of internal variability (e.g.,
Giorgi and Bi, 2000; Christensen et al., 2001; Caya and Biner, 2004; Rinke and
Dethloff, 2000; Lucas-Picher et al., 2008b; Laprise et al., 2012). Lucas-Picher et al.
(2008a) show that, for a domain over North-America, the flow regime of the external
forcing governs the internal variability of a regional climate model as an additional
factor. They also point out that the findings might change for different regions of the
world. Laprise et al. (2012) found that the temporal evolution of internal variability
undergoes certain episodes of stronger and weaker internal variability and that it is
not a phenomenon specific to one model.

In an attempt to quantify important processes that create internal variability during
summer, Nikiema and Laprise (2011) derived equations to compute tendencies of
potential temperature and relative vorticity internal variability. They found that
for potential temperature deviations between ensemble members, condensation and
convection play the most important role in generating potential temperature internal
variability. With regards to the internal variability of relative vorticity, it is mainly
the transport of relative vorticity itself and the horizontal wind fluctuations that
contribute to its generation. A case study by Diaconescu et al. (2012) shows that
hydrodynamic instabilities associated with baroclinic processes play an important
role in the rapid growth of internal variability during their investigated episode in
December 1992.

Most of the studies on internal variability in the mid-latitudes concentrated on the
North-American continent. For Europe, a systematic study on internal variability is
still lacking. In addition, the connection between weather regimes and internal vari-
ability of a regional climate model has not been investigated for the mid-latitudes.
Furthermore, no attempt to infer from the lateral boundary forcing on the strength
of internal variability in a regional climate model has been made. In this study,
these gaps are closed by answering the following research questions:

• How does internal variability change with season over Europe?
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• How do weather regimes influence the internal variability of a regional climate
model throughout different seasons?

• Is it possible to determine the strength of internal variability from the variabil-
ity of the boundary data?

The thesis is structured as follows; after introducing the regional climate model
REMO and the analysis method in Chapter 2, the characteristics of internal variabil-
ity of REMO for different seasons on a domain over Europe is covered in Chapter 3.
The connection of internal variability to weather regimes for different seasons using
a circulation type analysis is investigated in Chapter 4. How this relation can be
used to infer on the strength of internal variability during the winter season is pre-
sented in Chapter 5. A summary of the results including a comprehensive discussion,
concluding remarks, and an outlook is given in Chapter 6.



Chapter 2

Experimental Set-up and Analysis
Method

All simulations to investigate internal variabilityin a regional climate model over Eu-
rope were carried out with the regional climate model REMO (REgional MOdel),
developed at the Max Planck Institute for Meteorology (Jacob and Podzun, 1997).
In this study, version 5.0b (referred to as REMO5.0 hereafter) is used. The advan-
tage of using REMO5.0 is that it is both well tested and computational efficient
allowing for several ensemble members to be run in a relatively short time. As more
fundamental issues of regional climate modeling are investigated in this study, the
results are not expected to change with different model versions or even different
regional climate models and can be generalized as also pointed out by Laprise et al.
(2012). In Section 2.1 REMO5.0 is described in detail with a summary of additions
to the model since then. This is followed by the explanations of the experimental
set-up and analysis methods in Sections 2.2 and 2.3.

2.1 The Regional Climate Model REMO

The regional climate model REMO is a limited-area hydrostatic three-dimensional
model of the atmosphere. It consists of two major parts. The first part, com-
monly called dynamical core, solves the primitive equations of the atmosphere (e.g.
Holton, 2004). The dynamical core originates from the former weather forecast-
ing model Europamodell (Majewski, 1991) of the Deutscher Wetterdienst (German
Weather Service) (DWD). The second part consists of the parameterization schemes,
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that describe important physical processes that are not resolved by the dynamical
core. To allow for climate studies and consistent physical parameterizations with
the global climate model of the Max Planck Institute for Meteorology the ECMWF
Hamburg model (ECHAM), the Europamodell parameterizations were replaced by
the parameterization scheme of ECHAM4.5 (version 4.5 of ECHAM, Roeckner et al.,
1996). Herewith, uncertainties due to different parameterizations between driving
and regional model can be avoided.

The prognostic variables of REMO are the horizontal wind ~u, surface pressure ps,
temperature T , specific humidity qs and cloud liquid water qw. The temporal dis-
cretization is done by a leap-frog scheme with semi-implicit correction. A time
filtering following Asselin (1972) is applied that allows for much longer time steps
of the leap-frog scheme than usual. The vertical discretization is achieved by hybrid
σ-coordinates (Simmons and Burridge, 1981). This technique combines the benefits
of terrain following coordinates (σ-system) at the ground and pressure coordinates
in the free atmosphere (p-system). Figure 2.1 shows a schematic of the vertical dis-
cretization in hybrid coordinates. Dotted lines with full number subscripts on the
respective hybrid σ-level denote the levels where the prognostic variables are defined
(given as ϕ). Half levels are given as solid lines mark the edges of each grid box in
the vertical. Here the vertical velocity ω is diagnosed.

In the horizontal plane, REMO uses a spherical Arakawa-C grid (Arakawa and
Lamb, 1977) where all prognostic variables ϕ except for the horizontal wind ~u are
defined at the center of each grid box (see Figure 2.2). The zonal and meridional
wind components ~u = (u, v) are defined at the edges of the grid being perpendicular
to the edge. The centers of the grid boxes themselves are located on a geodetic grid.

When the tropics are not the area of study, REMO is usually run on a rotated grid
to have similar grid box sizes and an optimized time step. This is done by turning
the poles of the grid in such a way that the equator is running across the center of
the area of interest.

As REMO is only simulating parts of the Earth (e.g., Europe) it requires infor-
mation for the prognostic variables at the lateral boundaries. REMO, therefore,
is nested into a data set that describes the circulation outside the domain. This
can either be information from a global climate model (e.g., ECHAM) or perfect
boundary conditions from observations or (re-)analysis (e.g., ECMWF 40 year re-
analysis (ERA-40)). In all cases the driving data is interpolated to the REMO grid
in all three dimensions. The horizontal interpolation is done by using a 16-point
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Figure 2.1: Schematic of the vertical discretization in hybrid coordinates (taken from
Teichmann, 2009). Full levels are given as dotted lines and show where the prognostic
variables (ϕ) are defined. The vertical velocity ω is diagnosed at half-levels.

Figure 2.2: Schematic of the horizontal discretization on the Arakawa-C grid (taken
from Teichmann, 2009). Circles depict the centers of each grid box (i, j) where the scalar
prognostic variables ϕ are defined. On the edges the zonal (u) and meridional (v) wind
components given as squares are defined.
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formula for all atmospheric data, surface pressure and orography. Surface values are
interpolated using a bilinear interpolation with respect to the land-sea mask. In the
vertical column, one-dimensional tension splines (e.g., de Boor, 1978) are used for
interpolation. Hydrostatic adjustments are performed during the interpolation to
take into account height differences between the driving data and REMO grid.

The upper boundary condition is implemented as the radiative upper boundary con-
dition by Bougeault (1983); Klemp and Durran (1983). This prevents the reflection
of vertically propagating internal gravity waves that might occur when the usual
assumption for coarse resolution hydrostatic models of a vanishing vertical velocity
would be used. A relaxation scheme by Davies (1976) is used to adjust the model
solution to the lateral boundary conditions. The model solution is gradually re-
laxed to the boundary conditions over the sponge zone, which is eight grid-boxes
wide in REMO. The frequency with which the lateral boundary forcing is typically
updated is 6 hours. A linear interpolation in time is done to provide lateral bound-
ary informations for each time step. If REMO is not coupled to an ocean model,
sea-surface temperatures are taken from the boundary forcing and similarly sea-ice
concentrations when available.

To avoid sharp jumps in resolution, which can cause artificial wave reflections and
breaking, it is possible to nest a high-resolution REMO domain into a low-resolution
REMO domain. This technique is called double-nesting and is used to get high-
resolution information which is required, e.g., in hydrological impact studies. Typ-
ical horizontal resolutions for REMO are between 0.5° and 0.088° (approx. 10 km
at the model equator). Higher resolutions would violate the hydrostatic assumption
and are therefore not used with the hydrostatic core.

REMO can be run in two different modes. The first one is the forecast mode in which
the model is initialized with forcing data every 24 h in order to keep the model’s
solutions as close as possible to the forcing data. The second mode is the climate
mode in which the model is initialized once at the beginning of the simulation and
after that only updated at the lateral boundaries so that the regional model is able
to create its own climate. In this study, as for most applications, the climate mode
of REMO is used.

As mentioned above, the parameterization schemes of REMO5.0 are taken from the
global climate model ECHAM4.5. The soil scheme consists of five layers for the
heat budget with increasing thickness towards the bottom. The soil hydrology is
parametrized using a bucket scheme, which takes into account vegetation effects
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such as the interception of precipitation in the canopy. The effects of snow pack
on the heat and water budgets are taken into account as well. The boundary layer
parameterization scheme is based on the Monin-Obukhov similarity theory (Louis,
1979) with a turbulent kinetic energy closure after Brinkop and Roeckner (1995).
Convection is parametrized using the Tiedtke (1989) mass-flux scheme with a closure
based on convective available energy by Nordeng (1994). Stratiform clouds are com-
puted from the mass mixing ratio of water vapor and cloud water. As microphysical
processes the condensation of water vapor, evaporation of cloud water, the forma-
tion of precipitation and evaporation of precipitation are taken into account. The
sub-grid scale formation of stratiform clouds is implemented using the formulation
of Sundqvist (1978). The radiation parameterization is based on the developments
of Fouquart and Bonnel (1980) and Morcrette et al. (1986). Modifications such as
the consideration of additional greenhouse gases are implemented into this scheme
(the reader is referred to Roeckner et al., 1996, for further details).

In addition to the parameterizations of ECHAM4.5, REMO5.0 includes several
changes. One major difference is the handling of gravity waves. As it is assumed
that orographic gravity waves are resolved by the typical resolutions of REMO, the
parameterization of orographic gravity waves is switched off. One completely new
development specific to the REMO parameterizations is the consideration of the
yearly cycles in albedo, vegetation fraction and leaf area index (Rechid and Jacob,
2006). It has been proved that the consideration of these yearly cycles improves the
yearly cycles of temperature and precipitation in the model when compared to ob-
servations. Other changes are resolution dependent modifications, such as changes
in the threshold of relative humidity to form sub-grid scale clouds, for example.

2.1.1 New Developments since REMO5.0

As already mentioned above, several new developments have been incorporated into
REMO since REMO5.0. One important change is the consideration of sub-grid scale
variations of surface types (Semmler, 2002). The former approach only considered
one surface type per grid box; either land, water or sea-ice. In the now implemented
tile approach the surface is transformed to fractions of these three types. This
allows for the calculation of surface fluxes for each fraction separately and for a more
realistic representation of the climate, particularly in coastal regions. This scheme
was extended by Kotlarski et al. (2010) to allow for the dynamic calculations of
glaciers as a fourth surface type.
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The work of Pfeifer (2006) incorporated cloud ice into the prognostic variables, to
account for a more realistic representation of clouds. Furthermore, the convection
scheme of REMO was extended to include an additional class allowing for cold con-
vection. Cold convection appears, e.g., when cold air masses travel over warm water.
In this case heavy precipitation events could occur that are not captured by models
without cold convection parameterization. Rechid (2009) introduced a phenology
scheme into REMO that dynamically models the growing season of vegetation. This
allows for a more realistic representation of the growing season when using REMO in
climate change studies, because it can be expected that the growing season changes
in a changing climate. To investigate air quality in mega-cities Teichmann (2009)
incorporated online-chemistry and transport processes based on a REMO5.0 branch
with chemistry (Langmann, 2000) into REMO. A further important development is
the inclusion of aerosols into a new branch REMO-HAM (Pietikäinen et al., 2012).
This work extends REMO with the aerosol module of ECHAM5-HAM (Stier et al.,
2005) and enables the study of aerosol effects in a regional modeling framework. To
push REMO to even higher resolution Göttel (2009) developed a non-hydrostatic ex-
tension to the existing dynamical core. This enables fine scale simulations allowing
for resolved convection in REMO.

All these developments add important processes to the model. These processes,
however, should not change the fundamental behavior of the model and as such one
can justify the use of REMO5.0 for the study of internal variability without the
added complexity of the most recent versions. The results from REMO5.0 ought
to be transferable to newer version or even other regional climate models. In the
following section the experimental set up of REMO will be explained in detail.

2.2 Experimental set up

All research in this work has been done with the same ensemble of ten members
using the regional climate model REMO5.0. In this section, the experimental set
up used to investigate the internal variabilityof REMO over Europe is described.
The internal variability is estimated from the inter-member variance of the REMO
ensemble. Following earlier work by Alexandru et al. (2007) and Lucas-Picher et al.
(2008b), the ensemble is initialized with a time lag of one day. As simulation period
the ten years from 1979 to 1988 are taken, because it allows to compare the results to
earlier studies such as Jacob et al. (2001). Alexandru et al. (2007) have shown that
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Figure 2.3: Domain of the REMO simulations with the orography in m.

an ensemble of ten members is the required number of members to get an robust
estimate of internal variability in a regional climate model.

The target area of the simulations is Europe that is covered by a domain with 81x91
grid boxes (see Figure 2.3). The horizontal resolution is set to 0.5° (≈ 55 km at
domain center) which allows for a time step of 300 s. In the vertical 20 levels are
used with the top level being at 10 hPa. The domain was chosen for computational
efficiency and because it is one of the best tested domains of REMO.

As lateral boundary forcing and initial atmospheric conditions, ERA-40 reanalysis
data (Uppala et al., 2005) is taken. The spectral resolution of ERA-40 is TL159
which corresponds to a resolution of 1.125° or approximately 125 km at the equator.
The number of vertical levels in ERA-40 is 60 but for REMO only the 49 lowest
levels were used for interpolation, as REMO does not extend as far as ERA-40 in
the vertical. These perfect boundary conditions are used to investigate the models
behavior under observed climate conditions. It therefore avoids difficulties in the
interpretation of simulation results that might occur when using a global climate
model that may introduce biases, e.g., in the flow patterns.

The update frequency for atmospheric fields and sea-surface temperatures was 6-
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Figure 2.4: Schematic of the spin up and ensemble generation procedure. After running
10 years of spin up (blue arrow) the soil state is used to initialize the ensemble. The en-
semble generation is achieved by choosing a lag of one day for the atmosphere initialization
(red dashed lines). Only results from 1st of January 1979 0:00 are taken into account for
analysis (red solid).

hourly. No large scale forcing such as spectral nudging was applied inside the domain
and all simulations were run in climate mode. Hence, the model is free to develop
its own mesoscale climate.

All simulations used for the analysis were initialized in warm start mode. This
means that the initial values for soil moisture and temperature were taken from
a simulation, where the deepest soil layer shows a yearly cycle but no trend in
temperature. This is a standard procedure for REMO to avoid long term spin up
effects from the soil scheme during the experiment. The spin up simulation was run
with the same boundary data for the same time period from 1979 to 1988. The last
state of the soil moisture and temperature from the 1st of January 1989 at 0:00 was
used to initialize the ensemble runs starting in December 1978. The initialization of
the ensemble started on the 1st of December 1978 with a one day lag between each
member of the ensemble. Figure 2.4 shows a schematic of the spin up and ensemble
generation procedure. It has been shown by Giorgi and Bi (2000) and Lucas-Picher
et al. (2008b) that the perturbation method of the initial state does not matter
for the level of internal variability after an atmospheric spin up of approximately
20days. For the analysis, only results starting from the 1st of January 1979 0:00
were taken into account.
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2.3 Analysis Method of Internal Variability

Similar to the experimental set up, the analysis method of internal variability is
based on the approach of Alexandru et al. (2007) and Lucas-Picher et al. (2008b). To
estimate the internal variability, the inter member variance s2

ϕ is used to characterize
the spread of the ensemble. In this study, the unbiased variance estimator according
to Lucas-Picher et al. (2008b) is taken, to avoid an artificial bias in the estimation
of s2

ϕ which might occur due to the small ensemble size. The unbiased variance
estimator is defined as

s2
ϕ(i, j, k, t) = 1

M − 1

M∑
m=1

(ϕ(i, j, k, t,m)− 〈ϕ〉(i, j, k, t))2 (2.1)

where ϕ(i, j, k, t,m) is the value of a parameter ϕ (e.g., temperature or precipitation)
in the three dimensional grid (i, j, k) at output time t for ensemble member m.
The variable M is the total number of ensemble members. The term 〈ϕ〉(i, j, k, t)
corresponds to the ensemble mean and is defined as

〈ϕ〉(i, j, k, t) = 1
M

M∑
m=1

ϕ(i, j, k, t,m). (2.2)

As s2
ϕ gives the inter member variance for each grid cell at each output time step t

(6-hourly in this study), it is useful to reduce the dimensions by spatial and temporal
averages in order to gain a more comprehensive overview. For the time evolution of
internal variability s2

ϕ is averaged over the horizontal domain by

{s2
ϕ}(k, t) = 1

I · J

I∑
i=1

J∑
j=1

s2
ϕ(i, j, k, t) (2.3)

with I and J being the number of grid boxes in the x- and y-direction or zonal and
meridional direction, respectively. Although the grid rotation is optimized for similar
sized grid boxes, it is stretched identical to a regular longitude/latitude grids, thus
area weights are applied. For all spatial means the sponge zone of eight grid boxes
is omitted on each horizontal edge of the domain. As the sea-surface temperature is
identical in each simulation, spatial averages are computed with and without water
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points, by applying the land-sea mask of REMO prior to the spatial averaging. To
investigate the climatology of the spatial distribution, the time average s2

ϕ for each
grid point is computed by

s2
ϕ(i, j, k) = 1

N

N∑
t=1

s2
ϕ(i, j, k, t) (2.4)

with N being the number of time steps.

The equations above are used to compute the variance on a output step basis. It is
also important to know the variance on longer time scales. Therefore, time averages
over several output steps are computed to get, e.g., monthly means. The variance
of the time averages between the different ensemble members is computed by

s2
ϕ(i, j, k) = 1

M − 1

M∑
m=1

(ϕ(i, j, k,m)− 〈ϕ〉 (i, j, k))2 (2.5)

where ϕ(i, j, k,m) is the temporal average for every ensemble member m at every
grid point (i, j, k) and 〈ϕ〉 (i, j, k) the time averaged ensemble mean. It is important
to note the difference between equation (2.4) and (2.5). With equation (2.4) the
climatology of the variance based on the output time step is computed, whereas
(2.5) yields the variance of time averages longer than the output time step.

The equations above are used for all internal variability estimations in the following
Chapters 3, 4 and 5. Analysis methods specific to each chapter, e.g., the circulation
type analysis used in Chapter 4, are discussed in detail in the corresponding chapters.



Chapter 3

Characteristics of Internal
Variability over Europe

As introduction into the main parts of this work, the general characteristics of inter-
nal variability over Europe are discussed first. Generally one presents a comparison
of model performance to observations. However, several studies evaluating the per-
formance of REMO5.0 on the present domain have been conducted. The most
important biases are a overestimation of precipitation in the Baltic Sea catchment
(Jacob et al., 2001) and the summer drying (Hagemann et al., 2004) in south east-
ern Europe. For additional information, the reader is referred to the literature (e.g.,
Jacob et al., 2001; Hagemann et al., 2004; Jacob et al., 2005; Rechid and Jacob,
2006). Furthermore, the performance of the model plays not such an important role
for the sensitivity of the model to perturbed initial conditions. The main question
that is tackled in this chapter is: How does internal variability change with season
over Europe? The chapter is structured as follows: First, the temporal evolution for
different parameters is investigated in Section 3.1. This is followed by an analysis
of the spatial patterns in Section 3.2. Finally, in Section 3.3 the behavior of internal
variability on different climatic time scales is discussed. Some concluding remarks
are given in Section 3.4.

3.1 Temporal Evolution

The temporal evolution of spatial mean internal variability ({s2
ϕ}) is investigated for

mean-sea-level pressure, near-surface temperature, and precipitation. To retain the
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dimensions of each variable and ease the interpretation the square root of the inter
member variance for every variable is taken at the end of each calculation. Figure 3.1
depicts the temporal evolution of internal variability over the entire simulation pe-
riod for mean-sea-level pressure, near-surface temperature, and precipitation. Blue
lines show the results for the entire domain, whereas green lines depict land-points
only.

The internal variability of the mean-sea-level pressure (Figure 3.1 (a)) shows occa-
sionally strong oscillations around a mean value of 1hPa. Most maximum values
of around 2.5hPa, and in one case over 4 hPa, appear in winter or spring. Autumn
shows relatively low internal variability in most years. This results in a mean annual
cycle of the internal variability with highest values in spring and lowest in autumn
(see Figure 3.2 (a)). The internal variability in autumn, generally speaking, is half
as large as internal variability in spring. The differences between all and land-only
spatial mean internal variability is not big. This can be related to the fact that
pressure is a quite smooth and large-scale influenced quantity and does not depend
strongly on land-sea contrasts.

The internal variability of the near-surface temperature (Figure 3.1 (b)) shows simi-
lar results in terms of local maximums and minimums to that of the mean-sea-level
pressure. Both are well correlated (correlation coefficient 0.92), but there are im-
portant differences. The first difference is the season with maximum values. For
temperature the largest internal variability appears in winter and then gradually
reduces until autumn (see also Figure 3.2 (b)). The second difference is that internal
variability becomes larger compared to internal variability of mean-sea-level pressure
if only land-points are taken into account. There are two reasons for this. The first
reason are the prescribed sea-surface temperatures. The near-surface temperature
in the model is strongly bound to the sea-surface temperature over water. Hence,
it cannot show high internal variability. The second reason is the soil scheme which
calculates soil and surface temperatures dynamically. Every modeled soil process,
and their interactions, can influence the near-surface temperature. Since there are
many more degrees of freedom in the diagnostics of the near-surface temperature,
the internal variability is expected to be much higher over land. One extreme ex-
ample would be, if there was snow in a specific grid box for one member while the
other member showed snow-free conditions. In this case, near-surface air temper-
atures can be very different during, e.g., cloud-free nights, thus leading to larger
internal variability.
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Figure 3.1: Square root of area averaged internal variability of (a) mean-sea-level pressure, (b) near-surface
temperature, and (c) precipitation over the entire domain (blue line) for the entire simulation period. The
green line is the same but only for land-points. A 30 day moving average has been applied to each line.
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Figure 3.2: Mean annual cycle of internal variability from multi year monthly mean internal variability.



3.1 Temporal Evolution 39

The internal variability of precipitation behaves quite differently compared to the
two previous quantities described (see Figure 3.1 (c)). Here, the mean annual cy-
cle (Figure 3.2 (c)) shows a clear maximum in summer and a minimum in winter.
This is linked to the much stronger convective activity in summer, which leads to a
more heterogeneous precipitation field due to the non-linear nature of the processes
involved. Noteworthy is the stronger annual cycle in internal variability of precipi-
tation over land. During winter the internal variability over land is generally smaller
compared to the total internal variability. This is again related to convective activ-
ity. In winter, most of the convective precipitation falls over open water because of
warm sea-surface temperatures, thus leading to higher internal variability over the
oceans. During periods of high internal variability in mean-sea-level pressure the in-
ternal variability of precipitation is also enhanced (e.g., summer of 1980) indicating
that there is a correlation between the internal variability of these two parameters,
too.

The annual cycles of mean-sea-level pressure and temperature internal variability
(Figure 3.2 (a) and Figure 3.2 (b)) are different to the results found by Caya and
Biner (2004) for North-America and Giorgi and Bi (2000) for Eastern China. In
both studies the summer internal variability is generally much higher compared to
the winter internal variability. They argue that local processes are more important
and forcing from the boundaries is reduced in summer compared to winter. Thus
concluded that the regional climate model is therefore better able to develop its
own climate and variability. Their studies, however, are limited by the length of the
simulations. Both studies investigate only one year or single seasons, respectively. If
one would have considered only one year, e.g., year 84 in the present study, a similar
conclusion could have been drawn. Hence, it might have been by chance that they
missed periods of high internal variability in winter. Another reason for the low
internal variability in winter might be the target area. Both studies investigate
internal variability on northern-hemisphere mid-latitude domains. As the northern-
hemisphere mid-latitudes are rather heterogeneous, it is very likely that the location
of the domain will play a role in the development of internal variability.

Lucas-Picher et al. (2008b) mention that the location of the domain might play a
role, but they argue that the differences of their annual cycle, for example in mean-
sea-level pressure internal variability with high values in spring and low values in
fall, compared to Giorgi and Bi (2000) and Caya and Biner (2004) with only high
internal variability in summer are mainly a result of domain size. As the domain size
of the present study is comparable to the one from Giorgi and Bi (2000), another
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reason for the differing results in annual cycles is presented.

Laprise et al. (2012) pointed out that the internal variability in a regional climate
model is connected to the prevailing weather regime. As the forcing from the bound-
aries (especially in small domains) is quite strong, only episodes with weak forcing
can lead to higher internal variability. One weather regime having the potential for
reducing the boundary forcing are persistent high-pressure episodes, e.g., blocking
episodes. The phenomenon of a blocking is generally characterized by a meandering
jet stream. As the jet is a strong forcing in West-East direction in mid-latitude do-
mains due to the high wind speeds, a meandering would result in a weaker forcing.
Hence, the regional climate model has a greater ability to create its own climate,
which implies that small differences between two members of the regional climate
model ensemble can grow. Thus, leading to higher internal variability.

The northern-hemisphere blocking frequencies as a function of longitude (D’Andrea
et al., 1998) are shown in Figure 3.3 (a). It can be seen that Eastern-China (90°E–
120°E) and Eastern-North-America (120°W– 60°W) are regions with a minimum
in blocking frequency almost all year long. Europe (15°W– 45°E) in turn has a
maximum in blocking frequency with a minimum in autumn. This could explain
why the annual cycle of internal variability in the present study is more similar to
the annual cycle of internal variability in the study by Lucas-Picher et al. (2008b)
who investigate entire North-America including parts of the secondary maximum in
blocking frequency east of 180°W.

In addition to the differences in annual cycles of internal variability between different
regions in the mid-latitudes, the blocking frequencies can also explain the seasonal
variations in internal variability. From the mean annual cycle of internal variability
it can be seen that internal variability is reduced in autumn compared to other
seasons. As an example Figure 3.3 (b) shows the mean annual cycle of the 500 hPa-
geopotential height. This cycle correlates quite nicely with the Hovmöller diagram in
blocking frequency over Europe (Figure 3.3 (a) around 0° longitude). Showing that
months with high (low) internal variability generally show a high (low) frequency of
blockings.

The importance of weather regimes in terms of circulation types for internal variabil-
ity in REMO over Europe is picked up again in Chapters 4 and 5. In the following
section the focus is on the spatial distribution of internal variability.
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Figure 3.3: Comparison between (a) blocking frequency in a Hovmöller diagram
(longitudinal-seasonal) from observations between 1949-1994 (taken from D’Andrea et al.
(1998) Figure 2b) and (b) the mean annual cycle internal variability (from multi year
monthly means) of the 500 hPa-geopotential height.

3.2 Spatial Patterns

In this section, spatial patterns of seasonal mean internal variability according to
equation (2.4) are analyzed. It is important to analyze the spatial distribution of
internal variability in order to identify regions with a high sensitivity to the initial
conditions of a simulation. These are also regions were the influence from the lateral
boundary forcing is weak and local effects such as land-atmosphere coupling play
an important role.

First, the spatial patterns of mean-sea-level pressure is discussed. Figure 3.4 shows
the spatial patterns of mean seasonal mean-sea-level pressure internal variability.
For all seasons the highest values of internal variability are found in the North-East
sector of the domain. The location of the maximum is slightly altered with respect
to the season but the biggest differences can be found in the strength of internal
variability. As already seen in the seasonal spatial means the highest values are
found in spring with a maximum of more than 2.4hPa. The maximum values for
winter and summer are pretty similar with 2.2 hPa and 2 hPa, respectively. For
autumn the maximum only reaches 1 hPa.



(a) Winter (b) Spring

(c) Summer (d) Autumn

Figure 3.4: Spatial patterns of seasonal mean mean-sea-level pressure internal variability in hPa.
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In general, the patterns look rather smooth with only a few local effects such as the
local maximums over the Norwegian mountains or the alps. One reason might be
that mean-sea-level pressure is strongly forced by the driving data. This is due to
the direct connection between mean-sea-level pressure and surface pressure, which
is a driving field at the boundaries. In addition, the pressure values in the grid are
horizontally connected due to horizontal advection and numerical diffusion. Thus
the pattern looks much more homogeneous.

The spatial patterns of mean-sea-level pressure internal variability do not show large
differences to previous studies. It is known from other studies that the highest values
of internal variability are expected to be close to the eastern boundary of a northern-
hemisphere mid-latitude domain. Lucas-Picher et al. (2008a) demonstrated that
the residency time of air parcels within the domain is usually the longest towards
the eastern boundary due to the predominant westerly flow in the mid-latitudes
and correlates linearly with the spatial pattern of internal variability. Thus the
deviations of air parcel trajectories between ensemble members grows with the time
the air parcel stays inside the domain. Depending on the flow regime for each season,
this alters the location of the internal variability maximum a little but places it
towards the eastern boundary due to predominant westerly flow.

Although near-surface temperature and mean-sea-level pressure are highly correlated
in their spatial mean temporal evolution of internal variability, the seasonal mean
spatial patterns look quite different. Figure 3.5 shows the spatial pattern of seasonal
mean internal variability of near-surface temperature for the four seasons. The area
with the largest internal variability is in the north-eastern sector around the Baltic
Sea and has much more heterogeneity compared to the spatial pattern of mean-
sea-level pressure internal variability. One noteworthy feature is the zone of higher
internal variability in the North-Atlantic, near Greenland. This local maximum of
internal variability shows the area of the sea-ice edge, which is typically characterized
by large differences in surface fluxes. It is a good example for how local scale, non-
linear processes can trigger internal variability in near-surface temperatures.
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Figure 3.5: Spatial patterns of seasonal mean near-surface temperature internal variability in K.
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Comparing the seasons it becomes evident that the variations in terms of maximum
internal variability values across the seasons are higher compared to mean-sea-level
pressure internal variability. In winter the maximum internal variability reaches
more than 2.6K along the Norwegian Mountains and central Sweden (Figure 3.5
(a)). In Spring (Figure 3.5 (b)) internal variability is reduced up to 1.8K. The
pattern of internal variability is more homogeneous and shows no clear maximum.
Similarly homogeneous patterns, with weaker gradients of internal variability, can
also be seen for summer and autumn. In summer the maximum of 1.6K and is
located between Baltic and White Sea (Figure 3.5 (c)). In autumn the weakest
maximum of only up to 1.2K is present in northern Scandinavia (Figure 3.5 (d)).

The stronger difference in the spatial patterns of internal variability of mean-sea-
level pressure and near-surface temperature show that internal variability is more
correlated in time than in space. One reason for the stronger difference in the spatial
pattern is that near-surface temperature in one grid box is in principle independent
from the neighboring boxes. The independence originates from the soil paramete-
rization that does not take horizontal communication between the grid boxes into
account. Horizontal communication arises from the atmosphere, but the influence on
near-surface temperature is usually strongest from the surface. Thus, near-surface
temperature is largely influenced by local heterogeneities.

One supporting observation for the hypothesis that snow-covered areas have the
potential of generating high near-surface temperature internal variability (see Chap-
ter 3.1) is the behavior of near-surface temperature internal variability over the
Alpine ridge. Especially in winter but also in the transition seasons, spring and
autumn, the ridge sticks out with a local maximum in internal variability. No rec-
ognizable effect can be seen in summer. Neglecting the stronger forcing close to
the boundaries, one can see that the snow-pack pattern correlates quite well with
the internal variability pattern of near-surface temperature especially in winter (not
shown).
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Figure 3.6: Spatial pattern of seasonal mean precipitation internal variability in mm/d.
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For precipitation the picture changes. As already seen in the temporal evolution of
precipitation internal variability, in winter the larger variability can be found over
water (Figure 3.6 (a)). The highest values of more than 5mm/day appear along the
coasts of the Mediterranean Sea1. These are also the areas where a similar amount
of precipitation is coming from the large and sub-grid scale precipitation schemes.
In regions where the large-scale precipitation dominates the total precipitation sum
internal variability tends to be lower (not shown), because the sub-grid scale pre-
cipitation schemes are expected to be more sensitive to local effects and large scale
flow perturbations. Where the contribution of sub-grid scale precipitation is high,
the internal variability can be stronger.

In spring the internal variability of precipitation amount is already higher over land,
although the highest values with about 6mm/day can still be found at the Adriatic
Sea (Figure 3.6 (b)). The summer shows a much higher internal variability especially
over land (Figure 3.6 (c)) with values of around 8mm/day close to the outflow
boundary. Besides the land-sea contrast, a gradient from west to east with increasing
internal variability is visible. This gradient can be explained by the increasing
importance of local processes for precipitation in a more continental climate regime.

Over land the sub-grid scale precipitation dominates in the total precipitation sum
in most of the regions. Here the same argument as for winter holds that in sub-grid
precipitation dominated areas the internal variability is stronger. In autumn (Fig-
ure 3.6 (d)) again the Mediterranean Sea is the area with the highest precipitation
internal variability. In general in can be stated that precipitation internal variability
shows a highly heterogeneous pattern and seems to be mostly driven by local effects
such as land-sea contrasts or mountain ranges.

The sharp drop of precipitation internal variability at the eastern boundary that be-
comes especially evident in summer, is a result of the boundary relaxation that sup-
presses internal variability close to the domain edges. Here, the prognostic variables
are forced to the same value for each member. Thus the parameterized processes
and variables will also be similar. In REMO though results can still differ, because
some prognostic variables such as temperature are only relaxed towards the lateral
boundaries under inflow conditions.

Cretat and Pohl (2012) have shown that different convection schemes yield different
1The reader ought to bear in mind that coast lines are coarser in the model compared to the

displayed map. The map serves to help orientate the reader, which is usually sufficient but may
cause some confusion in this particular case.
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strengths of internal variability in precipitation. Nevertheless, spatial patterns and
temporal evolution show quite some correlation. Thus, it can be expected that the
strength of internal variability in precipitation would change for REMO, if different
a parameterization than the mass-flux scheme by Tiedtke (1989) was employed. The
spatial patterns, however, would be expected to be of similar shape.

3.3 Internal Variability of Temporal Averages

In the previous sections, the temporal evolution and spatial patterns of the climate
of internal variability on a six hourly basis was discussed. This section focuses on
the effects of internal variability on longer time scales using different climate time
scales. It allows to estimate on which time scales internal variability is important.
It is referred to as internal variability of the climate, to prevent confusions with the
previous sections. Here, climate is used in the sense of a temporal average that is
longer than the output time step. For the analysis, several temporal averages within
the ten years of simulation are computed for each ensemble member separately.
Followed by estimating the internal variability of the climate by calculating the
variance s2

ϕ between the ensemble members at every grid point using Equation (2.5).

First, the spatial patterns of two different averaging periods are analyzed. Figure 3.7
shows the spatial patterns of near-surface temperature internal variability of the
climate for averaging periods of 10 and 100 days. For both averaging periods the
mean internal variability of the climate is small compared to the output time step
based internal variability. This means that on average internal variability of the
climate for this domain does not play a big role. Still two centers of action can
be identified from Figure 3.7. These are the Baltic Sea region as expected from the
previous results and south eastern Europe. One noteworthy feature in the case of
south eastern Europe is that local maximums of internal variability of the climate
are in regions surrounded by mountain ranges. Here the flow seems to be less
constrained by the large scale circulation. A similar local maximum can be seen in
the Po valley, too.

The mean internal variability of the climate, however, does not show the real sensi-
tivity of different regions to internal variability of the climate, because of a rather
noisy temporal evolution of internal variability. As such, the two regions identified
as centers of action are analyzed in more detail. Two boxes located over central
Sweden and East Hungary (black boxes in Figure 3.7), with the size of 4× 4 grid
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(a) 10 days average

(b) 100 days average

Figure 3.7: Spatial patterns of near-surface temperature internal variability of the cli-
mate mean in K for averaging periods of (a) 10 days and (b) 100 days. The two areas
marked with the black boxes are used for the charts in Figure 3.8.
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Figure 3.8: Internal variability of the climate for near-surface temperature over different
averaging periods and two different areas. Blue and dark green showing the mean internal
variability of the climate for Sweden and South-Eastern Europe. Red and light green
showing the maximum of internal variability of the climate for Sweden and South-Eastern
Europe. Note that both axis have a logarithmic scale.
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Figure 3.9: Same as Figure 3.8 but for precipitation.
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boxes in each region, are picked to compute internal variability of the climate for
several averaging periods. Figure 3.8 shows the box field means of near-surface tem-
perature internal variability of the climate for the two regions. To get an estimate
for the possible extreme cases the maximums of internal variability of the climate
are shown as well. It can be seen that the mean internal variability of the climate
for Sweden is higher for short time scales, but also decreases faster towards longer
averaging periods compared to internal variability of the climate in Hungary. This
was already expected from Figure 3.7, where in the 10 days average the central Swe-
den box shows stronger internal variability compared to Hungary. In the 100days
average case the stronger internal variability can be found over Hungary. In the
maximum case, however, the behavior is a little bit different. Up to roughly a week
internal variability of the climate can be large with values above 6K in central Swe-
den. It is noteworthy that internal variability of the climate can still be in the order
of 1K in extreme cases after averaging over one season. In Hungary the maximum
internal variability of the climate is generally lower, but does not drop so fast. This
can be interpreted as a longer memory in internal variability of the climate for this
region. Or in other words: The differences in near-surface temperature between
members of a time-lagged ensemble average out faster in Sweden than in Hungary.

Figure 3.9 shows the internal variability of the climate of precipitation over different
time averages for the two regions. There are hardly any differences in the evolution
of internal variability of the climate between both regions. At first glance this is
surprising because the precipitation regimes are quite different. The ratio between
sub-grid and large scale precipitation would suggest a higher variability for Hungary.
Here the ratio of precipitation from the sub-grid scale is usually higher. But the
fact that total precipitation amounts are larger in Sweden might compensate for this
effect, because a larger overall variability can be expected.

3.4 Conclusions

It has been shown that internal variability of a regional climate model in Europe is
similar to other regions in the northern hemisphere mid-latitudes. Specifically the
episodic character of internal variability with strong and weak phases, most probably
connected to the prevailing weather regime, are similar. But there are also important
differences. In Europe the peak internal variability for mean-sea-level pressure and
near-surface temperature are found in spring and winter, respectively. The internal
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variability of precipitation in turn shows more the behavior expected from earlier
studies with weak internal variability in winter and strong internal variability in
summer. This rather mixed picture in annual cycle leads to the conclusion that
internal variability for different variables is differently influenced by the large scale
forcing (or weather regime). The fact that the annual cycle of internal variability
for mean-sea-level pressure and near-surface temperature looks similar to the annual
cycle of the blocking frequency can explain the difference to the other mid-latitude
locations. In the following chapter the influence of circulation types on the internal
variability of different variables will be picked up. In terms of internal variability on
longer time scales the effects do not seem to be much important after one season.
This is most likely to change if bigger domains and more grid points are used, as
already shown by Lucas-Picher et al. (2008b) for a domain over North-America.



Chapter 4

Influence of Circulation Types on
Internal Variability

As seen in the previous chapter internal variability of a regional climate model
undergoes alternating cycles of high and low variability. Internal variability is es-
pecially strong in winter which has not been reported for such a small domain. A
key to understanding this variability is the boundary forcing. It has been shown
that the blocking frequency in the Euro-Atlantic sector is coherent with the internal
variability of the 500hPa-geopotential height. In this chapter, the investigation is
taken further by performing a circulation type classification on the boundary data.
The main question is: How do weather regimes influence the internal variability of
a regional climate model throughout different seasons? In Section 4.1 the concept of
circulation type classifications is introduced and the Simulated Annealing and Di-
versified Randomization clustering (SANDRA) circulation type classification, used
in the present study, is explained. Results from the circulation type classification
are presented in Section 4.2 and concluding remarks follow in Section 4.3.

4.1 Circulation Type Classification

The principle idea behind a circulation type classification is to assign weather situa-
tions to clusters of circulation (or weather) types, or in other words, to group similar
weather maps into representative classes. Circulation type classifications exhibit a
long history in meteorology and climatology. They have proven to be a useful tool
for understanding and interpreting atmospheric processes as well as linking atmos-
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pheric processes and surface climate (see Huth et al., 2008, for a comprehensive
review). Many different methods of classifying weather situations into circulation
types exist. The coarsest distinction is the division into subjective, hybrid and ob-
jective methods. First, in the beginning of circulation type classifications subjective
methods were mainly used for classification, e.g., daily weather charts were grouped
into synoptic situations as done in the Großwetterlagen classification by the DWD
(Hess and Brezowsky, 1952). In this case, the definition of the types and the as-
signment to them is normally done by expert knowledge. Meteorologists decided
which circulation type the weather chart of a particular day belongs and hence was
subjective.

Hybrid or mixed classification methods evolved out of pure subjective methods. Tak-
ing again the example of the Großwetterlagen, James (2007) developed an algorithm
processable by a computer which assigned the weather charts to the classification
types. With increasing computer power objective methods became more and more
popular. The main difference to subjective methods is that usually no prior defini-
tion of circulation types is done, but the circulation types typically evolve during
the classification process itself. These methods are generally used in a much broader
community, because they search for general patterns in data. The term objective can
be misleading here, and should only be understood in the sense that the classification
process itself is objective. Most of the methods still require expert decisions prior
to the actual classification process, e.g., such as setting the number of classification
types.

The group of objective methods can be further split into a number of sub-families
that are discussed in more detail in Huth (1996). One popular and often used sub-
family are k-means methods (e.g. Hartigan, 1975), because of the fast and easily
implementable algorithm. The k-means algorithm, but also other objective methods,
try to minimize the within-type variance. This means that the (Euclidean) distance
of each member of a class to the center of this class, called centroid, should be as
short as possible. The major problem here is to find the global optimum among
all possible classifications. Due to their formulation, many algorithms only find
local optimums. Simulated annealing can overcome this problem of finding only a
local optimum and is part of the SANDRA classification method used in this study
(presented in Section 4.1.2).
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4.1.1 Circulation Type Classification in Climate Science

The use of circulation type classifications in climate science has become popular in
recent years. Demuzere et al. (2009) successfully applied a circulation type classifi-
cation to data from a global climate model. They show how pressure fields change
in a changing climate and demonstrate that Western and Central Europe face an
increase in Western circulation and anticyclonic circulation types under an A1B
emission scenario. In a study of present and future storm events, Donat et al.
(2010) show how a change in the frequency of Westerly flow is linked to a change
in storminess over Europe. Plavcova and Kysely (2011) show that biases in daily
minimum and maximum temperature in an ensemble of regional climate models can
partly be explained by over- and underestimations of characteristic circulation types
in the driving global climate model data. A recent study by Cretat et al. (2011)
shows the usefulness of boundary data classification to investigate the influence of
different weather regimes on internal variability for a South-African domain. With
their circulation type classification they are able to attribute strong and weak in-
ternal variability phases to recurrent synoptic situations of the inflow/outflow mass
fluxes through the domain boundaries.

To investigate the influence of boundary forcing variability on the internal variability
of REMO, a circulation type classification of the boundary data has been performed.
As input data for the circulation type classification not the original ERA-40 data has
been used, but rather the interpolated ERA-40 data which is used to drive REMO.
This allows one to directly investigate the variability in the forcing data that might
be altered due to the interpolation procedure. In addition, the domain for the
circulation type classification has been extended by 30 grid boxes in the zonal and
20 grid boxes in the meridional direction at each boundary. The extension has been
done to account for influences from the flow in the vicinity of the model domain.
Figure 4.1 shows the orography of the boundary data domain. The REMO domain
used for the simulations is shown as a black rectangle.

To perform the circulation type classification of the boundary data, the circulation
type classification software of the European Cooperation in Science and Technology
(COST) Action 733 Harmonisation and Applications of Weather Type Classifications
for European regions (Philipp et al., 2010) in version 1.0 was used. As there are
many different kind of classification methods available, several set-ups with different
methods were tested. It was found that the outcomes did not depend too much on
the method which gives confidence in the robustness of the results. Here, one set
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Figure 4.1: Orography of the circulation type classification domain the in m. The domain
for the REMO simulations is indicated by the black rectangle.

up for the SANDRA classification method is presented.

4.1.2 The SANDRA Circulation Type Classification

The SANDRA circulation type classification method by Philipp et al. (2007) com-
bines the two concepts of simulated annealing and diversified randomization. The
aim of the algorithm is to have a minimum within-type variability for each class
of the classification (Philipp et al., 2010). The basic idea of simulated annealing is
that during the search for the global optimum also less optimal states are allowed.
Figure 4.2 illustrates this in a typical optimization problem for a one dimensional
case. The task in this example is to find the highest hill along the shown transect
across a mountain range. If the starting point is at the red line, most algorithms
will only search the gray shaded section and find the local maximums to the left or
the right, because they would only be allowed to find more optimal1 states. A more
optimal state would mean in this case that only paths uphill are allowed, because
the new state is higher (more optimal) compared to the old. Starting at the black

1The term more optimal is a commonly used term in the field of optimization algorithms, which
can be understood in the sense of better.
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Figure 4.2: Schematic to indicate the optimization problem of finding the highest hill.
Many algorithms like conventional k-means can only find the local maximums in the gray
shaded section when starting at the red line. Finding the global maximum depends on
the starting point. More sophisticated methods like SANDRA have a higher probability
to find the global maximum regardless of the starting point because they allow downhill
paths during the optimization procedure and can search the entire cross section. See text
for more details.

line compared to the red one would yield the global optimum, but this happens
only by chance due to the adequate initial conditions. This is a typical problem of
normal k-means methods and demonstrates one of their major disadvantages that is
the poor consistency between two classifications when using different starting points
(Huth, 1996).

With simulated annealing less optimal states or paths downhill are allowed with
a certain probability. In principle, this algorithm allows to search the entire cross
section for the highest mountain. The probability to go downhill is controlled by
the acceptance probability function that depends on the current and new state as
well as a cooling temperature. The cooling temperature is the reason for the term
annealing. It describes the process of controlled cooling of metals in metallurgy to
optimize the alignment of metal molecules. The cooling temperature in simulated
annealing decreases with every iteration of the search, making it less likely to go
downhill (or move to less optimal states), thus leading to a termination of the
algorithm. Depending on the starting temperature and the cooling factor used to
reduce the temperature from one iteration to the next, the SANDRA method can
be computationally demanding.

To allow for the algorithm to terminate in a reasonable time, Philipp et al. (2007)
make use of the concept of diversified randomization. Diversified randomization runs
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a simple circulation type classification method several times with randomized start-
ing partitions. In addition, the classification process is randomized itself. By using
performance measures in the comparison of different runs, the best run is picked as
the classification. This procedure makes it more likely to reach the global optimum
without running the algorithm infinite times. The combination of both simulated
annealing and diversified randomization have been proved to lead to partitions that
are closer to the global optimum and more stable in terms of consistency compared
to the commonly used k-means classification methods. Beck and Philipp (2010)
showed that for circulation type classifications using mean-sea-level pressure as in-
put parameter, SANDRA often times shows the best skill in performance measures
for circulation type classifications.

Set-up of SANDRA

The assumptions needed for SANDRA prior to the classification procedure are based
on the work done in COST Action 733 and by Philipp et al. (2007). Philipp et al.
(2007) could show that finding the perfect number of types a priori is not straightfor-
ward and often subjective decisions have to be made. As the focus is on the influence
of the large-scale flow on internal variability, the parameters used to perform the
classification are daily means of mean-sea-level pressure and 500hPa-geopotential
height. Tests have been performed with different parameters and parameter com-
binations, e.g., to include vorticity or leave out mean-sea-level pressure, but results
were not very sensitive to these choices (not shown). The combination of mean-sea-
level pressure and 500hPa-geopotential height lead to the best Explained Cluster
Variance (ECV) value (Philipp et al., 2007) among the tested parameter combina-
tions.

The boundary forcing data is split into the four seasons winter (December-February),
spring (March-May), summer (June-August) and autumn (September-November).
This is done to account for the strong seasonality in the northern hemisphere extra-
tropics (e.g., Wallace et al., 1993). In the second step, seven circulation types are
chosen for winter and summer, and nine for spring and autumn. This gives 32 circu-
lation types in total for the entire year. It has been shown by Philipp et al. (2007)
that a higher number of circulation types are required in the transition seasons spring
and autumn to get a more balanced distribution in the number of assigned days per
circulation type. Tests with different numbers of circulation types showed that the
chosen numbers yield similar results for all seasons in terms of ECV. It should be
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noted that the ECV only allows to compare the quality of the classification between
different parameter sets for a given number of types, but cannot determine the best
number of types itself. For the number of types the present study relies on the
experience from COST Action 733 and is a compromise between a good separation
of types, within-type variance and number of days assigned to one type for a solid
statistical analysis. The result of the classification is a time series, where for each
season the daily means of the boundary data are assigned to one circulation type.

4.2 Results

The Figures 4.3 through 4.7 show the 28 different circulation types for the four
seasons as calculated by the SANDRA method. All depict the centroids of the mean-
sea-level pressure in colored shades and the 500hPa-geopotential height as contour
lines for each circulation type. The centroids are calculated as the mean field from
all days assigned to one circulation type. The numbers below each circulation type
is the number of days that were assigned to each circulation type. For a better
distinction all circulation types are numbered consecutively starting in winter. The
circulation type number is given in each figure in the lower right corner. In addition
the median and interquartile range of daily field mean internal variability for mean-
sea-level pressure, near-surface temperature and precipitation are given as error-bar
charts for each season.

4.2.1 Winter

In the circulation type classification for winter, many of the circulation types shown
in Figure 4.3 (a)–(g) can be associated with well known European circulation types
from other classification methods such as, e.g., the Großwetterlagen classification
by Gerstengarbe and Werner (2005). One good example is circulation type 1 that
shows a subtropical high shifted the north-east and a low over the Barents Sea. This
circulation type is similar to a Nordwestlage, where the low pressure systems are
traveling from Iceland over Scandinavia towards Russia. Another typical circulation
type would be circulation type 6 which can be associated with a Westlage. In the
case of a Westlage, the tracks of the synoptic disturbances are shifted to the south,
so that they can influence central Europe. Overall circulation type 6 shows a strong
meridional gradient in mean-sea-level pressure similar to circulation type 5.



(a) 126 days (b) 116 days

(c) 151 days (d) 83 days

Figure 4.3: (a)–(g) winter circulation types of the boundary data. Colored shades show the centroids
of mean-sea-level pressure field in hPa. Solid lines are the centroids of the 500 hPa-geopotential height
field in gpm with a 100 gpm contour interval. The white rectangle highlights the position of the model
domain. The circulation type number is given in the lower right corner of each figure. In (h) the level of
internal variability for mean-sea-level pressure (MSLP, blue), near-surface temperature (TEMP, green), and
precipitation (PREC, red) is given for each circulation type. Dots indicate the median internal variability
and errorbars the corresponding interquartile range.
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Figure 4.3: Continued.
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Figure 4.3 (h) shows the median (dot) and the interquartile range (error-bars) of
internal variability for mean-sea-level pressure, near-surface temperature and pre-
cipitation for each winter circulation type. It can be seen that in winter certain
circulation types, such as type circulation type 4, show a higher median of inter-
nal variability than others (e.g., circulation type 6). The circulation types can be
roughly categorized into three internal variability groups, with low, medium, and
high internal variability. The low internal variability group, consisting of circulation
type 5 and circulation type 6, has the strongest meridional mean-sea-level pressure
gradients amongst all the winter circulation types. Such situations lead to higher
wind speeds and thereby stronger forcing from the boundaries inside the domain. As
a consequence, the evolution of internal variability inside the domain is suppressed
or quickly advected out of the domain. This is also reflected in the corresponding
internal variability strengths. Both mean-sea-level pressure patterns can also be
related to a positive phase of the NAO that is characterized by enhanced storm
activity and higher wind speeds in central Europe. The median of mean-sea-level
pressure internal variability only reaches values of about 0.4hPa and near-surface
temperature internal variability is only about 0.4K. For precipitation circulation
type 5 and circulation type 6 have different medians, of 0.8mm/d and 1.2mm/d,
respectively. The difference can be explained by the higher fraction of convective
precipitation in the total precipitation in circulation type 6 compared to circulation
type 5. A higher fraction of convective precipitation leads to more variability due to
the non-linear and more local processes involved. Thus resulting in higher median
internal variability in precipitation.

The medium internal variability group consists of circulation type 1 through cir-
culation type 3 and circulation type 7. For these circulation types the meridional
gradients in mean-sea-level pressure are weaker than the low internal variability
group. The model has more freedom to develop its own circulation and hence in-
ternal variability is stronger. The mean-sea-level pressure internal variability has
median values reaching from 0.7hPa to 1.3hPa and median near-surface temper-
ature internal variability of 0.8K to 1K. Median precipitation internal variability
varies between 1.5mm/d to 1.9mm/d.

The high internal variability group is only represented by circulation type 4. Cor-
respondingly meridional mean-sea-level pressure gradients are weak in the center
of the domain. The mean-sea-level pressure pattern even shows a outflow zone in
the North-West of the domain so that the predominant westerlies cannot suppress
internal variability inside the domain. Circulation type 4 can also be associated
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with the negative phase of the NAO. Here the storms are usually forced to travel
towards the Mediterranean. Central and northern Europe are dominated by dry and
cold conditions. The median internal variability reaches 2.2hPa for mean-sea-level
pressure, 1.6K for near-surface temperature, and 2.5mm/d for precipitation.

If normalized by the maximum median, mean-sea-level pressure internal variability
is almost ten times smaller in the median between circulation type 5 and circulation
type 4. The difference becomes smaller with a factor four for near-surface temper-
ature and a factor three for precipitation internal variability. This supports the
argument that the internal variability of large-scale parameters such as mean-sea-
level pressure is stronger affected by the the forcing field variability as mentioned
earlier in Section 3.2, confirming that internal variability in winter is governed by
the variability of the boundary forcing.

For winter most of the circulation types are quite distinct, i.e., the differences in
distributions of internal variability assigned to these types are highly significant
as defined by the Kruska-Wallis-Test. Hence, the flow patterns of these circulation
types are linked to the internal variability in the regional climate model. Despite the
fact that winter circulation types are linked to the internal variability of a regional
climate model, there is still a substantial amount of variability. One reason can
be attributed to the transitions between different circulation types because internal
variability has a memory, as shown by Nikiema and Laprise (2011) for example. This
means that pockets of internal variability need to be advected out of the domain, or
dissipated by diffusion within the domain, to lower the level of internal variability.
In the opposite direction when going from a lower to a higher internal variability
state, it takes some time to fully develop internal variability. This argument is
supported by the transition probabilities between the circulation types (not shown).
For winter there exists a transition cascade from circulation type 1 to circulation
type 4 and then to circulation type 7. This means that the probability of entering
circulation type 4 is highest from circulation type 1 and the highest probability
of leaving circulation type 4 is moving to circulation type 7. This cascade links
the circulation types with the highest levels of internal variability in winter for
the investigated parameters mean-sea-level pressure, near-surface temperature and
precipitation. This shows the connection between circulation type transition and
internal variability for these circulation types and explains parts of the variability
of internal variability within each circulation type.

As seen earlier, the mean-sea-level pressure patterns similar to negative and positive
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(a) (b)

(c) (d)

Figure 4.4: Composites of daily mean near-surface temperature internal variability in
K for winter (a) circulation type 4 and (b) circulation type 6 and summer (c) circulation
type 18 and (d) circulation type 23.
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phases of the NAO have large impacts on the spatial mean internal variability.
Though their spatial patterns are quite different. Figure 4.4 depicts the composites
for near-surface temperature internal variability of circulation type 4 and circulation
type 6. A large area centered around the Baltic Sea is subject to large internal
variability in case of NAO negative like situations. Here, the mean near-surface
temperature internal variability can easily reach 2.5K and more. In the case of
circulation type 6 (Figure 4.4 (b)) the center of main internal variability is shifted to
the north and is much weaker with only up to 1.6K of mean near-surface temperature
internal variability. These two patterns closely correspond to the typical tracks of
storms in negative and positive phases of the NAO. The main flow in NAO negative
situations is weaker and tends to be near the northern and/or southern boundaries
of the domain. In NAO positive situations the flow is generally stronger and towards
the center of the domain, thus suppressing internal variability in the center.

4.2.2 Spring

The circulation type classification for spring is shown in Figure 4.5 (a)–(i). Several
spring circulation types have similarities with the winter circulation types, e.g.,
circulation type 14 that looks similar to the positive NAO-like patterns circulation
type 5 and circulation type 6, though the occurrence of circulation type 14 is less
frequent. Other examples include circulation type 16, which is similar to circulation
type 1, but with the trough moved further to the south; and circulation type 11
that is similar to circulation type 3. In spring also different circulation types appear
with generally weaker gradients in mean-sea-level pressure. The appearance of new
circulation types with weaker gradients in the transition season spring is to be
expected as summer mean-sea-level pressure gradients are weaker in Europe. This
leads also to a problem in the circulation type classification for spring. The number
of days assigned to circulation type 9 is much higher compared to the remaining
circulation types. It is a circulation type that pools a lot of typical summer flow
situations. To minimize this pooling effect the number of circulation types was set
to nine for the transition seasons as mentioned earlier. A higher number would
improve the balance further, but would also lead to circulation types having less
than 40days. This would make reliable statistics difficult. During the optimization
phase for finding the best number of circulation types it turned out that nine classes
are a good compromise for the transition seasons giving similar numbers in the ECV
as winter and summer circulation type classifications.



(a) 98 days (b) 182 days

(c) 121 days (d) 59 days

(e) 104 days (f) 93 days

Figure 4.5: Same as Figure 4.3 but for spring circulation types.
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Figure 4.5: Continued.
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In terms of internal variability for each circulation type in spring, the picture is not
as clear as for winter. Circulation type 14 with the strongest forcing from westerly
flow (Figure 4.5 (b)) has the weakest internal variability for all three parameters.
In the case of near-surface temperature this is only half of the internal variability
compared to circulation type 12 with a median of 1K. The major difference to
winter is that for at least mean-sea-level pressure and near-surface temperature no
circulation type with really high internal variability exists (Figure 4.5 (h)). One
reason might be that there is no corresponding circulation type to circulation type
4 in spring. This means that the dynamic situation found with circulation type 4
does not occur in spring, which seems to be a necessary condition for strong internal
variability at least during this time of the year. Only for precipitation circulation
types with higher internal variability compared to winter appear. This is especially
the case for circulation type 9 and circulation type 12. They show generally weaker
forcing from the boundaries and represent more summer circulation types. This is
in good agreement to the finding of Chapter 3 that in spring precipitation internal
variability is getting stronger especially towards summer compared to winter.

4.2.3 Summer

The summer circulation types in Figure 4.6 (a)–(g) show a rather different picture
compared to those of winter. All circulation types show different strengths of the
sub-tropical high over the Azores with varying influences on central Europe; re-
flecting the different flow regime of the summer months compared to winter. The
strength of internal variability is very similar for all circulation types (Figure 4.6 (h)),
except for circulation type 19 which has lower median values for all three parame-
ters compared to the other circulation types. Circulation type 19 has the strongest
forcing from westerlies in summer (Figure 4.6 (c)) that looks similar to a positive
NAO-like pattern. Interestingly circulation type 19 resembles a positive NAO-like
pattern of autumn NAO (Hurrell et al., 2003, see). The high frequency of occur-
rence towards late August (not shown) shows that circulation type 19 can indeed
be identified as a circulation type that marks a transition towards autumn. Never-
theless internal variability is stronger compared to similar circulation types such as
circulation type 5 in winter or circulation type 14 in spring for at least mean-sea-
level pressure and precipitation. One reason is the weaker gradient in mean-sea-level
pressure, but also the higher importance of local processes in summer play a role.
This means that flow patterns can only modulate the internal variability within the
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domain in summer. Most of the internal variability is more related to regional and
local-scale processes as already suggested by, e.g., Christensen et al. (2001).

The independence of the internal variability from the boundary conditions in summer
can also be seen in the spatial pattern, which looks rather similar for different
circulation types. To demonstrate this Figure 4.4 shows the mean internal variability
of near-surface temperature for (c) circulation type 18 and (d) circulation type
23. Except for small differences in strength the patterns are the same. Both are
also rather similar to the overall summer mean pattern (Figure 3.5 (c)). Hence, the
development of internal variability in summer is governed by local processes.

4.2.4 Autumn

The autumn circulation types in Figure 4.7 (a)–(i) show many similarities to the
spring circulation types. This is to be expected, as both are transition seasons. One
major difference between these two seasons is that autumn is dominated by what
Gerstengarbe and Werner (2005) define as Westlagen. This means that westerlies
dominate the flow and storms can travel rather unhampered through the domain.
Circulation type 27, circulation type 29, and circulation type 32 are representatives
of the Westlagen and appear more often in autumn compared to the other sea-
sons. Therefore, the strength of internal variability is the lowest among all seasons
for mean-sea-level pressure and near-surface temperature. Only precipitation is of
similar strength in internal variability compared to spring.

It is noteworthy that no pattern representing a negative NAO phase is found for au-
tumn. This is in good agreement with earlier studies, because negative NAO phases
are also in close relation to blocking situations over Europe. As seen earlier, the
frequency of blockings in the Euro-Atlantic sector is at a minimum in autumn (see
Figure 3.3 (a)). The link between NAO negative phases associated with blockings
and high internal variability inside the model domain is further investigated in the
following chapter.

In autumn the problem of an unbalanced assignment of days to circulation types, as
seen for spring, is not so crucial. Here, the increase from seven to nine circulation
types helps to better separate the different types (not shown). The overall weak
internal variability can only partly be explained by the domination of westerly flows,
otherwise one would expect levels of internal variability similar to circulation type 5
and circulation type 6. One explanation might be the memory in internal variability
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Figure 4.6: Same as Figure 4.3 but for summer circulation types.
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Figure 4.6: Continued.
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Figure 4.7: Same as Figure 4.3 but for spring circulation types.
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mentioned earlier. As there are hardly any situations that can build up internal
variability, it can be expected that internal variability is lower in circulation types
that are comparable to other seasons.

4.3 Conclusions

The circulation type classification of the lateral boundary forcing has shown that
the episodic behavior of internal variability can be related to the variability of the
boundary forcing as already speculated by Laprise et al. (2012). This is especially
the case for the winter season. In winter, NAO-like patterns have the strongest
influence on the strength of internal variability inside the domain, with high (low)
internal variability for NAO negative (positive) like circulation types. This can be
explained by the strength of the westerly flow that is stronger in NAO positive
compared to NAO negative phases (Hurrell et al., 2003). For summer the weakest
influence of circulation types on the strength of internal variability is found, which
leads to the same conclusion drawn by Caya and Biner (2004) and Christensen et al.
(2001) that internal variability in summer is closely related to local processes. The
transition seasons show a mixed behavior. In both seasons circulation types with
strong westerly flows show in general weaker internal variability and vice versa.
This effect, however, becomes weaker for parameters that are more related to local
processes like precipitation. Together with a deeper analysis of the role of different
NAO phases, the processes leading to high internal variability phases are investigated
in more detail in the following chapter.



Chapter 5

The Role of Winter NAO for the
Internal Variability

In this chapter, the links between positive and negative NAO patterns with states of
weak and strong internal variability, as found in Chapter 4, are further investigated.
The winter season is selected because the relationship between NAO and internal
variability is strongest. To better understand the processes related to the generation
of internal variability a case study of a high internal variability event, during a
strongly negative NAO phase, is presented. To quantify the dependence of internal
variability on NAO phases, a daily NAO index is used and correlated with the
field-mean internal variability. Building upon a theory which links eddy-driven jet
stream regimes to different phases of the NAO, an attempt is made to diagnose
internal variability phases from an the lateral boundary data. The main research
question tackled in this chapter is: Is it possible to determine the strength of internal
variability from the variability of the boundary data? In the following Section 5.1 the
NAO and the derivation of the daily NAO index is explained. In Section 5.2 results
from the different views on internal variability are presented and conclusions are
given in Section 5.3.

5.1 The North Atlantic Oscillation (NAO)

The NAO has been intensively studied during the last decades because of its influ-
ences on the climate from the East-American coast to Siberia (see Hurrell et al.,
2003, for a review). The NAO is the predominant mode of climate variability and
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Figure 5.1: Correlation map computed from the first principle component of an EOF
analysis of winter (December to February) monthly mean mean-sea-level pressure using
ERA-40 data from 1957 to 2002.

has strong impacts on ecosystems and society, especially in winter. The long history
of NAO studies (of which some studies essentially describe the same phenomena, but
do not name it NAO) came up with different definitions of what the NAO actually
is (Stephenson et al., 2003). To date, there is no consensus on the definition but the
essential ideas of what the NAO is, are very similar. The NAO is understood as a
dipole structure of low pressure in the northern North-Atlantic with its core around
Greenland and Iceland, and high pressure in the area between the Azores and Portu-
gal. Many different indices describing the phases of this dipole exist. These indices
range from simple station based measures between Portugal and Iceland to more
complex principle component analysis of sea-level pressure or 500hPa-geopotential
height. In most cases, the correlation of these indices is quite high and can be used
interchangeable, but seasonal variations in the center of action of the NAO and noise
due to transient eddies favor gridded sea-level pressure data (Jones et al., 2003).

As mentioned earlier, the NAO explains climate variability especially in winter, and
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as such, only the winter NAO is discussed in this chapter. Figure 5.1 shows the
NAO in terms of a homogeneous correlation map of the first Empirical Orthogonal
Function (EOF) from mean-sea-level pressure anomalies. Many indices describe
two different phases of the NAO. They are generally understood as a positive and
a negative phase relative to the climate mean state.

The positive phase of the NAO is characterized by enhanced meridional pressure
gradients that results in stronger westerly winds towards northern and central Eu-
rope. As a consequence, relatively warm and moist air masses are transported into
northern and central Europe leading to wet and warm conditions in these regions.
Southern Europe simultaneously faces drier conditions. The negative phase of the
NAO, in turn, has weaker meridional pressure gradients and weaker westerlies. In
this case, central and northern Europe are under the influence of cold and dry air
masses, whereas southern Europe has more storms and wetter conditions.

The basic structure of the NAO is likely to evolve from the internal, nonlinear dy-
namics of the atmosphere, but there is evidence that it can be modulated by external
forcings like sea-surface temperature anomalies, snow pack, sea-ice extend, and trace
gas compositions (see Thompson et al., 2003, for a review). The ability to modulate
the NAO by external forcings also gives rise to the hope of some predictability of the
NAO on a seasonal to interannual basis, although it is most likely to be low (Hurrell
et al., 2003). Most indices describe the NAO as a monthly or seasonal mean be-
cause transient eddies can introduce a lot of fluctuations (or noise) on a daily basis,
especially when using station data. There are, however, important changes of the
NAO phase within one month. Therefore, daily indices have been developed.

5.1.1 The Daily NAO Index

To account for day to day variability in the NAO state, a daily NAO index is
calculated from ERA-40 data. The construction of the index used in this study, was
originally defined by Blessing et al. (2005). Here, a modified version developed by
Pinto et al. (2009) is used. The procedure of constructing the daily NAO index is as
follows: First, the first EOF from monthly mean mean-sea-level pressure anomalies
from October to March for the Euro-Atlantic sector (90°W–50°E and 20°N–80°N)
over the entire ERA-40 period (September 1957–August 2002) is calculated. Second,
the pattern of the first EOF is projected onto daily mean mean-sea-level pressure
anomalies. The daily anomalies are calculated with respect to monthly mean mean-
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Table 5.1: Definition of the different NAO phases.

Phase Index values number of days % days
NAO−− Strong negative Index < −1.5 135 7.6
NAO− Negative −1.5 ≤ Index < −0.5 443 24.9
NAO 0 Neutral −0.5 ≤ Index < 0.5 634 35.6
NAO+ Positive 0.5 ≤ Index < 1.5 462 26.0
NAO++ Strong positive Index ≥ 1.5 105 5.9

sea-level pressure data. This is followed by an 5-day running mean smoothing of the
index to minimize the influence from single transient eddies.

The calculation of the daily NAO index used in this study was performed by Pinto
(2012, pers. communication). Similar to Pinto et al. (2009), the daily NAO index is
split into five categories from strong negative to strong positive states of the NAO.
Table 5.1 shows this definition of the different NAO phases and the corresponding
index values. Column four and five give the absolute and relative number of days
for each phase from the period used for the simulation (1979 to 1988). Although
only a ten year period is investigated, the distribution of NAO phases is pretty
similar to Pinto et al. (2009) bearing in mind that they used National Centers
for Environmental Prediction (NCEP) re-analysis from 1958 to 1998. This gives
confidence that chosen period is a good representative for the entire ERA-40/NCEP
period.

5.2 Results

Before the results from the correlation of the daily NAO index defined above and the
domain averaged internal variability are presented in Section 5.2.2, a case study of
a strongly negative NAO phase which analyzes processes leading to rapid growth in
internal variability is presented in Section 5.2.1. Making use of the link between NAO
and jet stream strength, an internal variability index for predicting the strength of
internal variability is presented in Section 5.2.3.



5.2 Results 79

5.2.1 Case Study on a Strong Internal Variability Event

For a better understanding of the processes involved in the development of internal
variability and to get a glimpse on the daily and spatial variability, an extreme
episode of internal variability is presented in this section. The event takes place
between January 1 and 12, 1985 which is characterized by a strongly negative NAO
phase. Daily charts for all days of this event are shown and explained in detail in
AppendixA. A summary of the most important results and a closer look focusing on
the interplay between large and small scale processes leading to internal variability
in a case study region is given here.

To analyze the local processes that are related to the generation of internal variabil-
ity, a region in the South of Norway showing strong internal variability during the
episode is investigated. The region is indicated in FigureA.1 by the black box. Fig-
ure 5.3 shows the spatial averages of near-surface temperature (2m-T), 850hPa tem-
perature (850 hPa-T), humidity, cloud cover, wind barbs in 500hPa, and 500hPa-
geopotential height (500hPa-Φ) over South Norway. Two ensemble members that
show large differences in most of the parameters are highlighted with blue and green
lines and symbols, respectively. These two members are explored more thoroughly
in AppendixA. The ensemble spread is given as gray shaded area (except for the
wind barbs, where other ensemble members are displayed in gray).

In the beginning of the episode, the ensemble stays close together, which can be seen
by the narrow gray band in each parameter. Differences up to the 5th of January
are mostly driven by differences in the large scale flow, which can be seen in the
500 hPa-geopotential height. This leads to a relatively small spread in temperature
and humidity. During this early phase, the near-surface temperature and 850hPa
temperatures stay close together in terms of their internal variabilityṠtarting around
January 6 differences can also be seen in the 500hPa wind-direction and speed.
These differences indicate flows of different air-masses into South Norway. Drier
and colder air-masses are transported by more easterly winds, whereas warmer and
moister air-masses by more westerly winds. This results in a larger spread in cloud
cover because of the different air masses. As a consequence, near-surface temper-
ature internal variability becomes much larger than 850hPa temperature internal
variability because of large differences in the energy balance at the surface (not
shown). The near-surface temperature internal variability is now strongly modu-
lated by the cloud cover internal variability which can lead to temperature differ-
ences of up to 15K (e.g., around January 11). The near-surface temperature internal
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variability is much stronger during this phase compared to the 850 hPa temperature
internal variability. Thus 850hPa temperature internal variability is influenced more
strongly by the large scale flow internal variability.

This cloud cover feedback is most effective in snow covered areas, due to the good
insulation properties of snow. It can partly explain why the maximums in the spatial
distribution are found more towards Northern Europe and why internal variability
correlates well with snow-pack (see also Section 3.2). This feedback can be under-
stood as a local positive feedback, which injects more internal variability into the
system and modulates the internal variability coming from the large scale. It also
explains an additional part of the spread in the internal variability associated with
the circulation types in Chapter 4.

Figure 5.2 (a) shows an interesting feature of the ensemble which is a clustering of
ensemble members. Clustering suggests that there is no single solution, but also no
complete freedom in the solutions. In regards to the temporal and spatial evolution
this is expressed in the forming of clusters consisting of ensemble members that
stay close together. At the same time, the difference between these clusters is large
compared to the differences within one cluster. In Figure 5.2 (a) this behavior is
expressed by roughly three different groups of solutions. One group is formed by
the red and the black member with only one low pressure core over West Russia.
The second group consists of the orange and blue member. showing a bigger core
over West Russia and a second over the Southern Baltic Sea. The third group
shows one big system and is formed by 5 members. One member (green) is not so
easy to group because it shows a mixture between group two and three. This is
consistent to the findings of Alexandru et al. (2007) who investigate the evolution of
a low pressure system in an ensemble of regional climate model simulations. They
found a similar behavior and explain it by the existence of multiple attractors in
situations of strong internal variability. This means that during strong internal
variability events multiple states in the space of solutions emerge. However, if the
forcing becomes too weak such clusters are hard to detect as seen in Figure 5.2 (b),
where the ensemble members show a rather chaotic behavior over South Eastern
Europe. After such an event when the boundary forcing becomes stronger again,
the solution is forced back to a quasi-unique state and internal variability is low.
This behavior also explains the episodic character of internal variability.

Another feature is that the REMO ensemble can show consistently different solutions
compared to the forcing (seen at the beginning of the episode in FiguresA.2 and
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(a) (b)

Figure 5.2: Spaghetti plots for two different days during the strong internal variability
event. (a) shows the 1010hPa contour line of mean-sea-level pressure of all ensemble
members in different colors for January 6, 1985. (b) shows the same for January 12, 1985.

A.3). The differences in mean-sea-level pressure and 500 hPa-geopotential height to
the observed solution can be interpreted as model error, because it is an systematic
deviation in all ensemble members. It is important to say that this only holds for
perfect boundary conditions such as ERA-40. In the case where a global climate
model acts as a driver, differences might as well be due to errors in or insufficient
resolution of the boundary forcing.

During the entire period discussed here, the jet stream meanders quite significantly.
It is a known feature, that such situations are difficult to predict for weather forecast
models. It seems likely that situations that bare potential of non-linear behavior,
like a meandering jet, can also cause situations of high internal variability. It has
been already stated by Nikiema and Laprise (2011) and Diaconescu et al. (2012)
that non-linear processes, such as convection and hydrodynamic instabilities, are
sources of internal variability.
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Figure 5.4: Standardized anomalies of 500 hPa-geopotential height internal variability
(blue bars) and daily NAO index (green bars) for the extended winter seasons (October-
March) of all simulation years. A five day running mean has been applied to the 500 hPa-
geopotential height internal variability prior to the standardization to have a comparable
smoothing to the daily NAO index. On the upper right the linear correlation of both time
series is given.

5.2.2 Internal Variability and the Daily NAO Index

To generalize the analysis to all NAO phases, the daily NAO index introduced in Sec-
tion 5.1.1 is used and compared to the domain averaged internal variability. A time
series of standardized anomalies of the 500hPa-geopotential height internal variabil-
ity is computed followed by a five day running mean calculation, to better visualize
the correlation to the daily NAO index. The standardization of internal variability
is achieved by taking the logarithm of internal variability to get an approximate
Gaussian distribution, because the internal variability data follows approximately
a log-normal distribution. This is followed by subtracting the temporal mean and
dividing by the standard deviation of the distribution.

Figure 5.4 shows the standardized anomalies of the 500 hPa-geopotential height in-
ternal variability and the daily NAO index for the extended winter season from
October to March. Both time series are negatively correlated for periods of a cou-
ple of weeks, e.g., in winters 82/83 and 86/87. Other periods, e.g., in the middle
of winter 83/84 show no correlation or even correlations of positive sign. Overall
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the Pearson correlation coefficient of both time series is −0.51, which indicates that
negative daily NAO is correlated with positive anomalies in internal variability and
vice versa. Similar results are obtained with other parameters ranging from correla-
tions of −0.45 for near-surface temperature to −0.48 for mean-sea-level pressure (not
shown). This confirms the results from the circulation type analysis (see Chapter 4)
that NAO phases are associated with strong and weak phases of internal variability.

Using the definitions for different states of the NAO from Table 5.1, Figure 5.5, de-
picts the level of domain averaged 500 hPa-geopotential height internal variability.
For negative phases of the NAO the median of internal variability is strongly en-
hanced compared to positive phases. This Indicates that in NAO negative phases the
internal variability for 500 hPa-geopotential height is much higher, thus confirming
the circulation type analysis results. The same holds for all investigated variables
such as mean-sea-level pressure, near-surface temperature and precipitation. Nev-
ertheless, the boxplot also shows a large spread for each NAO phase; especially for
the more negative phases.

Some of the high outliers in the neutral and positive range of the NAO phase result
from transitions of longer lasting negative NAO phases to a positive phase. In the
case of neutral NAO, half of the outliers at the high end come from one event in
winter 1984/1985. Here, a phase of strong negative NAO in the beginning of 1985
is followed by a neutral to positive phase (see Figure 5.4). The internal variability
of the model stays relatively high. This can be seen as a memory in the system and
was already reported by other authors (e.g., Lucas-Picher et al., 2008a; Nikiema
and Laprise, 2011). They claim that once internal variability is present, it has to be
either dissipated or transported out of the model domain to vanish.

Memory effects, however, are not the only contributing factor to the large spread
especially in the negative NAO phases. Negative NAO phases should be more viewed
as necessary condition for high internal variability states, but low internal variability
phases are still possible. Other factors like local enhancement that can increase
internal variability drastically, as discussed in case study in Section 5.2.1.
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Figure 5.5: Boxplot of the 500 hPa-geopotential height internal variability for different
phases of the NAO. Stars mark the mean of each distribution, the read line the median
with notches marking the confidence interval using bootstrapping. The box covers the
inner quartile range and whiskers are a function of the inner quartile with a maximum
length of 1.5 times the inner quartile range. Outliers are marked with fliers.



(a) Strong negative (b) Negative

(c) Neutral

(d) Positive (e) Strong positive

Figure 5.6: Near-surface temperature internal variability in K for different phases of the NAO defined in
Table 5.1.
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Figure 5.6 shows composites of the spatial patterns of near-surface temperature in-
ternal variability for the five classes of the NAO phase. In case of a strong negative
NAO phase (Figure 5.6 (a)) the spatial pattern of internal variability shows high val-
ues of more than 1K throughout most of the land points. Over water the internal
variability is generally strongly reduced due to the prescribed sea-surface tempera-
ture that correlates strongly with the near-surface temperature(see also Section 3.1).
Maximum values of around 2.8K can be found in the Norwegian mountains. Most of
the Baltic Sea catchment area shows high levels of internal variability of more than
1.4K in the South-Western and more than 2K in the North-Eastern parts. Towards
more positive NAO the center of the pattern moves to the North and becomes much
weaker. For the strong positive NAO case the internal variability pattern does not
exceed values of more than 1K (Figure 5.6 (e)).

The patterns are very similar to the ones in Figure 4.4 (a) and (b) where the com-
posites of positive/negative NAO-like circulation types show similar results. The
differences can be partly explained by the different temporal means considered for
the plots. In Figure 4.4 (a) and (b) only a subset (December-February) of the data
used for the NAO comparison was used. As internal variability of near-surface tem-
perature is highest from December to February (see Figure 3.2 (b)) it is not surprising
that the strength of internal variability is higher in the composites of the NAO-like
circulation types. If only the overlapping period is considered, the strong negative
NAO case even reaches internal variability values of up to 3.5K west of the Baltic
Sea (not shown).

5.2.3 Diagnosing Internal Variability

The correlation of winter NAO states to the strength of domain averaged internal
variability raises the question, whether it is possible to determine the strength of
internal variability from the driving fields. As mentioned before, the mechanism
leading to strong internal variability in NAO negative states, is mainly the weaker
forcing from the predominant westerly flow compared to NAO positive states. This
is used, to construct an index based on the strength of the (unrotated) zonal wind in
500 hPa from the driving fields. To filter noise from individual synoptic disturbances,
a twenty-day running-mean is applied to the zonal wind data. In the following step,
the zonal wind is correlated with the twenty-day running-mean of domain averaged
internal variability.
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Figure 5.7 shows the Pearson correlation of zonal-wind with the logarithm of domain
averaged mean-sea-level pressure internal variability. The logarithm is used because
the distribution of domain averaged mean-sea-level pressure internal variability val-
ues is closer to a log-normal rather than a normal distribution, thus making the
Pearson correlation more meaningful. In Figure 5.7 (a) the entire period used for the
daily NAO index is presented, whereas Figure 5.7 (b) only shows the winter season.
Both periods show correlations coefficients of more than 0.6 over the Mediterranean
Sea. During December to February the correlation even reaches values up to 0.7.
The opposite correlation can be found over Scandinavia with negative correlations
of less than −0.5 for October to March. If only December to February is considered,
a wide band between 50 °N and 60 °N tilting to the North after 10 °W with negative
correlations less than −0.6 can be seen.

The correlation pattern relates well to the theory on jet stream regimes (see, e.g.,
Woollings et al., 2010a, and references therein). Woollings et al. (2010a) found out
that the variability of the North-Atlantic eddy-driven jet stream has three preferred
latitudinal positions or regimes. Here, the mean-sea-level pressure internal vari-
ability shows negative correlation with the northern regime and positive correlation
with the southern regime for the winter season. Franzke et al. (2011) show that
these regimes are closely related to a negative NAO for the Southern and positive
NAO for the Northern regime. This connection allows the usage of the zonal wind
to infer on the strength of internal variability inside the domain. The correlations
in other seasons are not as good which can be expected based on the results from
Chapter 4, where the connection of the internal variability inside the domain to cir-
culation types became weaker in the transition season and was almost absent in
summer. This also explains the weaker correlation in the extended winter season
(October-March).

This relation of zonal wind in 500 hPa from the forcing and internal variability inside
the domain can now be used to construct an internal variability index to infer on the
strength of internal variability from the driving data. Several tests were performed
to find the most promising index including different choices in height for the wind
data and using only positive or negative correlations. The best performance was
achieved by using the difference of zonal wind speeds over the maximum correlation
and anti-correlation regions. The regions are indicated in Figure 5.7 by the small
black squares. The internal variability index is defined by
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(a) October-March (b) December-February

Figure 5.7: Correlation of 500 hPa zonal wind speed and the logarithm of mean-sea-
level pressure internal variability. A twenty day running mean has been applied to both
parameters.

IVindex = {umaxcorr} − {umincorr}
umax

(5.1)

where {umaxcorr} is the box mean zonal wind speed of the maximum correlation
square and {umincorr} the box mean zonal wind speed of the minimum correlation
square. The parameter umax is used for normalization and is set to 30ms−1.

Figure 5.8 shows the internal variability index in relation to the logarithm of mean-
sea-level pressure internal variability. For both seasons a positive correlation of the
internal variability index with the strength of internal variability is seen. As expected
from Figure 5.7, the correlation is better for the meteorological winter season from
December to February with a correlation coefficient of 0.7. For the extended season
from October to March the correlation coefficient drops down to 0.61, which is once
again related to the weaker connection of domain averaged internal variability to
circulation types in the transition seasons. The internal variability index varies
between −1 to 1, where negative values usually mean a less than average internal
variability and positive values correspond to higher than average internal variability.
A multiple linear regression with using both box means as covariates was also tested,
but did not yield better results (not shown).
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Figure 5.8: Scatter plot of wind speed index calculated from the boundary forcing data
against the domain averaged square root of mean-sea-level pressure internal variability
for two seasons of the entire simulation period from 1979 to 1988. The red line indicates
the best fit of a linear regression with the Pearson correlation coefficient given on the top
right.
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5.3 Conclusions

Focusing on a specific case of a strong internal variability episode during a strongly
negative NAO phase it shows that deviations in the large scale flow between two
ensemble members can be locally enhanced by strong internal variability in the
energy budget at the surface due to cloud cover internal variability. This process
is particularly effective when the area is snow covered and can explain parts of the
large spread in internal variability associated with the circulation types discussed
in Chapter 4. Furthermore, it has been shown that there is a connection between
winter NAO and the internal variability of a regional climate model over Europe.
Using a daily NAO-index for the extended winter season October to March shows
that positive NAO phases reduce the internal variability inside the domain and
negative NAO phases result in increased internal variability, thus confirming results
from the circulation type classification found in the previous Chapter 4. For the first
time, it has been demonstrated, how to infer from the driving data onto the strength
of the internal variability inside the domain. This is achieved by constructing an
internal variability index based on the unrotated zonal wind speed in 500hPa. It
should now be possible, to use this index to determine the strength of internal
variability in winter for other decades in the ERA-40 period without running the
full ten member ensemble. There are some limitations to the usage, though: First,
the derived internal variability values can only be used for the exact same domain
and resolution. Changing the domain size and/or location would lead to a different
behavior in internal variability. Second, it is very likely that the exact numbers only
hold for REMO. A qualitative estimate though should also work for other models
using the same domain, assuming that the connection between forcing strength and
the internal variability of the model is fundamental.





Chapter 6

Conclusions

A ten member ensemble of the regional climate model REMO has been used to
investigate internal variability in terms of the ensemble standard deviation over a
European domain. The ensemble has been initialized with a one day lag and forced
with the same lateral boundary forcing during the entire integration. To the authors
best knowledge, it is the first systematic study of internal variability in a regional
climate model over Europe, which is needed in order to judge on the significance
of regional climate information. In this study, three research questions presented in
Chapter 1 are answered.

• How does internal variability change with season over Europe?

It is shown that internal variability over a European domain is similar to other
locations in the mid-latitudes. Typical is the episodic nature of internal variability
with strong and weak phases in the temporal evolution. Even after several years
of integration these phases are present. During the four meteorological seasons
similarities, but also important differences to earlier studies for other locations on
the globe has been found. In summer, the internal variability is typically large with
low temporal variability as shown by other studies, e.g., Giorgi and Bi (2000); Caya
and Biner (2004). Similarly, autumn shows expected results with roughly half the
internal variability in mean-sea-level pressure and near-surface temperature and less
than a third in precipitation compared to summer. Winter and spring in the present
study differ more from previous findings. The internal variability in mean-sea-level
pressure and near-surface temperature for these two seasons is on average slightly
stronger compared to summer, but shows a much stronger temporal and inter-annual
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variability. Only in Lucas-Picher et al. (2008b) a similar seasonal behavior has been
reported. They explained the differences to earlier studies (e.g. Giorgi and Bi, 2000;
Caya and Biner, 2004) by their substantially larger domain size. In the present study,
the domain size is comparable to Giorgi and Bi (2000), but has yearly cycles similar
to Lucas-Picher et al. (2008b). In a follow-up study, Lucas-Picher et al. (2008a)
found that internal variability is larger if the residence time of air-parcels inside the
domain is longer. Laprise et al. (2012) concluded from this finding that internal
variability inside a regional climate model domain is connected to the strength of
the lateral boundary forcing. This hypothesis has been adopted and leads to the
second research question:

• How do weather regimes influence the internal variability of a regional climate
model throughout different seasons?

A deeper analysis of the weather regimes in the lateral boundary forcing and its
connection to the internal variability has been performed using the SANDRA circu-
lation type classification. For the first time such a comprehensive circulation type
classification has been used to investigate internal variability of a regional climate
model. Results suggest that NAO positive and negative like circulation types are
linked to the strength of internal variability inside the domain during winter. Sum-
mer circulation types only marginally modulate the internal variability and thus the
main origin of internal variability in summer are most likely local processes such
as local scale variations in convection, and condensation between members of the
ensemble as shown in a case study by Nikiema and Laprise (2011). The transition
seasons spring and autumn have a mixed behavior, but significant differences in the
strength of internal variability for NAO-like circulation types have been found.

As NAO phases play an important role for the strength of internal variability, a daily
NAO index has been used to investigate the connection between NAO and internal
variability inside the model domain during the extended winter season from October
to March. Results have confirmed the findings of the circulation type classification
that strong negative NAO phases show the strongest internal variability, whereas
strong positive NAO phases coincide with weak internal variability. This can be
explained by looking at the physical processes connected to the state of the NAO.
One important feature is the strength of the eddy-driven jet stream. In NAO positive
phases the meridional pressure gradient between Iceland and the Azores is enhanced
leading to a stronger jet and thus stronger forcing from the boundary conditions.
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In NAO negative phases the pressure gradient is weakened resulting in a weaker
forcing.

The strong variability in the strength of internal variability during NAO negative
phases suggests that NAO negative phases are a necessary condition for strong
internal variability in winter, but that the reverse argument does not hold. This
means that NAO negative phases provide the right environment for strong internal
variability to occur, but other processes are needed for a growth. A case study
on a strong internal variability event showed that internal variability takes time
to develop. It also showed that local processes such as differences in the radiative
cloud forcing and small spatial deviations of fronts between the members of the
ensemble, can lead to rapid growth of internal variability. The latter finding is
in good agreement with Diaconescu et al. (2012) who showed that hydrodynamic
instabilities associated with baroclinic processes play an important role in the growth
of internal variability. To explore the potential of the connection between internal
variability and the lateral boundary forcing the final question of this study is:

• Is it possible to determine the strength of internal variability from the variabil-
ity of the boundary data?

Based on the connection between the state of the NAO and therefore between the
strength of the jet across the domain and internal variability in winter, an internal
variability index has been constructed using the zonal wind speed in 500hPa. The
index shows high significant positive correlation with the internal variability inside
the domain for the extended winter season from October to March. The correlation
is even better if only December to February is considered. With this it has been
shown for the first time that it is possible to determine the strength of the internal
variability in a regional climate model from the variability in the lateral boundary
forcing.

The index is of importance for model development, because it makes it possible
to judge on the significance of model result differences during sensitivity studies in
winter. It could also be useful for the downscaling of monthly or seasonal forecasts.
If low index values are derived from the forcing additional uncertainty from the
regional climate models internal variability could be neglected.

After summing up the most important results of the present study, it is important
to state that the usage of the internal variability index underlies certain limitations.
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The index is only valid for the winter half-year from October to March and shows
best performance from December to February. So far, it has not been validated for
other lateral boundary forcings and/or other periods such as the end of the 21st

century in climate change predictions. There is evidence from modeling studies that
the occurrence of circulation types might change in a changing climate. Demuzere
et al. (2009) found that towards the end of the 21st century western and anticyclonic
circulation types increase significantly under an A1B scenario for the extended winter
season from October to April. On the one hand, this would mean that internal
variability in the model for winter would decrease. On the other hand Demuzere
et al. (2009) state that their model showed an overall overestimation in western
circulation types during the control period and that further modeling studies are
needed to gain more robustness in their results. Nevertheless, Donat et al. (2010)
could find changes in the same direction, namely an increase of westerly flow under an
A1B scenario using an ensemble of general circulation models. Likewise, Woollings
et al. (2010b) found in a doubled CO2 experiment that NAO positive phases are
increasing, but deficiencies in modeling a correct NAO in the control run lower
confidence in this finding.

It should be in principle possible to transfer the results from the present study
to slightly larger and higher resolved domains such as MiKlip or EUROCORDEX.
The strength of internal variability would grow with a larger domain as shown by
Alexandru et al. (2007), but the timing of strong and weak phases in winter should
be similar. If the assumed relationship holds, it is possible to get an estimate for the
internal variability from a much cheaper model configuration regarding computing
time, thus allowing to get an qualitative assumption on the internal variability of
the higher resolved domain without running an entire ensemble.

Internal variability of a regional model can be largely reduced when the large scales
of the regional model are forced to the solutions of the driving model. Techniques
such as spectral nudging are an option to achieve that. The problem of forcing the
large scales is that it influences meso-scale circulations generated by the model to a
large extend – potentially suppressing circulations that are, e.g., not resolved by the
large scale forcing due to insufficient resolution. It is still under debate if deviations
of regional climate models from the large-scale flow in the forcing are due to errors
in the forcing or the regional model itself (Laprise et al., 2008). If on the one hand
the errors are due to the driving model there is even potential to correct for it in
the regional model. If on the other hand the regional model deteriorates the large
scale, a forcing of the large scales is preferable.
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The internal variability of the climate on the investigated domain is rather small
for most variables after one season and does not play a role after one year. This
means that internal variability of a regional climate model is small compared to other
sources of uncertainty such as scenario uncertainty. As mentioned above, internal
variability grows with the model domain and internal variability of the climate can
be important on very large domains used by Lucas-Picher et al. (2008b) at least on
the time scale of a decade. For some variables such as precipitation on the catchment
scale, the internal variability of the regional climate model plays an important role in
the uncertainty of the climate change signal. This has been recently shown by Braun
et al. (2012) for the North-East of Canada. For Europe internal variability seems
to be even more important, because it is already quite large in the comparably
small domain used in this study. On bigger domains with more grid points and
higher resolution (e.g., the domains used in MiKlip or EUROCORDEX), the level
of internal variability is expected to be larger and internal variability of the climate
may play a role on a European domain at least on decadal time scales.





Appendix A

Daily Charts for the Case study on
a Strong Internal Variability Event

An extreme case of an internal variability event is presented. Shown are instanta-
neous weather charts for each day at 6h from January 1 to 12, 1985. At the top
of each panel, the driving fields from the interpolated ERA-40 data are depicted.
Colored contour shades represent mean-sea-level pressure in hPa and contour lines
the 500hPa-geopotential height in gpm. In the center, the same charts from two
selected members of the REMO ensemble are shown, which show large differences
during this event. At the bottom of each panel, the internal variability of mean-sea-
level pressure MSLP and near-surface temperature NST for the entire ensemble is
depicted.

FigureA.2 shows instantaneous maps from January 1, 1985. In FigureA.2 (a) the
forcing ERA-40 data is shown (cut to the model domain). Shades depict the mean-
sea-level pressure and contour lines the 500hPa geopotential height. FigureA.2 (b)
and (c) show the same for two different members of the ten member ensemble.
FigureA.2 (d) and (e) depict the internal variability of mean-sea-level pressure and
near-surface temperature, respectively. The synoptic situation in the ERA-40 data
is a high pressure ridge stretching from the Iberian peninsula to the Arctic. A low
pressure system is located over northern Russia. In addition, a small low pressure
system is found over the German Bight.

Both REMO ensemble members show some deviations from the driving fields, but
quite good agreement amongst one another. The ridge is simulated stronger in both
members compared to the driving field. The low pressure system over the German
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Bight is missing because it is simulated further to the East and already started to
merge with the low pressure over Russia in both simulations. Most of the ensemble
members show a similar behavior so that the internal variability is low.

From the 1st to the 3rd of January the weather situation does not change drastically.
The high pressure ridge on the Western boundary stays pretty stationary, but looses
strength. The low pressure system moves southward and a high pressure system form
Siberia starts to move into the North-East corner of the domain. In the charts of
January 4 it is shown that the high pressure system moved to the Norwegian Sea,
whereas the low pressure system from Russia moved south to Italy (FigureA.5 (a)).
Low pressure over the southern North Atlantic results in an omega shaped flow
pattern.

The main features are captured by the REMO ensemble, but towards the outflow
boundary the pattern deviates more strongly compared to the days before. One
common feature is that both members do not simulate the low pressure system
over Italy. Instead, in member 1 ensemble the system moved to East Belarus (Fig-
ureA.5 (b)). For member 8 the system split into two cores with lower pressure and
centers over West Belarus and West Russia (FigureA.5 (c)). This is also expressed
in the internal variability of mean-sea-level pressure in FigureA.5 (d).

For near-surface temperature internal variability FigureA.5 (e) shows that the dif-
ferences between ensemble members are concentrated in a narrow band along the
Russian Belarus border with near-surface temperature internal variability of up to
7K. The strongest near-surface temperature internal variability is not exactly found
in the same point as mean-sea-level pressure internal variability as already seen in
the mean fields in Section 3.2, but increases consistently in the same vicinity. It is
caused by the difference in location of a front.

FigureA.1 shows the fronts of the two members using the Thermal Front Parameter
(TFP). The TFP is commonly used to detect fronts in, e.g., analysis of daily weather
charts. Here, it is calculated from the 850hPa to 1000hPa thickness. It can be seen
that both members show a front in Belarus, but in slightly different locations. This
causes the an area of near-surface temperature internal variability. This result is
consistent with a case study by Diaconescu et al. (2012) who found that a large part
of the rapid growth in internal variability is explained by baroclinic conversion.

On January 5 and 6, 1985 the high pressure over Iceland intensifies (FigureA.6 (a)
through FigureA.7 (a)) which is also simulated by the two example members (Fig-
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(a) Member 1 (b) Member 8

Figure A.1: Thermal front parameter calculated from the 850 hPa to 1000 hPa thickness
for January 4, 1985 at 6UTC and two ensemble members. The black box in each figure
indicates the area used for the investigation of local parameters used in Figure 5.3.

ureA.6 (b)–(c) through FigureA.7 (b)–(c)). This system acts as a block and lets
the pockets of internal variability develop further (FigureA.6 (d)-(e) through Fig-
ureA.7 (d)–(e)), as there is no strong constrain for the development of the low pres-
sure system south of the Baltic Sea. From January 7 to 9, 1985 the blocking high
weakens again and forms a ridge again than a separated high over Iceland. The
deviations of the members grows even larger, where member 8 resembles the forcing
data more accurate than member 1.

From January 10 to 12, 1985 the ridge moves to the British Isles. Thus still block-
ing the flow and leading to a peak in internal variability during this episode. The
REMO ensemble shows different flows inside the domain (FigureA.12). Notewor-
thy is that member 1 (FigureA.12 (b)) now shows a more consistent pattern with
the ERA-40 forcing (FigureA.12 (a)). In member 1 and the forcing a high pressure
system is located over the British Isles. Low pressure is sitting east of the Baltic
Sea, but is stronger simulated in REMO member 1. For member 8 (FigureA.12 (c))
the situation is different. Here, the low pressure system is found more to the south
forming a cut-off low with two minimums over Belarus and Italy at sea-level height.
In this realization, the high pressure is weaker and more moved to the north. This
results in near-surface temperature internal variability to become quite large (Fig-
ureA.12 (d)). Almost entire continental Europe has internal variability values with
1K and larger. Especially in regions where slight changes in wind direction cause
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the advection of quite different air masses internal variability can grow large. This
is particularly the case at the Norwegian coast. In other parts it is more difficult to
disentangle where internal variability is coming from, because of the moving pockets
of internal variability.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.2: Case study 1.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.3: Case study 2.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.4: Case study 3.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.5: Case study 4.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.6: Case study 5.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.7: Case study 6.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.8: Case study 7.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.9: Case study 8.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.10: Case study 9.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.11: Case study 10.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.12: Case study 11.1.1985.
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(a) Forcing

(b) Member 1 (c) Member 8

(d) MSLP internal variability (hPa) (e) NST internal variability (K)

Figure A.13: Case study 12.1.1985.
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