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Abstract

The mid-Holocene climate, about 6000 years before present, is investigated with the com-

prehensive general circulation model ECHAM5/JSBACH-MPIOM at high northern latitudes.

Applying a factor-separation technique, we isolate the contributions of the atmosphere, the

atmosphere-vegetation feedback, the atmosphere-ocean feedback and their synergy to the mid-

Holocene climate change signal.

The mid-Holocene climate signal shows a modification of the seasonal cycle at the high

northern latitudes compared to pre-industrial climate. This is characterised by increased tem-

peratures in summer, autumn and winter, and a cooler climate in spring. The summer warming

is primarily caused by the direct response of the atmosphere to the change in insolation. The

autumn temperature rise, however, results not only from the direct atmospheric signal but is

also amplified by the atmosphere-ocean feedback. The winter warming is primarily induced by

the atmosphere-ocean feedback, counteracting the cooling caused by the the direct atmospheric

signal. In spring, the temperature decrease is a combined effect of the direct atmospheric sig-

nal and the atmosphere-ocean feedback. The atmosphere-vegetation feedback compensates this

cooling only marginally. The synergy between the atmosphere-ocean and atmosphere-vegetation

feedback results in slight warming for all seasons. In summary, the direct mid-Holocene climate

response to the change in insolation is mainly modified by the atmosphere-ocean feedback. In

contrast, the atmosphere-vegetation feedback influences the mid-Holocene climate signal only

marginally.

We test the statistical robustness of the results. The atmosphere response and the atmosphere-

vegetation feedback are statistically robust. By contrast, the factors derived from simulations

with an interactive ocean are sensitive to long-term anomalies in sea-ice cover. Nevertheless, the

statistical testing confirms that the most important modification of the direct climate response

to the orbital forcing can be related to the atmosphere-ocean feedback.

A detailed analysis of the atmosphere-vegetation feedback shows that the expansion of forest

during the mid-Holocene causes two opposing effects in spring. On the one hand, the increase

in forest results in a reduction in surface albedo and, thus, enhances the absorption of solar

radiation which leads to a near-surface air-temperature rise. On the other hand, the expansion

of forest favours the increase in transpiration and, thus, an increase in cloud fraction, which, in

turn, dampens the warming signal. Furthermore, it is investigated to what extent the strength

of the atmosphere-vegetation feedback depends on the parametrisation of the albedo of snow.

A parametrisation with a strong reduction in the albedo of snow by deciduous trees increases

the temperature signal regionally. Simulations with the albedo of snow depending on the age

of snow show a regional increase in temperature as well. However, the large-scale temperature

signal of the atmosphere-vegetation feedback simulated with ECHAM5/JSBACH remains weak

compared to previous studies.



Zusammenfassung

Das Klima des mittleren Holozäns, vor ungefähr 6000 Jahren, wird mit dem komplexen Zirku-

lationsmodell ECHAM5/JSBACH-MPIOM für die hohen nördlichen Breiten untersucht. Eine

Faktorenseparationstechnik wird angewandt, um die Beiträge der Atmosphäre, der Rück-kopplung

zwischen Atmosphäre und Vegetation, sowie zwischen Atmosphäre und Ozean und deren Syn-

ergie zum Klimasignal des mittleren Holozäns zu bestimmen.

Das Klimasignal des mittleren Holozäns zeigt eine Änderung des saisonalen Zyklus in den ho-

hen nördlichen Breiten im Vergleich zum präindustriellen Klima. Dies äußert sich in erhöhten

Temperaturen im Sommer, Herbst und Winter, und in einer Abkühlung im Frühling. Die

sommerliche Erwärmung ist hauptsächlich ein Ergebnis der direkten Reaktion der Atmosphäre

auf die Änderung der Einstrahlung. Der Temperaturanstieg im Herbst wird hingegen nicht

nur durch das direkte Signal der Atmosphäre verursacht, sondern zusätzlich durch die Rück-

kopplung zwischen Atmosphäre und Ozean verstärkt. Die Erwärmung im Winter wird haupt-

sächlich durch die Rückkopplung zwischen Atmosphäre und Ozean hervorgerufen, deren Beitrag

der Abkühlung durch das direkte Atmosphärensignal entgegenwirkt. Im Frühling wird die

Temperaturabnahme durch das direkte Atmosphärensignal und der Rückkopplung zwischen

Atmosphäre und Ozean hervorgerufen. Die Rückkopplung zwischen Atmosphäre und Vegeta-

tion kompensiert diese Abkühlung nur geringfügig. Die Synergie zwischen den Rückkopplungen

führt zu einer leichten Erwärmung in allen Jahreszeiten. Zusammengefasst lässt sich festhalten,

dass die direkte Reaktion des Klimas des mittleren Holozäns auf die Änderung der Einstrahlung

hauptsächlich durch die Rückkopplung zwischen Atmosphäre und Ozean modifiziert wird. Die

Rückkopplung zwischen Atmosphäre und Vegetation hingegen beeinflusst das Klimasignal des

mittleren Holozäns nur geringfügig.

Die statistische Robustheit der Ergebnisse wird getestet. Die atmosphärische Reaktion und

die Rückkopplung zwischen Atmosphäre und Vegetation sind statistisch robust. Im Gegensatz

dazu reagieren die Faktoren, die aus Simulationen mit einem interaktiven Ozean berechnet

worden sind, empfindlich gegenüber Langzeitanomalien des Meereises. Dennoch bestätigt der

statistische Test, dass die direkte Klimareaktion auf das orbitale Signal hauptsächlich durch die

Rückkopplung zwischen Atmosphäre und Ozean modifiziert wird.

Eine detailierte Analyse der Rückkopplung zwischen Atmosphäre und Vegetation zeigt, dass

die Ausbreitung des Waldes im mittleren Holozän zwei Effekte hervorruft, die gegensätzlich

auf die Temperatur im Frühling wirken. Auf der einen Seite bewirkt der Zuwachs an Wald

eine Reduktion der Bodenalbedo, wodurch die Absorption der solaren Strahlung zunimmt,

was einen Temperaturanstieg zur Folge hat. Auf der anderen Seite führt der Waldzuwachs

zu einer Zunahme der Transpiration und damit zu einer Zunahme an Bewölkung, was das

Erwärmungssignal abschwächt. Darüber hinaus wird untersucht bis zu welchem Grad die Stärke

der Rückkopplung zwischen Atmosphäre und Vegetation von der Parametrisierung der Albedo

des Schnees abhängt. Eine Parametrisierung mit einer starken Reduzierung der Albedo des

Schnees durch laubabwerfende Bäume verstärkt regional das Temperatursignal. Simulationen

mit einer Albedo des Schnees, die von dem Alter des Schnees abhängt, zeigen ebenso eine

regionale Erhöhung der Temperatur. Das mit ECHAM5/JSBACH simulierte großskalige Tem-

peratursignal der Rückkopplung zwischen Atmosphäre und Vegetation bleibt jedoch schwach

im Vergleich zu vorhergehenden Studien.
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Chapter 1

Introduction

Studies based on model simulations of past climates (e.g. Foley et al. (1994); deNoblet

et al. (1996); Claussen et al. (1999); Brovkin et al. (2003); Gallimore et al. (2005);

Renssen et al. (2009)) have contributed considerably to our understanding of the role

feedbacks play in the climate system. The benefit of such analyses is threefold: (1)

they examine the role of climate feedbacks under various external forcings, (2) they

evaluate the capability of climate models to reproduce climate states that are different

from those of today, (3) they help us to get a globally and physically consistent picture

of past climate change. Considering these benefits, the aim of this thesis is to enhance

the understanding of feedbacks between the components of the climate system at high

northern latitudes.

As an external forcing we use the differences in insolation between today and the mid-

Holocene, which is the climate period about 6000 years before present. At this time,

the insolation was increased during summer by 5% and decreased in winter by 5% over

the Northern Hemisphere, due to changes in the Earth’s orbit (Berger 1978). Palaeo-

reconstructions indicate that the summer and autumn were warmer by up to 4 ◦C

throughout much of the high-latitude Northern Hemisphere. As a consequence, the

boreal forest was positioned north of its present location in many regions (Cheddadi

et al. 1996; Kerwin et al. 1999; Bigelow et al. 2003). In winter, the case was different

compared to summer and autumn. Despite the decrease in winter insolation compared

to today, Cheddadi et al. (1996) report higher than present winter temperatures in

North-East Europe by up to 3 ◦C. Furthermore, Davis et al. (2003) suggest not only

warmer winter but higher annual mean temperatures for northern Europe by up to

1.4 ◦C compared to present-day climate. These warming signals cannot be directly

explained by changes in orbital configurations. Therefore the climate response to the

changes in insolation must have been altered by other mechanisms.

In order to determine these mechanisms, simulations with interactive atmosphere-

ocean-vegetation models can be utilised. A factor-separation technique (Stein and

Alpert 1993; Berger in press) allows us to study the pure contributions of the at-

mosphere, the vegetation and the ocean and the synergy between them to the climate

change signal. In this study, we apply this technique by using the atmosphere-vegetation-

ocean general circulation model (GCM) to investigate the contribution of the vegetation

and the ocean to the mid-Holocene climate change. We refer to these contributions as
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1. Introduction

the atmosphere-vegetation and atmosphere-ocean feedback, respectively. In our defi-

nition, the term “feedback” includes all interactions between the atmosphere and the

land-surface and between the atmosphere and the ocean including sea-ice, respectively.

Single feedback loops, e.g. the sea ice-albedo feedback, are defined in the ’classical way’

(Bates 2007). After iteration, they change the climate in the same (positive feedback)

or opposite direction (negative feedback) as the trigger that initiated them. We refer

to such single feedback loops explicitly.

So far, the complete factor-separation technique has been applied only by mid-Holocene

studies with Earth system models of intermediate complexity (EMICs). Ganopolski

et al. (1998), using an EMIC show that the synergy between the atmosphere-ocean and

the atmosphere-vegetation feedback is stronger than their pure contributions. There

are only few mid-Holocene simulations with General Circulation Models (GCMs) in-

cluding dynamic representations of the global atmosphere, ocean and vegetation (Bra-

connot et al. 2007a). Using a GCM asynchronously coupled with a vegetation model

and applying the factor-separation technique in parts, Wohlfahrt et al. (2004) sug-

gest a stronger atmosphere-vegetation feedback but a weaker synergy than analysed

by Ganopolski et al. (1998). Results from the Paleoclimate Modelling Intercomparison

Project (PMIP2) with EMICs and GCMs (Braconnot et al. 2007a,b) corroborate that

the atmosphere-ocean feedback plays a major role in altering the climate response to

insolation change. However, it is not possible to deduce the relative role of neither the

atmosphere-ocean feedback nor of the atmosphere-vegetation feedback from PMIP2-

simulations. As none of the previous studies with GCMs followed the factor-separation

technique with consistency, the main research question of this study is:

(1) Using a comprehensive GCM and applying the factor-separation technique, how

do we relate the mid-Holocene climate signal to the components of the climate

system?

Joussaume and Braconnot (1997) stated that when modelling past climates, we need

to address the question of defining a calendar for past periods. The precessional cycle

and changes in the eccentricity of the Earth’s orbit induce changes in the length of the

seasons. If the seasons are not defined consistently with the insolation forcing, biases

may be introduced artificially when comparing model results of two different climatic

periods. As we compare mid-Holocene with pre-industrial simulations, we define the

seasons by astronomical dates: vernal and autumn equinox, summer and winter solstice

(Timm et al. 2008). To our knowledge, none of the high-latitude mid-Holocene studies

has considered this issue before (Braconnot et al. 2007a,b). Therefore, we ask the

following question:
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1. Introduction

(2) Does the definition of the seasons effect the assignment of the mid-Holocene climate

signal to the components of the climate system?

Although most of the previous mid-Holocene studies have not followed a complete

factor separation technique, they have suggested that the response of the ocean and

the vegetation to mid-Holocene insolation feeds back on the climate. There is less

consensus, however, on the relative magnitude of the two feedbacks and the strength

of the synergy between them. These divergent results may be ascribed to differences

in the structure and parameterisation of the models as well as to the setup of the

simulations. On the other hand, models exhibit internal variability due to nonlinearities

in the model physics and dynamics (Murphy et al. 2004). Therefore, the question arises

how much of the differences among the results of model studies can be attributed to

sampling variability. Commonly, experiments are spun up until the climate trends are

small, then the last 100 to 200 years are analysed (Braconnot et al. 2007a). Analysing a

period of this length may not account for long-term climate variability, thus introducing

uncertainty in the diagnosed feedbacks. Thus, we attempt to answer the question:

(3) Does statistical uncertainty introduced by climate variability lead to divergent

model results?

Another explanation for the divergent model results may be the difference in structure

and parameterisation of the land surface in the utilised climate models. Bony et al.

(2006) stated in a review article that the main difference between climate models arises

from the way the albedo of snow is parametrised in the models. A study comparing

18 GCMs revealed that the models differ in the strength of the snow-albedo feedback

because of the various snow-albedo parametrisations (Qu and Hall 2007). Levis et al.

(2007) showed that in their simulations two equally justifiable snow-cover parametri-

sations can lead to a 0.2 ◦C difference in climate sensitivity. Thus, the discrepancy

between modelling results on mid-Holocene feedbacks may arise from systematic errors

due to different land-surface model parameterisations. To test this hypothesis, we first

investigate the atmosphere-vegetation feedback in detail to understand the processes

which are involved in this feedback. Secondly, we investigate the sensitivity of the

atmosphere-vegetation feedback with respect to the parameterisation of the albedo of

snow-covered land. Thus, we perform several sets of simulations with different snow-

albedo parametrisations to examine how they influence the mid-Holocene climate signal.

By doing this, we want to answer to question:

(4) To what extent does the strength of the atmosphere-vegetation feedback depend

on the snow-albedo parametrisation?

In Chapter 2, we introduce the experimental design following the factor-separation

technique. With the results and the discussion of Chapter 2, we address the above-

defined research questions (1) and (2). In Chapter 3, we investigate the statistical

9



1. Introduction

uncertainty introduced by climate variability, addressing the research questions (3).

Chapter 2 and Chapter 3 have been published in Geophysical Research Letters 1 2.

In Chapter 4, we concentrate on the role of the atmosphere-vegetation feedback and

investigate how different parametrisations of the albedo of snow influence the strength

of the atmosphere-vegetation feedback, addressing the research questions (4) and (5).

We present our conclusions and an outlook in Chapter 5.

1Otto, J., Raddatz, T., Claussen, M., Brovkin, V., and Gayler, V.: Separation of atmosphere-ocean-

vegetation feedbacks and synergies for mid-Holocene climate, Geophysical Research Letters, 36, L09

701, 2009b.
2Otto, J., Raddatz, T., and Claussen, M.: Climate variability-induced uncertainty in mid-Holocene

atmosphere-ocean-vegetation feedbacks, Geophysical Research Letters, 36, L23 710, 2009a.
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Chapter 2

Separation of atmosphere-ocean-vegetation

feedbacks and synergies for mid-Holocene

climate

2.1 Introduction

The mid-Holocene, around 6000 years before present (6 ka), is a common reference

period to examine the climate response to changes in incoming solar radiation caused

by variations in the Earth’s orbit (Braconnot et al. 2007a,b). The mid-Holocene orbital

changes led to an increase in insolation during summer and beginning of autumn and a

decrease in winter in the Northern Hemisphere compared to present day (Berger 1978).

As a consequence, during the mid-Holocene the Northern Hemisphere summers were

warmer than at present day as shown e.g. by Davis et al. (2003) with pollen-based

climate reconstructions. These reconstructions also indicate higher mid-Holocene an-

nual mean temperatures for the high northern latitudes. The annual mean insolation,

however, changed only marginally. Thus, the seasonal insolation changes amplified by

feedbacks may have caused this annual mean signal. To test this assumption, we present

results of a factor-separation technique applied to a state-of-the-art climate model.

The climate of the high northern latitudes are controlled by several feedbacks involving

e.g. changes in the hydrological cycle, heat-flux or albedo. Two positive albedo-related

feedbacks presumably have the strongest impact on climate in response to orbitally-

induced changes: the taiga-tundra feedback and the sea ice-albedo feedback. The

taiga-tundra feedback, includes that forest effectively masks out high albedo in com-

parison with tundra. A replacement of tundra by forest decreases the surface albedo

during the snowy season which leads to a warming and favours further growth of boreal

forest. The sea ice-albedo feedback functions in a similar way: a reduction in sea-ice

cover in response to increasing temperatures leads to less sea ice and thus to lower sur-

face albedo and further warming (Harvey 1988). The taiga-tundra and sea ice-albedo

feedback may amplify each other and cause a more pronounced warming (Claussen

et al. 2006).
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2. Separation of atmosphere-ocean-vegetation feedbacks

However, such climate sensitivity to orbital forcing is not well understood. Previous

studies on the impact of feedbacks altering the response of climate to mid-Holocene

orbital forcing have shown differing results. A factor-separation technique (Stein and

Alpert 1993) can be used to estimate the role of feedbacks. So far, it has been applied

only by studies with Earth system models of intermediate complexity (EMICs). With

the CLIMBER-2 model Ganopolski et al. (1998) showed that the synergy between the

atmosphere-ocean and atmosphere-vegetation feedback is stronger than their pure con-

tributions and that this synergy leads to an annual mid-Holocene warming.

There are only few mid-Holocene simulations with General Circulation Models (GCMs)

including dynamic representations of the global atmosphere, ocean and vegetation (Bra-

connot et al. 2007a). Using a GCM asynchronously coupled with a vegetation model

and partly applying the factor-separation technique, Wohlfahrt et al. (2004) depict

warmer mid-Holocene than pre-industrial climate throughout the year. They suggest

that atmosphere-vegetation feedback and the synergy between atmosphere-vegetation

and atmosphere-ocean feedback produce warming in all seasons. Their results sug-

gest a stronger atmosphere-vegetation feedback but a weaker synergy than analysed by

Ganopolski et al. (1998). Results from the Palaeoclimate Modelling Intercomparison

Project (PMIP2) with EMICs and GCMs (Braconnot et al. 2007a,b) corroborate that

the atmosphere-ocean feedback plays a major role in altering the response to insolation

change. It is not possible to conclude on the relative role of the atmosphere-vegetation

feedback from PMIP2-simulations. Notwithstanding, Braconnot et al. (2007b) assume

that the magnitude of the atmosphere-vegetation feedback is smaller than previously

discussed.

None of the previous studies with GCMs followed consistently the factor-separation

technique. We apply this technique to a complete set of simulations with a cou-

pled atmosphere-ocean-vegetation GCM to separate the atmosphere-vegetation feed-

back and the atmosphere-ocean feedback from their synergy term.

2.2 Setup of Model Experiments

We performed our numerical experiments with the atmosphere-ocean GCM ECHAM5-

MPIOM including the land surface scheme JSBACH with a dynamic vegetation module.

The spectral atmosphere model ECHAM5 was run in T31 resolution (approx. 3.75◦)

with 19 vertical levels, the ocean model MPIOM in a resolution of roughly 3◦ and 40

vertical levels (Jungclaus et al. 2006) without any flux adjustment. The land surface

scheme JSBACH is presented in Raddatz et al. (2007). It was extended with a dynamic

vegetation module (Brovkin et al. 2009). The experiment set-up was designed to follow

the factor-separation technique by Stein and Alpert (1993). By applying this technique

we are able to determine the contributions of interactions between different components

of the climate subsystem and their synergistic effects to a climate change signal (Berger

2001). In this study, we focus on two interactions: the atmosphere-ocean and the

atmosphere-vegetation feedback. Firstly, the four pre-industrial climate simulations

12



2.2 Setup of Model Experiments

experiment name prescribed from length

which experiment

pre-industrial

0kAOV – 620 years

0kAO vegetation, 0kAOV 620 years

0kAV SST, sea ice, 0kAOV 360 years

0kA SST, sea ice, 0kAOV

vegetation, 0kAV 140 years

mid-Holocene

6kAOV – 620 years

6kAO vegetation, 0kAOV 620 years

6kAV SST, sea ice, 0kAOV 360 years

6kA SST, sea ice, 0kAOV

vegetation, 0kAV 140 years

Table 2.1: Setup of experiments

were performed: an equilibrium atmosphere-ocean-vegetation simulation (0kAOV), an

equilibrium atmosphere-ocean simulation (0kAO) with vegetation prescribed (as frac-

tion of each vegetation type and of desert) from 0kAOV, a simulation with interactive

atmosphere and vegetation dynamics (0kAV) with sea-surface temperature (SST) and

sea-ice cover prescribed as monthly mean values of the 0kAOV-simulation, and an

atmosphere-only simulation (0kA) preformed as 0kAV but with vegetation prescribed

from this run 0kAV. Secondly, the mid-Holocene simulations were performed: 6kAOV,

6kAO, 6kAV, 6kA. These simulations were carried out in an analogous manner to the

pre-industrial simulations but with respective mid-Holocene orbital parameters, and

vegetation cover, the seasonal cycle of SST and sea-ice cover, if prescribed, were taken

from the pre-industrial simulations (Table 2.1). Because of non-linearity in our model,

we do not refer to only one controll run in contrast to studies with EMICs.

All simulations were performed with atmospheric CO2 concentrations set to 280 ppm.

The simulations with dynamic ocean were run for 620 years, with prescribed ocean

accordingly shorter (Table 2.1). For the analysis, the last 120 years of all experiments

were considered.

With these simulations, we quantify the contribution of interactions between the

atmosphere-ocean and atmosphere-vegetation dynamics to the mid-Holocene climate.

The deviation between the fully coupled runs in terms of temperature (∆AOV ) contains

all feedbacks and synergistic effects. It is obtained by

∆AOV = 6kAOV − 0kAOV. (2.1)
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2. Separation of atmosphere-ocean-vegetation feedbacks

The response of the atmosphere (∆A) is determined as follows

∆A = (6kA− 0kA). (2.2)

By comparing the results in AV and AO with those from A, it is possible to assess the

contribution of the atmosphere-vegetation (∆V ) and the atmosphere-ocean feedback

(∆O):

∆V = (6kAV − 0kAV ) − (6kA− 0kA) (2.3)

∆O = (6kAO − 0kAO) − (6kA− 0kA). (2.4)

The synergistic effects (∆S) between atmosphere-vegetation and atmosphere-ocean

feedback can be quantified as the difference between ∆AOV and the sum of the three

components atmosphere ∆A, ocean ∆O and vegetation ∆V :

∆S = ∆AOV − ∆A− ∆O − ∆V . (2.5)

In order to keep the definition of seasons consistent with insolation forcing in pre-

industrial and mid-Holocene climate, an astronomically based calendar is necessary

(Joussaume and Braconnot 1997). Accordingly, we considered the seasons defined by

astronomical dates: vernal equinox, summer solstice, autumn equinox, winter solstice.

Since an astronomical calendar is not implemented in our model, we calculated the

seasons from the daily output according to the model’s astronomical parameters for pre-

industrial and for mid-Holocene climate respectively (Timm et al. 2008). In previous

mid-Holocene studies, seasons have been determined by monthly means which were

computed with the present-day calendar. To compare our results with previous studies

we shifted the seasons backwards by three weeks relative to the astronomical season.

Seasonal averages are then computed from the daily output of the model for the pre-

industrial and the mid-Holocene period, respectively.

2.3 Results

Despite the small annual mean insolation anomalies in the northern latitudes (1.40 W/m2

≥ 40◦N), the annual mean mid-Holocene temperature is distinctly increased in compar-

ison to pre-industrial climate, which is in agreement with e.g. climate reconstructions

for Northern Europe (Davis et al. 2003). The fully coupled model including all feed-

backs and synergies shows a general annual mid-Holocene warming with values of up

to 4 ◦C around Greenland (Figure 2.1, ∆AOV ). The temperature pattern in Fig-

ure 2.1 (∆A) shows the response of the atmosphere only to the orbital signal without

atmosphere-ocean and atmosphere-vegetation feedbacks. It results in a slight warm-

ing but only for the continents with maximum values in Greenland of up to 1 ◦C

(Figure 2.1, ∆A). This reveals that the larger obliquity results in a weak annual tem-

perature increase. Vegetation dynamics also lead to continental warming (Figure 2.1,

14



2.3 Results

Figure 2.1: Annual mean 2m-temperature anomalies [◦C] between 6 ka and 0 ka according to ∆AOV ,

∆A, ∆V , ∆O and ∆S.
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Figure 2.2: Seasonal temperature anomalies [◦C] between 6 ka and 0 ka of the coupled simulations

∆AOV (+) and the contributions of the factors ∆A (red), ∆V (green), ∆O (blue) and ∆S (yellow) to

the signal in seasonal temperature, NH ≥ 40◦. (a) Seasons are defined on an astronomical basis. Note:

Because of the astronomically based calendar, the length of the seasons differ between 0k and 6k. Thus

the annual mean is not the linear average of the seasonal means. (b) Seasons are defined by present-day

calendar but the date of the vernal equinox is fixed on the 21 March (as done by PMIP2-simulations).

∆V ), however it is less pronounced. Compared to ∆A, vegetation dynamics lead to a

warming of west Siberia with maximum values of up to 0.6 ◦C and a cooling of Green-

land. The atmosphere-ocean feedback ∆O (Figure 2.1, ∆O) however shows a slightly

cooler but similar temperature pattern as the fully coupled model (Figure 2.1, ∆AOV

and ∆AOV − ∆O ). The synergy ∆S (Figure 2.1, ∆S) between atmosphere-vegetation

and atmosphere-ocean feedback adds additional warming with maximum values of up

to 2 ◦C around Greenland. The separation technique reveals that mean annual warm-

ing is not only caused by larger obliquity and changes in precession but rather by the

atmosphere-ocean feedback and the synergy between the atmosphere-ocean and the

atmosphere-vegetation feedback.

To analyse the climatic response to change in orbital forcing more closely, we focus

on the seasonal cycle of temperature. Figure 2.2 depicts the seasonal cycle of the 2m-

temperature of ∆AOV together with contributions of the single feedbacks ∆A, ∆O,

∆V and their synergy ∆S. Our results show an amplification of the seasonal cycle of the

Northern Hemisphere 2m-temperature (≥ 40◦N), as expected from the orbital-induced

change in insolation. This is characterised by increased 2m-temperature in summer,

autumn and winter, and its decrease in spring (Figure 2.2a). The direct response of

the atmosphere (∆A) to the change in insolation produces a summer warming of 1.18
◦C which slightly decreases in autumn to 0.75 ◦C. However, winter and spring seasons

show a cooling of -0.18 ◦C and -0.19 ◦C respectively. The atmosphere-vegetation feed-

back ∆V is rather marginal. In spring and summer it leads to a slight warming of

0.08 ◦C and 0.06 ◦C respectively counteracting to the insolation changes. Atmosphere-

ocean feedbacks amplify the response to the orbital forcing in spring and autumn and

counteract the direct response slightly in summer and more strongly in winter. The
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Figure 2.3: Annual change in forest cover between 6 ka and 0 ka (∆AOV ).

ocean’s influence on the warming of the northern latitudes is strongest in autumn

(0.78 ◦C), reflecting the orbitally induced increase in summer and autumn insolation.

The atmosphere-ocean contribution continues with 0.30 ◦C in winter, resulting likely

from the thermal inertia of the ocean that introduces a lag between the season cycle of

insolation and oceanic response by approximately one season. The synergy between the

atmosphere-ocean and atmosphere-vegetation feedback results in slight warming for all

seasons. The maximum contribution of the synergy occurs in autumn and winter with

a warming of 0.24 ◦C and 0.25 ◦C respectively; the weakest in summer with 0.09 ◦C.

In summary, the seasonal temperature pattern shows that the atmosphere-ocean feed-

back modulates the mid-Holocene insolation forcing whereas the amplifying prevails

over damping. The contribution of the atmosphere-vegetation feedback remains marginal

throughout the year. The synergy between the atmosphere-ocean and atmosphere-

vegetation feedback however leads to a slight warming in all seasons.

2.4 Discussion

Our results reveal that atmosphere-ocean and atmosphere-vegetation feedback and their

synergy modify the orbitally-induced pattern of seasonal temperature considerably. The

modification leads to an annual mean warming in the high latitudes of 0.44 ◦C (Fig-

ure 2.2a). Results of the model CLIMBER-2 for the Northern Hemisphere (Ganopolski

et al. 1998) and the IPSL model (Wohlfahrt et al. 2004) north of 40◦N show a consider-

ably stronger annual warming of up to 1 ◦C. Besides, the seasonal temperature signals
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Figure 2.4: Annual change in sea-ice cover change between 6 ka and 0 ka (∆AOV ). The change in

sea-ice cover ∆AO exhibits similar patterns (not shown).

differ in phase and magnitude. Our model shows that the maximum warming occurs

in autumn, contrary to previous studies (Gallimore et al. 2005; Wohlfahrt et al. 2004)

which suggest a maximum warming in summer. Figure 2.2a shows that the atmosphere

autumn response is doubled by the amplification of the atmosphere-ocean interactions.

Wohlfahrt et al. (2004) however suggest a cooling of the atmosphere already in autumn.

One important factor influencing the differing results is that we define our seasons on

an astronomical basis (Timm et al. 2008). Analyses by Wohlfahrt et al. (2004) for in-

stance followed the PMIP-setup with the date of the vernal equinox fixed on 21 March.

Seasonal values based on this method underestimate changes in the Northern Hemi-

sphere in autumn (Braconnot et al. 2007a) which amounts to 0.9 ◦C according to our

data processed with the PMIP-method (Figure 2.2b).

The atmosphere-vegetation feedback in our model is weaker than in previous studies

(Gallimore et al. 2005; Wohlfahrt et al. 2004). In general, this feedback on temper-

ature is induced by a northward shift of forest due to warmer mid-Holocene summer

and autumn and it can be expected to be strongest in spring time through the snow

masking of forest. Both the AOV-model (1.4 x 106 km2, ≥ 60◦N, see Figure 2.3) and

the AV-model (1.2 x 106 km2, ≥ 60◦N) show a considerable northward extention in

forest for mid-Holocene which is in general agreement with previous results (Wohlfahrt

et al. 2008) and reconstructions (Bigelow et al. 2003). Despite this shift of forest,

the atmosphere-vegetation feedback counteracts the insolation reduction in spring only

marginally. During this season the change in forest leads to a reduction in albedo with
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2.5 Summary of Chapter 2

on average of 0.02 ( ≥ 60◦N) which is due to the snow masking of trees. This area

shows a warming between 0.4 – 1.3 ◦C, other regions with no change in land cover

(e.g. Greenland) show cooling (not shown). The mean over the whole area results in

such a weak warming. This result corroborates the conclusions of the PMIP2 study

(Braconnot et al. 2007b), that the magnitude of the atmosphere-vegetation feedback is

smaller than previously discussed.

Concerning the atmosphere-ocean feedbacks including the sea ice-albedo feeback, the

mid-Holocene simulations show less sea-ice cover compared to the pre-industrial simu-

lations (see Figure 2.4), which is in agreement with previous studies (Ganopolski et al.

1998; Braconnot et al. 2007b). The orbitally induced increase in solar radiation during

summer and autumn melts more sea-ice and warms up the ocean more strongly than

in the pre-industrial climate. During autumn and winter, the ocean releases this heat

to the atmosphere, resulting in higher air-temperatures compared to pre-industrial au-

tumn and winter.

The positive taiga-tundra feedback and the positive sea ice-albedo feedback may strongly

reinforce each other as both work at high northern latitudes. Despite the weak atmosphere-

vegetation feedback, our simulations feature some positive synergistic effect between

the atmosphere-ocean and atmosphere-vegetation feedback. However, the magnitude

is smaller than simulated by Ganopolski et al. (1998) and Wohlfahrt et al. (2004). This

corroborates results obtained with the EMIC MoBidiC for 9 ka (Crucifix et al. 2002).

They suggest that a key point for this low synergy may be the differing sea-ice sensitiv-

ities between models. Another explanation for our ocean model with higher resolution

may be that the main changes in sea-ice and forest cover occur spatially separated.

2.5 Summary of Chapter 2

We determine the response of climate to mid-Holocene insolation and the impact of

atmosphere-ocean and atmosphere-vegetation feedbacks and their synergy on the north-

ern latitude climate. Our model reproduces the basic picture of differences between the

pre-industrial and mid-Holocene climate obtained from previous model studies but re-

lates these changes to the components of the climate system in quite a different way.

It simulates the mid-Holocene climate as follows: The direct atmospheric response to

the orbital forcing is the most important cause of summer and autumn warming in

the northern latitudes. The spring cooling is amplified by the atmosphere-ocean feed-

back most strongest. In autumn, the ocean duplicates the atmospheric warming and in

winter, the ocean plays the most important role for the warming in this region. The con-

tribution to the temperature signal from atmosphere-vegetation feedbacks is marginal

and leads to a weak synergy between the atmosphere-vegetation and atmosphere-ocean

feedback. To summarise, the warming of the northern latitudes during mid-Holocene

can only be understood if all components of the Earth system model are taken into

account. The atmosphere only explains a marginal warming of 0.05 ◦C annual mean

19



2. Separation of atmosphere-ocean-vegetation feedbacks

temperature. The contribution of the atmosphere-ocean and atmosphere-vegetation

feedback and their synergy, however, lead to an additional warming of 0.39 ◦C. The

most important modification of the orbital forcing can be related to the atmosphere-

ocean interactions, likely as a consequence of its thermal inertia and the sea-ice albedo

feedback. However, it should be kept in mind that feedbacks and their synergy are

persumably strongly influenced by climate variability (Rimbu et al. 2004). Thus, the

magnitude of the feedbacks may depend on the length of the analysis period.
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Chapter 3

Climate variability-induced uncertainty in

mid-Holocene atmosphere-ocean-

vegetation feedbacks

3.1 Introduction

The mid-Holocene climate, 6000 years before present, is of particular interest to the

understanding of the Earth System and abundant palaeoclimatic proxy records cover

this period. Some boundary conditions of the climate system can be constrained ac-

curately, in particular the variations in the Earth’s orbit. These led to an increase

of insolation during summer and the beginning of autumn, and to a decrease during

winter compared to present day. The impact of this change in insolation on northern

latitude climates has been intensively studied, e.g. by Wohlfahrt et al. (2004); Bra-

connot et al. (2007a); Otto et al. (2009b). It has been shown that both ocean and

vegetation feedbacks as well as their synergy modify the seasonal climate response to

mid-Holocene insolation considerably. However, there is no agreement on the relative

magnitude of the two high-latitude feedbacks, and the strength of the synergy between

them. Thus, we perform several sets of simulations with a General Circulation Model

(GCM) to investigate, if this discrepancy is related to internal model variability, which

may affect the magnitude of the estimated feedbacks.

Previous studies on the impact of feedbacks on mid-Holocene climate have been per-

formed with Earth system Models of Intermediate Complexity (EMICs) and GCMs. A

study with the EMIC CLIMBER-2 showed that the synergy between the atmosphere-

ocean and atmosphere-vegetation feedback leads to an annual mid-Holocene warming

(Ganopolski et al. 1998). Studies with GCMs either indicate a strong atmosphere-

vegetation feedback (Wohlfahrt et al. 2004; Gallimore et al. 2005) or that the most

important modification of the climate response is related to the atmosphere-ocean feed-

back (Otto et al. (2009b)) at the high latitudes. These divergent results may be ascribed

to differences in the structure and parametrisation of the models as well as to the setup

of the simulations. On the other hand, models exhibit internal variability due to non-

linearities in the model physics and dynamics (Murphy et al. 2004). Therefore, the

question arises how much of the differences among the models can be attributed to
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3. Climate variability-induced uncertainty

sampling variability. Commonly, experiments are spun up until the climate trends are

small, then the last 100 to 200 years are analysed (Braconnot et al. 2007a). Analysing

a period of this length may not account for long-term climate variability, thus intro-

ducing uncertainty in the diagnosed feedbacks. To estimate this statistical uncertainty

caused by the model’s internal variability, we prolonged the simulations and repeated

the factor-separation technique of the existing mid-Holocene feedback study by Otto

et al. (2009b) five times.

3.2 Setup of Model Experiments

We performed several sets of simulations with the atmosphere-ocean GCM ECHAM5-

MPIOM (Jungclaus et al. 2006) including the land surface scheme JSBACH (Raddatz

et al. 2007) with a dynamic vegetation module (Brovkin et al. 2009). The experimental

setup was designed to follow the factor-separation technique by Stein and Alpert (1993).

For this reason, we performed four pre-industrial climate simulations, 0kAOV, 0kAO,

0kAV, 0kA and four mid-Holocene climate simulations, 6kAOV, 6kAO, 6kAV, 6kA.

The capital letters indicate the components which are run interactively (A=atmosphere,

O=ocean, V=vegetation). More details about the simulations are given in Otto et al.

(2009b).

We calculated the contribution of each Earth system component to the mid-Holocene

climate as follows:

∆AOV = 6kAOV − 0kAOV (3.1)

∆A = (6kA− 0kA) (3.2)

∆V = (6kAV − 0kAV ) − (6kA− 0kA) (3.3)

∆O = (6kAO − 0kAO) − (6kA− 0kA) (3.4)

∆S = ∆AOV − ∆A− ∆O − ∆V (3.5)

∆AOV includes all feedbacks and synergistic effects. ∆A is the response of the at-

mosphere including snow cover, soil moisture and leaf phenology. The atmosphere-

vegetation feedback ∆V is driven by the distribution of vegetation types and deserts.

∆O presents the atmosphere-ocean feedback including sea ice. ∆S describes the syn-

ergy between the atmosphere-vegetation and atmosphere-ocean feedback.

We prolonged the simulations in order to repeat the factor separation technique five

times. The 0kAOV and 6kAOV -simulations were run firstly for 1100 years, and the

last 600 years were considered for the analysis. We divided these 600 years into five
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3.3 Results and Discussion

analysis periods of 120 years each. The other six simulations were also prolonged up to

600 years and carried out in an analogous manner to the first analysis period (see Otto

et al. (2009b)). To get a better picture of the the long-term climate variability caused

by ocean dynamics, we ran the 0kAOV and 6kAOV -simulations for further 1320 years.

3.3 Results and Discussion

This study confirms that the atmosphere-ocean feedback modifies the mid-Holocene

temperature signal considerably. Figure 3.1 depicts the annual and seasonal mean 2m-

temperature signal averaged over the five analysis periods with the uncertainty given

as one standard deviation (δ) in ∆AOV, ∆A, ∆O, ∆V, ∆S of the five analysis peri-

ods. The simulations including all feedbacks and synergies, ∆AOV, show an annual

warming in the mid-Holocene of 0.60◦C (δ=0.11) north of 40◦N. The seasonal mean

air-temperature reveals an amplification of the seasonal cycle. In summer and autumn

the warming reaches 1.27 ◦C (δ=0.06) and 1.91 ◦C (δ=0.08), respectively. Contrary

to the insolation signal, the winter shows a warming of 0.64 ◦C (δ=0.17). Only the

spring shows a cooling of -0.04 ◦C (δ=0.12) following the decrease of insolation. ∆A

shows how much of the total climate response to the orbital-induced changes in in-

solation is ascribed to the direct atmospheric response. It shows a winter cooling of

-0.16 ◦C (δ=0.02), a spring cooling of -0.19 ◦C (δ=0.04), a summer warming of 1.19 ◦C

(δ=0.02), and an autumn warming of 0.76 ◦C (δ=0.01). The atmosphere-vegetation

feedback ∆V is weak in all seasons. The boreal forest shifts poleward during the

mid-Holocene, and through the snow-albedo feedback in spring, causes regionally an

increase in temperature. Thus, only in spring ∆V leads to a slight warming of 0.08
◦C (δ=0.06) counteracting the insolation changes. The atmosphere-ocean feedback ∆O

shows the strongest modification of the direct climate response. It amplifies the au-

tumn orbital signal by 1.06 ◦C (δ=0.17) and counteracts the cooling in winter by 0.73
◦C (δ=0.27). The synergy between the atmosphere-ocean and atmosphere-vegetation

feedback results in a slight warming in all seasons and leads to an annual warming of

0.08 ◦C (δ=0.12).

The uncertainty of the mean values is given by one standard deviation (Figure 3.1).

The values of ∆A show similar results for each analysis period and are statistically

robust (max. δ=0.04 in spring) because of the short-time memory of the atmosphere.

Similarly, the weak springtime atmosphere-vegetation feedback ∆V occurs persistently

in all five analysis periods (max. δ=0.06 in spring). By contrast, factors based on sim-

ulations with a dynamic ocean (∆AOV,∆O,∆S) show a large variability. This is due

to the longer time scale of variations in the ocean compared to those in the atmosphere.

The values of the atmosphere-ocean feedback ∆O and ∆AOV vary most between the

analysis periods in comparison to the other factors. Their standard deviation is largest

in winter (∆O δ=0.27, ∆AOV δ=0.17 ). The large variability in the simulations with a

dynamic ocean influences also the synergy term ∆S, so that the error bar exceeds the

mean value of ∆S in all seasons, i.e. ∆S can change sign from one analysis period to

23



3. Climate variability-induced uncertainty

Figure 3.1: Contribution of factors to mean air-temperature (north of 40◦) over five 120-year analysis

periods. The error bar indicates one standard deviation. Please note that the length of the seasons

differs between 0k and 6k, as we define the seasons by astronomical dates. Thus, the annual mean is

not the linear average of the seasonal means.
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Figure 3.2: Winter mean temperature signal ∆AOV of the five analysis periods. Only significant

values at the 99% level are displayed.

the other. This can be explained by the way the synergy term is calculated. It is the

difference between ∆AOV (minuend) and the sum of the three components ∆A, ∆O

and ∆V (subtrahend). ∆AOV and ∆O vary with a large amplitude and independently

from each other as they are calculated from different simulations. Thus, the subtrahend

can be larger than the minuend so that the synergy term becomes negative.

To analyse the large temperature variability of the simulations with a dynamic ocean

more closely, we focus on the spatial temperature patterns of each analysis period. As

the largest variability occurs in winter, Figure 3.2 depicts the spatial pattern of the

winter mean temperature signal for ∆AOV . During the first two analysis periods the

maximum temperature of ∆AOV occurs over the Greenland Sea with an anomaly of

up to 6 ◦C. A weaker maximum appears around the Kamchatka Peninsula. From the

second analysis period onwards, the maximum temperature anomaly appears in the

Barents Sea region of up to 9 ◦C. The temperature maximum weakens slightly by 1 ◦C

in the fourth but increases in the fifth analysis period. The winter mean temperature

signals in the simulations with prescribed vegetation ∆AO (= 6kAO - 0kAO) are sim-

ilar to ∆AOV (not shown).

To test the robustness of these winter temperature variability estimates, we extended

the simulations 0kAOV and 6kAOV for 1320 years and calculated the standard devi-

ation of the 120-year average winter temperature and sea-ice cover for sixteen analysis

periods (Figure 3.3). The standard deviation of the air-temperature (Figure 3.3a)

ranges from 0.2 to 2 ◦C . The largest variability with up to 2 ◦C appears in the Barents

Sea as well around the Kamchatka Peninsula with up to 0.8 ◦C. The standard deviation

of the fractional sea-ice cover (Figure 3.3b) is largest at the sea-ice margins and varies

there from 0.01 to 0.1 in the Barents Sea. Figure 3.3 reveals that the regions of highest

temperature variability match the areas of largest sea-ice variability. Furthermore, it

shows that the patterns of variability with high values at the sea-ice margins are similar

in 0k and 6k, and therefore statistically robust.

As the winter air-temperature variability is largest at the sea-ice margins, these regions
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3. Climate variability-induced uncertainty

Figure 3.3: a) The standard deviation of 120-year mean winter air-temperature (n=16) for the pre-

industrial and mid-Holocene AOV-simulation and b) the standard deviation of 120-year mean winter

fractional sea-ice cover (n=16) for the pre-industrial and mid-Holocene AOV-simulation.
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may be decisive for the long-term variations of the Northern Hemisphere temperature.

To quantify the relation of these areas and the 120-year mean air-temperature north

of 40◦N, we selected three regions: two regions at the sea-ice margin – the Barents

Sea and the region around the Kamchatka Peninsula – and the northern part of the

North Atlantic (45◦N - 60◦N). We chose the latter region because it is only marginally

influenced by sea-ice. In addition, the meridional overturning circulation is considered

to have the potential to introduce long-term variations to the northern latitude climate

(Ganachaud and Wunsch 2000). We correlated the average temperature of each re-

gion with the average temperature north of 40◦N, excluding the particular region. In

winter, the Barents Sea region (r=0.84 mid-Holocene, r=0.70 pre-industrial) and the

region around the Kamchatka Peninsula (r=0.45 mid-Holocene, r=0.59 pre-industrial)

are strongly correlated with the temperature north of 40◦N. By contrast, the North

Atlantic region shows a correlation coefficient close to zero in all seasons. Hence, in

our model, the regions with the strongest temperature variability influence the average

winter temperature north of 40◦N decisively.

Our results reveal that internal climate variability affects the magnitude of the di-

agnosed feedbacks. This raises the question whether the variability generated in the

model is comparable to natural variability. The internal variability integrated in the

pre-industrial simulations (0kAOV , 0kAO) compares reasonably well with the observed

annual mean temperature variability from 1949-1998 (Delworth et al. 2002). The model

reproduces the increased variability over continental extratropical regions. The simu-

lated maximal variability emerges at the sea-ice margins, in particular over the Barents

Sea, which is also in agreement with observations (Divine and Dick 2006). For this

region, we find in our model the same strong coupling between local anomalies of

atmospheric circulation and sea-ice cover (see Figure 3.4) as already analysed in pre-

vious modelling studies (Bengtsson et al. 2004; Koenigk et al. 2009). In summary, the

variability generated in our model is comparable to observed variability and to the

variability simulated by other models.

With our model, we are able to show that the statistical uncertainty affects the magni-

tude of the feedbacks. The question remains how much of the previous mid-Holocene

results are affected by statistical uncertainty. The results from Ganopolski et al. (1998)

with the EMIC CLIMBER-2 are statistically robust, as CLIMBER-2 does not generate

climate variability (Petoukhov et al. 2000). Wohlfahrt et al. (2004) and Gallimore et al.

(2005) performed their simulations with the GCMs IPSL and FOAM-LPJ, respectively.

Wohlfahrt et al. (2004) based their analyses on 20-year averages. Gallimore et al. (2005)

chose analysis periods of 100 and 400 years. As their analysis periods are about the

same length or shorter than our 120-year analysis period, the estimated feedbacks may

be affected by the statistical uncertainty. Furthermore, the studies by Wohlfahrt et al.

(2004) and Gallimore et al. (2005) show a stronger vegetation feedback than our sim-

ulations. Possibly, their simulations could include a large vegetation variability. This

could, in turn, enhance the ocean’s variability. For example, Notaro and Liu (2007)

showed with the GCM FOAM-LPJ that the variability in boreal forest significantly en-
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3. Climate variability-induced uncertainty

Figure 3.4: Differences between mean values of the five, consecutive 120-year periods and the 600

year mean value of the 0kAOV simulation in winter mean 10-m wind in m/s with a reference vector

length of 1 m/s (a), winter mean sea-ice cover (b), winter mean ocean-atmosphere heat flux in W/m2

(heat flux from the ocean to the atmosphere has a negative sign) (c), and ocean mixed layer thickness

in m (d). Changes in the atmospheric circulation lead to variations in sea-ice cover in the Barents Sea.

Anomalously high pressure over this region strengthens northerly winds and thus the sea ice transport

into the Barents Sea. A low pressure anomaly, however, will maintain the westerly-to-southwesterly

atmospheric flow into the region and thus the melting of sea ice. The heat flux to the atmosphere, the

air-temperature and the mixed-layer thickness change, accordingly.
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hances the variability in SSTs over the North Pacific. Thus, large vegetation variability

may affect the magnitude of the synergy. Presumably, the discrepancy of the estimated

feedbacks in different GCMs can be related, in part, to internal model variability.

3.4 Summary of Chapter 3

We have performed several sets of simulations to quantify how the statistical uncertainty

affects the estimated atmosphere-vegetation and atmosphere-ocean feedback and their

synergy to mid-Holocene insolation. Although the analysis period is long (120 years),

it leads to statistical uncertainty which has different effects on the magnitude of the

considered feedbacks. The atmosphere response and the weak atmosphere-vegetation

feedback are statistically robust. By contrast, the factors derived from simulations

with an interactive ocean are sensitive to long-term anomalies in sea-ice cover. As

a result, GCM simulations with an interactive ocean should include a long spin-up

time as well as a long analysis period to reduce the statistical uncertainty. This is

also important with regard to model intercomparison studies. Nevertheless, this study

confirms that the most important modification of the orbital forcing can be related to

the atmosphere-ocean interactions. The divergent results of the previous mid-Holocene

studies can therefore only partly be related to internal variability.
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Chapter 4

Sensitivity of the atmosphere-vegetation

feedback

4.1 Introduction

Palaeoclimate modelling provides an opportunity to examine the question of how dif-

ferent forcings and feedbacks have influenced the variability of the climate. In this

respect, the mid-Holocene, around 6000 years before present, is suited as a test climate

period. Changes in the Earth’s orbit yield a small increase in annual mean insolation in

the northern latitudes (2.5 W/m2, north of 60◦N). Despite this relative weak insolation

forcing, palaeo-reconstructions (e.g. Davis et al. (2003); Kaplan et al. (2003)) suggest

that the annual mean temperature of the northern latitudes was distinctly increased

in comparison to pre-industrial climate. This warming of northern latitudes has been

supported by climate model simulations (e.g. Ganopolski et al. (1998); Wohlfahrt et al.

(2004); Gallimore et al. (2005); Otto et al. (2009b)).

Furthermore, these studies have shown that the climate response to mid-Holocene or-

bital forcing was considerably influenced by two main climate feedbacks: the atmosphere-

ocean feedback (Hewitt and Mitchell (1998); Otto et al. (2009b,a)) and the atmosphere-

vegetation feedback (Foley et al. 1994; Wohlfahrt et al. 2004). This conclusion appears

to be robust across different kinds of models and a range of experimental designs. How-

ever, the studies differ in the relative magnitude of the feedbacks and the strength of

the synergy between them.

This discrepancy may be ascribed to differences in the setup of simulations, model con-

figurations or statistical uncertainty caused by internal model variability. The study

by Otto et al. (2009a) showed that simulations with an interactive ocean reveal a large

variability at sea-ice margins. This variability leads to a sampling error which affects

the magnitude of the diagnosed feedbacks. However, this can only partly explain the

divergent model results. Another explanation may be the difference in structure and

parametrisation of the land surface in the climate models. Thus, we perform several

sets of simulations with a General Circulation Model (GCM) to investigate how dif-

ferent land-surface parametrisations affect the mid-Holocene climate signal at the high

northern latitudes.

The climate of the high northern latitudes is influenced strongly by albedo-related feed-
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4. Sensitivity of the atmosphere-vegetation feedback

backs (Harvey 1988). For instance, a surface fully covered with fresh snow has a high

albedo. However, the actual magnitude of the albedo of a snow-covered surface depends

on the type of vegetation which covers the ground. Forest with its canopy and height

protrudes the snow layer. From a bird’s eye view, a snow-covered forest appears darker

than low vegetation covered with snow or bare ground. Thus, snow-covered forest has a

lower albedo than snow-covered grass (Otterman et al. 1984). Even forests without fo-

liage like deciduous forest (Wang 2005) significantly reduce the albedo of snow-covered

land (see Table 4.2). This is the basis for the positive atmosphere-vegetation feedback.

A replacement of tundra by forest decreases the surface albedo during the cold season

which leads to a warming and favours further growth of boreal forest.

Several model studies indicate that this positive atmosphere-vegetation feedback played

an important role for the mid-Holocene climate. Foley et al. (1994) have performed a

mid-Holocene simulation with the atmosphere-ocean GCM GENESIS with an imposed

forest extension. In their study the increase in forest yields warming of approximately

4 ◦C north of 60◦N during spring which counteracts the cooling by the seasonally de-

creased insolation due to orbital forcing. Wohlfahrt et al. (2004), using the coupled

ocean-atmosphere GCM IPSL asynchronously coupled with the equilibrium vegetation

model BIOME1, simulated a polward expansion of boreal forest cover and an expan-

sion in mid-latitude grasslands during the mid-Holocene. The expanded forest, by

masking snow cover, led to a springtime warming of 0.95 ◦C north of 40◦N. Gallimore

et al. (2005) performed simulations with the atmosphere-ocean GCM FOAM coupled to

the dynamic vegetation model LPJ. Their simulations indicate a similar mid-Holocene

vegetation distribution like Wohlfahrt et al. (2004) but result in a weaker springtime

warming (circa 0.4 ◦C, north of 60◦N). Diffenbaugh and Sloan (2002) prescribed mid-

Holocene vegetation distribution from a plant fossil record to simulations with the GCM

CCM-LSM. They found that the changes in vegetation cover can lead to differences be-

tween present-day and mid-Holocene climate which are of the same magnitude as the

difference due to orbital forcing.

However, the simulated climate signal does not only depend on changes in vegeta-

tion cover, but also on differences in land-surface parametrisation. Bony et al. (2006)

stated in a review article that the main source of errors in models arise from the way

the albedo of snow is parameterised in models. The study by Qu and Hall (2007)

compares 18 GCMs and reveals that the models vary in the strength of the snow-

albedo feedback because of the various snow-albedo parametrisations. Models with the

most complex snow-albedo parametrisation show a significantly weaker snow-albedo

feedback than observed. The snow-albedo parametrisation emerges not only as a criti-

cal factor controlling the snow-albedo feedback but also the global climate sensitivity.

Levis et al. (2007) showed that their simulations with two equally justifiable snow-cover

parametrisations, which directly affect the surface albedo in snow-covered regions, lead

to a 0.2 ◦C difference in climate sensitivity. Roesch and Roeckner (2006) demonstrated

how different parametrisations of the surface albedo and snow cover in two versions of

the same climate system model differ from observations. Models tend to have larger
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deficiencies in modelling snow at forest sites than at open sites, as an evaluation of

snow-pack models with observations reveals (Rutter et al. 2009), possibly due to more

complex snow processes at forest sites. Thus, the parametrisation of both albedo of

snow and snow cover contribute considerably to the systematic uncertainty in the sim-

ulated atmosphere-vegetation feedback.

Consequently, the discrepancy between modelling results on mid-Holocene feedbacks

may arise from different parametrisations of the albedo of snow. To test this hypoth-

esis, we first investigate the atmosphere-vegetation feedback in detail to understand

the processes which are involved in this feedback. Secondly, we investigate the sen-

sitivity of the atmosphere-vegetation feedback with respect to the parametrisation of

the albedo of snow-covered land. To evaluate how different parametrisations of the

albedo of snow affect the strength of the atmosphere-vegetation feedback under mid-

Holocene insolation forcing, we perform simulations with three different snow-albedo

parametrisations: a) simulations with a snow-albedo parametrisation which includes

a weak reduction of the albedo of snow by deciduous forest, b) simulations with a

snow-albedo parametrisation which includes strong reduction of the albedo of snow by

deciduous forest and by evergreen forest, c) simulations with a snow-albedo parametri-

sation which takes into account the aging of snow and includes strong reduction in

the albedo of snow by evergreen forest. The aim of this study is to find reasons for

the weaker atmosphere-vegetation feedback simulated with ECHAM5-JSBACH (Otto

et al. 2009a,b) than suggested by previous modelling studies of the mid-Holocene.

The sections are organised as follows. In Section 4.2.1, the albedo schemes are presented

and in Section 4.2.2, the setup of the experiments is described. The results of this chap-

ter are divided into two parts. Section 4.3.1 contains the comparison of the utilised

parametrisations of albedo of snow and Section 4.3.2 describes how these parametrisa-

tions impact the strength of the atmosphere-vegetation feedback under mid-Holocene

conditions. In Section 4.4, the results are discussed.

4.2 Model and experimental setup

We perform the simulations with the GCM ECHAM5 (Roeckner et al. 2003), including

the land surface scheme JSBACH (Raddatz et al. 2007) with a dynamic vegetation

module (Brovkin et al. 2009). For this study, we use the same model, the same resolu-

tion and a similar experiment setup as described in Otto et al. (2009b) and Otto et al.

(2009a). However, due to changes in the operating system of the supercomputer, we

had to use a newer version of the model. Nevertheless, the results of this chapter can

be compared directly with the results of the studies presented in Otto et al. (2009b)

and in Otto et al. (2009a)
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4. Sensitivity of the atmosphere-vegetation feedback

4.2.1 Albedo scheme

The land-surface processes are in all simulations calculated by JSBACH. The albedo

scheme in JSBACH computes the temporal and spatial changes of the land-surface

albedo. It provides a spatially explicit surface albedo calculation for the near infrared

(NIR) as well as for the visible range (VIS). For the snow-free land, JSBACH follows

a similar approach as described in Rechid et al. (2008) with a temporal variation of

surface albedo as a function of vegetation phenology derived from satellite data with the

sensor Moderate-Resolution Imaging Spectroradiometer (MODIS) (Schaaf et al. 2002).

In general, the albedo is calculated separately for surfaces covered by green leaves and

for the underlying surface of the soil. If the land surface, however, is snow covered, the

albedo of a snow-covered fraction of the grid box is additionally computed similar to

the parametrisation in ECHAM5 (Roeckner et al. 2003). For forest, an albedo value

of αF = 0.25 is set for the part of the canopy covered with snow. In contrast, the

vegetation types of grass and shrubs are assumed to be completely covered by snow,

so that the same albedo value is used for these areas as for snow-covered bare land.

This albedo of snow is assumed to decrease linearly with surface temperature, ranging

from a minimum value at melting point (αV IS = 0.5, αNIR = 0.3) to a maximum value

for temperatures of less than -5 ◦C (αV IS = 0.9, αNIR = 0.7) (Roesch and Roeckner

2006). We refer to this model as the model with standard parametrisation.

For another set of simulations, we change the parametrisation of how forest reduces the

albedo of snow. In the model with standard parametrisation, deciduous forest has only

a weak effect on the albedo of snow because of the loss of its foliage during the cold

season. It is assumed that only evergreen forest with remaining leafs can effectively

mask the albedo of snow. Roesch and Roeckner (2006), however, described this as a

deficiency and suggest the introduction of a stem area index for deciduous trees. When

deciduous trees have lost their needles or leaves, this stem area index mimics the stem

and branches shadowing the ground below the canopy. In the model with standard

parametrisation, this stem area index is set to 1 which introduces a weak snow masking

for deciduous forest (Figure 4.1). However, both field measurements (e.g. Betts and

Ball (1997)) and satellite analysis (e.g. Wang (2005); Moody et al. (2007)) reveal that

deciduous forest can also mask snow effectively and reduces the albedo of snow up to 0.3

(see Table 4.2). Accordingly, we increase the strength of how forest masks the albedo

of snow in JSBACH. To account for a stronger snow masking by deciduous forest, we

set the stem area index to 3. In addition, we introduce a stronger snow masking by

evergreen forest by reducing the albedo of snow-covered canopy from αF = 0.25 to αF

= 0.20 (Sturm et al. 2005). To simulate a similar control climate like in the model

with standard parametrisation, we increased the minimum albedo of snow in the near

infrared from αNIR = 0.3 to αNIR = 0.4. We refer to this parametrisation as the model

with strong snow masking.

Another process affecting the albedo of snow is the metamorphism of snow with time.

The albedo of snow changes with the age of snow due to changes in the size of snow grain,
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experiment

name

prescribed vege-

tation cover

duration

[years]

parameters changed

∆V

6kAV – 480 –

0kAV – 480 –

6kA from 0kAV 250 –

0kA from 0kAV 250 –

∆V se

6kAV sm – 480 snow masking of deciduous trees

and evergreen forest

0kAV sm – 480 snow masking of deciduous trees

and evergreen forest

6kAsm from 0kAV se 250 snow masking of deciduous trees

and evergreen forest

0kAsm from 0kAV se 250 snow masking of deciduous trees

and evergreen forest

∆V sa

6kAV sa – 480 snow masking of evergreen forest

snow melting

0kAV sa – 480 snow masking of evergreen forest

snow melting

6kAsa from 0kAV sa 250 snow masking of evergreen forest

snow melting

0kAsa from 0kAV sa 250 snow masking of evergreen forest

snow melting

Table 4.1: List of simulations.

impurities in the snow and the presence of liquid water in the snow. Thus, the majority

of GCMs calculate the albedo of snow with a dependence on snow age (Levis et al. 2007;

Qu and Hall 2007). In the model with standard parametrisation, the albedo of snow

is calculated with an explicit temperature dependence. To change this calculation to a

dependence on snow age, the snow albedo parametrisation of the Biosphere Atmosphere

Transfer Scheme (BATS) (Dickinson et al. 1986) was implemented in the albedo scheme

of JSBACH 1. In this parametrisation, the albedo of snow depends on temperature in

a prognostic way. A snow-aging factor is introduced which takes the age of snow into

account in an empirical way. Similar to the model with strong snow masking, the albedo

of snow-covered canopy is reduced from αF = 0.25 to αF = 0.20. This parametrisation

is called the snow-aging model in the following. The implemented snow-albedo scheme

of BATS is described in more detail in the Appendix A.

1This was done by Dr. Thomas Raddatz.
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4.2.2 Simulation protocol

In total, we performed 13 simulations (see Table 4.1): four simulations with the model

with standard parametrisation, four simulations with the model with strong snow mask-

ing, four simulations with the snow-aging model. All simulations were run with atmo-

spheric CO2-concentrations set to 280 ppm and with the same sea-surface temperature

and sea-ice cover prescribed as monthly values. The last 240 years of all experiments

were considered for the analysis.

Four simulations with the model with standard parametrisation are required to cal-

culate the pure contribution of the atmosphere-vegetation feedback ∆V to the mid-

Holocene climate signal: two simulations with dynamic vegetation run for 480 years,

one with pre-industrial (0kAV ) and one with respective mid-Holocene orbital forcing

(6kAV ). The two corresponding atmosphere-only simulations had the vegetation pre-

scribed from the 0kAV -simulation and were run for 250 years with pre-industrial (0kA)

and respective mid-Holocene orbital forcing (6kA). To calculate the pure contribution

of the atmosphere-vegetation feedback ∆V , we have to compare the results of the two

simulations with the vegetation run interactively (∆AV = 6kAV - 0kAV ) with the two

atmosphere-only simulations (∆A = 6kA− 0kA):

∆V = (6kAV − 0kAV ) − (6kA− 0kA) (4.1)

The pure contribution ∆V can be evaluated for all climate parameters. If we consider

a specific climate parameter, for example the air temperature [T], we use the symbol

∆V [T ].

The four simulations with the model with strong snow masking and the four simula-

tions with the snow-aging model were performed similarly. The simulations with the

model with strong snow masking are labelled as follows: 0kAV sm, 6kAV sm, 0kAsm,

6kAsm. The vegetation distribution of the atmosphere-only simulations (∆Asm =

6kAsm− 0kAsm) was prescribed from the 0kAV sm simulation. The simulations with

the snow-aging model are referred to as: 0kAV sa, 6kAV sa, 0kAsa, 6kAsa. The

atmosphere-only simulations (∆Asa = 6kAsa − 0kAsa) run with prescribed vegeta-

tion of the 0kAV sa simulation. We calculate the corresponding our contribution by

the atmosphere-vegetation feedback as in equation 4.1.

∆V sm = (6kAV sm− 0kAV sm) − (6kAsm− 0kAsm) (4.2)

∆V sa = (6kAV sa− 0kAV sa) − (6kAsa− 0kAsa) (4.3)
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Figure 4.1: Shown is the difference between grass-albedo (VIS+NIR) and forest-albedo (VIS+NIR). We refer to this difference as strength of snow-masking

because large changes occur only when the surface is covered by snow. The seasonal cycle of the strength of the snow-masking is shown as the zonal mean

north of 40◦N for the model with standard parametrisation (a,d), the model with strong snow masking (b,e) and the snow-aging model (c,f) for each forest

type evergreen forest (upper row) and deciduous forest (lower row).
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4. Sensitivity of the atmosphere-vegetation feedback

Figure 4.2: Anomalies of snow depth in mm for the model with strong snow masking 0kAV sm (a)

and the snow-aging model 0kAV sa (b) relative to the model with standard parametrisation 0kAV .

Please note the different scale of the label bars.

Figure 4.3: Anomalies of air-temperature in ◦C for the model with strong snow masking 0kAV sm

(a) and the snow-aging model 0kAV sa (b) relative to the model with standard parametrisation 0kAV .

Please note the different scale of the label bars.
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model with model with snow-aging measurements type of reference

standard parametrisation strong snow masking model measurements

0.5 - 0.6 three sites Essery et al. (2009)

0.3 satellite Moody et al. (2007)

grass - evergreen 0.1 - 0.6 0.1 - 0.6 0.1 - 0.7 0.1 - 0.5 satellite Barlage et al. (2005)

0.2 satellite Jin et al. (2002)

0.6 ten sites Betts and Ball (1997)

– three sites Essery et al. (2009)

0.3 satellite Moody et al. (2007)

grass - deciduous 0.1 - 0.3 0.1 - 0.5 0.1 - 0.4 0.1 - 0.5 satellite Barlage et al. (2005)

0.1 - 0.3 satellite Jin et al. (2002)

0.5 ten sites Betts and Ball (1997)

Table 4.2: Strength of snow masking of the three models: model with standard parametrisation, model with strong snow masking and snow-aging model,

compared with different measurements.
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4.3 Results

4.3.1 Comparison of parametrisations

The three different parametrisations of the snow-covered surface yield different values

of the albedo of snow-covered grass and forest. Figure 4.1 shows the seasonal cycle of

the zonally-averaged difference between the albedo of grass and the albedo of forest.

As large differences occur only when the surface is covered by snow, we refer to this

difference as the strength of snow masking.

In the model with standard parametrisation (Figure 4.1a), the strength of snow mask-

ing of evergreen forest ranges from 0.1 to 0.6 with the strongest effect in the region

between 60-70◦N. The strength of snow masking decreases during spring and vanishes

late in May when the snow has completely melted. At the beginning of September, with

the start of the cold season in the high northern latitudes, the snow masking begins

and increases with time. The snow masking of deciduous forest is much weaker than

of evergreen forest (Figure 4.1d). The strength of snow masking varies only between

0.1 and 0.3. The annual cycle of the strength of snow masking is similar to the one of

evergreen trees.

The model with strong snow masking reveals a larger annual cycle for the strength of

snow masking (Figure 4.1b,e) compared to the model with standard parametrisation.

The snow masking of deciduous forest is increased by almost factor two due to the

increase in the stem-area index. The strength ranges from 0.1 to 0.5 and is strongest in

the region between 55-70◦N. The strength of snow masking of evergreen trees is similar

to the one of the model with standard parametrisation. However, the region with the

strongest snow masking reaches further south up to 55◦N as opposed to the model with

standard parametrisation.

The parametrisation of the snow albedo depending on a snow-aging factor leads also to

an increase in the strength of the snow masking (Figure 4.1c,f) compared to the model

with standard parametrisation. The strength of the snow masking of deciduous forest

ranges from 0.1 to 0.4. Thus, this parametrisation yields a less pronounced increase in

the strength of snow masking of deciduous forest compared to the model with strong

snow masking. The strength of snow masking by evergreen forest, however, increases

by 0.05 compared to the two other parametrisations. For both forest types the snow

masking persists longer in the course of the year than in the model with standard

parametrisation. This indicates that the snow melt is delayed by approximately one

month compared to the other two model configurations. Figure 4.2 reveals that in

May, the snow depth is on average 20 mm higher than in the model with standard

parametrisation.

The reasons for the enhanced snow masking and the delayed snow melt can be at-

tributed to the way the albedo of snow is parametrised in the snow-aging model.

Firstly, the albedo of a snow-covered canopy (αF ) is reduced by 0.05 compared to

the model with standard parametrisation which increases the difference between snow-
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covered grass and forest. This affects the snow masking of evergreen forest. Secondly,

the maximum and minimum values of the albedo of snow differ in snow-aging model

compared to the model with standard parametrisation. Snow in the snow-aging model

can have a higher maximum albedo (αV IS = 0.95) in the visible range compared to

in the model with standard parametrisation (αV IS = 0.90). The minimum albedo of

snow is crucial for the snow melt. In the snow-aging model, the calculation of the

minimum albedo of snow depends on the snow-age factor and decays exponentially (see

Appendix A). If snow falls, it is assumed that fresh snow is rather white and therefore

the albedo of snow is set to a high albedo value (max. αV IS = 0.95). In contrast, the

minimum albedo of the model with standard parametrisation is linearly reached when

the temperature is at the melting point. The albedo of snow is in this parametrisation

independent of the age of snow, so that as soon as the temperature exceeds freezing

the minimum albedo value of snow is used (αV IS = 0.5). Thus, the parametrisation

with the snow-aging factor delays the snow melt compared to the model with standard

parametrisation (Figure 4.2). This delay results in cooler mean summer temperature

up to 1.5 ◦C in the regions which are periodically snow-covered (Figure 4.3).

The albedo of snow can be measured by aircraft and satellite, remote sensing and ground

observations (Table 4.2). These measurements have shown that the albedo of snow is

strongly variable and depends on various factors like e.g. the type of snow (Moody

et al. 2007). Thus, the estimates for the strength of the snow masking vary between

0.1 and 0.6 for evergreen forest and between 0.1 and 0.5 for deciduous forest. However,

the studies listed in Table 4.2 consistently show that the strength the of snow masking

by evergreen forest is only slightly stronger than the strength of the snow masking of

deciduous forest. In general, in all three models the strength of the snow masking is

within the range of the observed snow masking. Nevertheless, the strength of the snow

masking of deciduous forest in the model with standard parametrisation is at the low

end of the range of observations, the strength of the snow masking of evergreen forest

in the snow-aging model is at the high end of the range of observations.

4.3.2 Atmosphere-vegetation feedback

To assess how the different snow-albedo parametrisations influence the strength of the

atmosphere-vegetation feedback under mid-Holocene forcing, we performed several sets

of simulations (see Section 4.2.2) using the model with standard parametrisation, the

model with strong snow-masking and the snow-aging model. The basis for the mid-

Holocene atmosphere-vegetation feedback is the northward shift of forest compared to

the pre-industrial situation (Claussen 2004). The change in forest of the standard,

snow-masking and snow-aging model is depicted in Figure 4.4 and Table 4.3. All three

parametrisations produce an expansion of forest compared to the pre-industrial climate.

The largest increase for the region north of 60◦N simulates the model with strong snow

masking with 12.71 x 105 km2 followed by the model with standard parametrisation

with an increase of 11.29 x 105 km2. The weakest forest growth is produced by the
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model with model with strong snow-aging

standard parametrisation snow masking model

change in area covered

by vegetation and desert in 105 km2

evergreen forest 4.84 6.82 4.89

deciduous forest 6.45 5.89 4.36

grass -1.68 -1.96 1.85

shrubs -0.46 0.03 1.06

desert fraction -9.15 -10.78 -12.16

change in temperature ∆V [T ] ∆V sm[T ] ∆V sa[T ]

annual 0.07 0.20 0.16

winter 0.03 0.12 0.07

spring 0.12 0.34 0.37

summer 0.10 0.24 0.15

autumn 0.04 0.10 0.05

climate change in spring ∆V ∆V sm ∆V sa

surface albedo -0.02 -0.03 -0.02

precipitation mm/season 0.28 0.85 2.48

snow depth in mm -0.53 -1.70 -0.96

sensible heat flux in W/m2 -0.42 -0.72 -0.30

latent heat flux in W/m2 -0.38 -0.69 -0.76

net surface solar radiation W/m2 1.05 1.77 1.40

net surface thermal radiation in W/m2 -0.04 0.00 -0.03

cloud cover fraction 0.002 0.004 0.003

Table 4.3: Summary of the atmosphere-vegetation feedbacks of the three models (model with standard

parametrisation = ∆V , model with strong snow masking = ∆V sm, snow-aging model = ∆V sa). All

values are spring mean values and averaged over land over the area 60◦-90◦N. The change in vegetation

cover is derived from the simulations with dynamic vegetation. Please note that fluxes towards the

atmosphere (sensible and latent heat fluxes) are negative.
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snow-aging model with 9.25 x 105 km2. The forest expansion comprises the increase

in evergreen and deciduous forest. Evergreen forest increases only north of 60◦N in

Northern Europe, North-Western Siberia as well as in Northern Canada. Deciduous

forest, however, increases mainly in North-Eastern Siberia but reaches further south

up to 50◦N. The patterns of vegetation cover are similar for all parametrisations. Nev-

ertheless, the largest increase in evergreen forest averaged over the area north of 60◦N

is simulated by the model with strong snow masking with 6.82 x 105 km2, the largest

increase in deciduous forest is produced by the model with standard parametrisation

with 6.45 x 105 km2. In the model with standard parametrisation and in the model with

strong snow masking, the forest grows more at the expense of grass and shrubs than in

the snow-aging model (Table 4.3). In the snow-aging model, the forest increases more

at the expense of cold desert (Table 4.3) than with the other two parametrisations.

Figure 4.5 depicts the mean seasonal air-temperature response to the change in inso-

lation averaged over the region north of 60◦N. The temperature response is divided

into the pure response of the atmosphere and the pure contribution of the atmosphere-

vegetation feedback to the temperature signal. All three parametrisations follow the

orbital-induced change in insolation in the temperature signal (∆A,∆Asm and ∆Asa).

The mid-Holocene decrease in insolation during winter and spring, compared to present

day, results in a decrease in temperature in winter (∆A =-0.08, ∆Asm =-0.13, ∆Asa=-

0.02) and spring (∆A =-0.07, ∆Asm =-0.09, ∆Asa = -0.22). The enhanced insolation

during summer and the beginning of autumn yields an increase in temperature in sum-

mer (∆A = 1.73, ∆Asm = 1.73, ∆Asa = 1.67) and autumn (∆A = 0.95, ∆Asm = 0.92,

∆Asa = 0.95) compared to pre-industrial climate. The magnitude of the atmosphere

signal varies between the three parametrisations. This is due to the changes in the

snow-albedo scheme, which results in slightly diverging pre-industrial climates of the

atmosphere-vegetation simulations as shown in Section 4.3.1 and Figure 4.3. Hence the

different parametrisations produce a diverging climate response to the mid-Holocene

insolation forcing as well. The temperature anomaly compared to the model with stan-

dard parametrisation is larger in the snow-aging model (maximum in spring of -0.15
◦C) compared to the model with strong snow masking (maximum in winter of -0.05
◦C).

The pure contribution of the atmosphere-vegetation feedback (Figure 4.5 and Table 4.3)

contributes a warming to the mid-Holocene climate signal throughout the year. In sum-

mer and in autumn, the atmosphere-vegetation feedback amplifies the warming of the

direct atmospheric signal. In both seasons, thepure contribution of the atmosphere-

vegetation feedback is largest in the model with strong snow masking with 0.24 ◦C in

summer and 0.10 ◦C in autumn. In winter and spring, the atmosphere-vegetation feed-

back contributes a warming which counteracts the cooling of the atmospheric signal.

The contribution of warming is stronger in spring than in winter. In the model with

standard parametrisation, the ∆V [T ] reaches 0.12 ◦C in spring. The ∆V sm[T ] and

∆V sa[T ] counteract the cooling more strongly by about a factor of three. The model

with strong snow masking produces a temperature anomaly of 0.34 ◦C in spring. The
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pure contribution of the atmosphere-vegetation feedback is slightly larger with 0.37 ◦C

in the snow-aging model compared to the model with strong snow masking.

As the largest temperature increase caused by the pure contribution of the

atmosphere-vegetation feedback occurs in spring (Figure 4.5), we focus on the spring

season to analyse how the atmosphere-vegetation feedback works. The spatial distri-

bution of the spring air-temperature is shown in Figure 4.6. The positive temperature

anomaly is largest in the circum-polar belt between 60-70◦N. The temperature increases

up to 0.6 ◦C in the model with standard parametrisation. The temperature rise of the

model with strong snow masking is stronger than in the model with standard parametri-

sation. In North-Eastern Siberia, the temperature rises up to 1.3 ◦C. This is the region

where deciduous forest expands. The implemented stronger snow-masking of deciduous

forest in the model with strong snow masking results in a stronger temperature increase

compared to in the model with standard parametrisation. The temperature pattern of

the snow-aging model looks similar to the model with standard parametrisation but

with a more pronounced temperature rise by up to 0.3 ◦C. The temperature increases

particularly in the regions of evergreen forest growth. This is due to the stronger

snow-masking of evergreen forest in the snow-aging model compared to the standard

parametrisation (see Figure 4.1).

The different model configurations, however, reveal not only patterns of warming but

also patterns of cooling. The standard and the snow-masking model show cooling pat-

terns over Northern Europe and Southern Canada of up to -0.4 ◦C. The cooling is

somewhat stronger in the model with strong snow masking than in the model with

standard parametrisation. These cooling patterns are marginally present in the snow-

aging model.

To analyse the temperature change caused by the pure contribution of the atmosphere-

vegetation feedback more closely, we examine the surface energy budget. The tempera-

ture signal is strongly affected by the available solar energy at the surface. This energy

is absorbed by the Earth’s surface and eventually transferred back into the atmosphere

by thermal radiation, by latent heat flux and by sensible heat flux. The signal in net

surface solar radiation is shown in Figure 4.7. In the regions of forest expansion the

net surface solar radiation increases compared to present-day climate by 2 – 12 W/m2.

Nevertheless, the patterns of net surface solar radiation show regions with a decrease

in net surface solar radiation. The net surface solar radiation decreases over North

America between 40-60◦N and North-East Europe by about -4 W/m2 compared to the

pre-industrial signal. These patterns of decrease are similar to the patterns of decrease

in the temperature signal (Figure 4.6).

The magnitude of the net solar surface radiation depends on the surface albedo. In

spring, all three parametrisations show a reduction in surface albedo compared to

present-day climate (Figure 4.8). The decrease ranges from -0.14 to -0.06 and fol-

lows the pattern of increased forest (Figure 4.4). The strongest decrease is obtained

with the model with strong snow masking. This model simulates a reduction of up

to -0.20 regionally in North-Eastern Siberia. This could be expected since this model
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4.3 Results

Figure 4.4: Change in forest fraction for evergreen forest (a – c) and deciduous forest (d – f) between

mid-Holocene and pre-industrial for ∆AV (a, d), ∆AV sm (b, e), ∆AV sa (c, f). The right panel shows

the zonal average of vegetation cover.

45



4
.
S
e
n
s
it

iv
it

y
o
f

t
h
e

a
t
m
o
s
p
h
e
r
e
-
v
e
g
e
t
a
t
io

n
f
e
e
d
b
a
c
k

winter spring summer autumn
−0.5

0

0.5

1

1.5

2

2.5

∆ 
te

m
pe

ra
tu

re

a) standard parametrisation

 

 
∆A
∆V

winter spring summer autumn
−0.5

0

0.5

1

1.5

2

2.5
b) snow−masking parametrisation

 

 
∆Asm
∆Vsm

winter spring summer autumn
−0.5

0

0.5

1

1.5

2

2.5
c) snow−aging parametrisation

 

 
∆Asa
∆Vsa

Figure 4.5: Seasonal air-temperature difference between mid-Holocene and pre-industrial climate averaged over land of the region ≥ 60◦N for the

atmospheric signal and the contribution of the vegetation for the model with standard parametrisation (a), the model with strong snow masking (b), the

snow-aging model (c).
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4.3 Results

Figure 4.6: Mean spring air-temperature for ∆V [T ] (a), ∆V sm[T ] (b), ∆V sa[T ] (c).

Figure 4.7: Mean spring net surface solar radiation in W/m2 for ∆V [S] (a), ∆V sm[S] (b), ∆V sa[S]

(c).
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4. Sensitivity of the atmosphere-vegetation feedback

Figure 4.8: Mean spring surface albedo for ∆V [α] (a), ∆V sm[α] (b), ∆V sa[α] (c).

Figure 4.9: Mean spring total cloud cover as fraction for ∆V [Cl] (a), ∆V sm[Cl (b), ∆V sa[Cl (c).
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4.3 Results

Figure 4.10: Mean spring sensible heat flux in W/m2 for ∆V [SF ] (a), ∆V sm[SF ] (b), ∆V sa[SF ]

(c). Please note that upward fluxes are counted negatively. It follows that positive values indicate a

reduction of flux in the mid-Holocene simulations.

Figure 4.11: Mean spring latent heat flux in W/m2 for ∆V [LF ] (a), ∆V sm[LF ] (b), ∆V sa[LF ]

(c). Please note that upward fluxes are counted negatively. It follows that positive values indicate a

reduction of flux in the mid-Holocene simulations.
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4. Sensitivity of the atmosphere-vegetation feedback

includes the largest strength of snow masking of deciduous forest (see Figure 4.1).

The change in surface albedo, however, cannot explain the regions with a decrease in

net solar surface radiation (Figure 4.7). Thus, the atmospheric transmissivity must

have changed. In general, clouds prevent solar radiation from entering the Earth’s sur-

face. Figure 4.9 depicts the total cloud cover anomaly in spring. The cloud cover is

increased by up to 0.03 in the regions where forest has increased. The maximum cloud

cover occurs over North-Eastern Siberia simulated with the model with strong snow

masking. Nevertheless, cloud cover increases not only in regions with forest expansion

but also south of these regions where no vegetation has changed. This feature is par-

ticularly prominent in the standard and snow-masking model (Figure 4.9 a,b).

The question why the cloud cover increases arises. In spring, trees start to sprout, leaves

emerge and thus, transpiration increases (Schwartz and Karl 1990; Beringer et al. 2005;

Chapin et al. 2000) as forest replaces mainly cold desert (Table 4.3). Figure 4.10 and

Figure 4.11 show that both the sensible and the latent flux increases in the region

of forest expansion. We cannot derive from the increase in latent heat flux if forest

has a higher capability to transpire compared to other vegetation types. Nevertheless,

the expansion of forest causes an increase in net surface solar radiation which favours

stronger latent heat flux compared to the pre-industrial climate. Assuming that there

is sufficient mixing within the atmospheric boundary layer to bring the moister air to

its lifting condensation level, increased cloudiness results. The increased cloudiness

reduces the solar downward radiation. This results in reduced net surface solar radi-

ation at the surface of the Earth and thus less thermal energy is available for heating

the atmosphere. This effect dampens the increase in net surface solar radiation by

the reduced surface albedo in the boreal region. Thus, the spring warming is weak-

ened. In regions without vegetation change, however, the increase in cloud fraction

(Figure 4.9) results in a cooling because less energy is available for the atmospheric

heating compared to present day.

4.4 Discussion of Chapter 4

During the mid-Holocene, the forest extended further northwards than in pre-industrial

climate (e.g. MacDonald et al. (2000)), mainly due to the increased insolation during

summer and early autumn. Several studies have associated this with a positive feedback

(Foley et al. 1994; Texier et al. 1997; Claussen 2004; Wohlfahrt et al. 2004). Likely, this

expansion led to a reduction in albedo due to the snow masking of forest, which favours

the absorption of more solar radiation especially in spring. We test this statement by

comparing the simulated net surface downward radiation signal ∆V [S] of the pure

contribution of the atmosphere-vegetation feedback in spring with a simple estimate of

the change in net surface solar radiation (Sest) due to the strength of snow masking and

the change in forest. In particular, we multiply the solar downward radiation of 0kA

by the strength of the snow masking for evergreen and deciduous forest, respectively,

(see Figure 4.1, left column) and by the change in forest for evergreen and deciduous
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4.4 Discussion of Chapter 4

forest, respectively, between the mid-Holocene and pre-industrial simulations (∆AV )

and average this product for the spring season:

Sest =

∫ t2

t1

S ↓ (δαe · ∆fe + δαd · ∆fd) dt/(t2 − t1) (4.4)

where S ↓ is the solar downward radiation in W/m2 for 0k, δαe is the strength of snow

masking of evergreen forest, δαd is the strength of snow masking of deciduous forest,

∆fe the change in evergreen forest cover and ∆fd the change in deciduous forest cover

between 6k and 0k, and t1 represents the date of the beginning of spring and t2 the date

of the end of spring. Figure 4.12 compares the estimated net surface solar radiation Sest

with the simulated net surface solar radiation ∆V [S]. The patterns of change in net

surface solar radiation are very similar. However, Sest reveals a stronger increase in net

surface solar radiation compared to the simulated net surface solar radiation by about

a factor of two. In addition, Sest does not produce the reduction in net surface solar

radiation of the region over North America between 40-60◦N and North-East Europe.

This indicates that the net surface solar radiation is weakened by a process which is

not included in the simple estimate (equation 4.4). This missing process is the increase

in transpiration by forest as discussed in Section 4.3.2. Therefore, we can support the

statement that expansion of forest and its snow masking are the main land component

drivers of the atmosphere-vegetation feedback (Otterman et al. 1984; Harvey 1988).

However, the enhanced transpiration due to the expansion of forest area dampens the

positive atmosphere-vegetation feedback (Claussen 2004; Pitman 2003).

The positive atmosphere-vegetation feedback causes a spring warming as shown by all

three model configurations. However, the magnitude of the warming differs between the

simulations with the different parametrisations. The snow-masking model reveals the

largest spring temperature increase regionally (Figure 4.6). In North-Eastern Siberia,

the temperature of the model with strong snow masking exceeds the temperature

anomaly of the model with standard parametrisation by circa 1 ◦C. The snow-aging

model increases the spring temperature response equally circumpolar by up to 0.5 ◦C

compared to the model with standard parametrisation. However, the snow-aging model

depicts a weaker regional temperature anomaly compared to the model with strong snow

masking. The spring air-temperature averaged over the region north of 60◦N reveals

a slightly different picture. Both the snow-masking and the snow-aging model exhibit

a similarly strong spring warming averaged over this region (∆V sm = 0.34 ◦C, ∆V sa

= 0.37 ◦C in spring). This is due to regions with larger and more pronounced cooling

patterns in the snow-masking model compared to in the snow-aging model. However,

both parametrisations enhance the spatial average temperature increase due to the

atmosphere-vegetation feedback compared to the model with standard parametrisation

(∆V = 0.12 ◦C) by about a factor of three.

Strikingly, the simulations with the snow-aging model produce, with the smallest ex-

pansion of forest (9.25 x 105 km2), the strongest increase in spatially averaged tem-

perature (∆V sa = 0.37). The strength of snow masking was enhanced by about 75%
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4. Sensitivity of the atmosphere-vegetation feedback

Figure 4.12: Comparison of spring net surface radiation for ∆V [S] (a) with the calculated net surface

radiation Sest (b) derived from the solar downward radiation for 0k, the change in forest fraction from

0k to 6k and the strength of the snow masking.

for deciduous forest compared to the relative strength of snowmasking of 0.20 of the

standard parametrisation. The strength of snow masking of evergreen forest was en-

hanced by about 20% relative to 0.50 of the standard parametrisation (see Figure 4.1).

In the parametrisation with strong snow masking, we increased the strength of snow

masking for evergreen forest only by 10% but more than doubled the strength of snow

masking for deciduous forest relative to the standard parametrisation. With this snow-

masking parametrisation, forest area increase is stronger by 3.47 x 105 km2 but the

temperature averaged over the region north of 60◦N is 0.03 ◦C lower compared to the

snow-aging model. This indicates that not only the amount of increased forest but also

the parametrisation of the albedo of snow influence the strength of the atmosphere-

vegetation feedback.

Despite the enhancement of the pure contribution of the atmosphere-vegetation feed-

back through the changes in the snow-albedo parametrisation, previous studies suggest

a stronger contribution of the atmosphere-vegetation feedback to the mid-Holocene

climate signal (Table 4.4). Simulations with the EMIC CLIMBER-2 by Ganopolski

et al. (1998) exhibit a warming of up to 2.5 ◦C (60-70◦N) in winter by the atmosphere-

vegetation feedback due to a strong forest expansion in their mid-Holocene simulations.

Ganopolski et al. (1998) obtained a factor of three more increase in forest than we sim-

ulated (Table 4.4). This strong warming of the atmosphere-vegetation feedback and

the large expansion of forest is corroborated by Crucifix et al. (2002). Their study,
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Figure 4.13: Daily mean temperature over land for 0kA and 6kA averaged over the region 60-70◦N

with the temperature threshold for growing degree days (GDD).

region spring change in forest model citation

temperature in 105 km2

ECHAM5/JSBACH

≥ 60◦N 0.12 ◦C 11.29 model with standard this study

parametrisation

≥ 60◦N 0.34 ◦C 12.72 model with strong this study

snow masking

≥ 60◦N 0.37 ◦C 9.25 snow-aging model this study

≥ 60◦N ∗0.40 ◦C [+58%] FOAM-LPJ Gallimore et al. (2005)

≥ 40◦N 0.95 ◦C 6.50 IPSL-BIOME1 Wohlfahrt et al. (2004)

≥ 60◦N 5.00 ◦C 46.00 MoBidiC Crucifix et al. (2002)

≥ 60◦N [not given] 30.00 CLIMBER-2 Ganopolski et al. (1998)

≥ 60◦N ∗3.30 ◦C [prescribed] GENESIS Foley et al. (1994)

Table 4.4: Summary of spring air-temperature differences between 6k and 0k of the atmosphere-

vegetation feedback simulated by our study and simulated by previous studies. Values marked with

(∗) indicate that this value includes the climate response of an interactive ocean.
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4. Sensitivity of the atmosphere-vegetation feedback

performed with the EMIC MoBidiC, produces a very strong warming of 5 ◦C north

of 60◦N in spring and an expansion of forest by about a factor of four more than we

simulated (Table 4.4). However, the authors refer to this strong warming as unrealistic,

as their model reveals a tendency to overestimate the impact of insolation forcing on

vegetation. The discrepancy between our comparable weak increase in forest to the

large expansion of forest in EMICs may be the result of the higher resolution of our

model compared to the coarse resolution of the utilised EMICs. The resolution of our

model is approximately 3.75 ◦ at the equator. Commonly, EMICs distinguish only be-

tween two vegetation types (trees and grass) per grid box with a resolution of 10 ◦ in

latitude and 51 ◦ in longitude (Ganopolski et al. 1998). A grid box of this size covers a

larger area with either grass or forest than in JSBACH. When the climate changes, for

instance due to mid-Holocene insolation forcing, the vegetation cover of each grid box

adapts to it and, thus, causes a stronger increase in e.g. forest than simulated with our

higher-resolved model.

Simulations with GCMs reveal a weaker contribution of the atmosphere-vegetation

feedback than simulated with EMICs (see Table 4.4). A study (Gallimore et al. 2005)

with the GCM FOAM-LPJ produces a atmosphere-vegetation feedback of 0.40 ◦C. Gal-

limore et al. (2005) explain this weak warming with a large mid-latitude expansion of

grass cover outweighing the expansion in boreal forest cover in their model and there-

fore weakening the atmosphere-vegetation feedback. This is not the case in our model

as we do not simulate an expansion of grass in the mid-latitudes. Wohlfahrt et al.

(2004) coupled the vegetation model BIOME1 asynchronously with the GCM IPSL.

Their simulations show a spring warming that reaches 0.95 ◦C averaged over the region

north 40◦N with an expansion of forest only half of our simulated increase in forest. In

comparison to the study by Wohlfahrt et al. (2004), we use a GCM including a fully

coupled vegetation module. The vegetation module follows a tiling approach (Brovkin

et al. 2009), so that on each of the model’s grid boxes, a mosaic of different vegeta-

tion types can exist. The vegetation composition is temporally variable and derived

from succession processes such as establishment and mortality. Wohlfahrt et al. (2004),

however, used a vegetation module asynchronously coupled with a GCM. In their ap-

proach, each grid box contained only one type of vegetation. With a climate change,

a whole grid box changes, for example to forest, whereas with the tiling approach only

a fraction of the grid box is turned into forest. The temperature response to these

large-scale changes is stronger compared to the fractional change in vegetation cover in

our model.

Another factor controlling the forest cover in climate models is the warmth of the

growing season. Commonly, the forest cover is determined as a function of growing de-

gree days (GDD) which is defined as the sum of daily mean air-temperature above the

threshold of 5 ◦C. In our model, the growing season of the mid-Holocene is characterised

by higher temperatures and a prolongation of six days compared to the pre-industrial

climate (Figure 4.13). However, these limits show also that the increase of forest is

limited by these values and spatially by the coast (Figure 4.4).
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The question arises how well our model simulates the expansion of forest in comparison

to reconstructions. Reconstructions of the mid-Holocene treeline suggest an asym-

metric response of the vegetation to the change in insolation (MacDonald et al. 2000;

Bigelow et al. 2003). The reconstructions show northward shifts of forest by up to 200

km in central Siberia, and 50-100 km in Western Europe and in North-West Canada.

For Eastern Canada, reconstruction suggest that the tree line was further south than

present. The simulated northward extension of forest areas for the mid-Holocene is

in general agreement with the reconstructions (see Figure 4.4). The increase in de-

ciduous forest in Eastern Siberia is also supported by reconstructions (Texier et al.

1997). Wohlfahrt et al. (2008) presented an evaluation of GCM simulations of the mid-

Holocene with palaeovegetation data. In their study, the different GCMs simulate an

increase in forest between 6 - 16 x 105 km2 north of 60◦N. Our results with an increase

in forest between 9 - 13 x 105 km2 (see Table 4.4) are in the range of the results by

Wohlfahrt et al. (2008).

To summarise, with our model setup ECHAM5/JSBACH we cannot corroborate the

suggestion of a strong atmosphere-vegetation feedback, neither with the model with

standard parametrisation nor with the modified parametrisations with the changes in

the scheme of the albedo of snow. Dallmeyer et al. (2010) used the same model and

setup and found only a weak contribution of the vegetation to the mid-Holocene climate

signal for monsoonal Asia as well. The weak contribution of the atmosphere-vegetation

feedback in our model is mainly a result of the comparatively weak forest expansion

in contrast to studies with EMICs with a coarser resolution. Presumably, climate

models with a higher resolved and dynamic representation of vegetation cover simu-

late a weaker atmosphere-vegetation feedback than simulated with EMICs and GCMs

with an asynchronously coupled and discrete vegetation model. Therewith, our results

rather support the conclusion of the Palaeoclimate Modelling Intercomparison Project

2 (PMIP2) (Braconnot et al. 2007b), that the magnitude of the atmosphere-vegetation

feedback is smaller than previously discussed.
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Chapter 5

Conclusions and outlook

5.1 Conclusions

To conclude this thesis, we attempt to answer the questions raised in the introduction

(Chapter 1).

(1) Using a comprehensive GCM and applying the factor-separation technique, how

do we relate the mid-Holocene climate signal to the components of the climate

system?

The full mid-Holocene climate signal of the model ECHAM5/JSBACH-MPIOM shows

a modification of the seasonal cycle at the high northern latitudes compared to pre-

industrial climate. This is characterised by warmer summer, autumn and winter, and

a cooler climate in spring.

The direct response of the atmosphere to the change in insolation produces a summer

warming which slightly decreases in autumn. The winter and spring seasons, however,

show a cooling by the direct atmosphere signal.

The contribution of the atmosphere-vegetation feedback to the mid-Holocene tempera-

ture signal is rather marginal. In spring and summer it leads to a slight warming

counteracting to the cooling caused by the direct atmospheric signal. The atmosphere-

ocean feedback amplifies the atmospheric signal in spring and autumn and counteracts it

slightly in summer and more strongly in winter. The synergy between the atmosphere-

ocean and atmosphere-vegetation feedback results in a slight warming for all seasons.

In comparison to previous studies, we simulate a strong influence by the ocean but a

weak influence by both the vegetation and the associated synergy on the mid-Holocene

climate signal. The strong influence in autumn is caused by the orbitally-induced in-

crease in summer and autumn insolation. Due to this increase more sea ice melts in

summer and autumn and the ocean warms up more strongly than in the pre-industrial

climate. During late autumn and winter, the ocean releases this heat to the atmo-

sphere, resulting in higher air-temperatures compared to pre-industrial climate. This

introduces a lag between the season cycle of insolation and oceanic response by approx-

imately one season.
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(2) Does the definition of the seasons effect the assignment of the mid-Holocene climate

signal to the components of the climate system?

No, this is not the case for the contribution of the atmosphere-vegetation and atmosphere-

ocean feedback and their synergy. However, this is the case for the seasonal direct

atmospheric signal with the largest deviation in autumn. Previous studies suggested a

cooling of the direct atmospheric signal in this season, but in our study, consistently

following the insolation signal, we simulate a warming. Studies defining the seasons

by the date of the vernal equinox fixed on 21 March, underestimated changes in the

Northern Hemisphere in autumn and winter (Braconnot et al. 2007a). This amounts to

0.9 ◦C in autumn and 0.2 ◦C in winter according to our data processed with the date

of the vernal equinox fixed on 21 March. This result supports the claim by Joussaume

and Braconnot (1997) and Timm et al. (2008) that in palaeo-climate modelling, the

precise definition of the season is essential.

(3) Does statistical uncertainty introduced by climate variability lead to divergent

model results?

We have performed several sets of simulations to quantify how the statistical uncer-

tainty affects the estimated atmosphere-vegetation and atmosphere-ocean feedback and

their synergy to mid-Holocene insolation. Although the analysis period is 120 years

long, it leads to statistical uncertainty which has different effects on the magnitude of

the feedbacks. The atmosphere response and the atmosphere-vegetation feedback are

statistically robust features. By contrast, the factors derived from simulations with

an interactive ocean are sensitive to long-term anomalies in sea-ice cover. As a re-

sult, GCM simulations with an interactive ocean should include a long spin-up time as

well as a long analysis period to reduce the statistical uncertainty. This is also impor-

tant with regard to model intercomparison studies. Nevertheless, this study confirms

that, according to our model, the most important modification of the orbital forcing

can be firmly related to the atmosphere-ocean interactions. The divergent results of

mid-Holocene studies can therefore only partly be related to internal variability.

(4) To what extent does the strength of the atmosphere-vegetation feedback depend

on the snow-albedo parametrisation?

The atmosphere-vegetation feedback evokes two opposing effects in spring. Firstly, the

expansion of forest leads to a reduction in surface albedo which favours a warming.

Secondly, the expansion of forest enhances transpiration and thus an increase in cloud

fraction which favours a cooling. Nevertheless, in spring the atmosphere-vegetation

feedback produces a warming which is stronger than the cooling effect. Possibly, similar

processes consitute the atmosphere-vegetation feedback in other climate models but
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presumably to divering extent.

The magnitude of the warming of the atmosphere-vegetation feedback depends to a

certain extent on the parametrisation of the albedo of snow. The increase in the

strength of snow masking by deciduous trees results in a strong regional response in

temperature. Simulations with the snow albedo depending on the age of snow show also

a strong regional response in temperature. However, on the large-scale the temperature

signal of the atmosphere-vegetation feedback is weak compared to previous modelling

studies.

As discussed by Claussen (2009), it is not possible to draw a clear conclusion regarding

the magnitude of the atmosphere-vegetation feedback. We argue that the strength of

the atmosphere-vegetation feedback was overestimated by climate models with a coarse

resolution and/or asynchronously coupled with a vegetation model. With the further

development of models (e.g. gradually resolved vegetation cover by a tiling approach

(Brovkin et al. 2009)), the biogeophysical atmosphere-vegetation feedback has become

less strong.

To support this conclusion that the atmosphere-vegetation feedback is weaker than

previously suggested, a similar study with another GCM including a dynamic vegetation

model would be helpful. In addition, the coupling strength between the land-surface and

the atmosphere model could be quantified. Koster et al. (2006) and Guo et al. (2006)

showed with a model intercomparison study that the land-atmosphere coupling strength

is a critical element of climate modelling. Their results reveal that the coupling strength

varied widely between the 12 participating atmosphere-only GCMs. Hence, the strength

of the atmosphere-vegetation feedback may depend not only on the parametrisation of

the albedo of snow and on the horizontal resolution but also on the strength of land-

atmosphere coupling in a climate model.

5.2 Outlook

To evaluate the strength of the atmosphere-vegetation feedback among different models,

simulations with various atmosphere-ocean-vegetation GCMs following the same exper-

iment setup as we did would help. Such intermodel comparison is one way to analyse

the extent to which the experimental results are model-dependent. This could be done

in a framework like for instance for human-induced land-cover change (Pitman et al.

2009). This model intercomparison showed that model results can be strongly model-

dependent. Pitman et al. (2009) could not derive concordant results across seven GCMs

because of the lack of consistency among the models.

It has been suggested that global warming might enhance future warming in boreal

forest via the positive atmosphere-vegetation feedback (O’ishi and Abe-Ouchi 2009) as

elaborated in this study for the mid-Holocene. Thus, the atmosphere-vegetation feed-

backs may be important in determining the future climate. For example, Levis et al.

(2000) showed that vegetation feedbacks under a double CO2 climate could produce an

additional 3 ◦C warming during spring in the region north of 60◦N. This is supported
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by O’ishi et al. (2009) showing that the inclusion of dynamic vegetation leads to an

amplification of global warming climate sensitivity (quadrupling of CO2) by 13%.

One limitation of this study is that we examined the vegetation feedback by fixing only

the vegetation cover (e.g. leaf phenology is not included in the atmosphere-vegetation

feedback). The continued examination of the atmosphere-vegetation feedback will have

to consider the role of changes in seasonal leaf phenology as well as soil properties. On

the other hand, not only the biogeophysical atmosphere-vegetation feedback but also

the biogeochemical atmosphere-vegetation feedback needs to be taken into account

(Claussen et al. 2001). The uptake and release of CO2 by vegetation is of particular

interest for future climate simulations (Schurgers et al. 2008). The question which

role the biogeophysical feedback and the biogeochemical feedback play has not been

solved (Claussen 2009). Both feedbacks can be positive or negative and therefore partly

compensate each other. Thus, to examine the entire atmosphere-vegetation interaction

both feedbacks need to be considered in the future analysis.

A comparison of model results against modern observations will help to improve the

knowledge about the atmosphere-vegetation feedback. For instance, Notaro and Liu

(2008) demonstrated this with an analysis of the atmosphere-vegetation feedback over

Asiatic Russia through a combined statistical and dynamical approach. In addition,

parametrisations that describe the Earth’s continental surfaces more accurately accord-

ing to observations may improve the simulation of feedbacks and climate sensitivity

(Levis et al. 2007; Qu and Hall 2007). To conclude, a model inter-comparison study

constrained by palaeo-reconstructions, and in combination with modern observations

will improve our understanding of past and present climate change.
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Appendix A

Snow-aging albedo scheme

The key parameter in the BATS formulation for snow albedo (Dickinson et al. 1986) is

the snow aging factor fage which is defined as

fage =
τs

1 + τs
(A.1)

where τs is a nondimensional age of snow, defined as

τs
N+1 = (τs

N + ∆τs)

[

1 −
max(0,∆Sn)

∆Ps

]

(A.2)

where N denotes the current time step, ∆Sn is the change of snow water equivalent (in

mm) in one time step ∆t, and ∆Ps = 10 kg/m2 is the amount of fresh snow which is

required to refresh snow albedo. This means that a snowfall of 10 mm water equivalent,

or more, is assumed to restore the surface age which increases the snow albedo to its

maximum value.

∆τs is parameterized as

∆τs = (r1 + r2 + r3)
∆t

τ0
(A.3)

where τ0 = 106s× r1 represents the effect of grain growth due to vapour diffusion and

is expressed as

r1 = exp

[

5000(
1

273.16
−

1

Ts

)

]

(A.4)

where Ts is the surface temperature; r2 represents the additional effect of grain growth

near or at the freezing of meltwater,

r2 = (r1)
10 ≤ 1 (A.5)

and r3 represents the effect of dirt and soot,

r3 =

{

0.01 over Antarctica

0.3 elsewhere.
(A.6)

The parametrisation of snow albedo is based on (Wiscombe and Warren 1980):

αV IS = αV IS,D + 0.4f(ψ)[1 − αV IS,D] (A.7)
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A. Snow-aging albedo scheme

αNIR = αNIR,D + 0.4f(ψ)[1 − αNIR,D] (A.8)

where ψ is the solar zenith angle, αV IS the albedo for λ < 0.7 µm and NIR the albedo

for λ ≥ 0.7 µm. The subscript D denotes diffuse albedo as given by

αV IS,D = [1 − CSfage]αV IS,0 (A.9)

αNIR,D = [1 −CNfage]αNIR,0 (A.10)

where CS = 0.2 and CN = 0.5. In order to avoid changes in the long-term mean climate,

we increased the snow albedo from CS = 0.2 (Dickinson et al. 1986) to CS = 0.3. The

albedos for visible and near-infrared solar radiation incident on new snow with a solar

zenith angle less than 60◦ are αV IS,0 = 0.95 and αNIR,0 = 0.65. The function fage is

defined in Equation A.1 is a factor between 0 and 1, giving the increase of snow visible

albedo when the solar zenith angle exceeds 60◦:

f(ψ) =
1

b

[

1 + b

1 + 2b cos(ψ)
− 1

]

(A.11)

where b = 2. If cos(ψ) > 0.5 then f(ψ) = 0.

The validation of the BATS snow scheme and implementation details are described in

Roesch (1999).
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C.J., Lütkemeier, S. (editors), Vegetation, Water, Humans and the Climate: A New

Perspective on an Interactive System, Springer-Verlag Heidelberg, 2004.

Claussen, M.: Late Quaternary vegetation-climate feedbacks, Climate Of The Past, 5,

203–216, 2009.

Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P., and Pachur,

H. J.: Simulation of an abrupt change in Saharan vegetation in the mid-Holocene,

Geophysical Research Letters, 26, 2037–2040, 1999.

66



Bibliography

Claussen, M., Brovkin, V., and Ganopolski, A.: Biogeophysical versus biogeochemical

feedbacks of large-scale land cover change, Geophys. Res. Lett., 28, 1011–1014, 2001.

Claussen, M., Fohlmeister, J., Ganopolski, A., and Brovkin, V.: Vegetation dynamics

amplifies precessional forcing, Geophys. Res. Lett., 33, L09 709, 2006.

Crucifix, M., Loutre, M. F., Tulkens, P., Fichefet, T., and Berger, A.: Climate evolution

during the Holocene: a study with an Earth system model of intermediate complexity,

Climate Dyn., 19, 43–60, 2002.

Dallmeyer, A., Claussen, M., and Otto, J.: Contribution of oceanic and vegetation

feedbacks to Holocene climate change in monsoonal Asia, Clim. Past, 6, 195–218,

2010.

Davis, B. A. S., Brewer, S., Stevenson, A. C., and Guiot, J.: The temperature of

Europe during the Holocene reconstructed from pollen data, Quaternary Sci. Rev,

22, 1701–1716, 2003.

Delworth, T. L., Stouffer, R. J., Dixon, K. W., Spelman, M. J., Knutson, T. R.,

Broccoli, A. J., Kushner, P. J., and Wetherald, R. T.: Review of simulations of

climate variability and change with the GFDL R30 coupled climate model, Climate

Dynamics, 19, 555–574, 2002.

deNoblet, N. I., Prentice, I. C., Joussaume, S., Texier, D., Botta, A., and Haxeltine, A.:

Possible role of atmosphere-biosphere interactions in triggering the last glaciation,

Geophysical Research Letters, 23, 3191–3194, 1996.

Dickinson, R., Henderson-Sellers, A., Kennedy, P., and Wilson, M.: Biosphere-

Atmosphere Transfer Scheme (BATS) for the NCAR community Climate Model.,

Ncar/tn-275+str., National Center for Atmospheric Research, Boulder, Colorado.,

1986.

Diffenbaugh, N. S. and Sloan, L. C.: Global climate sensitivity to land surface change:

The Mid Holocene revisited, Geophys. Res. Lett., 29, 1476, 2002.

Divine, D. and Dick, C.: Historical variability of sea ice edge position in the Nordic

Seas, Journal of Geophysical Research-Part C-Oceans, 111, 14 pp., 2006.

Essery, R., Rutter, N., Pomeroy, J., Baxter, R., Stahli, M., Gustafsson, D., Barr, A.,

Bartlett, P., and Elder, K.: An Evaluation of Forest Snow Process Simulations,

Bulletin Of The American Meteorological Society, 90, 2009.

Foley, J. A., Kutzbach, J. E., Coe, M. T., and Levis, S.: Feedbacks Between Climate

And Boreal Forests During The Holocene Epoch, Nature, 371, 52–54, 1994.

Gallimore, R., Jacob, R., and Kutzbach, J.: Coupled atmosphere-ocean-vegetation

simulations for modern and mid-Holocene climates: role of extratropical vegetation

cover feedbacks, Climate Dyn., 25, 755–776, 2005.

67



Bibliography

Ganachaud, A. and Wunsch, C.: Improved estimates of global ocean circulation, heat

transport and mixing from hydrographic data, Nature, 408, 453–457, 2000.

Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V.: The influ-

ence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene,

Science, 280, 1916–1919, 1998.

Guo, Z. C., Dirmeyer, P. A., Koster, R. D., Bonan, G., Chan, E., Cox, P., Gordon,

C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H., Malyshev, S.,

McAvaney, B., McGregor, J. L., Mitchell, K., Mocko, D., Oki, T., Oleson, K. W.,

Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y. K., and

Yamada, T.: GLACE: The Global Land-Atmosphere Coupling Experiment. Part II:

Analysis, Journal Of Hydrometeorology, 7, 611–625, 2006.

Harvey, L. D. D.: On The Role Of High-Latitude Ice, Snow, And Vegetation Feedbacks

In The Climatic Response To External Forcing Changes, Climatic Change, 13, 191–

224, 1988.

Hewitt, C. D. and Mitchell, J. F. B.: A fully coupled GCM simulation of the climate

of the mid-Holocene, Geophys. Res. Lett., 25, 361–364, 1998.

Jin, Y. F., Schaaf, C. B., Gao, F., Li, X. W., Strahler, A. H., and Zeng, X. B.: How

does snow impact the albedo of vegetated land surfaces as analyzed with MODIS

data?, Geophysical Research Letters, 29, 1374, 2002.

Joussaume, S. and Braconnot, P.: Sensitivity of paleoclimate simulation results to

season definitions, J. Geophys. Res., 102, 1943–1956, 1997.

Jungclaus, J. H., Keenlyside, N., Botzet, M., Haak, H., Luo, J. J., Latif, M., Marotzke,

J., Mikolajewicz, U., and Roeckner, E.: Ocean circulation and tropical variability in

the coupled model ECHAM5/MPI-OM, J. Climate, 19, 3952–3972, 2006.

Kaplan, J. O., Bigelow, N. H., Prentice, I. C., Harrison, S. P., Bartlein, P. J., Chris-

tensen, T. R., Cramer, W., Matveyeva, N. V., McGuire, A. D., Murray, D. F., Raz-

zhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M., Andreev, A. A., Brubaker,

L. B., Edwards, M. E., and Lozhkin, A. V.: Climate change and Arctic ecosys-

tems. 2. Modeling, paleodata-model comparisons, and future projections, Journal of

Geophysical Research, 108, ALT12–1–17, 2003.

Kerwin, M. W., Overpeck, J. T., Webb, R. S., DeVernal, A., Rind, D. H., and Healy,

R. J.: The role of oceanic forcing in mid-Holocene Northern Hemisphere climatic

change, Paleoceanography, 14, 200–210, 1999.

Koenigk, T., Mikolajewicz, U., Jungclaus, J. H., and Kroll, A.: Sea ice in the Barents

Sea: seasonal to interannual variability and climate feedbacks in a global coupled

model, Climate Dynamics, 32, 1119–1138, 2009.

68



Bibliography

Koster, R. D., Guo, Z. C., Dirmeyer, P. A., Bonan, G., Chan, E., Cox, P., Davies, H.,

Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H., Malyshev,

S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K. W., Pitman, A., Sud,

Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y. K., and Yamada, T.: GLACE:

The Global Land-Atmosphere Coupling Experiment. Part I: Overview, Journal Of

Hydrometeorology, 7, 590–610, 2006.

Levis, S., Foley, J. A., and Pollard, D.: Large-scale vegetation feedbacks on a doubled

CO2 climate, Journal Of Climate, 13, 1313–1325, 2000.

Levis, S., Bonan, G. B., and Lawrence, P. J.: Present-day springtime high-latitude

surface albedo as a predictor of simulated climate sensitivity, Geophysical Research

Letters, 34, L17 703, 2007.

MacDonald, G. M., Velichko, A. A., Kremenetski, C. V., Borisova, O. K., Goleva,

A. A., Andreev, A. A., Cwynar, L. C., Riding, R. T., Forman, S. L., Edwards, T.

W. D., Aravena, R., Hammarlund, D., Szeicz, J. M., and Gattaulin, V. N.: Holocene

treeline history and climate change across northern Eurasia, Quaternary Research,

53, 302–311, 2000.

Moody, E. G., King, M. D., Schaaf, C. B., Hall, D. K., and Platnick, S.: Northern

Hemisphere five-year average (2000-2004) spectral albedos of surfaces in the presence

of snow: Statistics computed from Terra MODIS land products, Remote Sensing Of

Environment, 111, 337–345, 2007.

Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., and

Collins, M.: Quantification of modelling uncertainties in a large ensemble of climate

change simulations, Nature, 430, 768–772, 2004.

Notaro, M. and Liu, Z. Y.: Potential impact of the Eurasian boreal forest on North

Pacific climate variability, J. Climate, 20, 981–992, 2007.

Notaro, M. and Liu, Z. Y.: Statistical and dynamical assessment of vegetation feedbacks

on climate over the boreal forest, Climate Dyn., 31, 691–712, 2008.

O’ishi, R. and Abe-Ouchi, A.: Influence of dynamic vegetation on climate change arising

from increasing CO2, Climate Dynamics, 33, 645–663, 2009.

O’ishi, R., Abe-Ouchi, A., Prentice, I. C., and Sitch, S.: Vegetation dynamics and plant

CO2 responses as positive feedbacks in a greenhouse world, Geophysical Research

Letters, 36, L11 706, 2009.

Otterman, J., Chou, M. D., and Arking, A.: Effects Of Nontropical Forest Cover On

Climate, J. Climate Appl. Meteor., 23, 762–767, 1984.

69



Bibliography

Otto, J., Raddatz, T., and Claussen, M.: Climate variability-induced uncertainty in

mid-Holocene atmosphere-ocean-vegetation feedbacks, Geophysical Research Letters,

36, L23 710, 2009a.

Otto, J., Raddatz, T., Claussen, M., Brovkin, V., and Gayler, V.: Separation of

atmosphere-ocean-vegetation feedbacks and synergies for mid-Holocene climate, Geo-

physical Research Letters, 36, L09 701, 2009b.

Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C.,

and Rahmstorf, S.: CLIMBER-2: a climate system model of intermediate complexity.

Part I: model description and performance for present climate, Climate Dynamics,

16, 1–17, 2000.

Pitman, A. J.: The evolution of, and revolution in, land surface schemes designed for

climate models, International Journal Of Climatology, 23, 479–510, 2003.

Pitman, A. J., de Noblet-Ducoudre, N., Cruz, F. T., Davin, E. L., Bonan, G. B.,

Brovkin, V., Claussen, M., Delire, C., Ganzeveld, L., Gayler, V., van den Hurk, B. J.

J. M., Lawrence, P. J., van der Molen, M. K., Muller, C., Reick, C. H., Seneviratne,

S. I., Strengers, B. J., and Voldoire, A.: Uncertainties in climate responses to past

land cover change: First results from the LUCID intercomparison study, Geophysical

Research Letters, 36, L14 814, 2009.

Qu, X. and Hall, A.: What controls the strength of snow-albedo feedback?, Journal Of

Climate, 20, 3971–3981, 2007.

Raddatz, T. J., Reick, C. H., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnit-

zler, K. G., Wetzel, P., and Jungclaus, J.: Will the tropical land biosphere dominate

the climate-carbon cycle feedback during the twenty-first century?, Climate Dyn.,

29, 565–574, 2007.

Rechid, D., Raddatz, T., and Jacob, D.: Parameterization of snow-free land surface

albedo as a function of vegetation phenology based on MODIS data and applied in

climate modelling, Theoretical And Applied Climatology, 95, 245–255, 2008.

Renssen, H., Seppa, H., Heiri, O., Roche, D., Goosse, H., and Fichefet, T.: The spatial

and temporal complexity of the Holocene thermal maximum, nature geoscience, 2009.

Rimbu, N., Lohmann, G., Lorenz, S. J., Kim, J. H., and Schneider, R. R.: Holocene

climate variability as derived from alkenone sea surface temperature and coupled

ocean-atmosphere model experiments, Climate Dyn., 23, 215–227, 2004.
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