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Abstract

The topic of this study is the investigation of glacial climate variability with a

coupled atmosphere–ocean general circulation model (AOGCM) – ice sheet model

(ISM) system, focusing on one of the most prominent features of glacial climate

variability, the Heinrich events. Modeling past climates and periods of past climate

change is an important test of the capability of climate models to correctly represent

future climate changes. Only if we can correctly represent past climates and climate

changes, we can be confident about our predictions of future climate changes.

For this study, the Parallel Ice Sheet Model (PISM) was modified in order to

prepare it for coupling to a climate model. The resulting model is called modified

Parallel Ice Sheet Model (mPISM). It was coupled bidirectionally with the AOGCM

ECHAM5/MPIOM/LPJ. ECHAM5 was run in T31 resolution (∼ 3.75◦), MPIOM

on a grid with a nominal resolution of 3◦ and poles over Greenland and Antarctica,

mPISM on a Cartesian 20 km grid covering most of the northern hemisphere. The

dynamical vegetation model LPJ uses the ECHAM5-grid and provides the vegeta-

tion for the computations in ECHAM5. In the models, as well as in the coupling, no

flux correction or anomaly maps are applied. The ice sheet surface mass balance is

computed using a positive degree day scheme with lapse rate correction and height

desertification effect. The coupled system was validated by performing steady state

experiments under last glacial maximum (LGM) and pre-industrial boundary con-

ditions. In both cases, the results agree reasonably well with reconstructions and

observations. This shows that the model system is able to adequately represent

large climate perturbations that go well beyond the linear range.

The LGM simulations are not only the first coupled AOGCM–ISM LGM sim-

ulations so far, but they also are the first coupled AOGCM–ISM simulations where

Heinrich event style surges occur as internal, model generated variability. In the

model, several ice streams show repeated surges that are consequences of an internal

instability mechanism suggested by MacAyeal (1993). The surges of the Hudson

Strait Ice Stream reach discharge rates of 0.06 Sv and show a typical recurrence

interval of 7 kyrs, matching the basic characteristics for Heinrich events inferred

from proxy data.

The timescale of the repeat cycle is set by the time it takes surface accumula-

tion to build up the ice sheets again after a surge. The surges initiate at the ocean

boundary and propagate upstream, allowing for ocean-triggering and thus for an

explanation for the occurrence of Heinrich events during the Dansgaard-Oeschger

cold periods and for the observed synchronization of ice sheet discharges from dif-

ferent regions (e. g. Calov et al., 2002). The fact that no such triggering takes place

in the simulations is, at least in parts, due to the lack of Dansgaard-Oeschger cycles

in the coupled model, a general problem of modern AOGCMs (Valdes, 2011), but

it is also due to the low sensitivity of the ice sheet model to ocean temperature

changes.

ix



x ABSTRACT

The surges of the Hudson Strait Ice Stream cause changes in the climate system

that are consistent with the proxy reconstructions for Heinrich events. The large

ice discharge during a surge of the Hudson Strait Ice Stream causes an expansion

of the sea ice cover. The freshwater, that is released when the ice melts, stabilizes

the density stratification in the northern Atlantic. This weakens the north Atlantic

deep water formation and the Antarctic Bottom Water cell strengthens. With

the increase in sea ice cover and the decrease in deep water formation, the air

temperatures over the northern Atlantic decrease. This cooling spreads downwind

into Eurasia. The lower temperature and the increased sea ice cover cause a decrease

in evaporation over the northern Atlantic and the Nordic Seas. This results in

decreased precipitation over Eurasia and the forest cover over Eurasia decreases.

There are large scale surges in several parts of the ice sheets. They add long-

term variability to the climate system by influencing the ocean circulation and the

sea ice cover. The ice streams feeding into the Arctic Ocean dominate the variability

of the sea ice discharge from the Arctic Ocean on decadal and longer timescales.



CHAPTER 1

Introduction

One of the key questions in future climate predictions is the evolution of the

sea level. The ice sheets in Greenland and Antarctica store enough water to raise

the global sea level by 63.9 m (Solomon et al., 2007). While at least Antarctica is

not expected to melt completely, the contribution of the ice sheets to the global sea

level rise is only poorly constrained and could sum up to several meters over the

next centuries to millennia (e. g. Ridley et al., 2005; Vizcáıno et al., 2008; Bamber

et al., 2009). Solomon et al. (2007, page 821) summarized: Further accelerations in

ice flow of the kind recently observed in some Greenland outlet glaciers and West

Antarctic ice streams could increase the ice sheet contributions substantially, but

quantitative projections cannot be made with confidence. To predict the future sea

level, it is crucial that we develop reliable coupled ice sheet – climate models.

From a European perspective, another key question regarding the future evo-

lution of the climate system is the strength of the Atlantic Meridional Overturn-

ing Circulation (AMOC). It presently transports about 1.3 PW of heat northward

across 26◦N (Johns et al., 2011) and contributes strongly to the mild climate in

Europe. Weaver et al. (2012) summarized that in the models participating in the

Coupled Model Intercomparison Project Phase 5 (CMIP5), the AMOC weakens

in the future with stronger changes for stronger greenhouse gas forcings. While

all models show a weakening AMOC, they do not show a sudden collapse of the

AMOC. Weaver et al. noted that none of the models in the CMIP5 comparison

include the effects of the melting ice sheets. While the AMOC seems to have been

stable in the Holocene, there is strong indication that during the last glacials the

AMOC was not stable and fast changes of the AMOC caused strong, sudden climate

changes (see Rahmstorf, 2002; Clement and Peterson, 2008 for reviews). According

to our current understanding, these processes were strongly related to interactions

of the atmosphere and oceans with ice sheets.

To gain confidence in our predictions of the future climate and the future inter-

action of ice sheets with the atmosphere–ocean system, it is necessary that we are

able to correctly model the past periods with climates that are strongly different

from the present-day climate and the past rapid climate change periods (Valdes,

2011; Braconnot et al., 2012). The last glacial is characterized by a climate that

strongly differs from the present day climate and by rapid climate change events.

Because the last glacial still is very recent from a geological perspective, the proxy

coverage is comparatively good, so the model results can be compared to (albeit

indirect) observations. The last glacial therefore is ideally suited for advancing our

understanding of ice-climate interactions and putting ice sheet and climate models

to the test.

1.1. Ice sheets

Ice sheets are continental scale (> 50 000 km2) ice bodies that move under

their own weight. They gain mass by surface accumulation of precipitation and

11
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Figure 1.1. The most important processes in the present day ice sheets. Figure taken

from Eamar et al. (2007)

lose mass by melt and by ice(berg) calving (fig. 1.1, see the textbooks by Paterson,

1994 and Benn and Evans, 2010). Presently, the only ice sheets on Earth are

the Greenland Ice Sheet and the Antarctic Ice Sheet. During Glacials, further ice

sheets covered large parts of North America, Scandinavia and northern Siberia (e. g.

Peltier, 2004). Smaller ice masses that overlie the topography are called ice caps.

Their even smaller relatives that are constrained by adjacent mountains are called

glaciers.

Driven by its own weight, the ice moves from accumulation areas in the higher

lying parts of a glacier or ice sheet to the low-lying margins. In most cases, the ice

flow direction is determined by the surface gradient, in some regions of fast ice flow,

membrane stresses inside the ice become dominant. The flow speed is controlled

by a variety of factors, most notably the ice sheet thickness, the magnitude of the

surface slope, the temperature distribution inside the ice, and, last but not least,

sliding at the base of the ice sheet. This sliding can occur by sliding over a hard

bedrock interface, or by deformation of subglacial sediments.

Snow that falls on the ice sheet slowly is compacted and turns into ice. Snow

that has survived one summer melt season is called firn. It is considered ice, when

the pore spaces between the snow grains become sealed off and air enclosed between

the grains cannot move any longer. In Antarctica, where, in most parts, surface

temperatures constantly are sub-freezing, this process can take thousands of years.
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In the Vostok ice core the transition occurs at a depth of 95 m and a snow age of

2500 years (Barnola et al., 1987; Paterson, 1994). In areas with liquid precipitation

or summer melt the transition from snow to ice occurs within a few years (Pater-

son, 1994). When rain falls on the surface of the ice sheet and the ice surface is

sufficiently cold, the water can freeze on. This is most effective in snow, where the

water is caught in the sponge-like matrix.

Ice is categorized based on its temperature as cold ice or temperate ice. Cold

ice has a temperature below the pressure melting point and does not contain liquid

water in the ice matrix. Temperate ice is at the pressure melting point and contains

small amounts (up to a few percent) of liquid water in the ice matrix. In general,

it is assumed that the viscosity of ice decreases exponentially with growing tem-

perature (Paterson, 1994). When modeling temperate ice, it is possible to extend

this into the temperate regime by using the combined enthalpy of ice and pore

water (Aschwanden et al., 2012). This allows to seamlessly model the decreases in

viscosity caused by the pore water.

At the surface of an ice sheet, the accumulation competes with ablation. When

the air temperature exceeds the melting point, or when there is sufficient radiative

heating, the snow at the surface melts and liquid water is released (see Hock, 2005

for a review). This water forms little rivers on top of the ice sheet that can cut into

the ice and force their way to the base (Gulley et al., 2009). On its way down, the

water can affect the ice sheet by warming and thus softening the ice adjacent to the

channels (Phillips et al., 2010). Depending on the model used, studies with regional

climate models show that between a third and half of the surface accumulation of

the Greenland Ice Sheet melts before reaching the ocean (Ettema et al., 2009). The

remainder flows into the ocean in outlet glaciers. In Antarctica practically all mass

losses occur as iceberg calving and shelf basal melt (e. g. van de Berg et al., 2006;

Rignot et al., 2008).

Regions in ice sheets, where the ice is sliding at the base and thus reaches high

flow velocities are called ice streams. Basal sliding mainly occurs when the base of

the ice sheet is temperate and there is water available to lubricate the flow (e. g.

Lliboutry, 1968; Iken, 1981; Blankenship et al., 1986; Alley et al., 1986; Benn and

Evans, 2010). While ice flow by internal deformation in an ice sheet usually stays

in the range of a few meters per year, ice streams reach velocities of kilometers per

year. They therefore strongly contribute to the ice discharge from ice sheets (see

Rignot et al. (2008) for the velocities and drainage of the Antarctic Ice Sheet). This

makes the representation of ice streams a key problem in ice sheet modeling.

The boundary between the ice sheet that is grounded on bedrock and the

floating ice shelf is called the grounding line. While in the grounded ice sheet,

the ice flow is slowed down by basal friction, the ice shelf is floating freely on

the ocean, and thus only membrane stresses in the ice can act to slow down its

spreading. These membrane stresses arise when the ice shelf (or the floating part

of a glacier tongue) is in contact with lateral walls of an embayment (fig. 1.2) or

is grounded locally on bedrock rises. The ice shelf acts as a plug, slows down the

ice flow across the grounding line and thereby slows down the entire glacier or ice

stream. This effect is called buttressing. For glaciers feeding into Larsen B Ice Shelf,

Scambos et al. (2004) showed an up-stream increase in ice flow velocities following

the breakup of the ice shelf. Similar effects have been observed at other outlets in

Antarctica (Pritchard et al., 2012) and Greenland (Howat et al., 2005) when ocean

melt thinned the ice shelves, respectively the floating tongues of outlet glaciers.

The synchronous retreat of several southeast Greenland glaciers was linked to a
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Figure 1.2. Helheim Glacier in southeast Greenland flowing from left to right. The

photo was taken by the ASTER sensor on NASA’s Terra satellite on July 7, 2003, the

black line shows the glacier margin on May 12, 2001, the blue line shows the glacier

margin on June 19, 2005. Image from http://earthobservatory.nasa.gov/IOTD/view.

php?id=6207. See Howat et al. (2005)

brief period of enhanced access of warm Irminger Current water to the Greenland

coast and, following from that, increased melting at the ice tongues of the glaciers.

When the coastal waters cooled again, the glaciers slowed down again (Murray

et al., 2010). Thus, the interaction between the ocean and the ice sheets is of prime

importance for the prediction of the future ice sheet evolution and thus for the

prediction of the sea level.

In an idealized, two-dimensional ice sheet extending infinitely in one horizontal

direction, the buttressing effect is missing. In such a setup, the ice flow across the

grounding line increases with the ice thickness at the grounding line. Weertman

(1974) showed the instability of a two-dimensional ice sheet on a retrograde slop-

ing bed, as it is the case for the West Antarctic Ice Sheet (WAIS). Since then,

the question whether the WAIS is susceptible to a runaway collapse is an impor-

tant question in Glaciology (e. g. Schoof, 2007). This question becomes even more

important since we observe increasing shelf basal melt at Antarctica, and with it

speed-ups of the glaciers feeding into the shelves (Pritchard et al., 2012). Further-

more, climate models predict an increase in shelf basal melt due to changing ocean

currents for the future (Hellmer et al., 2012). Recent works by Gudmundsson et al.

(2012) and Gudmundsson (2013) showed that in three-dimensions ice sheets can be

stable on retrograde sloping beds, so the future of the WAIS remains unknown and

models that have proven to correctly reproduce past ice-ocean interaction and ice

sheet collapse events are needed.

http://earthobservatory.nasa.gov/IOTD/view.php?id=6207
http://earthobservatory.nasa.gov/IOTD/view.php?id=6207
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1.2. Ice sheet models

Modeling ice sheets consists of solving the coupled thermomechanical problem

inside the ice sheet and modeling the evolution of the boundary conditions at the

ice sheet surface, the base and the lateral margins.

For each of these problems models with varying degree of sophistication exist.

Simple models can model the evolution of Antarctica over millions of years (e. g.

Pollard and DeConto, 2009), while complex models are used for modeling one time

slice of a single outlet Glacier (e. g. Morlighem et al., 2010).

Depending on the time interval covered in a simulation, different methods are

used to determine the surface mass balance ranging from empirical parametriza-

tions based on latitude and height (Pollard and DeConto, 2009) to fully coupled

AOGCM–ISM simulations with energy balance schemes operating on the six-hourly

AOGCM output downscaled to the highly resolved ISM grid (Vizcáıno et al., 2010).

More details on coupled models are given in section 1.6.

Inside the ice sheet, the ice flow is a coupled thermomechanical problem with

non-newtonian rheology. The momentum balance in the Navier Stokes equation

becomes a force balance by neglecting the time derivatives. The Coriolis force, that

is important in atmosphere and ocean dynamics, is neglected too. The remaining

equation is called the Full-Stokes equation (all terms in (1)). The divergence of the

deviatoric stress tensor (∇ · τ , left-hand side) balances the pressure gradient (∇p,
right hand side) and gravitational force (ρg, right hand side). Full-Stokes models

solve this equation but are computationally very expensive and usually only used

to model single outlet glaciers. In so-called Higher Order (Blatter-Pattyn) Models

(Blatter, 1995; Pattyn, 2003), only the gray terms in (1) are neglected. These

models can nowadays be used in multi-millennial simulations of the Greenland Ice

Sheet (e. g. Fürst et al., 2013). In most parts of the interior of an ice sheet, the ice

is frozen to the base or the base is so rough that the ice can not slide over it. The

driving stress is balanced locally. Therefore all membrane stresses can be neglected,

and the stress balance in the ice is a purely local problem. This case is dealt with

in the so-called shallow ice approximation (SIA), consisting of the red and black

terms in (1) (Hutter, 1982). In contrast, in ice shelves and glaciers, the ice slides

over its base and the vertical shear of the horizontal velocity can be neglected. The

ice flow can be dealt with as a two-dimensional plug-flow problem and is described

using the shallow shelf approximation (SSA, blue and black terms of (1), Hutter,

1982; MacAyeal, 1989).

(1)

∂
∂xτxx + ∂

∂y τxy + ∂
∂z τxz = ∂

∂xp
∂
∂xτxy + ∂

∂y τyy + ∂
∂z τyz = ∂

∂yp
∂
∂xτxz + ∂

∂y τyz + ∂
∂z τzz = ∂

∂zp + ρg

Schoof (2006) showed that the domains of SIA and SSA have practically no overlap

in ice sheets and therefore the two approximations can be combined in one model.

This is done in the Parallel Ice Sheet Model (PISM) (Bueler and Brown, 2009;

Winkelmann et al., 2011; the PISM authors, 2013). A standard way to model the

relationship between stress τ and strain rate ε̇ is the use of Glen’s flow law

(2) ε̇ = A(T )τ
(n−1)/2
II τ

with τII = 1
2

∑
i,j τ

2
ij as second invariant of the stress tensor. The exponent n is

usually assumed to be 3. The temperature dependence is commonly modelled using
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an Arrhenius-type law

(3) A(T ) = A0 exp

(
− Q

RT

)
,

with A0 being a constant in Pa−n/yr, and the Q activation energy (J/mol) and R

the gas constant (J/mol/K).

Ice sheet models that can handle both cold and temperate ice are called poly-

thermal. PISM uses the ice enthalpy instead of the temperature and thus can

model cold and temperate ice without explicitly tracking the boundary between

cold and temperate ice as it is done in the widely used polythermal ice sheet model

SICOPOLIS (Greve, 1997).

The basal melt of ice shelves is usually prescribed, or uses simple parametriza-

tions based on nearby ocean temperatures (e. g. Álvarez Solas et al., 2011), since

there are only few observations (Jenkins et al., 2010) and correctly modeling the

flow below ice sheets is very challenging because it requires (a) a very high model

resolution, (b) knowledge of the seafloor topography and the base of the ice sheet

on a high resolution, and (c) an ocean model that can handle the ice shelf as a

boundary. While (a) and (b) are general modeling problems where some com-

promises can be made, (c) rules out most global ocean models. One exception is

FESOM (Timmermann et al., 2009; Hellmer et al., 2012), the ocean model of the

Alfred Wegener Institute for Polar and Marine Research (AWI). There are regional

models ocean models that can handle ice shelves (e. g. Holland et al., 2008; Hellmer

et al., 2012). A coupled ice-shelf ocean model study for an idealized geometry is

presented in Goldberg et al. (2012a,b).

On the land, the isostatic response of the bedrock to the weight of the ice has

to be taken into account. We still observe local sea level lowering in Canada and

Scandinavia because of the post-glacial rebound from the last ice age. There are

various ways of representing the properties of the lithosphere and the underlying

Asthenosphere (Le Meur and Huybrechts, 1996). A common method in glaciology

is to use a local rebound model with a rebound timescale of 3000 years, called Local

Lithosphere, Relaxed Asthenosphere (LLRA) in Le Meur and Huybrechts (1996).

This is the method we chose in our experiments.

1.3. The climate of the Last Glacial Maximum

About 2.5 million years ago, the first large ice sheets formed in the northern

hemisphere. Since then, there was cyclic growth and decay of large-scale ice sheets,

first with a dominant period of 41 kyrs. In the last ∼ 1.2 Mio years the duration of

the ice age cycles varied between 80 and 120 kyrs with a dominant period of 100 kyrs,

matching the different periods of the Milanković cycles of insolation (Milanković,

1941; Clark et al., 1999). The concentration in greenhouse gases covaried with

the growth and decay of the ice sheets with low greenhouse gas concentrations

during times of large ice sheets, and high greenhouse gas concentrations during the

interglacials (fig. 1.3). The last glacial ice sheets started growing about 116 kyrs

ago (Waelbroeck et al., 2002). They reached a maximum volume about 21 kyrs

ago during the Last Glacial Maximum (LGM) followed by a deglaciation between

20 kyrs ago and 7 kyrs ago (Denton et al., 2010). The shape of the ice sheets up

to the LGM is only poorly constrained, since many proxies can only show when

an area was ice-free again (Kleman et al., 2010). The deglaciation is much better

covered (Stokes and Tarasov, 2010).
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Figure 1.3. Variations of deuterium (δD; black), a proxy for local temperature, and

the atmospheric concentrations of the greenhouse gases CO2 (red), CH4 (blue), and

(N2O; green) derived from air trapped within ice cores from Antarctica and from re-

cent atmospheric measurements The stack of 57 globally distributed benthic δ18O ma-

rine records (dark grey), a proxy for global ice volume fluctuations (Lisiecki and Raymo,

2005), is displayed for comparison with the ice core data. Downward trends in the ben-

thic δ18O curve reflect increasing ice volumes on land. Note that the shaded vertical

bars are based on the ice core age model (EPICA Community Members, 2004), and that

the marine record is plotted on its original time scale based on tuning to the orbital

parameters (Lisiecki and Raymo, 2005). The stars and labels indicate atmospheric con-

centrations at year 2000. Figure taken from Solomon et al. (2007, Fig. 6.3), the caption

was shortened.

The climate of the LGM was strongly shaped by the low greenhouse gas con-

centrations (fig. 1.3) and the large ice sheets (see figs. 3.9, 3.15, and 3.16 for recon-

structions) covering present-day Canada (Laurentide Ice Sheet, the part covering

the Canadian Arctic Archipelago is also called Innuitian Ice Sheet), Fennoscandi-

navia and the Barents Sea (Fennoscandian Ice Sheet). The Antarctic Ice Sheet also

increased in volume during this period. The water stored in the ice sheets caused

a sea level decrease by about 120 m (Peltier, 2002; Solomon et al., 2007). The low

greenhouse gas concentration caused a global cooling and accounts for about half of

the temperature difference between the pre-industrial and the LGM climate (Otto-

Bliesner et al., 2006). The high altitude and albedo of the ice sheets led to a strong

amplification of the cooling in the northern hemisphere (Abe-Ouchi et al., 2007).

With the cooling came a decrease in precipitation. The forests on the northern

hemisphere retreated southward and gave room to steppes (Prentice et al., 2000).

There is general agreement that the North Atlantic Deepwater (NADW) cell

during the LGM was shallower than it is today. Because of its shallowness, this cell

is often called Glacial North Atlantic Intermediate Water (GNAIW) cell (Lynch-

Stieglitz et al., 2007). We will call it NADW cell in the following, since it corre-

sponds to the NADW cell, and, in our simulations, is very similar to the present

day NADW cell. While in a review article (Lynch-Stieglitz et al., 2007) came to the
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conclusion, that the NADW cell was neither extremely sluggish, nor an enhanced

version of the present-day circulation, even this basic statement is not consensus.

Lippold et al. (2012) analyzed the ratio between 231Pa and 230Th in sediment cores

from the Atlantic, and, using a zonally averaging forward proxy model, concluded

that the NADW formation during the LGM was shallower than the present-day

NADW formation, but stronger. They obtained optimal model-data fits for values

between 22 and 30 Sv, compared to present-day values of 18.7 ± 2 Sv at 26.5◦N

(Kanzow et al., 2010). To test the behavior of climate models in this respect, as

part of the Paleoclimate Modelling Intercomparison Project Phase II (PMIP 2,

Crucifix et al., 2005), several climate models were forced with LGM boundary con-

ditions and their NADW cell strength was compared (Weber et al., 2007). Some

of the models in this comparison showed an increase in NADW cell strength while

others showed a decrease. In ocean-only GCM experiments, with varying bound-

ary conditions, Oka et al. (2012) analyzed the effect of the surface forcing on the

NADW strength. They tested linear combinations of present-day and glacial maxi-

mum boundary conditions. In their experiments, the NADW cell strengthened for a

moderate cooling. For a stronger cooling, the NADW cell reached a maximum and

with further cooling switched into a weak mode. Depending on the other boundary

conditions, this switching occurred for intermediate, or colder-than-glacial bound-

ary conditions, indicating that coupled models that show a stronger NADW cell

under LGM boundary conditions could show a weaker NADW cell for colder forc-

ings. On the other hand, ocean-only models are known to show an overly strong

switching behavior (Weaver et al., 1991; Zhang et al., 1993; Marotzke, 2012). While

the NADW cell shallowed during the LGM, the Antarctic Bottom Water (AABW)

cell increased in strength (Duplessy et al., 1988; Lynch-Stieglitz et al., 2007; Negre

et al., 2010).

The glacial was not a smooth cooling up to the LGM and then a smooth

warming back to present day conditions, but showed massive rapid climate change

events. During the Dansgaard-Oeschger events, Greenland air temperatures in-

creased by up to 10 K within a few decades (Dansgaard et al., 1984, 1993; see

Clement and Peterson, 2008 for a recent review). This rapid warming was followed

by a slow cooling over the next centuries. Dansgaard-Oeschger events recurred

quasi-periodically with a repeat period of about 1500 years. The cold periods are

called stadials, the warm periods are called interstadials. The events were not only

recorded in Greenland but can be traced all over the globe. They commonly are

linked to rapid reorganizations of the AMOC. Similar climate features have been

created in Earth System Models of Intermediate Complexity (EMICs, Claussen

et al., 2002) by prescribing alternating freshwater flux anomalies over the northern

Atlantic (Ganopolski and Rahmstorf, 2001), but have not yet been observed as

internal variability of climate models. Up to now, no modern AOGCM has shown

such switching behavior. During some of the stadials, large amounts of ice rafted

debris were deposited on the Atlantic seafloor. The events during which these layers

were deposited are called Heinrich events.

1.4. Heinrich events

Heinrich events are climate change events that occurred quasi-periodically dur-

ing glacials (e. g. Rahmstorf, 2002; Marshall and Koutnik, 2006; Clement and Peter-

son, 2008, for overview articles). Their duration is estimated anywhere between cen-

turies and millennia. They are named after Hartmut Heinrich, who found sediment

layers containing ice rafted debris (IRD) and cold-dwelling planktic foraminifera in
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sediment cores from off the Iberian coast of the Atlantic. The increase in ice raft-

ing and the cold surface water conditions were related to a strong reduction of the

NADW formation that led to global climate changes. During the last glacial, six of

these events occurred. They are commonly named H1–H6 with H1 as the youngest

event. Hemming (2004) listed their ages as 16 800, 24 000 ∼31 000, 38 000, 45 000,

and ∼60 000 years before present. The Younger Dryas event (13 000–11 500 years

before present; Carlson et al. (2007)) sometimes is considered as seventh Heinrich

event (H0).

While Heinrich (1988) dated the IRD layers to be matching the precessional

cycles, later research indicated them to occur at multiples of 7000 years (Broecker

et al., 1992; Bond et al., 1992; Grousset et al., 1993; Hemming, 2004; Clement and

Peterson, 2008). Chemical analyses of the sediments and analyses of the thickness

distribution of these sediment show that they mainly stem from the Hudson Strait

Ice Stream. Recent analyses found contributions of several other ice stream systems,

such as the McClure Strait Ice Stream (Stokes et al., 2005), Mackenzie and the

Amundsen Gulf Ice Streams (all draining the Laurentide Ice Sheet into the Arctic

ocean, see fig. 3.14(a)), and the Innuitian Ice Sheet covering the Canadian Arctic

Arcipelago (Darby and Zimmerman, 2008), the British Islands Ice Sheet and the

Fennoscandian Ice Sheet as well as from the Iceland and Greenland Ice Sheets (Peck

et al., 2006). Hemming (2004) provides a thorough review of the compositions of

the Heinrich layers, Stanford et al. (2011) detail on the sequence of events during

HE1.

In 1993, Douglas R. MacAyeal proposed the Heinrich events to be the result of

internal oscillations of the Laurentide Ice Sheet (MacAyeal, 1993). In his model, the

Laurentide Ice Sheet grows until the insulating effect of the ice sheet together with

the geothermal heat flux and shear heating in the ice cause the base of the ice sheet

to melt and thereby create a sub-glacial layer of liquid water. In areas where the ice

sheet base consists of sediments, an ice stream forms. The ice stream drains the ice

sheet more efficiently and thereby lowers the ice sheet surface, creating a steeper

temperature gradient between the base and the ice sheet surface. The drainage of

the ice sheet and the basal melting advect cold ice downward. Together with the

steepened thermal gradient, this cools the base of the ice sheet, so it refreezes and

the ice sheet builds up again.

MacAyeal (1993) analyzed the binge-purge oscillations in an analytical model.

The same concept was proved to work in a fully 3-D setup by the work of Calov

et al. (2002), who showed that the combination of the ISM SICOPOLIS and the

EMIC CLIMBER can generate quasi-periodic collapse events that match the basic

requirements from proxy interpretations. They obtained surge repeat intervals

of about 7000 years with surges lasting for centuries and discharging 5–10 m sea

level equivalent of ice. They furthermore showed that their model is sensitive to

triggering at the mouth of the Hudson strait and thus provides the basis for a

mechanism that triggers surges during the Dansgaard-Oeschger cold periods and

for synchronization of different ice streams through teleconnections.

One problem with the MacAyeal (1993)-model is that it does on its own not

explain for the occurence of Heinrich events during Dansgaard-Oeschger stadials,

nor for the synchronous surges of several different parts of the ice sheets. Christina

L. Hulbe proposed two mechanisms based on ice shelves. In Hulbe (1997) she

proposed a mechanism with constant discharge from the ice sheet. During the cold

stadials, basal freeze-on on the ice shelf allows sediments to get enclosed in ice and

then transported over larger distances. During the warmings following the Heinrich
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events, the ice shelf would retreat again. This model has the advantage, that it

explains the occurence of Heinrich layers during the stadials, but also has clear

weaknesses. One is that it does not explain for sea level rises found to have occured

during the Heinrich events (e. g. Chappell, 2002; Marshall and Koutnik, 2006).

Although the error bars on the sea level rise estimates are of the same magnitude

as the estimates, Hulbe (1997) has not found much support in the Heinrich event

community and consequentially does not appear in the reviews by Marshall and

Koutnik (2006) or Clement and Peterson (2008).

After the breakup of Larsen B, Hulbe et al. (2004) suggested an analogous ice-

shelf breakup as cause of Heinrich events, but still maintained the ice sheet itself as

stable. Again, an ice shelf would obviously be voulnerable to ocean forcings, mak-

ing it easier to explain for the occurence of Heinrich events during stadials and for

synchrounous timing of different ice rafted debris sources. Alley (2005) comment

on this publication and explain their doubts against the model on several lines,

including the occurence of planktonic foraminifera in the Labrador sea at the onset

of Heinrich events. They point out their previous publications that suggest pos-

sibilities for triggering of a loaded MacAyeal (1993)-style oscillator. As mentioned

before, this problem was also tackled successfully in Calov et al. (2002).

Álvarez Solas et al. (2010, 2011) picked up on Hulbe et al. (2004), but instead of

keeping the ice sheet discharge constant, they proposed that the waxing and wain-

ing of a massive Labrador Sea Ice Shelf modulated the discharge from the Hudson

Strait Ice Stream. The waxing and waining of the ice shelf is controlled by the shelf

basal melt, which in turn is controlled by the ocean sub-surface temperature. The

sub-surface ocean temperature is strongly influenced by the stability of the vertical

stratification in the northern Atlantic, which is to a large degree controlled by the

freshwater fluxes into the northern Atlantic. For HE1, Álvarez Solas et al. (2011)

suggested that the deglacial melting of the Fennoscandian Ice Sheet provided a

freshwater flux that was strong enough to stabilize the layering in the northern At-

lantic and thus to cause a sub-surface warming. The warm sub-surface water would

then remove the hypothesized Labrador Sea Ice Shelf and allow the Hudson Strait

Ice Stream to flush the Hudson Bay into the Northern Atlantic. They support their

hypothesis with simulations where the ice sheet model GRISLI is forced with results

from the EMIC CLIMBER3α. By adjusting the surface windstress, CLIMBER3α

was brought into a bistable regime, where moderate changes in the surface fresh-

water fluxes are able to force the model to transition between a state with active

deepwater formation in the northern Atlantic and cold sub-surface conditions on

the one hand, and a state with a stable stratification and warm sub-surface condi-

tions on the other hand. These two states were then used as a forcing for GRISLI.

With the cold sub-surface conditions, a massive ice shelf built up in the Labrador

sea that reached over to Greenland with a thickness exceeding 500 m and pushed

back on the Hudson Strait Ice Stream. When the boundary condition was switched

to the warm sub-surface temperature the ice shelf disintegrated and the Hudson

Strait Ice Stream sped up.

Barker et al. (2010) analyzed benthic foraminifera from the southern Atlantic.

They found signals for an exceptionally deep NADW cell after HE1 and HE4, indi-

cating a strong NADW formation that overshot after the Heinrich events. This

matches with the exceptionally strong Dansgaard-Oeschger warmings following

Heinrich events.
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1.5. Freshwater hosing experiments

Before Heinrich events were found, the Younger Dryas event was known and its

origin was related to massive freshwater discharges into the Atlantic ocean. This

led to a series of experiments that investigated the bistability of the AMOC, its

sensitivity to freshwater forcings and the consequences of an AMOC shutdown in

the climate system. The experiments where an additional freshwater is applied to

an ocean model became known as (freshwater) hosing experiments. In the following

we briefly outline the research that led to this concept and the history of freshwater

hosing experiments.

Manley (1965) analyzed European climate proxies and linked the Younger

Dryas cold event to increased pack-ice, drift-ice and cold water in the North Atlantic

(page 364) and the onset of a vigorous zonal type of meteorological circulation, with

its associated eastward displacement of the prevailing Icelandic low and with this a

fall of the average summer temperature [...] (page 365). Mercer (1969) picked up

on these findings and suggested that a sudden increase in the North Atlantic ice

occurred when ice shelves that had formed in full-glacial time in the Arctic ocean,

and probably in the northern Norwegian Sea also, began to disintegrate (page 229).

Based on Mercer (1969), and the works by Stommel (1961) and Rooth (1982)

who showed and analyzed the possibility of multiple steady states of the Atlantic

Meridional Overturning Circulation (AMOC) in box models, and on a sugges-

tion by Oeschger, that the oscillations found in Greenland ice cores (and later

named Dansgaard-Oeschger cycles) were caused by cycling between two modes of

ocean-atmosphere-biosphere-cryosphere operation (Broecker et al., 1985, page 25).

Broecker et al. (1985) suggested that the climate oscillations in the Atlantic region

are caused by an oscillation of the AMOC. They suggested that the normal and

reversed mode of Stommel’s box model correspond to the present day and a glacial

AMOC, and that the Dansgaard-Oeschger cycles were caused by cycling between

these two modes. Their proposed mechanism for this cycling involved the AMOC

and the ice sheets at the Atlantic coasts. In its active mode, the AMOC transports

large amounts of heat northward. They suggested that this heat melted the adja-

cent ice sheets and thereby caused a freshwater release that weakened the AMOC.

The subsequent cooling reduced the ice sheet melt and allowed the ice sheets to

recover. The reduced melt in turn allowed the AMOC to recover and the cycle

started over again.

Bryan (1986) put the box model of Rooth (1982) to the test in an OGCM

experiment with an idealized, 60◦ wide and 5000 m deep ocean basin. He found

stable solutions for a symmetric and for an asymmetric ocean circulation depending

on the initial salinity distribution. The experiment still suffered from the idealized

geometry, the missing feedback between temperature and evaporation and the lack

of an atmosphere model.

Manabe and Stouffer (1988) found two stable AMOC states in their coupled

AOGCM. Started from two different sets of initial conditions, their model either

showed an active or a collapsed AMOC. The experiment with the collapsed AMOC

state showed a northern hemisphere cooling relative to the experiment with the

active AMOC state. This cooling basically agrees with the proxy reconstructions

of the Younger Dryas cold event.

Maier-Reimer and Mikolajewicz (1989) studied the amount of freshwater input

into their OGCM necessary to shut off the AMOC. They showed that the ice sheet

melt fluxes associated with the deglaciation would be strong enough to have caused
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the Younger Dryas cold period. In their study, they varied the amount of freshwater

released between 0.007 Sv and 0.6 Sv and tested three locations for the freshwater

release (a) the St. Lawrence River, (b) the Mississippi and (c) a combination of St.

Lawrence, Mississippi and the Norwegian sea. In (c), a 0.6 Sv forcing was applied

and the thermohaline circulation collapsed within 10 years. The other freshwater

releases were smaller but most of them were strong enough to severely reduce

the northward heat transport. The ocean responded faster and more sensitive

to freshwater releases at the St. Lawrence river than to releases at the Mississippi.

While Maier-Reimer and Mikolajewicz (1989) experimented with different time-

constant freshwater forcings, the potential for multistability of the ocean circulation

under the same forcing was shown by Mikolajewicz et al. (1993). To construct a

climate forcing, they used the OGCM LSG to diagnose freshwater fluxes in an

experiment with temperature and salinity restoring to present day values. When

forced with temperature restoring and the diagnosed freshwater fluxes, LSG showed

three different, stable ocean circulation states, (1) an on state, similar to the present

day ocean circulation, (2) a reduced state with weak NADW formation and and

stronger AABW formation than in the on state, and (3) an off state without NADW

formation, similar to the present day Pacific Ocean.

In a simplified geometry setup with a parametrized atmosphere Rahmstorf

(1994) obtained different NADW states in an OGCM for an identical surface forcing

and was able to transition between them by applying freshwater forcings. The

strength of the AMOC remained constant between the different states, while there

was a shift in deep water formation areas and depth of the NADW cell. A southward

shift of the NADW formation caused cooling in the north and a reduced heat

transport in the NADW cell because the sinking water was warmer than in the

case with high-latitude sinking.

Similar hysteresis behavior with regard to the freshwater forcing in the OGCM

LSG was shown by Mikolajewicz and Maier-Reimer (1994). They furthermore

demonstrated the strong influence of the formulation of the surface boundary con-

dition on the stability of the AMOC in the model.

Several further experiments followed and the freshwater hosing experiments

became part of the Coupled Model Intercomparison Project (CMIP). An overview

of the results is given in Stouffer et al. (2006). They describe the results of stan-

dardized freshwater hosing experiments under pre-industrial boundary conditions

with 9 AOGCMs and 4 EMICs. For all models a forcing corresponding to 0.1 Sv

freshwater input was applied over the northern Atlantic between 50◦N and 70◦N

for 100 years. Then the model was let to recover for another 100 years. In all

models the NADW cell weakened. The weakening was strongly model-dependent

and varied between 6% and 62% with an average of 30%. Some models showed

a cooling over the Nordic seas, while others showed a northward shift of the deep

convection areas with an associated warming over the Nordic Seas.

A synthesis of recent hosing experiments where a freshwater discharge of 0.1 Sv

is distributed around Greenland to represent a future Greenland Ice Sheet melt is

presented in Swingedouw et al. (2012). All models show a reduction in NADW

strength within 40 years with changes ranging from about 0.5 to about 4.5 Sv. The

strength of the reduction is correlated to the amount of freshwater leaking from the

Subpolar Gyre into the Subtropical Gyre, with stronger leakage corresponding to

less AMOC reduction.

There is a growing number of freshwater hosing experiments under LGM bound-

ary conditions. Prange et al. (2002) performed OGCM experiments under glacial



1.5. FRESHWATER HOSING EXPERIMENTS 23

boundary conditions in search for multiple steady states. They found that the

glacial Atlantic meridional overturning circulation was monostable under the forc-

ing derived from an AGCM simulation with ECHAM3, but had a small bifurcation

zone for higher freshwater inputs. From their experiments, they concluded that

during the deglaciation, a relatively small freshwater perturbation would be able to

push the AMOC from its strong branch into the weak branch.

In an EMIC study, Wang and Mysak (2006) found two modes of the NADW

formation. A strong mode, that was predominantly driven by the heat release effect

on density and a weak mode that was predominantly driven by the brine rejection

during sea ice formation.

Bitz et al. (2007) freshened the north Atlantic under pre-industrial, glacial, and

4 x CO2 conditions down to a depth of 920 m with an average freshening of 2 psu

and found that the recovery was fastest in the pre-industrial state and slowest in

the glacial state. They concluded that the increased sea-ice cover in the glacial case

was responsible for the slow recovery by cutting the heat fluxes over the deep water

formation areas and by providing an additional freshening once deep water welled

up and melted the ice.

Hu et al. (2008) studied the recovery times for hosing experiments with an

open and a closed Bering Strait and found that the Bering Strait stabilized the

AMOC in hosing scenarios by allowing for a net freshwater export from the Arctic

Ocean into the Pacific. The open Bering Strait thus provides negative feedback

for changes in Atlantic salinity and AMOC. Since the Bering Strait was closed for

large parts of the last glacial, they speculated that the closed Bering Strait could

have contributed to the Dansgaard-Oeschger and Heinrich events.

Otto-Bliesner and Brady (2010) investigated the influence of different freshwa-

ter input locations, strengths and durations on the climate in LGM simulations

with CCSM3. As Maier-Reimer and Mikolajewicz (1989), they found that the cli-

mate system responded slower and less sensitive to a freshwater forcing in the Gulf

of Mexico than to a forcing that is directly applied to the North Atlantic. A larger

set of LGM hosing experiments is summarized in Kageyama et al. (2013). They an-

alyzed an ensemble of opportunity where six climate models of different complexity

were forced with different freshwater forcings under LGM boundary conditions. All

models responded with a reduced NADW strength with reductions ranging from

5 Sv to 25 Sv, corresponding to relative anomalies of 20% to 95%. While weak

forcings of 0.1 Sv caused a wide range of responses, the strong forcings consistently

caused strong responses.

Kageyama et al. (2010) reviewed the state of modeling of Dansgaard-Oeschger

and Heinrich events and provided a detailed overview of the existing freshwater

hosing experiments under present day as well LGM boundary conditions, including

the question of AMOC bistability and hysteresis. While several EMICs showed hys-

teresis behavior in the AMOC with relationship to freshwater forcings (Rahmstorf

et al., 2005), up to 2010 no AOGCM had shown this behavior. (Hawkins et al., 2011)

performed a set of freshwater hosing experiment with the low-resolution AOGCM

FAMOUS. They found that the model showed hysteresis behavior for a narrow

band (0.07 Sv) of freshwater forcings. This is the first published modern AOGCM

simulation that showed an AMOC hysteresis. Furthermore, in their study, the net

salt transport across the southern boundary of the Atlantic ocean was an indicator

for the stability of the on-state of the AMOC, as suggested by Rahmstorf (1996),

and shown in EMIC and ocean-only studies (de Vries and Weber, 2005; Marsh

et al., 2007).
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Among the modern AOGCMs there is a mixed picture with respect to the

freshwater import at the southern boundary of the Atlantic. 12 of 25 CMIP5

models show negative freshwater imports in at least some of the emission scenarios

(Weaver et al., 2012). In reality the freshwater balance is supposed to be negative

(Pardaens et al., 2003; Huisman et al., 2010; Hawkins et al., 2011).

1.6. Coupled ice sheet – climate model experiments

An overview of coupled ice sheet – climate modeling is provided in Pollard

(2010). The main challenge in this field is that the time scales of ice sheets are very

long (millennia to hundreds of millennia) and most of the snowfall and melt occurs

in a narrow band at the ice sheet margin. In principle, the margin zone calls for

high-resolution modeling, while the long time scales make this impossible.

The importance of the forcing strategy for ice sheet simulations was nicely

shown by Langen et al. (2012). They studied the effects of different strategies on

the regrowth of a removed Greenland Ice Sheet under present-day conditions. De-

pending on the forcing strategy, they obtained a more or less complete regrowth of

the Greenland Ice Sheet, reproducing several previous contradicting publications.

Coupling the models once at an intermediate stage of the regrowth led to a sub-

stantially smaller Greenland Ice Sheet than the experiments with constant forcing.

The discrepancy between the need for high resolution modeling and long time

spans leads to a variety of strategies. Some groups use simple models (EBMs or

EMICs) to compute anomalies between the present day and the target climate and

apply these anomalies to present day temperatures and precipitation (Tarasov and

Peltier, 1997; Pollard and DeConto, 2009). Another way of using an EMIC con-

sists in downscaling the fields obtained from the EMIC in an intermediate energy

balance, or energy-moisture balance model. This is done in the group around Rein-

hard Calov and Andrey Ganopolski at the Potstam Institute for Climate Impact

Research (PIK) (Calov et al., 2002, 2005a; Robinson et al., 2010). This combines

the speed of an EMIC with a reasonably realistic representation of the surface mass

balance. In Calov et al. (2002), the first coupled LGM simulation with Heinrich

event style ice sheet collapses are presented. In this setup, the coupling is only

done via the atmosphere, so the model cannot show the ocean response to fresh-

water forcings. The response of the ocean to freshwater fluxes had previously been

investigated with CLIMBER in Ganopolski and Rahmstorf (2001). The next great

challenge was the coupled modeling of the glacial inception presented in Calov

et al. (2005a,b), and following from that full glacial cycles (Ganopolski et al., 2010;

Ganopolski and Calov, 2011). Other groups perform similar experiments (Wang

and Mysak, 2002; Kageyama et al., 2004; Fyke et al., 2011).

GCMs can be used in long-term simulations when an asynchronous coupling

is implemented. In such simulations, the climate model is run repeatedly for in-

tervals of one to 50 years, and then the climate is used to drive the ice sheet for

a substantially longer time span. The resulting ice sheet is fed back into the cli-

mate model (Pollard et al., 1990; Ridley et al., 2005). Since the ice sheets change

comparatively slow, the climate remains in a quasi-equilibrium with the ice sheets.

The asynchronous coupling becomes problematic, when the climate model includes

an ocean component, since the ocean has a timescale between atmosphere and ice

sheets. One option in this case is to run ocean and ice sheets synchronously coupled

and couple the atmosphere asynchronously (e. g. Mikolajewicz et al., 2007b).

A series of studies use coupled AOGCM ice sheet model systems to investigate

the future development of the Greenland Ice Sheet and its impact on the AMOC.
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Early studies (Huybrechts et al., 2002; Fichefet et al., 2003) only fed back the fresh-

water fluxes but kept the Greenland topography constant in the AOGCM. The first

study with a full bidirectional coupling between an AOGCM and an ice sheet model

was performed by Ridley et al. (2005). It was followed by studies by Mikolajewicz

et al. (2007b,a); Vizcáıno et al. (2008, 2010) that also include the Antarctic Ice

Sheet. The experiments presented in Mikolajewicz et al. (2007b) and Vizcáıno

et al. (2010) were the first AOGCM–ISM studies to use an energy balance model

for the surface mass balance of the ice sheet and the first to operate without anom-

aly maps. This was a substantial improvement in the physical representation of the

coupling. A recent study by Gregory et al. (2012) used the AOGCM FAMOUS,

a fast version of HADCM3 in combination with the ice sheet model GLIMMER

to study the last glacial inception. None of the published studies address glacial

maximum conditions or model the full northern hemisphere.

1.7. Objectives and structure of this study

The aim of this study is to advance our knowledge about glacial ice sheet–

climate interactions focusing on Heinrich events. To study these interactions, we

performed coupled ice sheet–climate model experiments under pre-industrial as well

as LGM boundary conditions. Ice sheets are not yet standard components of climate

models. Therefore this study has a strong technical component in developing a

coupled model system and is a test of the applicability of the coupled system to

pre-industrial climate, glacial climate, and Heinrich events.

For the experiments, we adapted the Parallel Ice Sheet Model (PISM) for the

use in coupled ice sheet–climate simulations and coupled it to the atmosphere

ocean general circulation model (AOGCM) ECHAM5/MPIOM/LPJ. We describe

the models, the necessary modifications, as well as the setup in chapter 2. With the

coupled setup we performed long-term experiments under constant pre-industrial

as well as LGM boundary conditions. The mean states of these experiments are

analyzed in chapter 3. The main focus of this study, the variability in the coupled

model is analyzed in chapter 4. We summarize the main findings and draw the final

conclusions in chapter 5.





CHAPTER 2

Model description

We have coupled the atmosphere–ocean general circulation model (AOGCM)

ECHAM5/MPIOM/LPJ with a northern hemisphere setup of the ice sheet model

(ISM) mPISM. In the following, we first describe the AOGCM, then the ISM, and

finally the coupling between the two models.

2.1. ECHAM5/MPIOM/LPJ

ECHAM5 (Roeckner et al., 2003) is a spectral atmosphere general circulation

model. For long-term simulations, the triangular spectral truncation at wavenum-

ber 31 (∼ 3.75◦) in combination with 19 vertical hybrid-σ-levels reaching up to

10 hPa is a very good compromise between model speed and accuracy. This setup

is therefore employed in all experiments described in the following. The land hy-

drology scheme (HD model, Hagemann and Dümenil 1998; Hagemann and Gates

2003) operates on a 0.5◦ grid. For the HD model, we use the present-day routing

directions in combination with the LGM land-sea-mask. The land surface prop-

erties are modeled using the Lund-Potsdam-Jena (LPJ) vegetation model (Sitch

et al., 2003). Its use in combination with ECHAM is described in Schurgers et al.

(2007) and Mikolajewicz et al. (2007a).

MPIOM (Marsland et al., 2003) is a primitive equation ocean model operating

on a curvilinear grid with variable resolution. In the setup employed in the follow-

ing, the grid has two poles, located over Greenland and Antarctica and a nominal

resolution of 3◦. This results in an increased resolution in the deep water formation

areas, and a relatively coarse resolution in the equatorial areas.

The atmosphere and ocean are coupled using the OASIS coupler (Valcke et al.,

2004). The performance of a higher-resolution version of the coupled model is

described in Jungclaus et al. (2006). Results of the Paleoclimate Modelling Inter-

comparison Project Phase 2 (PMIP-2) participation can be found in the PMIP-2

database at http://pmip2.lsce.ipsl.fr.

2.2. mPISM

mPISM is based on the Parallel Ice Sheet Model (PISM) version 0.3 from

the University of Alaska, Fairbanks (Bueler and Brown, 2009; the PISM authors,

2013). Several aspects of the model needed to be changed for the coupling to the

climate model and for obtaining pulsating ice streams. PISM uses the Shallow

Ice Approximation (SIA) and the Shallow Shelf Approximation (SSA) to compute

flow velocities. It uses an enthalpy method to handle polythermal ice (Aschwanden

et al., 2012). Details about the model can be found in the literature given above.

In the following, we describe the modifications made in mPISM. We use the

term PISM 0.3 when referring to the base version, mPISM when referring to the

modified version, and PISM when referring to aspects of the base version that also

apply to the modified version. PISM-PIK is a branch of PISM that was developed

27
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at the Potsdam Institute for Climate Impact Research (PIK) and merged into

PISM 0.4.

To make the model mass conservative, we changed the transport scheme in

mPISM from the non-conservative 2nd order scheme used in PISM 0.3 to a mass

conserving 1st order upwind scheme (e. g. Morton and Mayers, 2005). This was

accepted into PISM-PIK (Winkelmann et al., 2011) and on this way into PISM 0.4.

We use the combined velocities and the upwind scheme for the mass transport as

well as for the horizontal enthalpy transport. The upwind scheme needs a staggered

(Arakawa C type) grid (Arakawa and Lamb, 1977) with the flow velocities on the

cell boundaries. PISM calculates the SIA velocities on this staggered grid while it

calculates the SSA velocities on an collocated (Arakawa A) grid with the velocities

on the grid cell centers.

For solving the SIA equations, ice thickness and temperature are needed on

the staggered grid. The standard approach in PISM 0.3 is to average between the

two adjacent grid cells. Since PISM uses a terrain following z-grid, this approach

can lead to averaging between ice filled and air filled grid cells and thereby to too

cold mixed temperatures that cause artificially high viscosity values and thereby

too slow ice flow. To avoid this problem, and to better represent the concave down

shape of ice sheets, we use the enthalpy and thickness values of the upwind grid

cell on the cell boundary. This has very little influence in the interior of the ice

sheet, but considerably increases flow speeds at the margins of the ice sheet.

Interpolating the SSA sliding velocities onto the staggered grid can induce

artifacts. The algorithm that yielded the best results in our experiments, was to

base the decision whether sliding is allowed on a grid boundary on the question

whether the upwind cell is sliding. If and only if there is sliding in the upwind grid

cell, we take the arithmetic mean of upwind and downwind velocity as the velocity

on the cell boundary. Elseways, there is no sliding. If we would allow sliding on

a grid boundary, where the upwind cell is not sliding because of freeze-on, the ice

in the upwind grid cell would be drawn down fast. This would lead to a high

downward velocity of the ice. This downward velocity would advect coldness and

the basal temperature would drop even further, solidifying the freeze-on. A similar

problem arises on the transition between ice stream and ice shelf. Here, we use the

ice velocity of the inland grid point as velocity for the cell boundary. If we would

use the mean velocity, the ice on the inland side of the transition would be drawn

down considerably by the fast-sliding ice shelf, and the inland grid point would

freeze on.

Another measure to better represent the stream-shelf-transition is that we use

downwind gradients at the ice shelf side of the stream-shelf transition to compute

the driving stress, because we assume that a large fraction of the driving stress in

the ice stream is balanced within the ice stream and not by the ice shelf.

Since the SSA velocities are computed using central differences, the model

grid can decouple to some degree, resulting in checkerboard patterns. To solve this

problem, we impose a slight (5%) penalty for ice flow going against the direction of

the surface slope. Possible errors in the velocities introduced by this penalty are far

smaller than those introduced by the uncertainties in the stress-strain relationship

of the ice, and the modeled surface topography clearly improves.

For solving the SSA stress balance, PISM 0.3 covers the ice-free areas with a

50 m thick layer of −20◦C cold sea ice, that – for viscosity calculations – has a

spreading rate of 10−3/yr. The backstress from this sea ice causes the ice shelves

to slow down towards the outer rims. We thinned it to 1 m. This thinning increases
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ice shelf velocities and computational costs. Further thinning did not change the

ice shelf velocities substantially, but did substantially increase the computational

costs.

Since PISM uses explicit time stepping for the horizontal mass and enthalpy

transports, the timestep has to be adapted to the velocities. This is done on a

per-timestep-basis with criteria stemming from the SIA and the SSA velocities

respectively. We halved the maximum time step permissible from the stability

condition for the SIA transports since the upwind mass transport scheme can empty

a grid cell twice as fast as the default PISM transport scheme, that used the SIA

velocities in combination with the mean of the ice thicknesses of the adjacent grid

points. We also impose a stricter criterion from the SSA velocities. We add up

the outflows from a grid cell and do not permit more outflow than 1/4 of the cell

contents, neglecting the inflow. The choice of 1/4 is – to some degree – arbitrary,

but tests showed that 1/4 yields smoother solutions than 1/2. It thereby caused

less oscillations between long and short timesteps. Therefore the mean timestep

size actually increased while the results improved. Further sharpening the timestep

criterion did not yield substantial further improvements.

Following Calov et al. (2002), we use a linear sliding law that allows sliding if

there is basal water and deformable sediment available to lubricate the ice sheet.

The availability of the sediment is based on the dataset from Laske and Masters

(1997) with a cutoff value of 5 cm. The resulting distribution of till-covered areas,

where sliding is possible when basal water is present, and bare-bedrock areas, where,

in our model, no sliding is possible at any time is marked in fig. 2.1.

We spread out half of the heat flux from basal friction on a 1 grid cell square

around each grid cell. This slightly heats the grid cells adjacent to an ice stream.

We had to modify the basal boundary condition of the enthalpy scheme to make

it more stable under large friction values. We do not allow the existence of basal

water when the ice sheet base is cold. If there is basal water below a cold base,

we let it refreeze immediately and add its enthalpy to the lowest grid cell of the

ice sheet. The enthalpy scheme then distinguishes between two main cases of the

ice-bedrock interface. If the interface temperature is below the pressure melting

point, we use the PISM default solver for a combined system of ice and bedrock. If

it is at the pressure melting point, we solve ice and bedrock as separate Dirichlet

problems and prescribe full water saturation at the base of the ice sheet. Next, we

compute the energy balance of the basal water layer. Constituents of this balance

are the heat flux from the bedrock QB , the basal friction QF , the heat flux into

the ice QI , and the basal melt rate M of the ice sheet:

(4) QB +QF −QI −MLρI = 0,

where L is the latent heat of melting and ρI is the ice density. From the melt

rate, we compute a new basal water level. If it is non-negative, we move on, if it is

negative, the grid cell refreezes. We compute the enthalpy that corresponds to the

missing basal water and subtract it from the enthalpy corresponding to waterless

ice at pressure melting point.

We separate the basal water into a small locally bound fraction and an ad-

vectable fraction that we advect with the basal ice velocity and apply the same

upwind scheme as used for ice and enthalpy transport. The locally bound fraction

is responsible for the stiffness of the basal till and thereby for the sliding behavior.
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Figure 2.1. Till friction angles. Values below 11 (white in the plot) allow for very fast

sliding, values above 89 (light blue) correspond to bare bedrock and practically com-

pletely prohibit sliding. Surface elevation is outlined in light gray for orientation. The

ice sheet outlines are marked in black. The till friction angle distribution is constant

over time.

For the bedrock deformation, we use an Local Lithosphere Relaxed Astheno-

phere model (e. g. Le Meur and Huybrechts, 1996) with a rebound timescale of

3 kyrs.

We dynamically compute the change in sea level that is caused by the ice sheets

and use it to adjust the sea level in the ice sheet model and in the climate model.

Our setup (e. g. fig. 2.1) uses a Cartesian coordinate system that is a Polar Stere-

ographic projection of the Northern Hemisphere reaching southward to 36.7◦N in all

directions and to 19.1◦N in the corners. The resolution is 20 km in both directions

(625 × 625 grid cells). This grid contains all northern hemisphere regions we can

possibly expect to grow large-scale ice sheets under glacial conditions (including the
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Figure 2.2. The fields being transferred between the models. Read from left to right.

Variable names are: temp2: 2 m air temperature, aprc: convective precipitation, aprl:

large-scale precipitation, THO: ocean potential temperature, SAO: ocean salinity, usurf:

ice sheet surface topography, thk: ice sheet thickness, cumul basal flux ice sheet basal

mass flux, cumul acab: ice sheet surface mass balance, cumul shelf basal flux: ice

sheet shelf basal flux, cumul calving: ice shelf calving flux.

Himalayans). Outside of the mPISM domain, we prescribe the ICE-5G topography

matching the time slice of interest.

2.3. The coupling from the climate to the ice sheet

The coupling scheme between ECHAM5, MPIOM and mPISM is responsible

for computing the ice sheet mass balance and surface temperature from ECHAM5

and MPIOM output fields and for transferring surface topography, glacier mask

and mass fluxes from mPISM back to ECHAM5 and MPIOM. It is sketched in

fig. 2.2. In this section we lay out the path from the climate model to mPISM.

To compute the mass balance for the ice sheet, we have to use a high spatial

resolution that resolves the temperature distribution at the ice sheet margins. We

use the 20 km grid of mPISM for the mass balance calculations. It is still impossible

to run an atmosphere model at such a high spatial resolution for long time spans.

Therefore we have to work with coarse resolution (in this case T31) atmospheric

data, regrid them to the high-resolution ice sheet model grid, and apply correc-

tions to account for unresolved features. To save computational time, we compute

monthly averages of the atmospheric quantities and annual averages of the ocean

variables before regridding them to the ice sheet model grid. These regridded high-

resolution fields are used in the ice sheet model to determine the mass balance. The

scheme we use to process temperatures and precipitation from ECHAM5 for the

use in mPISM is sketched in fig. 2.3 and is described in detail in the following. It is

based on the standard scheme employed in SICOPOLIS (Calov, 1994), that stems

from Braithwaite and Olesen (1989).

The temperatures are highly correlated to the altitude at a local scale, so we

can account for some of the temperature variations not resolved by ECHAM5 by

applying an altitude correction with a fixed lapse rate. As lapse rate, we use 5 K/km

as suggested by Abe-Ouchi et al. (2007). In a small sensitivity study, this proved to
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Figure 2.3. The modifications of the atmospheric coupling fields up to the PDD mass

balance calculation.

be a good compromise between too high melt at low lapse rates and too widespread

glaciation at high lapse rates.

We use the corrected monthly mean temperatures to partition the precipitation

into solid and liquid fractions using a linear transition between −10◦C and +7◦C

as in Marsiat (1994). The solid fraction is used as accumulation, the liquid fraction

is discarded as runoff.

To account for the reduced precipitation at high altitudes, we apply a height

desertification parametrization as in Budd and Smith (1979):

(5) P = Psolid ·
{

1 , h ≤ h0

exp (−λ(h− h0)) , h > h0,

where h0 = 2000 m and λ = log(2)/1000 m. In standalone ice sheet simulations with

a temperature deviation forcing ∆T from ice core or similar data, the precipitation

is multiplied by

1 + (∆T · 4.2857 · 10−2/K)

to represent the effect of the air temperature on the specific humidity.

We use temperatures and precipitation in a Positive Degree Day (PDD) model

to determine the surface mass balance. As an extension of Fausto et al. (2011), we

compute monthly temperature standard deviation maps from the 6-hourly climate

model output and use them in mPISM to better represent the temperature vari-

ability. This is a compromise between computing the PDDs from the full 6-hourly
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Figure 2.4. The variables used in the shelf coupling scheme. Variables are listed in

table 2.1. Redrawn after Holland and Jenkins (1999).

temperature data on the highly resolved ice grid (which would be more compu-

tationally demanding) and the standard approach of prescribing a fixed standard

deviation in the full model domain.

The PDD scheme employs the Calov-Greve integral method (Calov and Greve,

2005) to compute PDDs from monthly mean temperatures and standard deviations.

Then, from these PDD, and the snow accumulation, the actual mass balance is

computed according to the scheme from Reeh (1991):

The available positive degree-days (PDD) as calculated by means

of equation (4) [of Reeh (1991)], are used to melt snow and ice in

the following order:

(1) Snow (if present) is melted. The meltwater is supposed to

percolate into the snowcover and refreeze as superimposed ice.

Runoff does not occur until the amount of superimposed ice

exceeds a given fraction (PMAX) of the snowcover.

(2) The superimposed ice is melted.

(3) Glacier ice is melted.

This is summed up in the following equation:

(6) acc - melt = acc−min[0, (PDD− acc/msnow · PMAX)] ·mice,

where msnow and mice are the melt rates of snow and ice. They are empirical

constants that need to be prescribed. We chose msnow = 3.2 mm/K/day and mice =

12.9 mm/K/day.

For the basal ice shelf melt (or growth), we use the three equation scheme

described in Holland and Jenkins (1999). This scheme computes the ice shelf basal

mass balance and properties of a thin boundary layer from ocean salinity and

temperature as well as the ice shelf basal temperature gradient. Holland and Jenkins

(1999) construct a model consisting of an ice layer, a boundary layer between ice and

ocean and the mixed layer in the ocean. The definitions of the fluxes are sketched

in fig. 2.4 and the variables used are listed in table 2.1. The behavior of this scheme

is shown in fig. 2.5. In the boundary layer, they assume the ocean temperature to

be at the freezing point. The salinity depends on the ice melt/refreeze rate and the

entrainment velocity with which ocean water is entrained into the boundary layer.
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Table 2.1. Variables and constants used in the ice shelf basal mass balance. All but κ

taken from Holland and Jenkins (1999). ∗κ is taken from Hellmer and Olbers (1989)

Variables used in the Shelf coupling

Naming

(·)S (·) at the ice surface

(·)I (·) in the ice shelf

(·)B (·) in the boundary layer

(·)M (·) in the Ocean

T Temperature ◦C

S Salinity psu

p Pressure Pa

ρ Density kg/m3

Fluxes

QTI Heat flux into the ice W/m2

QTlatent Heat flux from the boundary, QTlatent < 0 = melt W/m2

QTM Heat flux from the ocean into the boundary layer W/m2

QSI Salinity flux into the ice psu/m2/s

QSbrine Salinity flux from brine production psu/m2/s

QSM Salinity flux from the ocean into the boundary layer psu/m2/s

wB Melt rate, wB > 0 = melt m/s

Constants

a Salinity coefficient of freezing equation −5.73× 10−2 ◦C/psu

b Constant offset for freezing equation 9.39× 10−2 ◦C

c Pressure coefficient for freezing equation −7.53× 10−8 ◦C/psu

cpI Ice heat capacity at constant pressure 2009 J/kg/K

cpM Ocean heat capacity at constant pressure 4170 J/kg/K

LF Latent heat of freezing 3.34× 105 J/kg

γT Thermal exchange velocity 1× 10−4 m/s

γS Salinity exchange velocity 1× 5.05−7 m/s

κ Thermal conductivity of ice 1.54× 10−6 m2/s

The defining equations are

TB = aSB + b+ cpB(7)

QSI = QSM +QSbrine(8)

QSM = −ρMγS(SB − SM )(9)

QSbrine = ρMwB(SI − SB)(10)

QTI = QTM +QTlatent(11)

QTI = −ρIcpIκ
∂TI
∂z

(12)

QTM = −ρMcpMγT (TB − TM )(13)

QTlatent = −ρMwBLF(14)

Using ∂TI

∂z ≈
Ti−TB

∆z , where Ti is the ice temperature ∆z above the shelf base,

we define the following shorthands

M := ρMwB ; α := b+ cpB
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KS := −ρMγS ; KT := −ρMcpMγT ; KI := −ρIcpIκ
∆z

By combining (8), (9) and (10), we obtain

SB =
QSI −MSI +KSSM

KS −M
.

Now we can combine (11) with (14), solve for M , insert (12) and (13), replace SB ,

and rearrange to obtain

(15) −M2LF +M

Φ︷ ︸︸ ︷
[KSLF + (KT +KI)(aSI + α)−KTTM −KITI ]

= (KT +KI)(a(QSI +KSSM ) + αKS)−KS(KTTM −KITI)︸ ︷︷ ︸
Ψ

Solving for M yields

(16) M =
Φ

2LF
±

√
− Ψ

LF
+

Φ2

4L2
F

From this, we take the positive branch. The negative branch yields obviously

wrong values. We force this model with the average temperature and salinity of

the top 12 layers (203m) from the ocean model.

We employ a simple calving scheme that operates on a grid cell and its eight

neighbors. If less than three of the nine cells have an ice thickness above 200m,

and the relaxed bedrock topography is below sea level, then the ice is calved. This

allows shelves to dynamically grow and retreat, and prevents one grid cell wide ice

tongues.

2.4. The coupling from the ice sheet to the climate

In the following, we describe how the output fields from mPISM are fed back

into ECHAM5 and MPIOM. We first detail on the surface orography, then on the

glacier mask, and finally on the mass fluxes.

The orography is fed back into ECHAM5 via the geoid surface potential and the

gravity wave drag parametrization. For the areas outside of the mPISM domain,

the mPISM surface field is combined with a background map matching the time

slice of interest. The combined map is adjusted for sea level changes from the

ice sheet. To keep the subgrid scale orography consistent, the background map is

smoothed with respect to the standard topography map used for ECHAM5, so it

matches the roughness of the ice-free areas of the remapped mPISM topography.

Since this smoother surface would significantly change climate in comparison

to the standard model setup, we upscale the subgrid surface slopes by a factor of

two. Furthermore, we decrease the resolution-dependent threshold for activating

the gravity wave drag parametrization in ECHAM5 from 400 m to 300 m peak −
mean elevation, so the gravity wave drag parametrization is active in about the

same grid cells as in the original setup. These values were obtained by switching

the maps in a pre-industrial setup and tuning the parameters until we obtained

similar mean orographic slopes and a similar climate as in the original setup.

In the following paragraph we detail on the treatment of the glacier mask in

the coupling scheme. All ice sheet model grid cells with an ice thickness above 10 m

are treated as glaciated. We use conservative area remapping to interpolate the

glacier mask to the ECHAM5 grid.
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Figure 2.5. Shelf melt as a function of the thermal driving defined as

T∗ = (TM − TB) − a(SM − SB). SB is set to 34 psu, the ice thickness to 100 m and the

air temperature to -20◦C. This basically corresponds to the dashed line in Fig. 6 of Hol-

land and Jenkins (1999).

ECHAM5 treats all grid cells with a fractional glacier mask value above 0.5 as

fully glaciated. We modified the ECHAM5 albedo scheme, such that the albedo

is computed based on a fractional glacier cover with a background albedo of 0.25

for the non-glaciated parts of the grid cell. For those grid cells that have a glacier

fraction below 0.5 and are thus considered as non-glaciated, we reduce the forest

(tree cover) fraction by the glacier fraction and compute a new background albedo

αnew that represents the effects of the albedo of the glaciated parts:

forest = (1− glacier) forest(17)

αnew = αlpj (1− glacier) + α glacier glacier,(18)

where forest is the forest fraction computed by LPJ, αlpj is the albedo from LPJ,

and αglacier is a background albedo for glacier ice (0.5). The reduction of the forest

fraction is important because it reduces the snow-masking effect in the albedo

calculation of ECHAM5.

We average the mass fluxes of the surface mass balance, the basal melt and

refreeze, the shelf basal melt and refreeze and the iceberg calving at every grid

cell of mPISM over the coupling interval and split the fluxes according to mPISMs

grounded/floating mask into land based fluxes that we feed into the surface runoff

scheme of ECHAM5, and ocean based fluxes, that we feed into the nearest MPIOM

grid cell. We associate fluxes from iceberg calving and shelf basal melt with a
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Table 2.2. Main experiments performed and analyzed. For the boundary conditions

see table 2.3. 1:10 coupling means 1 climate model (CM) year per 10 ice sheet model

years. The coupling is done after each year of climate model integrations. For easy ref-

erence, ice sheet model years in ASYNC are ten times the corresponding climate model

years, thus climate model year 6901 corresponds to ice model years 69 010 to 69 019.

Name Boundary Coupling Start year Duration

Conditions (CM years) (CM years)

ASYNC LGM 1:10 6901 2999

SYNC LGM 1:1 1780 3220

ICE-5G LGM none 649

pre-ind pre-ind 1:10 2800 1000

Table 2.3. Values differing between the LGM and pre-industrial setups.

Parameter LGM pre-ind

Topography ICE-5G 21ka ICE-5G 0ka

Eccentricity 0.0190 0.0167

Obliquity 22.95◦ 23.45◦

Angle of Perihelion 294.4◦ 282.0◦

CO2 (ppm) 185 280

N2O (ppm) 0.20 0.27

CH4 (ppm) 0.35 0.67

negative enthalpy flux into the ocean, so that ice shelf basal melt and calving lead

to ocean cooling and/or increased sea ice formation.

2.5. Setups and experiments

We performed four main experiments (table 2.2). Three of them (ASYNC,

SYNC, ICE-5G) under LGM boundary conditions, one (pre-ind) under pre-industrial

boundary conditions (table 2.3). ASYNC, SYNC, and pre-ind were done in coupled

mode. Coupling was done after every year of climate model simulations.

SYNC was split off from ASYNC. As spin-up for ASYNC, the ISM was run

for several tens of kyrs under prescribed glacial boundary conditions. Then it was

coupled with the climate model and run for several thousand years during the

different stages of the coupling and tuning process. The last 21 500 years of this

process, the system was fully coupled. The climate model was started from an

existing PMIP2-type LGM experiment (Arpe et al., 2011) and run for 3850 years

during the coupling and tuning process (2150 years fully coupled) before ASYNC

was started. The descriptions of the experiments are as follows:

ASYNC A fully coupled experiment under LGM boundary conditions. This ex-

periment uses asynchronous coupling with 10 years of ISM integrations

per year in the climate model. The experiments covers the climate model

years 6901–9899 and the ice model years 69010–98999. We describe the

mean state of this experiment in chapter 3 and the surges in chapter 4.

SYNC A synchronously coupled experiment, started from climate model year

#8780 of ASYNC (renamed to year 1780 in SYNC) and integrated through
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3220 years of the Hudson Strait Ice Stream surge. Both, the ice and the

climate model cover the years 1780–4999.

ICE-5G A climate-only experiment, where we force the climate model with the

ICE-5G topography under LGM boundary conditions as in the PMIP2

experiments. This experiment allows us to investigate the effects of the

different ice sheet topographies and of the changes in freshwater fluxes

caused by our coupling. This experiment was started from the same

PMIP2 LGM experiment as ASYNC and integrated over 649 years. We

analyze the last 100 years.

pre-ind An asynchronously coupled experiment under pre-industrial boundary

conditions. The climate model was started from an existing pre-industrial

experiment. The ISM was initialized with the present-day Greenland Ice

Sheet shape using PISM’s bootstrap methods. The experiment was run

for 1000 years of climate model integration (10 000 years in the ISM) and

the last 100 (1000) years are analyzed.



CHAPTER 3

Mean climates and long-term drift

In the following, we first discuss the pre-industrial experiment (pre-ind) and

then the LGM mean state in ASYNC and the ICE-5G experiment (see section 2.5).

Finally we describe the long-term drift in ASYNC. We discuss the climate in SYNC

in chapter 4. Since SYNC only covers one surge phase of the Hudson Strait Ice

Stream, we will focus on ASYNC.

3.1. The pre-industrial climate experiment

The pre-industrial simulation was integrated for 10 000 years in the ice sheet

model and for 1000 years in the climate model. We discuss the state averaged over

the last 1000 years in the ice sheet and the corresponding 100 years in the climate.

The main purpose of this experiment is to show that our setup yields reasonable

results under pre-industrial boundary conditions and to provide a reference state to

compare the LGM climate against. We therefore limit the analysis of this experi-

ment to key climate parameters and compare those to reanalysis and observational

estimates. We first discuss the state of the atmosphere, then the ocean and finally

the ice sheets.

3.2. The pre-industrial atmosphere

A comparison of the pre-industrial 2 m air temperatures with the ERA

INTERIM reanalysis for 1989 to 2010 (Dee et al. (2011), fig. 3.1(a)) shows that

our pre-industrial model climate is colder than the present day climate (−0.6 K).

As a comparison, we compute the difference between global mean temperature in

the ERA-INTERIM period (20C3 and A1-B combined) and in the first thirty years

(1860 to 1889) of the CMIP-3 20C3 experiment. These experiments were performed

with a technically identical model and yield a global mean temperature difference

of −0.56 K (pre-ind – present). So, we see perfect agreement of our global mean

temperature and the observations. In fig. 3.1(a) we show the northern hemisphere

summer season (JJA) temperature bias, since the summer season is decisive for

the melt. The annual mean patterns are similar. The pattern in the temperature

difference largely is a composite of the effect of the reduced CO2 concentration in

the pre-industrial model setup, and the effect of the smoothed-out T31 topography.

Typical for the reduced CO2-concentration is the globally lower temperature,

with a larger temperature change over land (−0.8 K) than over the ocean (−0.5 K).

The change also is larger in the high latitudes (−3.2 K north of 45 ◦N, and −1.2 K

south of 45 ◦S) than in the low latitudes, where, on the average, the temperature in

our model is higher than in the ERA INTERIM reanalysis (+0.1 K between 45 ◦S

and 45 ◦N).

The smoothed out T31 grid of ECHAM5 is lower than the T255 grid of ERA IN-

TERIM in most mountain areas (the creation of the grid involves spectral smooth-

ing and is not conservative, so the mean surface elevation is lower in a T31 grid

39
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(a) Difference between modeled pre-industrial summer (JJA) 2 m air temperature and ERA IN-

TERIM JJA 2 m air temperature.

(b) Annual mean temperature difference between ASYNC and the pre-industrial run. Dots show

proxy data for LGM - present day from Kim et al. (2008). Note the non-linear colorscale!

(c) Annual mean temperature difference between LGM with ICE-5G topograpy and pre-industrial

run. Dots show proxy data for LGM - present day from Kim et al. (2008). Note the non-linear

colorscale!

Figure 3.1. 2 m air temperature differences.
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than in reality). The spectral smoothing causes mountains to be lower in T31 than

in reality and creates trenches adjacent to them. Differences that can directly be

traced back to the lower topography in the T31 resolution of the atmosphere model

are the warm biases over the Andes and the Himalaya. Over the Himalaya, typ-

ical surface altitude differences between the two model setups are about 500 m to

1000 m on the T31 grid, over the Andes, they reach 2000 m, and over the southern

tip of Greenland, they reach 1000 m. Assuming a lapse rate of 5 K/km, as it is

used in our coupling scheme, this corresponds to 2.5–5 K temperature difference

over the Himalaya, 5–10 K temperature difference over the Andes, and up to 5 K

temperature difference over the southern tip of Greenland.

There is a cold bias over the northern Atlantic. It is a result of the North

Atlantic Current taking a too southerly route. To correctly represent the path of

the North Atlantic Current, the ocean model would have to resolve eddies, requiring

a horizontal resolution of about 5 km in this region. This is not yet feasible for

multi-millennial simulations.

There is a strong cold-bias over the Alaska range, that also occurs in stand-

alone simulations (not shown) and becomes stronger because of ice-sheet growth in

the coupled setup (fig. 3.2). This temperature bias, and thus the glaciation, can be

reduced by increasing the climate model resolution (e. g. in the CMIP3-experiments

that were performed with a very similar climate model version), but this is not yet

feasible for multi-millennial experiments.

A comparison of the present day annual mean precipitation data from the

GPCP dataset (Adler et al. (2003), fig. 3.3(a)) with the model results for the pre-

industrial time (fig. 3.3(b)), yields a good agreement over Greenland. This is also

reflected in the agreement of our Greenland mean surface accumulation values with

those from regional modeling (table 3.2). Over the other polar areas, the values

also closely match. The 2D as well as the zonal mean plots show that most of

the precipitation differences occur in the tropics and southern mid-latitudes. The

differences in the tropics are standard modeling artifacts and both regions are not of

special interest for this study. In the global mean, the precipitation of 1.03 m/yr is

0.05 m/yr above the GPCP estimate, while north of 45 ◦N the modeled precipitation

of 0.66 m/yr is 0.06 m/yr lower than the GPCP estimate.

3.3. The pre-industrial ocean

For the North Atlantic Deep Water (NADW) cell of the Atlantic Meridional

Overturning Circulation (AMOC) (fig. 3.4(a)), the maximum strength is about

17.0 Sv at 32.5◦N and a depth of 1020 m. This agrees with the estimate of 16±2 Sv

from Ganachaud (2003) and recent measurements of 18.7±2 Sv at 26.5◦N (Kanzow

et al., 2010). The NADW is formed south of Greenland and in the Greenland/Ice-

land/Norwegian (GIN) Sea (not shown). The Antarctic Bottom Water cell reaches

a maximum of 2.9 Sv at 30◦S and a depth of 3570 m. The northward heat trans-

port in the Atlantic of 0.8 PW at 30◦N is lower than the present day estimates.

Ganachaud and Wunsch (2003) obtain 1.27 ± 0.15PW at 24◦N as a result of the

world ocean circulation experiment, and Johns et al. (2011) obtain 1.33±0.14 PW at

26◦N from the RAPID mooring array measurements. A comparison of the modeled

temperatures in the Atlantic and data from the WOCE experiment (Koltermann

et al., 2011) shows that the deep water in our model is warmer than it is in reality.

This explains why our model simulates less heat transport than the measurements

indicate while the overturning strength is similar.
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Figure 3.2. The surface topography in mPISM averaged over ice-model years 9000-

10 000 of the coupled simulations. The thin isolines are every 500m, thick isolines every

1000m. Ice covered regions are colored. Over the ocean, dark gray with red outline in-

dicates areas with perennial ice cover (15 % level) in more than 50 % of the model years.

Light gray with dark blue outline indicates temporary ice cover in more than 50% of the

model years. The Bering Strait appears to be ice-free because it is slightly displaced to

the west in the ocean model. The orange outline marks areas which have permanent sea

ice cover in more than 50% of the years 1870 to 2010 according to the HadISST sea ice

data set (Rayner et al., 2003), the light blue outline marks areas that have temporary

sea ice cover in more than 50% of these years according to HadISST.
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(a) Precipitation from GPCP satellite data.

(b) Precipitation during the last 100 years of the pre-industrial experiment.

(c) Precipitation during the LGM. Averaged over the full ASNYC experiment.

Figure 3.3. Precipitation values from the GPCP dataset (Adler et al., 2003) and the

averages from the pre-industrial and the ASYNC experiments.
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(a) AMOC stream function in the pre-ind experiment. Averaged over the last

100 years of the experiment.

(b) Mean AMOC in ASYNC. Averaged over the full 3 kyrs. For the time vari-

ability see fig. 4.22.

(c) Mean AMOC in the ICE-5G LGM experiment. Averaged over the last 100

years.

Figure 3.4. Atlantic Meridional overturning circulation stream functions for pre-

industrial and LGM climate states.
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Table 3.1. Pre-industrial ice sheet volumes and their changes averaged over years 9000

to 10 000. Greenland volume: Bamber et al. (2001). Glaciers outside of Greenland and

Antarctica are estimated between 0.05 and 0.13 Mio km3 in Lemke et al. (2007).

Volume (Mio km3) Drift (km3/yr)

Ice sheet Present day mPISM mPISM

Greenland 2.93 3.65 −14

Canada and Alaska 1.2 +38

Siberia 0.94 +86

Arctic Islands 0.14 −0.1

Total 5.9 +106

The sea ice maximum and minimum (fig. 3.2) agree very well with the long-term

average of the HadISST observational data set (Rayner et al., 2003). This data set

covers the time period from 1870 to 2010. In the first 100 years, the observational

data basis is very sparse. While the data basis improves over time, the sea ice cover

decreases over time due to global warming. We decide to use the entire data set as

a compromise between sparse data coverage of the right time slice and high data

coverage quality of the wrong time slice.

3.4. The pre-industrial ice sheets

Fig. 3.2 shows the pre-industrial ice sheets averaged over the years 9000 to

10 000; fig. 3.5 shows the deviations from the reference topography. Fig. 3.6 shows

the mean surface mass balance of the ice sheets. We obtain a northern hemisphere

land ice volume of 5.9 Mio km3, corresponding to 14.9 m of sea level equivalent

(SLE). Of this volume, 3.65 Mio km3 (9.2 m SLE) are stored in the Greenland Ice

Sheet. Today’s Greenland Ice Sheet (fig. 3.2) has a volume of 2.9 Mio km3 (7.3 m

SLE). The drift in Greenland Ice Sheet volume is −14 km3/yr. It has a two dome

structure; the main dome reaches a height of 3200 m above sea level (asl) (3300 m

in reality (Bamber et al., 2001)) and a southern dome reaches 2700 m asl (2900 m

in reality).

Along most of the coasts of Greenland, the model grows too much ice (fig. 3.5).

At the northern and eastern coast, this is largely due to practically zero ablation

from the PDD scheme. The glacier fraction in ECHAM is above 0.5 from the start

of the experiment. The grid cells are therefore treated as glaciated, and the surface

temperature in these grid cells cannot rise above 0◦C. This substantially limits the

2 m air temperature and thus the melt in the PDD scheme. The sea ice along the

northern and eastern coast maintains cold temperatures in the coastal ocean. The

temperature is interpolated bilinearly when remapping from ECHAM5 to mPISM.

The mean temperature between a sea ice covered grid cell and a glaciated grid cell

cannot allow for substantial surface melt. Therefore, the surface mass balance is

positive practically all the way to the coast, while substantial ice melt would be

needed to stop the glaciers before the coast. There is substantial melt near the

western coast where two grid cells with a glacier fraction below 0.5 remain that are

considered as non-glaciated by ECHAM5. An energy balance scheme with detailed

treatment of the different heat fluxes (Vizcáıno et al., 2010) could solve the problems

at the east coast, but would have required substantial additional resources. Another

way to improve the representation of the Greenland Ice Sheet margins is to use a
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Figure 3.5. Topography difference between the surface topography in mPISM aver-

aged over ice-model years 9000-10 000 of the pre-industrial experiment and the reference

topography (a smoothed version of ETOPO1, Amante and Eakins (2009)).

very fine model resolution (� 5 km) in the ISM, that allows resolving the mountain

ranges and the individual outlet glaciers.

The surface velocities in the northern part of the ice sheet agree reasonably

well with the observations of Joughin et al. (2010a,b) (fig. 3.7). The ridge of the ice

sheet can be seen as a low-velocity band and is very well captured in the northern

part. In the central part of the East coast of Greenland, the model shows too

much ice because of the lack of ablation described above. This leads to an eastward

displacement of the ridge of the ice sheet. Since, at the east coast, the model
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Figure 3.6. Ice sheet net surface mass balance averaged over the years 9000 to 10 000

of the pre-industrial simulation. Values are given as ice equivalent (ρ = 910 kg/m3).

shows ice in areas that are not glaciated in reality, the flow velocities cannot be

compared to observations in this region. In the southeast, there is a massive lack

of observations, that prohibits a comparison. In the western part, we capture the

general features well, although our velocities generally are too large and the ice

sheet reaches further towards the coast than in reality (fig. 3.5). On the Arctic

Islands, there are ice caps on Baffin Island and Ellesmere Island, Svalbard, Franz

Josef Land, Novaya Zemlya, and Severnaya Zemlya. All of these regions presently

also show glaciation.
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(a) Velocities from mPISM (b) Observed velocities from Joughin et al.

(2010b)

Figure 3.7. Observed and modeled Greenland Ice Sheet surface velocities.

Table 3.2. Greenland mass balance, RACMO2, Polar MM5 (PMM5) (Box et al.,

2006), and MAR (Fettweis, 2007) data are for the period 1958–2007 (RACMO2, MAR),

resp. 1958-2006 (PMM5) and are taken from Supplement S1 from Ettema et al. (2009).

mPISM RACMO2 PMM5 MAR

Accumulation (Gt/yr) 766.03 697 678 578

Ablation (Gt/yr) 271.23 228 322 290

Accumulation - Ablation (Gt/yr )) 494.8 469 356 288

There are ice caps with a total volume of 0.94 Mio km3 (+86 km3/yr) grow-

ing in Northeast Siberia and there is an ice sheet with a volume of 1.1 Mio km3

(+31 km3/yr) in the Alaska Range and the northern Rocky Mountains. In these

regions, our climate model shows a cold bias (fig. 3.1(a), section 3.2). This cold bias

in regions, that are characterized by many separate glaciers in reality, leads to a

glaciation in mPISM that quickly grows because of the positive feedbacks of increas-

ing altitude and albedo. Once a grid cell is considered as glaciated by ECHAM5,

this further reduces surface melt in mPISM and strengthens glacier growth. There

is no melt in the interior of the Siberian ice caps and the Alaska Range ice sheet.

3.5. The LGM climate experiments

In the following, we discuss the mean state in our LGM model experiments.

The results from the coupled experiment (ASYNC) are averaged over the full 3 kyrs

for climate model data, corresponding to 30 kyrs of ice sheet model experiments.

Unless explicitly stated otherwise, the description the LGM experiment refers to

ASYNC in the discussion of the mean state. The mean ice sheet topography in

ASYNC is displayed in fig. 3.8.



3.6. THE LGM ATMOSPHERE 49

To further investigate the effects of the modeled ice sheets, we performed a

comparison climate-only experiment with prescribed ice sheets from the ICE-5G

reconstruction of Peltier (2004) (fig. 3.9). This experiment was performed according

to the PMIP2 specifications and will be called ICE-5G in the following. The ICE-

5G experiment was started from a previous PMIP2-experiment and integrated over

649 years. The results displayed in the following were averaged over the last 100

years. For details of the setups see section 2.5.

The discussion starts with the atmosphere, then continues with the ocean, and

the ice sheets. In addition to the description of the mean state in ASYNC, we

provide information about the long-term drift in sections 3.9 through 3.11.

3.6. The LGM atmosphere

The change from the pre-industrial to the LGM climate can largely be at-

tributed to the combination of the changes induced by the higher topography and

albedo over glaciers and those changes induced by the lower greenhouse gas concen-

trations. It is, however, difficult to ascribe particular effects in the climate system

to particular causes, since there are many interacting and competing effects acting

at the same time. We nonetheless describe changes and their causes, taking into ac-

count insights from sensitivity experiments performed with the standalone climate

model.

In ASYNC, the global annual mean temperature is reduced by−3.5 K compared

with the pre-industrial experiment (fig. 3.1(b)). Over the oceans, the reduction is

−2.5 K, while over the land it is−5.4 K. Over the areas that are glaciated during the

LGM, the temperature difference is −11 K. Over non-glaciated land, it is −3.3 K.

In ASNYC, some regions show a warming compared to the pre-industrial con-

ditions (fig. 3.1(b)). These are the northern Pacific, the Atlantic south of the sea ice

cover, and, during summer, Siberia. The warming over the northern Pacific can be

explained by changes in the stationary eddies which cause an enhanced advection

of warm air from the south and by a reduction in the cloud cover in practically

all regions north of 45◦N allowing for higher shortwave absorption. The warming

over the Atlantic can be explained by an increase in the oceanic heat transport

and release (see section 3.7). The warming over Siberia is caused by a decrease

in cloud cover that results in more shortwave radiation reaching the ground and

overcompensates for the effect of the albedo, that is higher during the LGM than

during the pre-industrial.

In the ICE-5G setup, the cooling is larger than in ASYNC with a mean tem-

perature difference of −5.3 K (fig. 3.1(c)). Over the oceans, the ICE-5G experiment

shows a cooling of −4.1 K, while over the land it is −7.7 K. Over the areas that are

glaciated in the LGM, the temperature difference is −14 K, while over non-glaciated

land, it is −5.4 K.

To understand the temperature differences between ASYNC and the ICE-5G

experiment, we performed a set of sensitivity experiments. Simply replacing the

topography of the ICE-5G experiment with that of the coupled run and keeping the

glacier mask constant leads to an increase in the global mean 2 m air temperature of

0.87 K in years 60 to 90 compared with the same years of the ICE-5G experiment.

Most of the northern Pacific shows a strong warming. Over the western part, this

is largely a downwind effect of higher temperatures in Asia, while over the eastern

part, the picture is less clear with strong regional differences in the partitioning

of the heat fluxes (not shown). The higher topography over the Canadian Arctic
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Figure 3.8. The surface topography in mPISM averaged over the full 30 kyrs of

ASYNC. Outside the ice sheets, the thin isolines mark the topography at 500 m inter-

vals, thick isolines at 1000 m intervals. Ice covered regions are colored. Over the ocean,

dark gray with red outline indicates areas with perennial ice cover (15% level) in more

than 50% of the model years. Light gray with blue outline indicates temporary ice cover

in more than 50% of the model years.

Archipelago and Greenland causes a cooling in these regions, and following from

that over the GIN Sea and the Arctic Ocean.

The global mean precipitation in ASYNC (figs. 3.3(c), 3.10) of 0.96 m/yr is

lower than in the pre-industrial experiment (−0.068 m/yr). This difference is espe-

cially pronounced in the regions north of 45◦N, where the precipitation is 0.54 m/yr

(−0.12 m/yr). The difference in precipitation between the ICE-5G experiment and
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Figure 3.9. The surface topography from the ICE-5G reconstruction of Peltier (2004).

Ice-covered regions are colored. The thin isolines are every 500 m, thick isolines every

1000 m. Sea ice is taken from ICE-5G experiment. Over the ocean, dark gray with red

outline indicates areas with perennial ice cover (15% level) in more than 50% of the

model years. Light gray with blue outline indicates temporary ice cover in more than

50% of the model years.

the pre-industrial experiment is larger (−0.11 m/yr globally, and −0.2 m/yr north

of 45◦N) matching the lower temperature and the thus lower atmospheric moisture

content.
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Figure 3.10. Precipitation changes in ASYNC compared to the pre-industrial experi-

ment.

3.7. The LGM ocean

There are substantial differences in the ocean circulation and oceanic heat

transport between the LGM and the pre-industrial experiments. The NADW for-

mation in ASYNC occurs mainly southeast of Iceland (fig. 4.14). The NADW cell

of the AMOC (fig. 3.4(b)) has a strength of 22.1 Sv (pre-ind: 17.0 Sv) and has its

maximum at 32.5◦N and a depth of 1020 m. For the time evolution of the NADW

strength, see section 3.11 and section 4.4 (fig. 4.22(c)). The NADW cell reaches ap-

proximately 65◦N. In contrast to pre-ind, there is hardly any deep water formation

in the GIN sea, and thus the NADW cell does not extend north of Iceland. The

Antarctic Bottom Water cell also increases in strength and reaches a maximum of

3.6 Sv at 21.5◦S and a depth of 3570 m. The ocean heat transport reaches 1.1 PW

at 23◦N (0.8 PW in pre-ind).

In the ICE-5G experiment, the NADW cell is shallower and weaker than in

ASYNC (fig. 3.4(c)). It only reaches 18 Sv at 35.5◦N and a depth of 1020 m. It still

is stronger than in pre-ind, and, as in ASYNC, it does not extend beyond Iceland.

The AABW cell is slightly stronger (3.8 Sv) than in ASYNC and fills the space

freed by the smaller NADW cell. The maximum Atlantic heat transport of 1.0 PW

at 28◦N lies in between the values of pre-ind (0.8 PW) and ASYNC (1.1 PW).

The barotropic circulation (fig. 3.11) in the GIN Sea is weaker in ASYNC than

in the pre-industrial setup. The North Atlantic Subpolar Gyre weakens in ASYNC

compared to pre-ind. At the same time, the Subtropical Gyre strengthens and the

front between the two Gyres is moved northward by increased surface wind stress

from the Westerlies (not shown). The ICE-5G simulation shows a weakening of

the GIN Sea circulation. In contrast to ASYNC, it has a stronger North Atlantic

Subpolar Gyre than the pre-industrial experiment.

The sea ice in ASYNC reaches further south in the Atlantic Ocean than in

pre-ind (compare fig. 3.8 and fig. 3.2). It reaches Iceland during the entire year

and covers much of the deep water formation areas of pre-ind. The winter sea ice

margin is located at about 63◦N east of Iceland and reaches south to about 43◦N

at the American east coast. A part of the Labrador Sea becomes ice-free during

summer. In the ICE-5G experiment, the winter sea ice is very similar to that of

ASYNC. The summer sea ice margin is clearly shifted to the north and the open
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(a) pre-ind (averaged over the last 100 years).

(b) ASYNC (averaged over the full 3 kyrs).

(c) ICE-5G (averaged over the last 100 years).

Figure 3.11. LGM barotropic circulation. For values beyond ±40 Sv, black contour

lines are drawn at intervals of 20 Sv starting at ±60 Sv. The time variability of the

North Atlantic Subtropical Gyre and the North Atlantic Subpolar Gyre is displayed

in fig. 4.24.
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Table 3.3. Heat budget of the Arctic Ocean.

Flux pre-ind ASYNC ICE-5G

Atmosphere–Ocean (TW) −32.3 −29.6 −34.7

Ice sheet–Ocean (TW) −1.1 −12.7 0

Sea ice export (mSv) 85.6 125.3 100.1

Heat export

corresponding to sea ice export (TW) 23.1 33.8 27.0

Cooling of the ocean water (TW) 10.3 8.4 7.7

Table 3.4. LGM Ice sheet volumes and drift. For the ICE-5G-reconstruction see

Peltier (2004).

Volume (Mio km3) Drift (km3/yr)

Ice sheet ICE-5G mPISM mPISM

Greenland 4.3 5.8 −2.6

Iceland 0.17 0.28 +1.2

Laurentide 36 31 +28

Siberia 0 9.3 +108

Fennoscandian 8.2 11.6 +156

Total 48.7 60 +233

area in the Labrador Sea is larger (fig. 3.9). The difference between the two sea ice

extents could be due to the ice input from the ice sheet into the ocean, that cools

the oceans in ASYNC, and is omitted in the forced experiment.

The role of the heat flux from glacier calving and shelf basal melt in cooling

the oceans becomes obvious from the heat budget of the Arctic Ocean (table 3.3).

In ASYNC, calving and shelf basal melt from the glaciers contribute 30% of the

total cooling of the Arctic Ocean. Because the sea ice cover in ASYNC is thicker

than in the ICE-5G experiment, the atmosphere–ocean heat fluxes are reduced in

ASYNC compared with the ICE-5G experiment (−15%), although the Arctic air

temperature is lower in ASYNC. The sea ice export through the Fram Strait is in-

creased by 25% in ASYNC compared to the ICE-5G experiment. This corresponds

roughly to the amount of sea ice formed in the Arctic Ocean from ice sheet calving

and sub-shelf melt (compare fig. 4.2). The total heat loss from the Arctic Ocean is

lower in pre-ind than in the two LGM experiments, and, in pre-ind, a larger fraction

of the heat loss is required to cool the ocean water to the freezing point. Therefore

less is available for sea ice formation and export.

3.8. The LGM ice sheets

The total modeled land ice volume in the northern hemisphere is 60 Mio km3,

corresponding to 150 m of sea level change. In table 3.4 we show how this ice volume

is distributed among the different ice sheets, fig. 3.12 shows the mask used for this

analysis.

Of the 60 Mio km3 northern hemisphere ice volume, the Greenland Ice Sheet

contains 5.8 Mio km3 (14.5 m SLE) compared to 4.3 Mio km3 (10.8 m SLE) in the

ICE-5G reconstruction (Peltier, 2004). It shows a drift of −2.7 km3/yr averaged
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Fennoscandia

East Siberia

Western Canada

Eastern Canada

Western Greenland

Eastern Greenland

Iceland

Figure 3.12. Regions defined for the analysis of ice sheet volumes. Overlain are the

LGM mean coastlines and the southern ice sheet margins on land from ASYNC.

over the full 30 kyrs. The Greenland Ice Sheet is wider in all directions than in the

pre-industrial experiment and covers the continental slopes. Its two-dome structure

closely resembles that of the pre-industrial experiment. The height of the northern

dome is at 3150 m (100 m lower than in the pre-industrial setup). The southern

dome profits clearly from the cold climate and the wider ice sheet. It reaches a

height of 2850 m (150 m above the value in the pre-industrial setup). The ICE-5G

reconstruction also shows a wider and flatter Greenland Ice Sheet during the LGM

than at the present, but there is less ice at the margins in the reconstruction than

in ASYNC.

The mass balance of the Greenland Ice Sheet switches to a state, where the

accumulation is entirely balanced by losses to the ocean. The annual mean accu-

mulation is 558.14 Gt/yr. Fig. 3.13 shows the spatial distribution of the net surface

mass balance of the LGM ice sheets averaged over the years 85 500 to 87 500 (the

reference period we will use for the analysis of SYNC in the following chapter).

We choose a rather short time window, because the surface mass balance strongly

depends on the topography and thus the plot is more meaningful if we average over

a time window with only small changes in the topography than if we average over

the entire experiment.

Fig. 3.14(a) provides an overview of the active ice streams. On the continental

shelf, the Northeast Greenland Ice Stream surges repeatedly. Another stream that

is active only part of the time follows a trough in front of Kejser Franz Joseph

Fjord (73◦ N) matching Wilken and Mienert (2006). South of it, at Scoresby Sund

(70.5◦ N), an ice stream is continuously active matching with massive glacial de-

posits found in this area (Wilken and Mienert, 2006). Straight west of Iceland,

Kangerdlugssuaq glacier drains into the Atlantic. Further Glaciers follow on the

East coast. On the West coast, ice streams undergo recurring surges in the region of

Jakobshaven Isbrae (E) and the trough north of it matching proxy observations in

Roberts et al. (2009). Further north, in the region of Kong Oscar Glacier (F), two

tributaries show surge-type activity. Since the sediment mask we use in mPISM

(see section 2.2 and fig. 2.1) does not allow for sliding in the interior of Greenland,

the ice streams are limited to the continental shelf. This does not prohibit fast-

flowing ice as can be seen for pre-ind in fig. 3.7, where ice flows fast in areas where

the ice cannot slide in our model because there are no basal sediments. This fast

flow then happens purely by internal deformation. The inclusion of temperate ice



56 3. MEAN CLIMATES AND LONG-TERM DRIFT

Figure 3.13. Surface mass balance of the ice sheets averaged over the years 85 500 to

87 500 of ASYNC.

in PISM allows for a very low viscosity, so the ice can reach high speeds by pure

internal deformation without basal sliding.

Baffin Island and Ellesmere Island are fully glaciated in ASYNC and con-

nect the Greenland Ice Sheet to the Laurentide Ice Sheet. The Laurentide Ice

Sheet covers present-day Canada and has a mean volume of 31 Mio km3 (ICE-5G:

36 Mio km3), corresponding to 78 m of sea level (ICE-5G: 90.7 m SLE). In the west,

it terminates inland of the coast, while in the east and north, it fully covers the

coasts. The southern boundary is approximately at 50◦N in the west and at 45◦N

in the east. The Laurentide Ice Sheet is split into a main part and a western
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(a) Fraction of time that a specific grid cell is sliding at more than 1 m/yr. Only the time when the

grid cell is ice-covered is taken into consideration. Ice shelves count as constantly sliding. Numbers

match the Ice Stream numbering in Stokes and Tarasov (2010) and are as follows: 1 Mackenzie,

16 Ungava Bay, 18 Amundsen Gulf, 19 M’Clure Strait, 20 Gulf of Boothia, 21 Admirality Inlet, 22

Lancaster Sound, 23 Cumberland Sound, 24 Hudson Strait, 25 Laurentian.

cordilleran part by the Mackenzie Ice Stream. This ice stream cuts down to below

1500 m asl. and is in continuous operation with an average strength of 694 Gt/yr

(21 mSv water equivalent). For the time evolution of the ice stream strength see

fig. 4.2. Over large time fractions, Mackenzie Ice Stream shows net surface melt in

its northern part (fig. 3.13). This area is characterized by very low surface eleva-

tions. The main part of the Laurentide Ice Sheet has two domes that are separated
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(b) Mean bedrock topography in ASNYC.

Figure 3.14. The ice streams and bedrock topography in ASYNC.

by the Hudson Bay. The maximum height of the eastern dome is 3200 m (3600 m

of ice thickness), the maximum height of the western dome is 3150 m (also 3600 m

of ice thickness). The Hudson Bay area is largely drained by the Hudson Strait Ice

Stream that every 7000 years flushes ice into the Labrador Sea. Unless otherwise

noted, we average over this oscillation in this chapter. Details of the oscillation and

its implications in the climate system are covered in chapter 4. The main part of

the Laurentide Ice Sheet loses ice by surface melt at its southern boundary and by

calving into the ocean at the eastern and northern boundaries (fig. 3.13).
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Figure 3.15. The PMIP3 comparison plot of the ice sheet surface reconstructions by

Peltier (ICE-6G) and Lambeck (ANU). Adapted from: https://pmip3.lsce.ipsl.fr/

wiki/lib/exe/fetch.php/pmip3:design:21k:icesheet:gnh5.pdf

The cordilleran part of the Laurentide Ice Sheet reaches heights of up to 3550 m,

but these elevations are reached only on high mountains, so the thickness there is

only around 1000 m. In valleys, the thickness reaches up to 2700 m, with surface

heights of up to 2800 m. The surface accumulation of the cordilleran part of the

Laurentide Ice Sheet is balanced by the Mackenzie Ice Stream on the eastern side

and by surface melt on the western side. The melt on the western side is possible be-

cause of the high temperature in the northern Pacific, that can exceed pre-industrial

levels.

We compare our results to four reconstructions. The widely used ICE-5G recon-

struction (fig. 3.9, Peltier (2004)), its follow-up ICE-6G as provided by the PMIP-3

project (fig. 3.15), the latest reconstruction by Lev Tarasov (fig. 3.16, Tarasov and

Peltier (2003); Tarasov et al. (2012) (labeled as Tarasov in the following) and the

reconstruction by Kurt Lambeck as provided by the PMIP-3 project1 (fig. 3.15,

ANU in the following). None of the reconstructions show an ice-free west coast.

They differ in the southern boundary and in the details of the structure of the in-

terior of the ice sheet. All four reconstructions agree with our model in putting the

south-western edge further to the north than the eastern edge, with values for the

south-western edge between 42◦N (ANU and ICE-6G) and 50◦N (Tarasov) (50◦N

in our model). For the south-eastern edge the values are between 35◦N (ANU and

ICE-6G) and 40◦N (Tarasov and ICE-5G), while our model yields 45◦N. Consider-

ing our climate model has a resolution of about 3.75◦, this is a good match.

In the interior of the Laurentide Ice Sheet, ICE-5G shows a massive mountain

range between 90◦W and 120◦W, reaching about 4500 m asl. This range is smaller

in the follow-up ICE-6G, and also in the ANU and Tarasov reconstructions.

The ANU reconstruction features the clear split into a western and a central

part that also occurs in our model with the Mackenzie Ice Stream separating the

1Kurt Lambeck, Australian National University, unpublished, see https://pmip3.lsce.

ipsl.fr/wiki/lib/exe/fetch.php/pmip3:design:21k:icesheet:gnh5.pdf

https://pmip3.lsce.ipsl.fr/wiki/lib/exe/fetch.php/pmip3:design:21k:icesheet:gnh5.pdf
https://pmip3.lsce.ipsl.fr/wiki/lib/exe/fetch.php/pmip3:design:21k:icesheet:gnh5.pdf
https://pmip3.lsce.ipsl.fr/wiki/lib/exe/fetch.php/pmip3:design:21k:icesheet:gnh5.pdf
https://pmip3.lsce.ipsl.fr/wiki/lib/exe/fetch.php/pmip3:design:21k:icesheet:gnh5.pdf
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Figure 3.16. The LGM topography provided by Lev Tarasov. Ice-covered regions are

colored.

two parts of the ice sheet. In ICE-5G and in the Tarasov reconstruction this split

also exists, although the stream is less well represented. It is hardly discernible in

ICE-6G.

In the central part, the ANU reconstruction shows a higher surface elevation

than our model, but the structure is very similar with a rather low surface elevation

in the region of the Hudson Bay and higher surface elevation south and west of it.

A similar structure can be seen in the Tarasov reconstruction. West of the Hudson

bay, ICE-5G, shows a massive mountain range between 90◦W and 120◦W, reaching

about 4500 m asl, while ICE-6G has a peak exactly in the Hudson Bay area.
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A comparison of the ice streams observed in the model (fig. 3.14(a)) with those

found in proxy records (Stokes and Tarasov, 2010) shows several ice streams, where

models and reconstructions agree. In the following, numbers relate to the num-

bering in Stokes and Tarasov (2010) and are employed in fig. 3.14(a). The central

Laurentide Ice Sheet is drained into the Arctic Ocean by Mackenzie Ice Stream (1).

There are two major ice streams in the Canadian Arctic Archipelago, the Amund-

sen Gulf ice stream (18) just to the east of Mackenzie, and M’Clure Strait (19)

north of Amundsen Gulf Ice Stream. Both show surge behavior. So does Lancaster

Sound Ice Stream (22) with its tributaries, the Admirality Inlet (21) and the Gulf

of Boothia ice stream (20). They drain the north-eastern part of the Laurentide Ice

Sheet into Baffin Bay. Further to the south, hardly represented, the Cumberland

Sound Ice Stream (23) surges into the Davis Strait. South of Cumberland Sound

and well represented, the Hudson Strait Ice Stream (24) drains the Hudson Bay

into the Labrador Sea. The Hudson Strait is not the only possible ice stream route

for draining the Hudson Bay. The sediment distribution allows for a more northerly

route joining the Lancaster Sound ice stream and draining into the northern corner

of Baffin Bay (fig. 2.1). However, this route does not become active in our experi-

ments (fig. 3.14(a)). Directly south of the main Hudson Strait, an ice stream drains

the Ungava Bay (16) into the Hudson Strait. In the Gulf of St Lawrence, a large ice

stream system forms in the Laurentian Channel (25) and neighboring tributaries.

The Laurentide Ice Sheet connects via Alaska to an ice sheet in eastern Siberia,

that did not exist in reality. This East Siberian Ice Sheet has a maximum

height of 3300 m and a volume of 9.3 Mio km3, corresponding to 24 m SLE. The

drift is +108 km3/yr. In the model, the East Siberian Ice Sheet closes the gap

between the Laurentide Ice Sheet in the East, and the Fennoscandian ice sheet in

the West. Krinner et al. (2011) came to the conclusion that two important factors

for not glaciating eastern Siberia are (1) the low snow albedo that is caused by

dust deposition, and (2) moisture blocking by the Fennoscandian ice sheet. We

do not use a locally varying glacier albedo, so the first effect is not represented in

our setup. Our Fennoscandian ice sheet does not reach as far south as indicated

by the reconstructions and the low resolution of the Atmosphere model does not

allow for a realistic simulation of the moisture blocking. Furthermore, we run the

model under LGM boundary conditions for a long time span, so our (steady-state)

response must be expected to be very different from a transient simulation. The

East Siberian Ice Sheet loses mass by surface melt along all margins except for the

Arctic Ocean coast, where the losses occur purely by calving and shelf basal melt.

Further calving and shelf basal melt occur at the pacific coast (fig. 3.13).

The Fennoscandian Ice Sheet has a volume of 11.6 Mio km3 (29.2 m SLE;

ICE-5G: 8.2 Mio km3, 20.7 m SLE) and shows a drift of +156 km3/yr. It consists of

two main parts. One part covering the Barents, Kara and Laptev sea shelves and the

islands in this region up to Svalbard in the northwestern corner, and one part over

Scandinavia south to 60◦N. The eastern part starts with a peak height of 2600 m.

During the experiment, the ice sheet expands southward, and the peak shifts to the

south and grows to 3000 m. The western part starts with a peak height of 2730 m,

decreases to 2600 m during the first 10 000 years and then stabilizes. Along the

southern border and parts of the Norwegian Sea coast, there is surface melt. At

the Arctic Ocean coast, all losses occur directly into the ocean (fig. 3.13).

Among the reconstructions of the Fennoscandian Ice Sheet, ICE-5G and ICE-

6G show the largest low-thickness zones. Such zones are hard to obtain as a steady

state solution in an dynamical ice sheet model, where there are positive feedbacks
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for ice sheet growth, until either height desertification or a nearby coast limit the

ice sheet height. They are easier to obtain as a transient state. The closure of the

gap between the Fennoscandian ice sheet and the East Siberian ice sheet at the end

of the coupled experiment shows such a large, flat zone, that is growing by surface

accumulation. ICE-5G contains a Fennoscandian ice sheet that reaches far to the

south and features surface height below 1000 m in its southern parts. In the ANU

and reconstruction, the region between 50◦N and 60◦N is covered with substantially

thicker ice exceeding 1500 m in large parts and even exceeding 2500 m over Norway.

The surface elevations in the Tarasov reconstruction are lower over Norway and

the Barents Sea than in the ANU reconstruction, but the reconstructions largely

agree. Over the Barents, Kara, and Laptev Seas, our model places much more ice

than the reconstructions. The locations of the ice streams with massive streaming

happening between Norway and Svalbard and further streams between the present-

day islands at the northern margin of the ice sheet (β, γ) match well with proxy

records (Denton and Hughes, 1981). The southern margin ice streams cannot be

compared to the reconstructions, since the margin is too far in the north.

Iceland is covered by an ice cap with a volume of 278 000 km3 (0.7 m sle, ICE-

5G: 172 000 km3, resp. 0.43 m sle) and a maximum height of 2450 m (1400 m ice

thickness).

3.9. Long-term changes in the ice sheets

Fig. 3.17 shows the time evolution of the ice sheets in ASYNC, fig. 3.18 shows

the evolution of their volumes. In the following, we describe the long-term changes

in the ice sheets. The recurring surges are covered in chapter 4.

As mentioned before, the eastern part of the Fennoscandian ice sheet slowly ex-

pands southward. This allows the ridge to shift southward and increase in altitude.

For the first 20 000 ice model years, the snow in the region between the Fennoscan-

dian and the Siberian ice sheets melts during the summer, except for a few cold

years, when it survives the summer melt. The ice sheets slowly grow into this area

by advective ice transport and start closing the gap from the sides (fig. 3.19). After

this time, the winter snow in the gap between the ice sheets survives the summer

melt and the gap between the ice sheets is largely closed by glacier growth from

local accumulation.

The closing of the gap between the ice sheets has implications for the atmo-

spheric transports into and out of the Arctic, since after closing this gap, the GIN

Sea becomes the only free passage into and out of the Arctic.

There is a second example of fast increase in ice sheet area. The Bering Sea

shelf is flooded with Ice from Alaska between years 9 000 and 11 000. The ice stream

surges transport vast amounts of ice into the region (fig. 3.14(a)) and, in the first

years, have to compensate for strong surface melt. Over time, the ice sheet in this

region stabilizes.

The other regions show little long-term drift. This does not preclude repeating

surge-type behavior that is covered in chapter 4.

3.10. Long-term changes in the atmosphere

To provide an overview of the largest long-term changes in the atmosphere, we

show the differences in key variables between the mean state of the last millennium

and the first millennium of ASYNC. The surface air temperature (fig. 3.20) north of

70◦N generally decreases with the strongest changes in the areas of the expansion

of the Fennoscandian and East Siberian Ice Sheets. The expansion of the ice sheets
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Figure 3.17. Ice sheet surfaces throughout ASYNC.
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Figure 3.18. Development of the ice sheet volumes in ASYNC.
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Figure 3.19. Growth modes the gap between the Fennoscandian and the east Siberian

ice sheet. In advective growth, the ice sheet brings more ice into the ablation area than

is molten during the summer season. The flanks of the ice sheet have the typical steep

shape that stems from the strong thickness dependence of ice transport. When the cli-

mate cools strong enough to permit the ice between the glaciers to survive the summer

season, the ice between the two ice sheets builds up as one flat surface. See fig. 3.17.

strongly increases the albedo (not shown) and thereby reduces the absorption of

incoming shortwave radiation (fig. 3.21). Over the GIN Sea, we sea a strong cooling.

This is caused by an increase in the the sea ice cover (fig. 3.26). The additional

sea ice reduces the shortwave absorption during summer and reduces the ocean

heat loss during winter. Especially during the second half of the experiment, the

northerly wind over the GIN Sea strengthens (fig. 3.22). The air cools up to a

height of 300 hPa (fig. 3.23), the SST decreases (fig. 3.27) and the ice covered area

grows. The northern Laurentide Ice Sheet cools largely because there is less heat

transported there by the atmosphere (fig. 3.24). The ocean and air temperatures

south of Greenland are dominated by the ice stream surges, but there is a slight

trend towards higher temperatures. This matches with the increasing strength of

the AMOC (fig. 4.22).
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Figure 3.20. Change in 2 m air temperatures between last and the first millennium of

ASYNC (years 8900 to 9899 – years 6901 to 7900).

Figure 3.21. Change in surface net shortwave radiation between the last and the first

millennium of ASYNC (years 8900 to 9899 – years 6901 to 7900).

In Siberia, there is a large-scale warming south of the ice sheets. In this region,

more shortwave radiation reaches the surface (not shown) and is absorbed (fig. 3.21).

The atmospheric heat transports into this region show smaller changes than the

radiative changes and rather lead to a redistribution in the area than to an increased

transport into it.

There is a warming over the Atlantic sector of the Arctic Ocean, where the sea

ice cover decreases.

3.11. Long-term changes in the ocean

With the growing meridional temperature gradient over the Atlantic, the NADW

cell of the AMOC grows in strength (fig. 4.22(c)), while the AABW cell shows no

long-term drift separable from the variability (fig. 4.22(d)).

The stratification in the Arctic Ocean and the GIN Sea weakens over time.

We show this for the Arctic Ocean in fig. 3.29. The temperature maximum of

the Atlantic inflow is slowly eroded and the deep water warms over time. At the
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Figure 3.22. Annual mean northward wind velocities over the GIN Sea region

(20◦W to 20◦E, 65◦N to 80◦N)

Figure 3.23. Temperature difference to the experiment mean over the GIN Sea region

(20◦W to 20◦E, 65◦N to 80◦N).

same time, the salinity of the deep water decreases and the salinity at the surface

increases. Deep water is formed southwest of Svalbard in the Greenland Sea.

While the SST in the GIN Sea decreases, the deep sea temperature keeps rising

until deep convection, which is basically absent in the GIN Sea in the first half of

the experiment, starts again (not shown).
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Figure 3.24. Change in atmospheric energy convergence between the last and the first

millennium of ASYNC (years 8900 to 9899 – years 6901 to 7900). Positive values indi-

cate more heat being transported into a region in the last millenium.

Figure 3.25. Precipitation difference between the last millennium and the first millen-

nium of ASYNC (8900 to 9899 – 6901 to 7899).
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Figure 3.26. 50 year running mean of the sea ice extent in the GIN Sea. The total

area of the GIN Sea in our setup is 2.1 Mio km3.
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Figure 3.27. 50 year running mean sea surface temperature in the GIN Sea.
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Figure 3.28. 50 year running mean of the heat gain in the GIN Sea. Includes energy

into and out of the sea ice. The heat loss decreases over time

Figure 3.29. Temperature, salinity, and potential density in the Canada basin in

ASYNC.
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3.12. Comparison to other model coupling studies

Technically, this study extends the work by Vizcáıno et al. (2008, 2010). While

these studies focus on the response of the Greenland Ice Sheet to a global warming

scenario and the effects of the increased ice melt in the climate system, our focus is

on glacial climate dynamics. To represent the physics that is relevant in a glacial

setup, we add ocean-ice interaction and use the more advanced ice sheet model mP-

ISM instead of SICOPOLIS. mPISM solves the shallow ice approximation (SIA)

and shallow shelf approximation (SSA). By applying the SSA to ice streams and

shelves, mPISM resolves the membrane stresses that are relevant in these areas and

thus has a substantially better representation of ice streams and shelves than the

SIA-only model SICOPOLIS. We do not model the Antarctic Ice Sheet, and choose

a setup that covers all parts of the northern hemisphere that are relevant for glacia-

tion under glacial maximum conditions. In comparison to Vizcáıno et al. (2010),

we have to go one step back in the calculation of the surface mass balance and use

a Positive Degree Day (PDD) model instead of the more advanced Energy Balance

Model (EBM). The EBM computes the ablation from 6-hourly climate data after

remapping to the ice sheet grid. Running the EBM on a hemispheric scale would

have been very costly and increased the duration of the experiments substantially.

The PDD method is much faster and also is widely used in glaciological and coupled

model studies (e. g. Gregory et al., 2012).

We are not aware of published studies where a coupled AOGCM–ISM system

is run on a hemispheric scale under last glacial maximum boundary conditions.

There are studies that come close to this, such as the AOGCM–ISM experiments

presented in Gregory et al. (2012), where the AOGCM FAMOUS (a fast version of

HadCM3) is coupled with the ice sheet model GLIMMER in a setup that covers the

Canadian Arctic Archipelago and Scandinavia to investigate feedbacks in the last

glacial inception. Their model is coupled in a way that maximizes glaciation and

thus yields substantial glaciation under pre-industrial boundary conditions. Other

studies, e. g. Fyke et al. (2011) focus on Greenland and Antarctica. Limiting the

modeled area to areas, where glaciation is wanted lifts a massive restriction on the

coupling and mass balance codes. While it is fairly easy to construct a coupling

scheme that yields a reasonable glacier distribution over Greenland, it is much more

difficult to obtain ice sheets in the correct places while keeping other areas from

glaciating immediately without explicitly introducing a location-dependency in the

coupling scheme. While Siberia does glaciate in our model, this process occurs very

slowly over several millennia and largely by advection of ice into this area. This

could be avoided by taking the effect of dust depositions on temperatures and melt

rates into account (Krinner et al., 2011), or by performing a transient simulation.

Using the EMIC CLIMBER coupled with the ice sheet model SICOPOLIS

Calov et al. (2002) study Heinrich events and Ganopolski and Calov (2011) model

full glacial cycles. Since CLIMBER has a very coarse atmosphere resolution, they

employ a full EBM to compute the surface mass balance and use a moisture bal-

ance model to represent effect of slope convection. While the group at PIK performs

impressive experiments with CLIMBER and SICOPOLIS that strongly contribute

to the understanding of glacials and their climate, the atmosphere and ocean dy-

namics in CLIMBER are highly parametrized and thus CLIMBER cannot be used

for detailed studies of atmosphere and ocean dynamics. This can only be done in

coupled AOGCM–ISM experiments.
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3.13. Summary of the mean states

Coupled AOGCM–ISM systems capable of long-time experiments are only be-

ginning to be developed. Therefore, we have modified the state-of-the-art ISM

PISM into mPISM, a model that can be used in coupled ice sheet – climate simula-

tions. We have coupled it to the AOGCM ECHAM5/ MPIOM/ LPJ. Both models,

as well as the coupling, work without anomaly maps or flux correction. Thus,

they can much better represent the nonlinear dynamics of the climate system than

models that employ such methods and commonly assume the correction patterns

to stay constant under varying climate conditions. In comparison to simulations

using earth system models of intermediate complexity (EMICs), AOGCMs are able

to represent processes of the ocean circulation and atmosphere dynamics in a much

more detailed way and with higher spatial and temporal resolution. In contrast to

previous AOGCM–ISM simulations (e. g. Gregory et al., 2012), the ISM covers all

relevant parts of the northern hemisphere. mPISM is a shallow ice approximation

(SIA) – shallow shelf approximation (SSA) hybrid model and thus able to model

ice streams more realistically than conventional SIA-only ISMs. In both directions,

the coupling includes the fluxes between ice and atmosphere as well as the fluxes

between ice and ocean, enabling the study of the full interactions between the ice

sheets and the climate system.

With our model system, we performed the first fully coupled multi-millennial

steady-state AOGCM–ISM simulations under LGM boundary conditions. We val-

idated our setup by also performing steady-state experiments under pre-industrial

boundary conditions. In both cases, our results agree reasonably well with the ob-

servational data. In the pre-industrial state, an additional ice sheet in the Alaska

Range forms. This is due to a resolution dependent cold bias in the atmosphere

model. In the LGM setup, a spurious ice sheet forms in eastern Siberia and Alaska.

This is at least partly due to neglecting the albedo effect of dust on snow and ice in

our model (Warren and Wiscombe, 1980; Krinner et al., 2011). Further advances

could be made by using a sophisticated energy balance scheme for the surface mass

balance (e. g. Calov et al., 2005a; Vizcáıno et al., 2010).



CHAPTER 4

Ice stream surges

As described in the introduction, it is commonly assumed that during some of

the Dansgaard-Oeschger Stadials, the so-called Heinrich Stadials, massive ice dis-

charges from the Laurentide Ice Sheet into the Labrador Sea occurred. In the ocean,

these ice masses broke up into icebergs that released freshwater into the ocean. The

freshwater weakened the meridional overturning circulation. The climate changes

that occurred during these periods, were recorded in proxies practically all over the

globe (see Clement and Peterson (2008) for a recent review).

To study the processes leading to and caused by such ice sheet collapses, we

performed two experiments. First, we performed an asynchronously coupled ex-

periment (ASYNC) spanning four ice sheet buildup-collapse cycles (30 000 years of

ISM simulation and 3000 years of AOGCM simulation) and then a synchronously

coupled experiment (SYNC) covering one single collapse period from ASYNC (3200

years). For details of the setup see section 2.5. In ASYNC, we investigate the cyclic

behavior of the ice streams. In SYNC, we focus on the evolution of the climatic

changes during the collapse. We compare the climate changes occurring in SYNC

with those in ASYNC.

In both experiments, the collapses cause strong signals in the Atlantic Ocean

temperature and salinity. The changes in salinity can globally be traced in the deep

oceans, where the background variability is lower than at the surface. The effects of

the ice sheet collapses on the atmosphere are mostly confined to the Laurentide Ice

Sheet and the adjacent North Atlantic and the Arctic Ocean, but there are some

far-reaching signals in surface air temperature and precipitation. In section 4.1 we

describe some of the general processes during ice stream surging that we need in

order to understand the behavior of the large ice streams covered in section 4.2. Fol-

lowing the description of the ice stream behavior in ASYNC, section 4.3 covers the

sequence of events in SYNC. The knowledge of this sequence is necessary to under-

stand their consequences in the ocean (section 4.4) and atmosphere (section 4.5).

Finally we discuss the surge mechanisms (section 4.6) and our findings by compar-

ing them with other simulations and with proxy-data (section 4.7).

4.1. Ice stream surging and ice sheet collapses

One of the most intriguing features of glaciers are surges. Within days to

months, a glacier speeds up and the velocities change from a few meters per year to

hundreds of meters or even kilometers per year. This can happen with or without

an obvious external trigger (Benn and Evans, 2010). During the surge, the ice

surface is drawn down and after some time (typically years) the surge stops and

the glacier returns to its quiescent flow. As described in the introduction and

in section 2.2, during the surge, the base of the glacier needs to be temperate to

permit the presence of basal water that lubricates the flow. The lubrication becomes

much more effective if the glacier is sediment bedded, since these sediments can be

deformed more easily than the basal ice layer. As described in section 2.2, we base

71
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the decision whether the ice slides in the model on the availability of basal sediments

and basal water. If and only if both are present, the ice slides.

The need for basal water and thus a temperate base severely restricts the ice

flow over mountains, where the ice sheet base is generally colder than in the neigh-

boring valleys. Since the ice sheet surface generally is very smooth, over mountains

the ice is thinner than in the surrounding areas. This has two negative implications

for the basal temperature. (1) The thinner ice provides less thermal insulation, and

(2) there is less heating by internal shear Pshear. The driving stress τd depends

linearly on the product of the ice sheet thickness thk and surface slope m. The

shear rate D is proportional to the third power of the driving stress. Thus, for a

constant surface slope, the heat production grows with the fourth power of the ice

thickness

(19) τd ∼ m thk ; D ∼ τ3
d ⇒ Pshear = D : τD ∼ (m thk)4 .

Therefore ice streams mainly develop in valleys and do not spread to the neighboring

mountains (compare fig. 3.14(a) and fig. 3.14(b)).

The details of surge propagation and termination are fields of active research

and even the basic structure of a correct sliding law is still subject to discussion

(Benn and Evans, 2010), but cyclic ice sheet surging is a process that is covered in

the literature, e. g. MacAyeal (1993); Fowler and Schiavi (1998). Once a surge is

active, there are heating and cooling processes competing for the development of

the basal temperature and water level. The sliding generates heat that melts ice

and keeps the surge running. This melting increases the vertical advection of cold

ice into the basal zone. Even more importantly, at the back end of a developing

surge, the ice stretches horizontally and cold ice is drawn down.

If the drainage basin of an ice stream is large enough and the passage to the

sea (or ablation area in the case of land-terminating ice streams) is narrow enough

to limit the outflow in the ice stream to the amount of ice restored by precipitation,

a constantly operating ice stream can develop. This is the case for Mackenzie Ice

Stream in our model. It drains a major part of the Laurentide Ice Sheet. If however,

the ice stream drains the basin faster than it is refilled, the ice stream draws down

the ice sheet substantially and then refreezes. This reduces the drainage of the

basin, the ice sheet regrows and a new surge can start. In our model, the Hudson

Strait Ice Stream, is a prime example for this behavior. An analog of varying the

size of the accumulation area is varying the accumulation rate. The ISMIP-HEINO

experiments (Calov et al., 2010) show exactly the behavior described above. With

all other parameters held fixed, three out of seven models models are only able

to obtain surges for low accumulation rates, not for high ones (additionally, one

model was only run for one ablation rate value and one did not surge at all with

the default air temperature and basal friction coefficient).

One of the decisive parameters for the processes at the base of the ice sheet

is the basal friction coefficient. If the friction coefficient is high, even little sliding

produces enough heat to keep an ice stream active. Furthermore, a high friction

coefficient reduces the flow speed and increases the probability that the precipitation

can keep up with the drainage and keep the ice stream running. The effect of

varying the sliding coefficient has been demonstrated for SICOPOLIS in Calov

et al. (2002) and for a variety of ice sheet models in Calov et al. (2010). Van Pelt

and Oerlemans (2012) study sliding for an idealized glacier with PISM. They find

long-period oscillations for low friction coefficients, fast oscillations for intermediate

friction coefficients and constant flow for high friction coefficients. While Calov
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Figure 4.1. Translation of driving stress into shear of basal till. Values below 0.01

(white) mark regions where there is practically no deformation of basal sediments.

Values between 0.01 and 1 mark regions where stress is diverted away by membrane

stresses in the ice sheet. Values above 1 mark regions where stress is concentrated. The

data stems from year 2350 of SYNC.

et al. (2002) use a sliding coefficient (1 / friction) of 0.1 m/yr/Pa, we have to use

1 m/yr/Pa to obtain robust oscillations. The difference in the sliding coefficient

that is necessary to obtain robust oscillations in part stems from the use of the

shallow shelf approximation in PISM. In the narrow passages, about two thirds

of the driving stress is diverted into the walls of the ice stream by the membrane

stresses and only one third actually contributes to basal stress (fig. 4.1).



74 4. ICE STREAM SURGES

4.2. The major ice streams

In the following, we describe the behavior of four major ice stream systems

that are most relevant for the freshwater budget of the North Atlantic and the

Arctic Ocean. For their positions see fig. 3.14(a). These are (1) the Barents Sea Ice

Streams draining into the Norwegian Basin, (2) the Mackenzie Ice Stream draining

along the east side of the Rocky Mountains into the Arctic Ocean, (3) the Amundsen

Gulf Ice Stream to the east of the northern part of the Mackenzie Ice Stream also

draining into the Arctic Ocean and (4) the Hudson Strait Ice Stream draining the

surroundings of the Hudson Bay into the Labrador Sea. This description is based

on the behavior of the ice streams in the ASYNC experiment. The discharge rates

of the ice streams are displayed in fig. 4.2. (1) The part of the Fennoscandian ice

sheet covering the Barents Sea is drained by four ice streams. Two of them flow

into the Norwegian Basin. Both of these show surge-type behavior (figs. 3.14(a)

and 4.2). Some of their surges occur simultaneous in both ice streams, but there

is no clear phase-locking between the two streams. They surge rather frequently

with discharge amounts up to 25 mSv and surge durations on centennial timescale

(fig. 4.2). The other two, also surging, ice streams flow from the Barents Sea into the

Arctic Ocean in the troughs between Svalbard and Franz-Josef-Land and between

Franz-Josef-Land and Severnaya Zemlya (fig. 3.14(a)) They also surge frequently

and reach discharge strengths up to 25 mSv (fig. 4.2).

(2) The Mackenzie Ice Stream constantly drains along the eastern margin of

the Rocky Mountains. It has annual mean surface air temperatures exceeding

260 K in the southern parts. In the northern parts, it even reaches a negative

surface mass balance. The huge drainage basin and the high surface (and thus ice-)

temperatures allow the ice stream to stay in constant operation. The upstream

regions that contribute keep changing over time (fig. 3.14(a)) and the ice discharge

into the Arctic Ocean varies between about 10 mSv and 30 mSv. There is no clear

periodicity and the spectrum of the ice discharge shows broad peaking between

1000 and 4000 years cycle duration (fig. 4.2).

(3) Just east of the Mackenzie Ice Stream, the Amundsen Gulf Ice Stream

periodically drains a part of the northeastern Laurentide Ice Sheet into the Arctic

Ocean. In contrast to the Mackenzie Ice Stream, it has periodic surge/buildup

cycles that (after some irregularities in the first 8000 yrs) have a period of 3500 yrs

with the active phase lasting between 1000 and 1500 years (fig. 4.2). Each surge

starts with a very fast upstream propagation of the sliding area reflected in a fast

growing discharge that typically peaks between 20 mSv and 25 mSv after 100 to

200 years and then slowly decreases to the background level of 0.2 mSv as the ice

surface lowers and the supply of ice gradually decreases (fig. 4.2). In the last part of

the surge, the ice stream refreezes from the upstream end to the downstream end.

Because of its very clear peaks and periodicity, the Amundsen Gulf Ice Stream

discharge can easily be seen in the Arctic Ocean sea ice volume and in the Fram

Strait sea ice export (fig. 4.2).

(4) The Hudson Strait Ice Stream periodically drains the Hudson Bay area into

the Labrador Sea. The surges recur with a period between 7000 and 8000 years

(table 4.1, fig. 4.2) and last between 1700 and 2800 years. The ice discharge from

the Hudson Strait varies between background values of about 5 mSv (stemming

mainly from the almost constantly operating Ungava Bay Ice Stream that also

feeds into the Hudson Strait) and peak discharges between 50 mSv and 70 mSv

during the surges of the Hudson Strait Ice Stream. In each surge, the volume of the
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Figure 4.2. Glacier ice and sea ice fluxes as well as the Arctic Ocean 215 m potential

temperature and the Arctic Ocean sea ice volume in ASYNC. All fluxes are running

averages over 10 years. For easy comparison of the variability, all fluxes are plotted with

a vertical scale spanning 100 mSv. For SYNC see fig. 4.3. All glacier fluxes are given at

freshwater density. The sea ice fluxes are given at ice density ρ = 910 kg/m3.

eastern Laurentide Ice Sheet (for the definition of the area see fig. 3.12) decreases by

between 1.5 Mio km3 and 2 Mio km3 (3.75–5 m sea level equivalent) in 1700–2800 yrs

(see table 4.1 and fig. 3.18).

In our experiments, the width of the Hudson Strait Ice Stream in the Hudson

Strait is constrained by the adjacent mountains. It does not spread over the full

width of the sediment covered region, but narrows down to a with of about 60 km

near the mouth of the Hudson Strait (compare fig. 3.14(a) with fig. 3.14(b) and

fig. 2.1). This strongly limits the ice discharge.
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Table 4.1. Ice sheet collapses. Note that the mean loss rate significantly differs from

the maximum flux into the Labrador Sea. Volumes and fluxes are given as ice Volume

changes of the eastern section of the Laurentide Ice Sheet (fig. 3.12) (ρ = 910 kg/m3).

The time evolution of the ice sheet volumes for ASYNC is shown in fig. 3.18. Key fluxes

are shown in fig. 4.2 for ASYNC and in fig. 4.3 for SYNC. ∗The second listing of SYNC

is the same experiment as the first listing, but putting the end of the surge at year 4000,

when the first two surge phases, that also occur in ASYNC have finished.

Experiment Start year Duration Volume released mean loss rate

(years) (106 km3) (mSv)

ASYNC 72 700 2800 1.6 18

ASYNC 80 750 2400 1.7 23

ASYNC 88 000 1700 1.5 29

ASYNC 95 000 2000 2.0 31

SYNC 1937 2833 2.1 23

SYNC 1937 2063∗ 1.8 27

Because of the large drainage basin and the narrow passage it is difficult to

avoid constant streaming in the Hudson Strait Ice Stream in model simulations. In

the experiments of Álvarez Solas et al. (2011) a constantly streaming ice stream

develops when a constant shelf melt rate is applied and the SSA is used to compute

the ice flow velocities in the ice stream. In contrast, Calov et al. (2002) obtained

recurring surges. The ISMIP-HEINO experiment (Calov et al., 2010) show that,

even under simplified conditions, the sliding behavior is highly model dependent

and nonlinear. Obtaining a pulsing behavior of the Hudson Strait Ice Stream under

constant boundary conditions was one of the major challenges in this project. It

proved that whether the Hudson Strait Ice Stream is in constant operation or pulses,

strongly depends on the choices made in the model setup, and on the parametriza-

tions chosen.

With our setup, the surges of the Hudson Strait Ice Stream are a robust feature

of the simulations and their existence is independent of the exact climate forcing.

mPISM shows the surges as an internal oscillation under perfectly constant climate

forcing as well as in the coupled simulations. Reducing the resolution from 20 km

to 40 km leads to constant streaming, as do higher basal friction coefficients.

In the experiments, there is constant sliding in the western Hudson Bay and east

of Mackenzie Ice Stream (fig. 3.14(a)). This is largely due to the high thickness of

the ice sheet in this area and, following from that, the constant supply of temperate

ice from the sediment-free zone between the Hudson Bay and the Mackenzie Ice

stream. The ice in this sediment-free zone cannot slide because of the lacking

sediments, so the ice sheet stays thick and the base of the ice sheet stays at the

pressure melting point.

The first surge of the Hudson Strait Ice Stream starts from the constantly slid-

ing zone on the western side of the Hudson Bay and propagates downstream. The

second surge also starts from the upstream side, but, when the surge front already

is propagating down the Hudson Strait and is increasing the surface gradients in

this area, the last 100 km of the connection are covered by an upstream propa-

gating extension of the Ungava Bay Ice Stream surge. The third and forth surges

start from the already surging Ungava Ice Stream and propagate upstream into the

Hudson Bay. The downstream propagation of the surges is caused a bug in the



4.2. THE MAJOR ICE STREAMS 77

basal boundary condition. We removed it during the second surge of the Hudson

Strait Ice Stream. Rerunning the same surge with the debugged model version still

shows an expansion of the surging area in the interior of the bay, but this time the

surge starts from the downstream end and propagates upstream through the entire

Hudson Strait. Rerunning the third surge with the old model code and the forcing

fields from ASYNC yields an upstream propagating surge, just as the debugged

code version does. The interval between the surges is not substantially affected by

this race between upstream and downstream surge initiation. It is mainly set by

the accumulation rate over the Laurentide Ice Sheet.

One effect by which surges propagate upstream as well as the downstream is

increasing the surface gradient. In the case of an upstream propagation, the surge

removes ice downstream of the surge front. In a downstream propagating surge, ice

is piled up upstream of the front. The higher surface gradient increases the driving

stress and thereby the heat production rate from the internal ice deformation (see

equation (19)). A higher ice temperature decreases the viscosity and causes faster

ice flow. This behavior was described in Calov et al. (2002) for the upstream

propagating surges of the Hudson Strait Ice Stream in their SICOPOLIS setup.

In all events, until the connection to the ocean is made, the sliding inside the

Hudson Bay remains fairly slow with speeds of up to 200 m/yr (below 50 m/yr in

the debugged model). In the first two events, the surge propagating down the strait

reaches ice velocities of up to 1 km/yr. This is due to the surface gradients (and

thus the driving stress) being higher near the coast than in the interior of the ice

sheet. Once the connection to the ocean is made, in all experiments, the sliding

speed in the Hudson Bay increases strongly with maximum speeds in the Hudson

Bay of about 1 km/yr, growing to 10 km/yr in the middle of the Hudson Strait

and to values near 30 km/yr in narrowest parts of the mouth of the Hudson Strait.

Downstream of this narrow passage, the ice spreads out and forms a shelf with

lower velocities (fig. 4.4).

All surges of the Hudson Strait Ice Stream show multiple discharge peaks

(fig. 4.2). These are the results from different parts of the Hudson Bay surging

at different times, some of them twice. In fig. 4.3–4.5, we show this for the surge in

SYNC.

Calov et al. (2002) use CLIMBER and SICOPOLIS coupled via the atmosphere.

They get robust oscillations under a variety of sliding coefficients, with a linear

and also with a quadratic sliding law. The surges have an amplitude of 0.1 Sv

to 0.2 Sv and thus are between twice and three times as strong as those in our

model (figs. 4.2, 4.3). Comparing fig. 3 in Calov et al. (2002) with fig. 3.14(a),

indicates that they obtain a substantially wider ice stream in the Hudson Strait

than we do. This allows for a much faster discharge of the ice. The wider ice

stream might partially be caused by the coarser model resolution of 1.5◦ longitude

by 0.75◦ latitude compared with 20 × 20 km2 in our setup. While the models in

principle remain anonymous in the ISMIP-HEINO comparison paper of Calov et al.

(2010), results of the experiments with SICOPOLIS were published in Greve et al.

(2006). A comparison of the two publications shows that SICOPOLIS is one of

only two models that obtains surges in all setups tested in Calov et al. (2010). This

demonstrates that SICOPOLIS is very well suited for obtaining robust oscillations.

A key factor that could contribute to this is the use of σ-coordinates in the vertical

in combination unequally spaced model levels that increase the vertical resolution

near the ice sheet base. This allows to model the downward advection of cold ice

during a surge very precisely.
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The initiation of the surges in the Hudson Strait allows for ocean based trigger-

ing mechanism as demonstrated by Calov et al. (2002). This is taken to the extreme

in Álvarez Solas et al. (2011) (see section 1.4). In their model, the ice discharge

from the Hudson Strait Ice Stream is modulated by the (non-) existence of an ice

shelf covering the Labrador Sea. They obtain the pulsed discharge as an anomaly

to a constantly surging Hudson Strait Ice Stream. The additional discharge amount

of 60 mSv and the total duration of the enhanced discharge of 3000 years agrees

very well with our results.

4.3. The surges in SYNC

In the following we describe the sequence of ice stream surges in SYNC. Fig. 4.4

shows the vertically averaged ice velocities, fig. 4.5 shows the corresponding surface

elevations, and fig. 4.3 shows the discharge rates. At the start of the experiment,

the Amundsen Gulf and the Ungava Bay Ice Streams are surging. The surge of the

Amundsen Gulf Ice Stream quickly propagates upstream and causes a strong ice

discharge into the Arctic ocean (fig. 4.3). During the surge of the Amundsen Gulf

Ice Stream, ice streams on the Barents Shelf and in the Bering Strait area become

active and discharge into the Arctic Ocean (fig. 4.3). The two-peak structure in the

discharges from the Bering Strait area results from different ice streams surging at

different times (fig. 4.4).

One of the key questions related to Heinrich events is whether surges of different

ice sheets can trigger each other via oceanic or atmospheric teleconnections. One

prime suspect here is a rising sub-surface Ocean temperature causing increased sub-

shelf melt. The increased melt reduces the buttressing effect of the ice shelf and the

ice stream behind it starts surging or speeds up (e. g. Álvarez Solas et al. (2010)).

In the Arctic Ocean, the sub-surface ocean temperature rises during the ice stream

surges (see section 4.4, fig. 4.10(a)). We investigate whether these temperatures

trigger the surges of the ice streams on the Barents Shelf and near the Bering

Strait in a sensitivity experiment. In this sensitivity experiment, we force mPISM

with the same atmospheric forcing fields as in SYNC and constant ocean boundary

conditions averaged over years 3000–3099 of SYNC, when the Arctic ocean is in a

cold state (fig. 4.7), and the Labrador Sea is in a warm state. The basic structure of

the Arctic ice stream fluxes is identical to that of SYNC (fig. 4.6). The total amount

of ice discharged into the Arctic ocean is lower in the first 500 years of the sensitivity

experiment than in SYNC, but the same ice streams are active as in SYNC. Their

discharge rate is lower. The lower discharge rate matches with the lower ice shelf

basal melt that allows for thicker ice shelves and thus more buttressing. Towards

the end of the sensitivity experiment, Mackenzie Ice Stream becomes stronger than

in SYNC. The surge of the Hudson Strait Ice Stream is not substantially affected

by the warm ocean conditions in the Labrador Sea, but rather delayed slightly.

However, the processes related to the surges are highly non-linear, and this delay is

well within the range of responses we can expect for small, random forcings. The

small sensitivity of the Hudson Strait Ice Stream to the ocean temperature is due

to the very small ice shelf that offers a very small area where shelf basal melt can

occur and provides hardly any buttressing. All in all, the differences between the

sensitivity experiment and SYNC show that the ice sheet is influenced by the ocean

in our experiments, although, in this case, the ocean does not trigger the surges.

The surging Ungava Ice Stream draws down the ice sheet surface in the Hudson

Strait. This increases the surface gradient here and initiates the upstream propa-

gation of the surge activation wave between years 1900 and 2000 (see Calov et al.
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Figure 4.3. Glacier ice and sea ice fluxes as well as the Arctic Ocean 215 m potential

temperature and the Arctic Ocean sea ice volume in SYNC. All fluxes are running av-

erages over 10 years. For easy comparison of the variability, all fluxes are plotted with a

vertical scale spanning 100 mSv. For ASYNC see fig. 4.2

(2002)). Once the surge has reached the Hudson Bay, it first propagates south-

ward along the eastern margin of the bay. It draws down the ice sheet surface on

the eastern side of the bay and thereby increases the surface gradients towards the

west. This prepares the connection to the already sliding western margin of the

Hudson Bay. Between years 2200 and 2210, the sliding zone in the west of the Bay

expands and connects to the Hudson Strait Ice Stream. In the years 2210 to 2860,

the western zone is slowly drained and the southern part refreezes. In the mean

time, between the years 2400 and 2600, the southern Barents Sea Ice stream surges

into the Norwegian sea. Between years 2860 and 2920, the surge in the Hudson
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Figure 4.4. Vertically averaged ice velocities in SYNC.
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Figure 4.5. Ice surface elevations in SYNC.

Bay again spreads southward and reaches further into the southern parts of the

bay. This causes the second large pulse in the ice discharge (fig. 4.3). The ice in the

Hudson Bay slowly refreezes and by the year 4000, only the Hudson Strait remains

active. In contrast to ASYNC, this is not the end of the surge in SYNC, but the
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Figure 4.6. Ice stream fluxes in a sensitivity experiment that is forced with the ocean

state averaged over years 3000–3099 of SYNC (fig. 4.7) and time-varying atmospheric

fields of SYNC (red), and in SYNC (blue). The sensitivity experiment features a cold

Arctic Ocean and a warm Labrador Sea.

eastern margin of the Hudson Bay starts a new surge phase. The volume of ice

mobilized in this surge is fairly low, but the surge phase lasts for another 770 years.

Between the years 4000 and 4200, the Lancaster Sound Ice Stream surges into the

Baffin Bay (figs. 4.4–4.3).

There are several minor ice streams in the model. Minor in this case still implies

a width of at least one grid cell (20 km) and up to about 100 km (fig. 3.14(a)). These

ice streams are smaller than the continental-scale Mackenzie and Hudson Strait Ice

Streams but still of massive size by present day standards. Several of them show a

pulsing behavior. The surges start at the downstream end and propagate upstream.
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(a) Sensitivity study (b) Arctic ice stream surges

Figure 4.7. Temperature anomalies in the forcing used for mPISM in the sensitivity

study compared to the reference period. For comparison the mean anomaly during the

surges of the arctic ice streams (averaged over years 2050–2099 of SYNC) is presented.

The refreeze usually starts at the upstream end and then propagates downstream.

Which ice streams show a surging behavior and which are in constant operation

can be told from the time fraction they spend sliding displayed in fig. 3.14(a). For

a comparison of the modeled ice streams to proxy data see section 3.8.

4.4. The response of the ocean

In the following, we focus on the ocean response to the ice stream surges in

SYNC (a rerun of the third collapse ASYNC) and point out similarities and dif-

ferences in ASYNC. In SYNC, the Amundsen Gulf Ice Stream already is surging

at the beginning of the experiment (fig. 4.3). This shows a clear imprint on the

climate. Therefore we cannot use the SYNC to obtain a reference period. Thus, we

take the years 8550 to 8749 from ASYNC as reference period (year 8780 in ASYNC

corresponds to year 1780 in SYNC).

We start the discussion by describing the changes in sea ice volumes, transports

and cover. From there, we move on to the changes in ocean temperature and salinity

and finally to the changes in the ocean circulation. We start with the surges of the

Arctic ice streams in the first 400 years of SYNC. These surges occur in two pulses,

the first between years 1900 and 2000, the second between 2000 and 2200 (left

column and, as a sum of the Arctic fluxes, the second plot on the right in fig. 4.3).

We start with the effects in the Arctic Ocean and then follow the ice on its route

through the GIN Sea into the Iceland and Irminger Basins and from there to the

Labrador Sea.

A large fraction of the mass discharge from the surging ice streams occurs in

the form of iceberg calving. As described in section 2.4, the calved ice is modeled

as sea ice in MPIOM. The conversion of glacier ice into sea ice works best for the

surges into the Arctic Ocean. Since the Arctic Ocean surface layer perennially is at

the freezing point, the calved ice is entirely converted into sea ice and transported

from the Arctic Ocean to the GIN Sea via the Fram Strait (figs. 4.3, 4.8). The

variability in the shelf basal and calving fluxes (second plot on the right in figs.

4.2 and 4.3) explains for almost all of the variability in the Fram Strait sea ice
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export (third on the right in the above mentioned figures) on centennial and longer

time scales. In ASYNC, the correlation coefficient (r) between the 10 year running

means of the ice stream discharge and the sea ice export is 0.85 with the sea ice

export lagging behind the ice discharge by 5 years (r = 0.82 at zero lag, r = 0 at

about ±60 years). In SYNC r is 0.76 with a flat plateau. The difference between

the behaviors is caused by the asynchronous coupling in ASYNC. The variability

of the ice discharge is compressed by a factor of 10 in ASYNC compared to SYNC.

This can be seen by the autocorrelation of the ice discharge timeseries from ASYNC

falling below 0.8 for a shift of about 10 years, while for SYNC it takes a shift of

about 100 years for this to happen. Scaling time by a factor of 10 leads to largely

identical autocorrelation functions.

During the surges of the Arctic ice streams, the ice thickness in the Arctic

Ocean grows (+1.3 m on the average (2050 to 2099 – reference)). This reduces

the heat loss to the atmosphere and thus reduces the sea ice formation rate. The

reduction in sea ice formation causes a reduction in brine rejection and thus a

reduction in sea surface salinity. The water column stabilizes, the surface cools

and the subsurface temperature rises (see fig. 4.10(a) and the bottom left plot in

fig. 4.3). For the consequences of the higher sub-surface ocean temperatures for the

ice sheets see section 4.3.

In the GIN Sea, the additional sea ice mainly stays in the Greenland Sea,

and follows the East Greenland Current (fig. 4.8). In the Greenland Sea, the sea

ice concentration in the reference period perennially is above 90%, so there is little

change in ice concentration during the Arctic ice stream surges (fig. 4.8(c)). The ice

thickness in the Greenland Sea increases from about 2 m by about 0.6 m (fig. 4.8(a),

years 2050–2099 vs. reference) with slightly larger changes in the summer season

and smaller changes in the winter season.

In the Norwegian Sea, the sea ice concentration increases by about 10% in

summer and fall during the second pulse of the Arctic ice streams (years 2050–

2099). As in the Greenland basin, the winter sea ice concentration is close to or at

100%, therefore there is no noticeable change in the winter sea ice concentration.

The ice thickness in the reference period varies between 0.4 m during summer and

1 m during the winter season. During the years 2050–2099, it increases by 0.1 m.

As in the Greenland Sea, the thickness changes are slightly larger in the summer

season than in the winter season.

The major part of the additional sea ice in the GIN Sea travels through the

GIN Sea in the East Greenland Current and reaches the Irminger Basin via the

Denmark Strait. A smaller fraction crosses the Iceland-Faroe Ridge or the Faroe-

Shetland-Ridge and melts in the Iceland Basin. In the Irminger Basin, a large part

of the sea ice melts, the remainder flows into the Labrador Sea.

The Labrador Sea and the Irminger Basin already show partial ice cover before

the surges of the Arctic ice streams. With the additional sea ice brought here by

the East Greenland Current during the surges, the sea ice cover increases further

(fig. 4.8). In contrast, the Iceland basin is more strongly influenced by the North

Atlantic Current and stays practically ice free. Only a narrow band of sea ice on

the southern side of the Iceland-Faroe Ridge can form.

The changes in sea ice are directly reflected in changes in the ocean heat uptake

(fig. 4.9). Where the sea ice cover increases (fig. 4.8), the ocean loses less heat to the

atmosphere in the cold seasons, while the deep water formation areas south of Ice-

land lose more heat (fig. 4.9) and the water temperature decreases (see fig. 4.10(a)

for the 150 m temperatures, the surface cooling is stronger). At the same time,
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(a) 2050 to 2099 (b) 2350 to 2399

(c) 2050 to 2099 (d) 2350 to 2399

Figure 4.8. Sea ice thickness (a, b, color coded, in m), concentration (c, d) and trans-

port (vectors) anomalies compared to the reference period (7550 to 7749 in ASYNC).

the water freshens because of the freshwater from the melting sea ice. With the

Subpolar Gyre, the colder than normal water from south of Iceland moves toward

Greenland and is subducted below the low salinity surface water of the East Green-

land Current (see fig. 4.11 for the layering along 60◦N). This causes a cooling in

the subsurface water in the East Greenland Current. The stratification in the cur-

rent remains stable (fig. 4.14) because of the light low salinity surface water. The
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(a) Ocean heat uptake in the reference period (b) Change in ocean heat uptake (2050 to 2099

– reference)

Figure 4.9. Ocean heat uptake and change during the surge event. The flux is defined

as the net energy flux into the ocean/sea ice system and given in W/m2. The effects of

glacier calving and shelf basal melt are removed.

subducted water flows into the Labrador Sea and causes a subsurface cooling and

freshening there in the years up to 2300 (figs. 4.10(a) and 4.12). When interpreting

the transports in fig. 4.10(a), it is important to consider the shape of the isopycnals

in the North Atlantic and the adjacent basins (figs. 4.11 and 4.13), since the water

does not necessarily stay at one depth level, but follows the isopycnals.

With the weakening of the North Atlantic Subpolar Gyre (see below, fig. 4.24(a))

the water throughput of the Labrador sea is reduced from 20.5 Sv during the ref-

erence period via 17.5 Sv (2050 to 2099) to 12.1 Sv (2350 to 2399) (all values

computed from the outflow across a transect from Greenland (61.5◦N, 50◦W) to

Newfoundland, (48◦N, 55◦W)).

With the onset of the main phase of the surge of the Hudson Strait Ice Stream at

year 2200, the surface water freshening in the Labrador basin increases and exceeds

0.5 psu (fig. 4.12(b)). This freshening is largely restricted to the top 100 m, but a

small signal persists throughout the entire water column. The stratification further

stabilizes and a warm water anomaly develops, centering at 150 m to 200 m of depth

(figs. 4.10(b) and 4.12(a) ). While the sub-surface water in the East Greenland

Current in the northern Irminger Basin still is colder than in the reference period

(and than during the surges of the Arctic ice streams, fig. 4.10), at the southern

tip of Greenland the sub-surface water is warmer than in the reference period.

This is an effect of mixing with Atlantic water. One reason why the Atlantic

water entrained in the current is warmer is that, on its way to the southern tip of

Greenland, the Atlantic water flowing northward takes a more direct approach to

the Irminger Basin (figs. 4.10 and 4.13), being less exposed to deepwater formation

(fig. 4.14) and thus reaches the Irminger Basin warmer. The circulation of the water

in the Labrador Sea also changes, which contributes further to the warming. We

visualize this in fig. 4.13 for isopycnals that lie between 150 and 180 m of depth in the

northern Labrador Sea. Since the density of the Labrador Sea water changes over

time, we have to pick different potential densities in the different time frames. In

the reference period and during the surges of the Arctic ice streams, these isopycnals
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(a) 2050 to 2099 – reference (b) 2350 to 2399 – reference

Figure 4.10. Temperature change (in K) in 153 m depth during (a) the surges of the

Arctic ice streams and (b) the surge of the Hudson Strait Ice Stream. The vectors show

the ocean velocity at 153 m depth during the periods displayed.

Figure 4.11. Atlantic Ocean potential density σθ in the top 1000 m at 60◦N during

March averaged over the years 2050 to 2099.

rise to 90 to 120 m in the southern Labrador sea. During the surge of the Hudson

Strait Ice Stream the isopycnal stays deeper than 150 m. This is a consequence

of the stronger stratification of the Labrador Sea and reduces the heat loss to the

atmosphere. The subsurface warming strengthens during the two main peaks of

the Hudson Strait Ice Stream surge (compare the Hudson Strait Ice Stream flux in

fig. 4.3 with fig. 4.12(a)). This warm layer also develops in ASYNC, but, due to the

asynchronous coupling and the thus shorter duration of the surges in ASYNC, the

warming is less pronounced there. From the timing, we can clearly tell, that the
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(a) Temperature change.

(b) Salinity change.

Labrador Sea freshwater �ux

Arctic Ocean freshwater �ux

year

(c) Freshwater fluxes into the Arctic Ocean and the Labrador Sea (as defined in fig. 4.17). The light

blue horizontal lines mark the values during the reference period.

Figure 4.12. Temperature and salinity changes in the Labrador Sea at 60◦N, 55◦W in

SYNC compared to the reference period (years 7550 to 7749 of ASYNC). Note the non-

linear vertical scale giving equal weight to each model level. For easy comparison, the

freshwater fluxes are plotted below.
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(a)

(b) (c)

Figure 4.13. Depth (in m) of March potential density σθ (reference level = surface)

isopycnals for (a) the reference period (σθ = 1028.56), (b) the Arctic ice stream surges

(years 2050–2099, σθ = 1028.5), and (c) the Hudson Strait Ice Stream surge (years

2350–2399, σθ = 1028.43). The densities were chosen such, that the surfaces have a sim-

ilar depth in the interior of the Labrador Sea.

development of the warm subsurface water layer is a consequence of the surge, and

not its trigger.
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(a) reference

(b) 2050 – 2099 (c) 2350 – 2399

Figure 4.14. Mixed layer depths (in m) before and during ice sheet collapse in the

Hudson bay. The monthly means were averaged over the displayed time intervals, then

the maximum was taken for each grid point.

The horizontal and vertical sections in figs. 4.15, 4.18, and 4.19 show the dis-

tribution of the freshwater anomaly in the Atlantic. A part of the freshwater sinks

in the deep water formation areas south of Iceland (fig. 4.14). It follows the deep

western boundary current at depths around 2000 m to 3000 m to the southern ocean

and, as part of the normal route of the NADW, joins the Antarctic Circumpolar

Current on its voyage to the East (fig. 4.15(c)). While the salinity in the deep

Antarctic Ocean is growing at the start of the surge, this trend stops around year

2050 and, after the year 2350, the salinity decreases. We show this for the depth

level centering at 4198 m in fig. 4.16. The freshening in the deep layers of the At-

lantic is strongest in the north at the overflows from the GIN and Labrador Seas. In

ASYNC, the correlation between the salinity in the Antarctic Circumpolar Current

at 2200 m depth and the freshwater flux into the Labrador Sea (both as defined
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in fig. 4.17) is r = −0.6 for a lag of about 200 years, the time it takes the salinity

anomaly to travel through the Atlantic (both time series detrended and smoothed

with a 20 year running mean).

The freshening in the southern Atlantic is strongest at depths between 1500 m

and 3000 m and up to about 10◦from the coast (fig. 4.19). Over time, it spreads over

the entire width of the Atlantic basin. Figs. 4.15(a) and 4.19(b) show an increase

in sea surface salinity. There is considerable variability in the SSS, and the sign of

the anomaly changes over time, but, averaging over the years 2000 to 2999 yields

a positive mean anomaly, while the deeper ocean freshens. Fig. 4.19(b) shows an

increase in salinity around 1000 m of depth. A comparison with figs. 4.18(a) and

4.19(a) shows that this caused by a slight upward shift of the border between the

NADW and the Antarctic Intermediate Water.

At larger distances from the Labrador Sea, the surface signal is much smaller

than the background climate variability, but in the deep ocean, that has a very

long time scale, we can detect small changes very easily. In the Pacific, the salinity

decrease caused by the ice sheet collapses is only 0.005 psu at 2200 m depth, but,

in ASYNC, even this small change stands out strongly against the background

variability. At greater depths, the signal does not appear against the background

drift.

The freshwater that does not sink in the deep water formation areas follows the

Subtropical Gyre, and sinks down to intermediate depths west of the French and

Spanish coasts as part of the ventilation of the thermocline (Luyten et al., 1983).

With the subtropical Gyre, it is brought to the Gulf of Mexico (fig. 4.15).

In the Atlantic, there is hardly any change in the in situ density. The reduction

in salinity is practically completely compensated for by a reduction in ocean tem-

perature that reaches 1 K in the center of the Mediterranean Water. The Salinity

of the Mediterranean Water decreases in the deep layers of the Strait of Gibraltar

(not shown) as well as in the Atlantic (fig. 4.15). The depth of the Mediterranean

water tongue in the Atlantic increases as can be seen from the dipole anomaly in

fig. 4.18(c), where there is a slight increase in salinity just below the depth of the

maximum salinity of the Mediterranean water. When interpreting the strength of

the salinity increase, one has to take the general freshening of the north Atlantic

into account.

During the surges of the Arctic ice streams, the zonal wind stress from the

westerlies over the North Atlantic increases at the eastern coast, while it weakens

at the American coast (fig. 4.20(a)). The westward wind stress south of Iceland

decreases but the multi-annual variability is of a similar magnitude as the change.

With the surge of the Hudson Strait Ice Stream, the pattern changes and the wind

stress caused by the westerlies at the European coast decreases in strength. For

an extreme 50-year average see fig. 4.20(b). The difference between maximum and

minimum zonal wind stress over the North Atlantic varies around the reference

value during the surges of the Arctic ice streams (fig. 4.21). During the surge of

the Hudson Strait Ice Stream, it drops below this value and stays there for the

remainder of the experiment.

During the ice stream surges, the NADW cell (fig. 3.4(b) for the mean state

and fig. 4.22(a) for the variations during the ice stream surges), the North Atlantic

Subpolar Gyre (ASPG) and the Subtropical Gyre (fig. 4.23) weaken. The Antarctic

Bottom Water cell in the Atlantic is hardly influenced, and rather weakens than

strenghens in SYNC, while in ASYNC, it strengthens during the ice stream surges.

In the following we detail on the different aspects of the ocean circulation.
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(a) Salinity change in 60 m depth

(b) Salinity change in 750 m depth

(c) Salinity change in 1900 m depth

Figure 4.15. Atlantic salinity changes during the Hudson Strait Ice Stream surge in

SYNC. Averaged over the years 2350 to 2399 for the surge and years 8550 to 8749 from

ASYNC as reference state.
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Figure 4.16. Salinity in the Antarctic Circumpolar Current in the depth level center-

ing at 4198 m. The black line indicates the value during the reference period. For the

definition of the region see fig. 4.17.
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Figure 4.17. Basins used for time series and basin averages: 1: GIN Sea, 2: Arctic

Ocean, 3: Labrador Sea, 4: northern Atlantic, 5: tropical and southern Atlantic, 6:

Antarctic Circumpolar Current, 7: Indian Ocean and Pacific, 8: El Niño area, 9: Lakes

and inland seas.

The NADW cell (fig. 4.22) has a mean strength of 23.4 Sv during the reference

period. During the collapse it does not exceed 22.5 Sv and most of the time it

is below 22 Sv. The first two minima for the intervals 1900–1949 and 2050–2149

correspond to the two main pulses from the Arctic ice streams. They are followed

by the two strongest minima as low as 20.5 Sv during the first maximum period of

the surge of the Hudson Strait Ice Stream around years 2250 to 2400 and during the

surge of the Barents Sea Ice Stream between years 2500 and 2600. After the surge of

the Barents Sea Ice stream, the circulation partially recovers to about 21.5 Sv and

is hardly affected by the second phase of the Surge of the Hudson Strait Ice Stream.

With the slow-down of the surge, the NADW cell strengthens again (fig. 4.22), but

does not regain its full strength. In ASYNC the NADW exhibits a similar behavior

of with decreases in strength matching with the ice stream surges (fig. 4.22(c)). In

ASYNC, the correlation between the NADW cell strength and the global freshwater

flux is r = −0.63 at a lag of 25 years (0.5 at zero lag, both timeseries detrended

and averaged with a running mean of 20 years).

The AABW cell (fig. 4.22) shows values between 3.4 Sv and 3.7 Sv during the

reference period. During the surges, it first slightly increases and then decreases
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(a) Atlantic ocean salinity in the reference period (years 8550 to 8749 of

ASYNC). Isolines are drawn every 0.1 psu.

(b) Years 2350 to 2399. Isolines are drawn every 0.1 psu.

(c) Years 2350 to 2399 of SYNC – years 8550 to 8749 of ASYNC. Isolines

are drawn every 0.02 psu.

Figure 4.18. Atlantic salinity in the reference period and during the Hudson Strait Ice

Stream surge in SYNC. The data is averaged over the Atlantic and Arctic Ocean from

30◦W to 30◦E.
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(a) Salinity during the reference period (years 8550 to 8749 of ASYNC). Isolines are drawn at 0.1

psu intervals.

(b) Salinity difference between years 2350 to 2399 of SYNC and 8550 to 8749 of ASYNC. Isolines

are drawn at 0.01 psu intervals.

Figure 4.19. Salinity in the Atlantic at 20◦S during the reference period and salinity

change during the Hudson Strait Ice Stream surge. Salinity Values are in psu. Depth

values are in m.

below the reference value. This behavior is interesting because the AABW cell

cannot profit from the weakness of the NADW cell in SYNC, and this behavior

contrasts with the behavior observed in ASYNC where the AABW cell strengthens

in times with a strong NADW cell (fig. 4.22, r=0.53 on the 50-year means with

the AABW leading the NADW by one 50 year block, and r=0.45 for the zero-lag

match). The leading of the AABW can be interpreted as the AABW being only

shortly affected by the freshening. This would also explain why there is hardly any,

or a reverse effect in SYNC. The correlation of the AABW cell strength with the

global freshwater flux is r = 0.4 for a 25 year lag (r=0.32 for zero lag), a slightly

delayed strengthening of the AABW cell when the freshwater fluxes into the ocean

increase (both timeseries detrended and smoothed with a 20-year running average).

In the reference period, the ASPG strength varies between 34.5 Sv and 37.5 Sv

(figs. 4.23, 4.24(c)). During the first and second surge phases of the Arctic ice

streams, it decreases to about 32 Sv (fig. 4.24(a)). During the surge of the Hudson

Strait Ice Stream, it varies between 34 Sv and 28.5 Sv with minima at the peaks

of the surges of the Hudson Strait Ice Stream and the Barents Sea Ice Stream

(fig. 4.23(b)). There is a last strong decrease in Gyre strength around year 3700,

then it recovers to pre-surge values. In ASYNC, the ASPG weakens in the first
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(a) 2050 to 2099

(b) 4000 to 4049

Figure 4.20. Change in zonal wind stress during the ice stream surges in SYNC

compared to the reference period (8550 to 8749 of ASYNC). Overlain is the zonal

wind Stress in the reference period with contour levels of 0.04 Pa starting at ±0.02 Pa.

Dashed outlines indicate negative values.
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Figure 4.21. Maximum wind stress difference (max - min) over the North Atlantic

(including GIN Sea, Arctic Ocean and Labrador Sea). Computed from 50-year monthly

means. The black line marks the value in the reference period.
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(a) Strength of the NADW cell in SYNC.
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(b) Strength of the AABW cell in SYNC.
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(c) Strength of the NADW cell in ASYNC.
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(d) Strength of the AABW cell in ASYNC.

Figure 4.22. Maximum and minimum Atlantic Meridional Overturning Circulation

streamfunction computed for 50-year intervals of SYNC and ASYNC. In the back-

ground, the 50-year running mean of the global freshwater flux into the ocean is shown

in blue. The dashed lines in (a) and (b) show the mean strength in the reference period.
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(a) Barotropic stream function before the ice sheet collapse. Averaged over years 8550 to 8749 of

SYNC. For values beyond ±40 Sv, black contour lines are drawn at intervals of 20 Sv starting at

±60 Sv.

(b) Barotropic stream function change during the ice sheet collapse. Difference between the years

2350 to 2399 and the reference period shown above.

Figure 4.23. Change in barotropic ocean circulation.

three Hudson Strait Ice Stream surges, while it remains practically constant during

the last surge.

During the reference period, the North Atlantic Subtropical Gyre (fig. 4.23,

fig. 4.24(b)) has a strength varying between 51.7 Sv and 53.5 Sv. In SYNC, it shows

a first minimum of 49.5 Sv during the first surge phase of the Arctic ice streams.

As the ASPG it shortly recovers and weakens again to the same level in the second

surge phase. From this, it does not recover but it further weakens to 46 Sv when the

Hudson Strait Ice Stream becomes active around year 2200. During the remainder

of the surge it varies between 46 Sv and 50 Sv with maxima around year 2600 and

between years 3100 and 3300. After 3300 it falls back to about 47 Sv and then

slowly recovers to values around 50 Sv at year 5000.

The overall behavior is qualitatively similar in the first three out of the four

surge events in ASYNC. The fourth event, starting at climate model year 9500,
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Figure 4.24. Atlantic Subpolar and Subtropical Gyre stream function maximum (min-

imum). Note the sign difference between the two gyre systems. The surges in ASYNC

start at years 72 000, 80 750, 88 000, and 95 000.
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yields hardly any changes in the ocean circulation, while the changes in the salinity

structure are largely similar to the other events. Due to the asynchronous coupling,

these events are too short to analyze the detailed structure and timings of the

different minima.

4.5. The response of the atmosphere

In the following, we describe the changes in air temperatures, precipitation,

energy balance, and atmospheric transports during the ice stream surges in SYNC

(see fig. 4.5 for surface elevations and fig. 4.3 for the fluxes). The seasonal analysis,

especially of the radiation balances, is obstructed because the calendar of ECHAM5.

The calendar follows the Gregorian calendar in high detail and contains the different

leap year cycles as well as the long-term drift of the timing of the equinoxes and

solstices. So, while the annual mean TOA incoming shortwave flux is constant, the

timing of the season within a year varies on several levels. We show this in fig. 4.25

for the March TOA incoming solar radiation at 60◦N averaged over the 50 year

blocks that we use for the analysis of the climate data. There are three patterns in

the radiation. (1) an alternating between higher and lower radiation because of the

missing leap day every 100 years, (2) a sawtooth with a period of 400 years, because

of the extra-leap day every 400 years, and (3) a long-term increase in March TOA

incoming solar radiation corresponding to a calendar shift of about 2 days in 6000

years. Therefore, a comparison of radiative fluxes on sub-year base for different

years practically always shows a hemispheric signal. Patterns that are not zonally

symmetric can be interpreted with good confidence that they are not an artifact of

the calendar, as can patterns that go against the trend expected from the pattern

in the incoming shortwave radiation. Zonally rather symmetric pattern that match

the trend expected from the incoming shortwave radiation have to be considered

with great caution.

As the ocean, the atmosphere already responds to the surges of the Arctic ice

streams before the Hudson Strait Ice Stream starts surging. Starting with the year

1800, there is a cooling centering over the Labrador Sea (figs. 4.26(a) and 4.27(a)).

It stretches to the west over the Laurentide Ice Sheet and to the east into the GIN

Sea. Over the Labrador Sea, the annual mean 2 m air temperature decreases by

more than 4 K while over the Laurentide Ice Sheet and western Greenland, the

cooling is limited to about 1 K. Over the GIN Sea, it can reach values up to 2 K.

The cooling over the Labrador and GIN Sea is strongest in SON and DJF with

slightly stronger cooling during SON.
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Figure 4.25. The effect of the calendar drift visualized using the TOA incoming short-

wave at 60◦N during March. Averaged in 50 year blocks ([0;49] and [50;99] respec-

tively).
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(a) 2 m air temperature changes during the surge of the Arctic ice streams (years 2050 to 2099 of

SYNC minus reference (years 8550 to 8749 of ASYNC)).

(b) The 2 m air temperature changes during the surge of the Barents Sea Ice Stream into the Nor-

wegian Sea (years 2500 to 2549 of SYNC – reference).

(c) The 2 m air temperature changes during the second part of the surge of the Hudson Strait Ice

Stream (years 2900 to 2949 of SYNC – reference).

Figure 4.26. Changes in 2 m air temperature during different stages of the ice sheet

collapse.
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(b) ASYNC.

Figure 4.27. The 2 m air temperatures in the region from 30 ◦W to 60 ◦W and from

45 ◦N to 75 ◦N. The blue line in fig (a) marks the mean of the temperatures during the

reference period (years 8550 to 8749 of ASYNC)

The cooling over the Labrador Sea is caused by the increased sea ice cover

(compare fig. 4.26(a) with fig. 4.8(c)). The extra sea ice reduces the heat flux from

the ocean, and increases the albedo (over the Labrador sea, albedo changes exceed

+0.2 in JJA and SON). The increased albedo causes a reduction in shortwave

absorption over the southern Labrador Sea, that causes a decrease in the top of

atmosphere net shortwave radiation (fig. 4.28). From the Labrador Sea, the cooling

spreads by reduced advection of heat over Greenland and over the Laurentide Ice

Sheet. Over the eastern Laurentide Ice Sheet, the surface elevations at this stage

of the experiment are higher than in the reference period because the ice sheet is

still building up for the surge of the Hudson Strait Ice Stream. The higher surface

elevation contributes further to the cooling.

With the surge of the Hudson Strait Ice Stream, the cooling over the Labrador

Sea and Irminger Basin intensifies (fig. 4.27). The cooling reaches its first maximum

with the peak of the surge of the Hudson Strait Ice Stream around year 2300. Then

it weakens again, as the surge weakens. When the Barents Sea Ice Stream surges

around year 2500, the cooling reaches its absolute maximum between years 2500

and 2550 (fig. 4.26(b)). Then, the temperatures partially recover and only a limited

cooling remains. The second surge phase of the Hudson Strait Ice Stream starting

around year 2900 only shows a mild impact on the temperatures (figs 4.26(c),

4.27(a)).

While the Atlantic sector of the (sub-) polar regions cools, there is a slight (1 K)

warming trend over Northeast Siberia, Kamchatka, and Alaska (fig. 4.26(a)). Over
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Figure 4.28. Top of atmosphere net shortwave radiation change during the Arctic ice

stream surges. (2050 to 2099 of SYNC – 8550 to 8749 of ASYNC).
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Figure 4.29. Arctic Ocean 2 m air temperature and heat release from the ocean.

the western part of the temperature anomaly in Northeast Siberia, the warming is

largely due to less clouds and therefore more sunlight reaching the surface in summer

(fig. 4.28). From this region, heat is transported downwind towards Alaska. The

warming over Kamchatka is also caused by a reduction in clouds and is strongest in

SON. The strength of the warming in SON could partly be caused by the calender

shift pushing autumn two days further into summer and removing two winter days.

The annual mean signal is not caused by the calendar of ECHAM5. Over the other

parts of the world temperature changes are mostly minor (< 0.5 K).

The 2 m air temperature over the Arctic Ocean, that remains constant during

the surge of the Arctic ice streams, decreases by 1 K to 238.5 K when the Hudson

Strait Ice Stream starts surging in year 2200 (fig. 4.29(a)). It remains at this value

until the end of the experiment. The cooling is caused by small decreases in top of

atmosphere (TOA) net shortwave flux, and in atmospheric advection. The ocean

heat release does not contribute to the temperature trends (fig. 4.29(b)).

With the progressing surge of the Hudson Strait Ice Stream, the surface ele-

vation over the Hudson Bay decreases (fig. 4.5). This leads to a lapse-rate related

temperature increase, that is, however, restricted to the southern part of the Hud-

son Bay (fig. 4.26). The northern Hudson Bay and the Canadian Arctic Archipelago

(CAA) cool throughout the experiment. For the following quantification, we av-

erage over the region from 120◦W to 75◦W and from 60◦N to 75◦N. The surface

temperature decreases from an average of 243.1 K in the reference period to 241.7 K

averaged over the years 4000 to 5000. In the years up to 2250, the cooling is rel-

atively constant at about 0.6 K and we can partially explain it by an increase in
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Figure 4.30. Change in 200 hPa temperatures averaged over the years 3000 to 3999 of

SYNC compared to years 8550 to 8749 of ASYNC. To show the mean circulation, the

200 hPa geopotential height contour lines at intervals of 200 m are overlaid in black.

surface elevation of (on the average) 50 m compared to the reference period. Later,

the surface elevation over the CAA decreases but the temperatures keep falling.

One factor that contributes to this cooling is a reduction in cloud cover (aclcov)

from 78% in year 2250 to 73% in year 4000. This reduction is present in all seasons

and leads to higher net shortwave gains in summer (+0.4 W/m2 in the annual mean,

while the increase in SW reaching the surface is about 3 W/m2) but also to less

reflection of outgoing longwave (LW) radiation in all seasons (−4 W/m2 change in

downward LW reaching the surface in the annual mean). The atmospheric trans-

port of heat into the region decreases from 99 W/m2 in the reference period via

98 W/m2 until year 3000 to values between 97.5 W/m2 and 97 W/m2 in the years

from 4000 to 5000.

At a height of 200 hPa a banded, zonal signal with warming over the tropics

and polar areas and cooling over the mid-latitudes emerges (fig. 4.30). The warming

over the subpolar regions has three maxima, one over the northwestern Hudson Bay

stretching northwest from there, one over eastern Greenland and the Greenland Sea

and one over northern Siberia at about 120 ◦E. The warming over the northwest-

ern Hudson Bay can be explained by a decrease in southward wind in this area

(fig. 4.31, the area of the maximum in southward wind decreases clearly). Over

the GIN Sea, the northward component of the mean flow is strengthened by about

0.4 m/s (3000 to 3999 – reference). West of the Ural, the northward wind speed

increases slightly, possibly contributing to the warming over northern Siberia. The

temperature pattern is less pronounced in ASYNC. The northern subpolar warming

and the cooling in the mid-latitudes during and after the Hudson Strait Ice Stream

surges are present in ASYNC, but the cooling over the southern mid-latitudes is not

present in ASYNC. The dominant signal over the tropics in ASYNC is a warming

starting at year 8800, the start of SYNC, and lasting until the end of the experi-

ment. Therefore the emergence of this signal in SYNC probably is more related to

model drift than to the ice stream surges.

The precipitation shows substantial variability on a multidecadal time scale.

Therefore averaging over several centuries is necessary to distinguish between changes

induced by the ice stream surges and the multidecadal variability of the Atmosphere–

Ocean system. In fig. 3.3(c) we show the mean precipitation in ASYNC. All pre-

cipitation changes during the ice sheets surges are small compared to the total



4.5. THE RESPONSE OF THE ATMOSPHERE 107

Figure 4.31. 200 hPa zonal wind velocities. Colors: years 3000 to 3999, black contour

lines: reference period with same contour levels. Negative values are drawn with dashed

outlines.

precipitation. We show the precipitation changes in fig. 4.32. They are averaged

over (a) the years 2000 to 3000 and (b) 3000 to 4000 of SYNC. The mean precipi-

tation change in the years 4000 to 5000 is very similar to that of 3000 to 4000. We

therefore do not plot it. To test the significance of the changes, we compute the

standard deviation σ of 200 year averages (the duration of our reference period) of

the precipitation between years 3000 and 5000 of SYNC. We draw the 2σ contour

lines as dashed lines in fig. 4.32. Precipitation changes beyond 2σ very likely are not

random variability, but either are long-term drift in the model or are caused by the

ice stream surges. Since the model shows considerable long-term drift in ASYNC

(fig. 3.25), we discuss the precipitation changes in SYNC by comparing them to the

long-term changes in ASYNC.

In the long term drift of ASNYC (fig. 3.25) as well as in SYNC (fig. 4.32),

a dipole pattern develops over the North Atlantic with drier conditions in the

northern part of the dipole and wetter conditions in the southern part. The spatial

extents of the positive and negative anomalies differ between the two experiments,

with a precipitation reduction in ASYNC that is limited to the GIN Sea and a

precipitation reduction in SYNC, that extends further to the south and includes

the Irminger Basin, the Iceland Basin and parts of the Labrador Sea. The details

will be described in the following.

In both experiments, the sea ice cover in the GIN Sea expands (see fig. 3.26

for the timeseries of ASYNC and fig. 4.8 for maps of selected periods of SYNC).

The increased sea ice cover reduces the evaporation and thereby causes a reduction

in precipitation. In SYNC, a dipole pattern in the net precipitation – evaporation

(P-E) flux develops. Over the Norwegian Sea, where most of the increase in sea ice

cover occurs, the reduction in evaporation outweighs the reduction in precipitation

and the change in the P-E flux is positive throughout SYNC, while over the Green-

land and Iceland Seas, that already are largely ice covered before the surges, there

is a net reduction in the P-E flux. In contrast, in ASYNC the P-E flux is reduced

over the entire GIN Sea. This matches with the increasingly southward blowing

wind in ASYNC (fig. 3.22).
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(a) 2000 – 3000

(b) 3000 – 4000

Figure 4.32. Precipitation changes averaged over different phases of SYNC. Refer-

ence period are the years 8550 to 8749 of ASYNC. Dashed lines mark regions, where the

changes exceed 2 standard deviations computed from 200 year means of the preciptia-

tion in the years 3000 to 5000 of SYNC.

Figure 4.33. Forest cover changes (2500 to 2549 – reference).
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Figure 4.34. Changes in grassland and steppe (2500 to 2549 – reference).

Over the Labrador Sea, the precipitation decreases in the years 2000 to 2999 of

SYNC. During the years 3000 to 3999, the precipitation stays low over the southern

part of the Labrador Sea, while it increases over the northern part. The increase

in precipitation over the northern Labrador Sea matches with a general increase in

precipitation over the eastern Laurentide Ice Sheet.

The precipitation over the Irminger Sea weakens during the surge of the Hudson

Strait Ice Stream. As in the GIN Sea, the P-E flux is split into a net decrease in

the west, that is already largely sea ice covered before the surge, and a net increase

in the east, where the increasing sea ice cover reduces the evaporation. The drift in

ASYNC shows an increase in precipitation over the Irminger Sea, so the different

signals between SYNC and the drift in ASYNC together with the physical reason

give confidence that this change is caused by the ice stream surge. Over the Iceland

Basin, a similar pattern as in the Irminger Sea emerges. The evaporation is reduced

over the northern part, where the sea ice cover increases, and the precipitation is

reduced over the entire basin.

Over northern America, the precipitation changes show a dipole pattern with

a decrease in precipitation in the middle part and an increase in the eastern part.

Especially during the later years, there is increased precipitation over the Rocky

Mountains and Alaska.

The drier conditions over the northern Atlantic spread into Europe and fre-

quently reach far into Siberia (this dry band is responsible for the above mentioned

warming in eastern Siberia). Over southern Europe, the reduction in precipitation

locally exceeds 50 mm/yr (10% of the annual rain fall in the reference period).

In the years 2000 to 3000, there is a decrease in zonal mean precipitation north

of 50◦N (see zonal mean diagram in fig. 4.32(a)). Between 50◦N and 60◦N, about

one quarter of this change is caused by a reduction in net P-E flux (and thus

by advective processes), while three quarters of the precipitation decrease can be

explained by a matching evaporation decrease (not shown). North of 60◦N, the

change in net P-E flux becomes increasingly important. In the following 1000 years

(after year 3000), the zonal mean of the precipitation north of 30◦N practically

matches the values from the reference period. During this period, the decrease in

precipitation over Europe is compensated for by an increase in precipitation over

the Pacific and over the eastern Laurentide Ice Sheet.
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Over the northern part of the North Atlantic Subtropical Gyre, the precipi-

tation generally increases indicating a slight southward shift of the mid-latitudes

rain band. The ITCZ slightly shifts to the southwest causing a dipole pattern in

the precipitation anomalies with a precipitation increase over the northern parts of

Southern America. While, during the years 2000 to 3000, there only is a reduction

in precipitation over the Sahel region, in the following millennia, the rainfall in the

tropical rain band over Africa increases and a dipole pattern develops.

A three-band-structure with drier conditions over India, wetter conditions just

south of it and then a drier band spanning from Indonesia and northern Australia to

Madagascar exists through a large part of SYNC. Northeast of Australia, the pre-

cipitation increases. These precipitation changes are very similar to those observed

in ASYNC and could simply be model drift. While the drying over Australia and

the increased precipitation northeast of Australia also appear as long-term drift in

ASYNC, but a very similar signal also exists in the ECHAM5/MPIOM COSMOS-S

hosing experiment in Kageyama et al. (2013), that is probably the simulation of

this set that is closest to our experiment. This suggests that this pattern is an

actual consequence of the ice stream surges.

In ASYNC, several precipitation changes from SYNC are not reproduced. The

drying over the Northern Atlantic is mostly limited to the Labrador Sea, and the

associated increase in precipitation between 30◦N and 45◦N is missing. The dipole

pattern of decreased precipitation between the Gulf of Mexico and the African west

coast, and increased precipitation to the south is hardly captured in the fist collapse

event, but clearly present in all three following events. The precipitation decrease

in Europe is also missing in the first event, but captured in the following three,

although it does not extend far into Siberia. The changes over India and the Indian

ocean in SYNC are hardly reproduced during the Hudson Strait Ice Stream surges

ASYNC.

Due to the cooling (fig. 4.26(b)), the forests in the region of present day Great

Britain shrink slightly. Due to the decreasing precipitation, the forest cover in

southern and eastern Europe, and in a large band over Siberia slightly decreases as

well fig. 4.33. With the southward shift of the ITCZ, the forests in the Sahel region

slightly shifts southward, In Eurasia the forests are replaced by steppe, in the Sahel

zone, this is not the case.

4.6. Discussion of the surge mechanisms

To what degree the processes related to the fast propagation of the sliding zones

and to the refreeze at the end of the surge in ice sheet models are real physics or a

numerical artifact is still debated (Calov et al., 2010; Soucek and Martinec, 2011).

They are very sensitive to the exact numerical implementation as the multi-model

comparison in Calov et al. (2010) shows and to variations in the implementation of

the basal sliding criterion, as Soucek and Martinec (2011) show. Using PISM, Van

Pelt and Oerlemans (2012) find long-period oscillations in an idealized valley glacier

setting for sufficiently low friction coefficients and faster oscillations for intermediate

friction coefficient values. For high friction coefficients, they obtain steady flow.

Hindmarsh (2011) regards the basic problem of thermally controlled ice stream

surges as well posed, but expects that the details of the surge propagation might

be ill-posed under the shallow ice equation. We avoid this problem by modeling

the sliding using the shallow shelf approximation.

However, in reality, we observe ice streams cycling between surging and non-

surging phases. The processes at the base of these ice streams are very difficult to
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study. Basal conditions vary on very small spatial scale, down to meters, making

in-situ measurements challenging and difficult to upscale. The exact mechanisms

of basal sliding and surge propagation still are fields of intensive research (see Benn

and Evans (2010) for a detailed description of glacier surges and an extensive list

of references). Furthermore, some glacier surges propagate in a shockwave style

fashion with discontinuities in the surface height (Dowdeswell et al., 1991). So far,

no ice sheet model is able to represent these features. Therefore, an implementation

in a hemisphere-scale ice sheet model must mainly be judged on the basis of being

physically consistent and yielding a reasonable model behavior.

By and large, this is the case for the sliding in mPISM. For parts of the collapse,

the sliding area expands almost by one row of grid cells per timestep. This indicates

a numerical artifact being at work. On the other hand, it does not exactly propagate

with this velocity, and the propagation is limited to those parts of the Hudson Bay,

that already are close to sliding before the surge starts. Therefore, the propagation

– although it may be very fast – seems to follow basic physical principles and cannot

be discarded as a pure numerical artifact.

Because of the very low basal resistance, the flow speed of the ice is mainly

limited by the limits on its horizontal internal deformation. Therefore the stress

balance of the shallow shelf approximation becomes important (fig. 4.1). In contrast

to SIA only models, where this would be a 1:1 relationship, models that include

the lateral stresses only balance a part of the driving stresses locally and transfer

most of the stress into adjacent grid points that do not slide, or have a very high

basal sliding resistance.

In the margins of the ice sheet, where the driving stresses are especially high,

the ice in valleys can reach surface velocities well in excess of 100 m/yr because of

the high internal deformation rates that temperate ice can reach under high driving

stresses. This leads to the formation of ice-stream-like structures that slide on a

basal layer of fast deforming ice, as is the case for the Northeast Greenland Ice

Stream in fig. 3.7(a). This effect mitigates some of the very harsh cutoff we impose

with the use of the basal sediment mask.

4.7. Comparison to freshwater hosing experiments and climate proxies

In the following, we compare our results to those of other coupled model studies

as well as to proxy data. For comparisons with hosing experiments, we will mainly

focus on the intercomparisons of Stouffer et al. (2006) and Kageyama et al. (2013)

(see also section 1.5). We draw the references for the proxy data mainly from

Broecker and Hemming (2001), Otto-Bliesner and Brady (2010), and Chikamoto

et al. (2012).

As for all models in Stouffer et al. (2006) and in Kageyama et al. (2013), the

AMOC in our experiments weakens (fig. 4.22). The reduction by 10–15% in our

model is on the lower end of the results obtained in the above cited intercompar-

isons (6–62% for a 0.1 Sv freshwater forcing in Stouffer et al. (2006), and 20–95%

for varying freshwater forcings in Kageyama et al. (2013)) just as the freshwater

release of 0.06 Sv from the ice sheet is lower than the forcings used in the model in-

tercomparisons. The growth of the strength of the response with the strength of the

forcing has been shown in various experiments, e. g. Maier-Reimer and Mikolaje-

wicz (1989); Otto-Bliesner and Brady (2010), and, using ECHAM5/MPIOM under

LGM boundary conditions, Zhang et al. (2012, submitted). Zhang et al. (2012, sub-

mitted) obtain a reduction in AMOC by about 70% for a freshwater pulse of 0.2 Sv

applied over 150 years and an almost complete shutdown for a freshwater pulse of
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1 Sv. A difference between our simulations and most hosing experiments is, that

in our simulations the freshwater is injected locally at the Hudson Strait, while in

most hosing experiments, it is spread out over the possible deepwater formation

areas.

Proxy studies suggest a complete shutdown or at least a very strong reduction

of the NADW formation during Heinrich event 1 (H1) (Vidal et al., 1997, McManus

et al., 2004, Stanford et al., 2011 and the references therein). While our experiments

are clearly far away from a collapsed NADW cell, there is growing evidence that the

AMOC reduction was present before the deposition of the ice rafted debris (Gutjahr

and Lippold, 2011; Stanford et al., 2011). Furthermore, H1 is special, because it

took place during the already beginning deglaciation. For H4, Vidal et al. (1997)

find that the NADW cell was reduced, but still active outside the zone of maximum

iceberg melting.

Some of the models in the pre-industrial multi-model hosing experiment in

Stouffer et al. (2006) show a northward migration of the deepwater formation into

areas that are not subject to the hosing. Because of the heat released by the

convection, the SST rises in these new deepwater formation areas. None of the

models in Kageyama et al. (2013) show this behavior. In ASYNC, for some 50-year

time frames, we see a similar behavior with subsurface warming and heat release

in areas that are not strongly affected by the ice stream surge. In SYNC, there is

no warming in the high latitudes. The surges of the Arctic ice streams just before

the surge of the Hudson Strait Ice Stream cause an increase in the already high sea

ice cover and a freshening of the surface layer. Both effects strongly counteract a

northward migration of the deepwater formation areas.

With the weakening NADW formation, practically all models in Stouffer et al.

(2006) and Kageyama et al. (2013) show a high-latitude cooling centering over the

Atlantic. The exact shape and strength of this pattern varies considerably, but the

basic feature is robust. In the 0.1 Sv AOGCM-ensemble of Stouffer et al. (2006),

the temperatures over Europe sink by 0.5 to 1 K. In Kageyama et al. (2013) the

temperature changes tend to be stronger. This matches with 5 out of 11 models

being subjected to a freshwater forcing exceeding 0.1 Sv. In SYNC, the cooling

over Europe largely is between 0.5 and 1.5 K during the surge of the Hudson Strait

Ice Stream (fig. 4.26). Thus, taking the different freshwater forcing strengths into

account, our results are consistent with those from the hosing experiments.

Our model shows a cooling over Greenland that largely is between 0.5 and 1.5 K.

The signal in the Greenland ice cores is dominated by the Dansgaard-Oeschger vari-

ability and Heinrich Stadials appear not colder than other stadials there. Ganopol-

ski and Rahmstorf (2001) explained this with a southward shift of the deepwater

formation areas in normal stadials that would cut Greenland from the Atlantic

heat fluxes even without Heinrich event. The further retreat during a Heinrich Sta-

dial then would not have any further substantial effect on Greenland. The models

in Stouffer et al. (2006) largely agree with our model in simulating a moderate

cooling, while some models in Kageyama et al. (2013) show a very pronounced

cooling. The comparison with the proxy data is very difficult, because there are

no AOGCM simulations of Dansgaard-Oeschger events. It is possible to obtain

Dansgaard-Oeschger-event like features by prescribing negative freshwater forcings

(e. g. Ganopolski and Rahmstorf (2001), see Kageyama et al. (2010) for a review),

but they do not appear as internal oscillations of climate models, yet. Therefore,

most freshwater hosing experiments start with an intermediate state and, if the
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AMOC is shut down, show a strong cooling. Thus, while being difficult to compare

to proxy evidence, our results agree with those from modeling studies.

At the Iberian Margin, Heinrich (1988) found an increase in cold-water planktic

foraminifera in sediment cores from Dreizack Mountain (47.3◦N, 19.5◦W) in times

of increased ice-rafting. Depending on the calibration method, Bard et al. (2000)

obtain SST reductions between 3 and 9 K for H1 and between 2 and 5 K for H2 from

a sediment core from the Iberian margin. They obtain a reduction in SSS by 1 to

3 psu for H1. For the same location, we observe a SST decrease by about 0.6 K and

a reduction in SSS by 0.2 to 0.3 psu. The trend matches and considering that H1 is

very strong and influenced by the deglaciation, the results are consistent with the

proxy data. On land, pollen records from around the Mediterranean and western

Europe (e. g. Tzedakis et al., 2004; Fletcher and Sánchez Goñi, 2008; Fletcher et al.,

2010), show a correlation between the Dansgaard-Oescheger cycles and tree types

and cover. The pollen indicate relatively cold, arid climates during stadials and

relatively warm, humid climates during the interstadials. Among the stadials, the

Heinrich Stadials are the coldest and most arid. In the model, we observe colder,

and, over large parts of Europe also drier conditions during the ice stream surges

(fig. 4.32), matching the trend in the proxies.

Schönfeld and Zahn (2000) put the Mediterranean Outflow Water (MOW) dur-

ing the LGM at 1600 to 2200 m depth. Skinner and Elderfield (2007) find indications

for influence of MOW at a depth of 2637 m during Heinrich Stadials. In our LGM

simulation, the core of the MOW is centered at a depth of 1300 m and reaches down

to 1800 m (fig. 4.18). It slightly deepens during the ice stream surges (fig. 4.18(c)).

With this effect, we capture the trend in the observations.

For the time of H1, Flower et al. (2004) find the deglacial warming and a

decrease in SSS by with spikes reaching 2–4 psu in the Gulf of Mexico. However,

the picture in their data is not very clear. SYNC shows a reduction in SSS reaching

0.4 psu in the same area. Lea et al. (2003) find no statistically significant changes

in SST in a core from the Cariaco basin (northern Venezuelan shelf), but a slight

tendency towards cooling. In our model, the trend in this region depends on the

grid cell chosen, and in any case is close to zero. Rühlemann et al. (2004) find a

rapid warming of 1–3 K for intermediate depth (1299 resp. 426 m) waters at 17 ka

in benthic foraminifera from sediment cores from the Carribean Sill and Angolan

coast. From two sediment cores from similar locations, Vidal et al. (1999) find an

increase in the SST during H1, H4 and H5. In our model, we find 0.2 K cooling on

the Caribbean Sill during the Arctic ice stream surges, followed by a 0.2 K warming

and, at the Angolan coast slight cooling during Arctic ice stream surges, followed

by a 0.15 K warming. Stanford et al. (2011) date the start of the freshwater releases

related to H1 at 19 ka and the start of the IRD deposition at 17.5 ka. Giving a 2 kyr

lead for the freshwater discharge we also obtain a warming trend. Regardless of the

timing, the signal in our simulation is very weak.

Grimm et al. (1993, 2006) find an increase in pine tree pollen and indication

for an increased lake level in Lake Tulane (central Florida). In SYNC this is on

the southern limit of the zone of increased precipitation so this result agrees with

the trend, although the signal in our simulation is very small. In ASYNC there

is rather less than more precipitation central Florida, but the signal is very small

and patchy around Florida in most Heinrich event time slices so one should not

over-interpret it.

The southward shift of the ITCZ over southern America, that we observe in

the model, is confirmed by proxy data. Hessler et al. (2010) summarize proxy data



114 4. ICE STREAM SURGES

from the tropics. They find a indication for a southward ITCZ shift in southern

America. The data coverage in Africa is too poor and the trends are too diverse

for a clear picture to emerge. Similarly Arz et al. (1998) find increased deposition

of terrigenous sediments, indicating wetter conditions, around the times of Hein-

rich events a sediment core from the Brazilian continental margin, but the dating

uncertainty is substantial.

The EPICA Community Members (2006) present data from the Byrd (80◦S,

110.5◦W), EPICA Dronning Moud Land (EDML, 75◦S, 0◦E), and EPICA Dome

C (75◦S, 123.3◦E) ice cores. They show warming trends during the Dansgaard-

Oeschger Stadials reaching values between 0.5 and 3 K. The warmings last especially

long (and thus reach higher values) during the Heinrich Stadials. At Dome C, SYNC

shows a cooling compared to the reference value at the start of the experiment that

is followed by a warming trend. ASYNC has relatively warm periods during the

second and third Hudson Strait Ice Stream surge, but the signal hardly reaches

out of the noise. The changes in both experiments on the order of 0.3 K. At the

locations of Byrd ice core, and EDML, there are no trends in our experiments. On

average, the models in Stouffer et al. (2006) simulate a warming between 0 and

0.3 K over the Antarctic continent for a freshwater forcing of 0.1 Sv. This is below

one standard deviation from the model simulations. In Kageyama et al. (2013),

about half of the models simulate a warming above 0.5 K (for different freshwater

forcings). There is hardly any cooling exceeding 0.5 K. Some models show a cooling

exceeding 0.5 K over parts of the Antarctic Circumpolar Current, while for most

parts of the southern hemisphere there are more models showing warming than

cooling. Summarizing, there is a Dansgaard-Oeschger dominated pattern in the

proxy data while the hosing intercomparisons show a mixed picture and our model

shows hardly any changes.

For the eastern Pacific, Seki et al. (2002) find evidence for post-Heinrich event

SST increases by 3–4 K for H1, H3, H4, and H5 in ODP Hole 1017E (34.5◦N,

121◦W). While this in part is to be ascribed to the Dansgaard-Oeschger warming

cycle that is visible in this core for all Dansgaard-Oeschger events, there is a clear

cooling during stadials, that is a bit more obvious for the (longer) Heinrich Stadials.

At the same location, we find a slight (0.1 to 0.2 K) cooling in SYNC. Considering

that we are not modeling Dansgaard-Oeschger cycles, our results reasonably agree

with the proxies.

All in all, the changes our model simulates are not exceedingly strong, but,

considering that in the Greenland ice cores, the Heinrich Stadials differ from the

other stadials mainly in terms of duration, but not in strength, and, that at least

for Heinrich event 1, the proxies indicate that most of the weakening of the AMOC

occurred pre-collapse and might have actually triggered the ice-sheet collapse (see

sec. 1.4), the mild response of the ocean model is in accordance with the proxy

data. Our results also are consistent with the results of previous freshwater hosing

experiments using moderate forcings.

4.8. Summary of the ice stream surges

The experiments analyzed in this chapter are not only the first steady state

AOGCM–ISM LGM experiments, but, at the same time, they are the first set of

experiments with a coupled AOGCM–ISM system where Heinrich event style surges

occur as internal, model generated variability. We obtain surges of the Hudson

Strait Ice Stream with a period of 7 kyrs, matching the reconstructions from proxy

data (e. g. Hemming, 2004). The repeated ice stream surges are internal oscillations
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of the ice sheets. While substantial work on the ice sheet model was necessary to

obtain these oscillations, their occurrence adds confidence in the model of MacAyeal

(1993) and matches with the experiments of Calov et al. (2002). As in these studies,

in our experiments, the timescale of 7 kyrs is set by the accumulation rate over the

Hudson Bay area. In this respect, our results contrast with the results of Álvarez

Solas et al. (2011), who get time varying ice discharge only when they force the

model with time varying shelf melt rates. Even with a time varying melt rate, a

critical question for our understanding of the ice–climate system is, whether the

increased shelf melt triggers a surge caused by an internal oscillation of the ice

sheet (Calov et al., 2002), or whether the time varying melt rate is really the cause

of the surges (Álvarez Solas et al., 2011). Our results support the theory of internal

oscillations that can be triggered externally.

In our model, the surges of the Hudson Strait Ice Stream cause freshwater

discharge rates peaking at about 0.06 Sv, and the modeled ice volume changes lie

between 1.5 and 2.1 Mio km3, corresponding to 3.8–5 m sea level rise. Proxy esti-

mates for Heinrich events (including the Younger Dryas event) vary greatly and

range from 0.06–0.12 Sv to 0.15–1 Sv depending on the study and the discharge du-

ration assumed (Clement and Peterson, 2008). While our results are on the lower

end of this range, they are within the margin of uncertainty. The occurrence of

Heinrich events as part of some Dansgaard-Oeschger stadials complicates a com-

parison of model output and proxy data since the two effects of Dansgaard-Oeschger

cycles and Heinrich events are combined in proxies, while the model only shows the

effects of the ice stream surges. By and large, the modeled changes agree with

the reconstructions from the proxy data. The reduction in north Atlantic deepwa-

ter formation by 10 to 15 % is consistent with the results of AOGCM freshwater

hosing experiments (Stouffer et al., 2006; Kageyama et al., 2013), considering the

lower freshwater discharge in our model and the localized release in contrast to a

spreading directly over the deepwater formation areas in the idealized freshwater

hosing studies. The modeled reduction in AMOC, the cooling over the Atlantic

that reaches into Eurasia, the reduced precipitation over Eurasia, and the south-

ward shift of the ITCZ have the same sign as the climate changes inferred from

proxies but are of a smaller magnitude than the proxy-derived estimates. The fact

that we do not observe a clear bipolar see-saw effect with southern hemisphere

warming can be attributed to the very stable AMOC in the AOGCM and is likely

to be related to the lack of Dansgaard-Oeschger cycles.

The ISM shows strong surge behavior not only in the Hudson Strait, but in

several regions. This agrees with geological evidence for multiple sources of ice

rafted debris on the Atlantic seafloor (e. g. Hemming, 2004; Stanford et al., 2011).

In SYNC, the surges of the Arctic ice streams cause a sub-surface warming in the

Arctic Ocean. The surges furthermore cause an enhanced ice export through the

Fram Strait. This enhanced ice export weakens the deepwater formation and thus

the AMOC. A plausible hypothesis would be that this would lead to a sub-surface

warming, that could trigger ice discharges from the Hudson Strait Ice Stream (e. g.

Álvarez Solas et al., 2011), but the effect is dominated by an sea ice-induced cooling

in the surface waters of the GIN Sea and the north Atlantic. The Atlantic surface

water is subducted below the low salinity water of the East Greenland Current and

reaches the Labrador Sea as cold sub-surface water. Only during the surge of the

Hudson Strait Ice Stream, the stratification in the Labrador Sea stabilizes strongly

enough to cause a sub-surface warming. Such interactions can only be observed in

three-dimensional coupled atmosphere–ocean models.
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While the ice sheet collapse events lead to massive ice discharges, and this

massive streaming is not part of the default behavior of PISM, the crucial process

not occurring in the default setup of PISM and challenging most ice sheet models is

the termination of a surge (see the results in Calov et al., 2010). The fact that the

ice sheet models by default do not exhibit the catastrophic ice sheet collapses that

are assumed to have occurred during Heinrich events, might imply that the models

portray the future ice sheets as more stable than they are, but the difficulty ice

sheet models have with yielding recurring surges of the Hudson Strait Ice Stream

(e. g. Álvarez Solas et al., 2011) and the results of Calov et al. (2010) show that

stabilizing processes that can stop a collapse can be hard to model and might be

poorly represented in ice sheet models.
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Summary and conclusion

The topic of this study was the investigation of glacial climate variability with

an interactively atmosphere–ocean coupled general circulation model (AOGCM) –

ice sheet model (ISM) system, focusing on Heinrich events. Modeling the last glacial

is an important step for assessing the credibility of projections of future climate

change, because we can test whether our models are able to correctly represent

a climate that strongly differs from the present day climate. Furthermore, the

Dansgaard-Oeschger and Heinrich events, periods of rapid climate change during

the last glacials, are commonly attributed to ice sheet – climate interactions. By

modeling Heinrich events, we can expand our understanding of the climate system

and assess the ability of our models to predict future ice sheet – climate interactions.

For the experiments, we have modified the state-of-the-art ISM PISM into

mPISM, a model that can be used in coupled ice sheet – climate simulations. We

have coupled it to the AOGCM ECHAM5/ MPIOM/ LPJ. Both models, as well as

the coupling, work without anomaly maps or flux correction. Therefore they can

much better represent the nonlinear dynamics of the climate system than models

that employ such methods and commonly assume the correction patterns to stay

constant under varying climate conditions. In comparison to simulations using

earth system models of intermediate complexity (EMICs), AOGCMs are able to

represent processes of the ocean circulation and atmosphere dynamics in a much

more detailed way and with higher spatial and temporal resolution. In contrast to

previous AOGCM–ISM simulations (e. g. Gregory et al., 2012), the ISM covers all

relevant parts of the northern hemisphere. mPISM is a shallow ice approximation

(SIA) – shallow shelf approximation (SSA) hybrid model and thus able to model

ice streams more realistically than conventional SIA-only ISMs. In both directions,

the coupling includes the fluxes between ice and atmosphere as well as the fluxes

between ice and ocean, enabling the study of the full interactions between the ice

sheets and the climate system.

With our model system, we performed the first fully coupled multi-millennial

steady-state AOGCM–ISM simulations under last glacial maximum (LGM) bound-

ary conditions. We validated our setup by also performing steady-state experiments

under pre-industrial boundary conditions. In both cases, our results agree reason-

ably well with the observational data. In the pre-industrial state, an additional ice

sheet in the Alaska Range forms. This is due to a resolution dependent cold bias

in the atmosphere model. In the LGM setup, a spurious ice sheet forms in eastern

Siberia and Alaska. This is at least partly due to neglecting the albedo effect of

dust on snow and ice in our model (Warren and Wiscombe, 1980; Krinner et al.,

2011). Further advances could be made by using a sophisticated energy balance

scheme for the surface mass balance (e. g. Calov et al., 2005a; Vizcáıno et al., 2010).

Another reason for the buildup of too much ice in Siberia is the long-time constant

LGM forcing that allows for a slow and steady build-up of the ice sheets.
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Our LGM experiments are not only the first steady state AOGCM–ISM LGM

experiments, but, at the same time, they are the first set of experiments with a

coupled AOGCM–ISM system where Heinrich event style surges occur as internal,

model generated variability. We obtain surges of the Hudson Strait Ice Stream with

a period of 7 kyrs, matching the reconstructions from proxy data (e. g. Hemming,

2004). The repeated ice stream surges are internal oscillations of the ice sheets.

While substantial work on the ice sheet model was necessary to obtain these os-

cillations, their occurrence adds confidence in the model of MacAyeal (1993) and

matches with the experiments of Calov et al. (2002). As in these studies, in our

experiments, the timescale of 7 kyrs is set by the accumulation rate over the Hud-

son Bay area. In this respect, our results contrast with the results of Álvarez Solas

et al. (2011), who get time varying ice discharge only when they force the model

with time varying shelf melt rates. Even with a time varying melt rate, a critical

question for our understanding of the ice–climate system is, whether the increased

shelf melt triggers a surge caused by an internal oscillation of the ice sheet (Calov

et al., 2002), or whether the time varying melt rate is really the cause of the surges

(Álvarez Solas et al., 2011). Our results support the theory of internal oscillations.

In our model, the surges of the Hudson Strait Ice Stream cause freshwater

discharge rates peaking at about 0.06 Sv, and the modeled ice volume changes lie

between 1.5 and 2.1 Mio km3, corresponding to 3.8–5 m sea level rise. Proxy esti-

mates for Heinrich events (including the Younger Dryas event) vary greatly and

range from 0.06–0.12 Sv to 0.15–1 Sv depending on the study and the discharge du-

ration assumed (Clement and Peterson, 2008). While our results are on the lower

end of this range, they are within the margin of uncertainty. The occurrence of

Heinrich events as part of some Dansgaard-Oeschger stadials complicates a com-

parison of model output and proxy data since the two effects of Dansgaard-Oeschger

cycles and Heinrich events are combined in proxies, while the model only shows the

effects of the ice stream surges. By and large, the modeled changes agree with

the reconstructions from the proxy data. The reduction in north Atlantic deepwa-

ter formation by 10 to 15 % is consistent with the results of AOGCM freshwater

hosing experiments (Stouffer et al., 2006; Kageyama et al., 2013), considering the

lower freshwater discharge in our model and the localized release in contrast to a

spreading directly over the deepwater formation areas in the idealized freshwater

hosing studies. The modeled reduction in AMOC, the cooling over the Atlantic

that reaches into Eurasia, the reduced precipitation over Eurasia, and the south-

ward shift of the ITCZ have the same sign as the climate changes inferred from

proxies but are of a smaller magnitude than the proxy-derived estimates. The fact

that we do not observe a clear bipolar see-saw effect with southern hemisphere

warming can be attributed to the very stable AMOC in the AOGCM and is likely

to be related to the lack of Dansgaard-Oeschger cycles.

The ISM shows strong surge behavior not only in the Hudson Strait, but in

several regions. This agrees with geological evidence for multiple sources of ice

rafted debris on the Atlantic seafloor (e. g. Hemming, 2004; Stanford et al., 2011).

In SYNC, the surges of the Arctic ice streams cause a sub-surface warming in the

Arctic Ocean. The surges furthermore cause an enhanced ice export through the

Fram Strait. This enhanced ice export weakens the deepwater formation and thus

the AMOC. A plausible hypothesis would be that this would lead to a sub-surface

warming, that could trigger ice discharges from the Hudson Strait Ice Stream (e. g.

Álvarez Solas et al., 2011), but the effect is dominated by an sea ice-induced cooling

in the surface waters of the GIN Sea and the north Atlantic. The Atlantic surface
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water is subducted below the low salinity water of the East Greenland Current and

reaches the Labrador Sea as cold sub-surface water. Only during the surge of the

Hudson Strait Ice Stream, the stratification in the Labrador Sea stabilizes strongly

enough to cause a sub-surface warming. Such interactions can only be observed in

three-dimensional coupled atmosphere–ocean models.

For moderate forcings, the climate model as well as the default version of PISM

do not show sudden, strong responses, or switching behavior between different

steady states. This of course makes it easier to tune the models to present day

(or pre-industrial) conditions. While reproducing the present-day conditions is a

crucial test for the models and a prerequisite for prediction runs, this requirement

may have led to models portraying the climate (including the ice sheets) as more

stable than it actually is. Parametrizations that lead to sudden, unwanted climate

changes during the tuning or in a control run have to be removed or substantially

dampened in the tuning process. EMICs have the advantage of running much

faster than the comprehensive models and thereby larger parameter spaces can

easily be scanned while tuning them, making a moderate behavior less crucial for

the tuning process. Furthermore, the use of semi-physical parametrizations, such

as flux corrections, that allow to force the model into a desired state, is commonly

accepted with EMICs but not with AOGCMs. This makes tuning EMICs easier.

The reduced need for a stable behavior might explain why several EMICs show the

AMOC bistability lacking in AOGCMs.

While the ice sheet collapse events lead to massive ice discharges, and this

massive streaming is not part of the default behavior of PISM, the crucial process

not occurring in the default setup of PISM and challenging most ice sheet models is

the termination of a surge (see the results in Calov et al., 2010). The fact that the

ice sheet models by default do not exhibit the catastrophic ice sheet collapses that

are assumed to have occurred during Heinrich events, might imply that the models

portray the future ice sheets as more stable than they are, but the difficulty ice

sheet models face with simulating recurring surges of the Hudson Strait Ice Stream

(e. g. Álvarez Solas et al., 2011) and the results of Calov et al. (2010) show that

stabilizing processes that can stop a collapse can be hard to model and might be

poorly represented in ice sheet models.

In summary, we have successfully built a coupled ice sheet climate model system

that stands the test of modeling LGM as well as pre-industrial climates. mPISM

displays large-scale ice stream surges in the Hudson Bay area as internal oscillations

confirming the mechanism suggested by MacAyeal (1993). The time varying dis-

charge from the ice sheets increases the climate variability on the longer timescales.

The response of the climate system to the ice stream discharges shows the basic

features that are characteristic for Heinrich events.
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Böhringer. Although Nicole left the group after a short while, it was a fun time

with her and I learned a lot from her. Otto – well, hard to describe, but surely one

of the most wonderful people I’ve ever met. Thank you for all your patience with

me and for your patient and successful efforts in getting the ice models to work on

blizzard. Without you, this project would have been impossible.

From the early days, I have to thank several people from the land department,

Robert (then Getzieh, now Schuldt), my frequent roommate on conferences and

institute retreats, Daniel Goll, Sebastian Bathiany, Helge Gössling, Freja Vamborg,
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People, I know, I can always blindly rely on. Thanks for all the good time and the

friendship.

Last, but not least, thanks to my family. They contributed greatly in shaping

me and bringing me where I am now.

the end
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