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CONSERVATIVE SPACE AND TIME REGULARIZATIONS FOR THE ICON MODEL

MARCO GIORGETTA∗, TOBIAS HUNDERTMARK†, PETER KORN‡ , SEBASTIAN REICH§ , AND MARCO

RESTELLI¶

Abstract. In this article, we consider two modified (regularized) versions of the shallow water equations which
are of potential interest for the construction of global oceanic and atmospheric models. The first modified system is the
Lagrangian averaged α shallow water system, which involves the use of a regularized advection velocity and which has been
recently proposed as a turbulence parametrization for ocean models in order to avoid an excessive damping of the computed
solution. The second modified system is the pressure regularized τ shallow water system, which provides an alternative to
traditional semi-implicit time integration schemes and which results in larger freedom in the design of the time integrator
and in a better treatment of nearly geostrophic flows. The two modified systems are both nondissipative, in that they
do not result in an increase of the overall dissipation of the flow. We first show how the numerical discretization of the
two regularized equation sets can be constructed in a natural way within the finite difference formulation adopted for the
ICON general circulation model currently under developed at the Max Planck Institute for Meteorology and at the German
Weather Service. The resulting scheme is then validated on a set of idealized tests in both planar and spherical geometry,
and the effects of the considered regularizations on the computed solution are analyzed concerning: stability properties
and maximum allowable time steps, similarities and differences in the behavior of the solutions, discrete conservation of
flow invariants such as total energy and enstrophy. Our analysis should be considered as a first step toward the use of the
regularization ideas in the simulation of more complex and more realistic flows.

AMS subject classifications. 65M06, 65M20, 35L65, 86A05, 86A10

Key words. shallow water equations, nondissipative regularizations, Lagrangian averaged equations, two-dimensional
turbulence, pressure regularizations, semi-implicit methods

1. Introduction. Numerical modeling of atmospheric and oceanic flows is a multiscale problem
for which the following two complementary aspects can be identified:

1. treatment of turbulence (subgridscale modeling) and
2. treatment of scale-separated phenomena.

Under the first aspect, one intends to include effects of unresolved scales by using heuristically motivated
turbulence models. Under the second aspect, one tries to eliminate “undesirable” time and length scales
by making approximations to the complete model equations based on the idealization of an asymptotic
scale separation. The derivation of turbulence models generally faces the problem of closure under
averaging. The treatment of scale-separated phenomena via approximated models is unsatisfactory,
since the approximated models are valid only under certain flow regimes and one is faced with a whole
hierarchy of filtered models with limited area of applicability. Moreover, a fundamental difficulty that is
shared by both approaches mentioned above is to reproduce, possibly in a modified form, the conservation
and balance relations which characterize the original model, such as, for suitable conditions, linear and
angular momentum conservation and energy balance, within the approximated one. Such properties,
together with their discrete counterparts in the numerical discretization, are highly relevant especially
when considering the evolution of atmospheric and oceanic flows over very long times (i.e. from tens
to thousands of years), as it is typically done in climate simulations, because they reduce the spurious
trends in the simulation.

Our approach consists in studying both phenomena of subgrid turbulence and scale separation
in a unified way by means of nondissipative regularizations of the underlying model equations. By
regularization we mean a family of models M(ǫ) depending on a continuous parameter ǫ > 0, such that
for ǫ → 0 the regularizations M(ǫ) approach the full model, denoted by M(0), in a sense that has to be
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determined; a regularization is then nondissipative if, besides ensuring mass conservation, it does not
result in additional dissipation terms in the overall momentum and energy balances. In particular, we
consider the following two regularization approaches:

1. α-Models via Velocity Regularization. The α model regularizes the advection velocity and in-
cludes an additional term into the equations to retain a set of (modified) conservation properties.
The regularization is performed with respect to the spatial scale, i.e., ǫ = α and α is the smallest
scale that is resolved explicitly. In numerical implementations, α is proportional to the grid-size
∆x.

2. τ-Models via Pressure Regularization. The τ model smoothes the pressure gradient. The regu-
larization is performed with respect to a given time-scale τ and the parameter ǫ = τ is hence a
function of the desired time step ∆t.

The underlying hypothesis is that the α- and τ -regularizations provide a modification of the original
equations that is more accessible to numerical modeling and at the same time retains important features
of the original model equations. The goal of this article is to demonstrate some evidence for this assertion.
We investigate the effect of the α- and the τ - regularization in the context of the ICON shallow-water [4, 3]
model and consider in particular the interaction between the two regularizations and the discrete model
numerics.

2. Theory of α- and τ-Models. Both the velocity and the pressure regularizations have been
originally obtained starting from a decomposition into mean and fluctuating parts of the Lagrangian
trajectories of the flow, within the framework of the generalized Lagrangian mean (GLM) theory of
Andrews and McIntyre [1]. In the GLM approach, the current position of a Lagrangian fluid trajectory
is written as xξ(t) ≡ x(t) + ξ(x(t), t), where x(t) is the mean position, defined for a suitable averaging
operator, for instance an ensemble average, and ξ(x, t) denotes the fluctuating displacement about the
mean. For incompressible flows, inserting the trajectory decomposition into the variational principle
from which the dynamical equations are derived, together with specific assumptions on the statistics
of the fluctuations, results in the Lagrangian Averaged α Equations, characterized by the presence of
a regularized velocity field [19]. For compressible flows, the trajectory decomposition can be used in
the Lagrangian form of the continuity equation to obtain pressure regularized fluid equations [8]. The
pressure regularized equations in [8] constitute a particular class of τ models and we notice more generally
that alternative derivations of both regularized systems are also possible. On the one hand, in fact, the
α model, can be derived through the so-called Kelvin filtering, for which we refer to [10] and to [17],
exercise 4 page 85, as well as from continuum mechanics considerations, as done in [11, 6], or by direct
manipulation of the flow equations, as in [28, 16]. Such a model has also been analyzed from a Large
Eddy Simulation (LES) perspective in [12, 13, 14], together with a closely related model know as the
Leray model, since the original work [24]. The τ model, on the other hand, can also be derived from
an analysis of the regularizing effect inherent in numerical semi-implicit time integration techniques, as
shown in [33, 38, 34]. Although both regularizations can be applied to a whole hierarchy of models that
are used in geophysical fluid dynamics (see for instance [20] and [23]), for simplicity we will focus in this
paper on the shallow water system

∂tµ + ∇ · (µv) = 0
∂tv + v · ∇v + fv⊥ + g∇µ = ν∇ · (µ∇v)

(2.1)

on an f -plane, where v is the horizontal velocity field, µ is the layer-depth, g is the gravitational constant,
f is the Coriolis parameter, v⊥ = k× v, k being a vertical unit vector, and ν is the molecular viscosity
of the fluid.

System (2.1) is denoted in the following as SW-0, in order to emphasize that it can be recovered
from the velocity and pressure regularized systems, denoted by SW-α and SW-τ , respectively, when
the regularization parameter is set to zero. The aim of regularization is to derive modified versions
of (2.1) the solution of which can be well represented computationally for given spatial and/or temporal
resolution. In order to distinguish these solutions from those of the original problem (2.1), we will use
the notation u and h for the velocity and the layer depth of the regularized systems, respectively. From
the analytical viewpoint [19, 8], u and h can be expected to belong to a functional space with higher
regularity than the original solution v, µ. We emphasize here that the two solutions of SW-α and SW-τ
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are different from each other; nevertheless, for simplicity, we employ for both the same notation, since
the distinction is usually clear from the context. A subscript is introduced whenever the context might
be ambiguous. For the same reason, we avoid differentiating the notation for the diagnostic quantities:
vorticity and dynamic pressure. In the following two subsections we will introduce the SW-α and SW-τ
models in more detail. Relations and analogies between both classes of regularizations, and in particular
between v and u velocities and between µ and h free surface elevations, will be discussed in § 2.3.

2.1. Some Background on the SW-α Model. Preferred turbulence closure schemes in general
circulation models (GCM) are linear diffusion schemes; examples of this are the ECHAM5 GCM [35] of
the Max Planck Institute for Meteorology or the GME, the current operational GCM of the German
Weather Service [26]. In contrast to this approach, the outcome of the GLM formalism in the Lagrangian
averaged turbulence model [20, 41], also known as viscous Camassa–Holm equations, is a modification
of the nonlinear advection term in the momentum equation by smoothing the advection velocity of
the fluid. The resulting formulation has the following attractive features: no additional dissipation is
introduced and basic characteristics of the flow, such as the conservation of circulation, are preserved.
The regularized problem is mathematically well posed, and the expected behavior of the energy spectrum
is well captured in three dimensional computations. In terms of the governing equations, in the SW-α
model we substitute (2.1) with

∂th̃ + ∇ ·
(

h̃ũ
)

= 0

∂tu + ũ · ∇u +

2
∑

j=1

uj∇ũj + f ũ⊥ + ∇
(

gh̃ + pD − u · ũ
)

= ν∇ ·
(

h̃∇u
)

,
(2.2)

where pD = u · ũ− 1
2

(

|ũ|2 + α2|∇ũ|2
)

is a dynamic pressure and the velocity ũ is defined via the relation

Hαũ = u, Hα = 1 − α2

h̃
∇ ·
(

h̃∇
)

. (2.3)

The spatial length scale α in the Helmholtz operator Hα is typically of the order of the mesh-size and,
hence, we are interested in solutions of (2.2) for which ũ is close to u on the computationally resolved
scales. The regularized free surface elevation h̃ is defined by Hαh̃ = h. The reason for introducing both
h and h̃, although only h̃ appears in (2.2), is twofold: on the one hand, a geostrophically balanced initial
condition can be obtained by using u ≈ v and h ≈ µ to initialize ũ and h̃, respectively, i.e.,

f ũ⊥ + g∇h̃ = 0 ⇐⇒ fu⊥ + g∇h = 0. (2.4)

On the other hand, h and h̃ will turn out to be directly comparable to the homologous quantities in
SW-τ .

The derivation of the SW-α system (2.2) and (2.3) relies on the hypothesis that the covariant matrix
of the fluctuating component ξ of the displacement appearing in the GLM formalism is an isotropic
tensor which is constant in space and time, so that it is possible to introduce α ∈ R+ ∪ {0} such that

〈ξ ⊗ ξ〉 = α2I,

where 〈·〉 denotes spatial averaging at a fixed time and I is the identity tensor [20, 19]. Since in
the present work we consider periodic domains without boundaries, the assumption of isotropy and
homogeneity is justified; in more realistic situations however, the presence of boundaries might require
the use of a complete anisotropic model, including a nontrivial evolution equation for 〈ξ ⊗ ξ〉 [19]. In
the present study, we are particularly concerned with two properties of the SW-α system: the fact that
it reproduces, for the inviscid case and for suitable boundary conditions, the conservations of energy and
potential enstrophy which characterize the SW-0 case (i.e., it is a nondissipative regularization) and the
fact that, thanks to the modification of the advection term, spatial scales smaller than α do not take
part into the nonlinear interaction and are passively advected by the flow. The conservation of energy
and potential enstrophy takes the form

Eα =
1

2

∫

Ω

h̃
(

|ũ|2 + α2|∇ũ|2 + gh̃
)

dx = const (2.5)
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and

S =
1

2

∫

Ω

h̃q2 dx = const, (2.6)

where Ω is the domain occupied by the flow and the potential vorticity is q = h̃−1η, with η = k·∇×u+f .
The fact that the small scales do not take part in the nonlinear interactions then affects the spectral
distribution of Eα and S. A further consequence of the Lagrangian averaging, and in particular of the
use of the smooth velocity ũ in the continuity equation (2.2)1, is a slowdown of the gravity waves (notice
that a subscript is used to denote single equations within a referenced formula). This effect is analogous
to what is discussed in § 2.2 for SW-τ , to such an extent that the two regularizations coincide in the
linearized, non-rotating case. The SW-α model has been investigated in some detail for the case of two
and three dimensional incompressible turbulence in [5, 27, 29, 25], and one of the key findings in this
respect is that the energy spectrum of the modified energy Eα in (2.5) exhibits a sharper roll-off than
the energy of the unfiltered Navier–Stokes equations. The potential of such a model for geophysical
applications has then been considered in [41, 22, 18, 31].

2.2. Some Background on τ-Regularized Models. As already mentioned, alternative deriva-
tions exist for the pressure regularized model. In this section, we briefly sketch the derivation of SW-τ
from an analysis of a classical semi-implicit time stepping technique for the numerical integration of the
unfiltered problem (2.1), following [33, 38, 34].

The main justification for the use of semi-implicit time integrators for geophysical fluid dynamics
applications, and in particular for the shallow water system (2.1), is the assumption that the flow is
composed of slow, large scale modes and of fast, small scale modes, with only the former ones being
of meteorological interest. As a consequence, an accurate representation of the fast modes is not re-
quired, and a large dispersion error for such modes is an acceptable price in order to obtain an efficient
numerical scheme. In order now to derive the SW-τ model, the semi-implicit time-stepping method is
first interpreted as a form of “regularization” of the layer-depth µ, depending on the temporal scale
τ = ∆t/2, and this regularization effect is then transferred directly into the continuous equations by an
appropriate modification of the velocity equation (2.1)2. The main advantage of this procedure is that
the modified system can then be discretized explicitly in time using a time step analogous to the one
permitted by a semi-implicit scheme. More precisely, a careful analysis of the semi-implicit method and
of the associated elliptic problem suggests the introduction of the SW-τ system

∂th + ∇ · (hu) = 0

∂tu + u · ∇u + fu⊥ + g∇h̃ = ν∇ ·
(

h̃∇u
)

,
(2.7)

where h̃ is the regularized layer depth obtained from

Hτ h̃ = h + Π, Hτ = 1 − τ2gH0∇ · ∇ (2.8)

where τ ≥ 0 is a parameter with the dimension of time and H0 is a mean reference value for the layer
depth. As for the SW-α model, we assume that h̃ is close to h on the computationally resolved scales.
Concerning the definition of Π in (2.8), letting ζ = k·∇×u and denoting by J(·, ·) the Jacobian operator,
we distinguish the following cases:

• τ -regularization without balance

Π = 0; (2.9)

• τ -regularization with linear balance

Π = −τ2H0fζ; (2.10)

• τ -regularization with non-linear balance

Π = τ2H0∇ ·
[

u · ∇u + fu⊥]

= −τ2H0fζ − 2τ2H0J(u1, u2) + τ2H0 (u · ∇ + ∇ · u)∇ · u.
(2.11)
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Notice that, if Π is defined as in (2.11), no regularization of the layer depth takes place, i.e. h = h̃,
under the nonlinear balance

g∇ · ∇h − fζ − 2J(u1, u2) = 0, ∇ · u = 0,

which reduces to linear geostrophic balance when the Jacobian operator vanishes. However, unlike in
reduced geostrophic models, the nonlinear balance is not strictly enforced; equation (2.11) treats balance
in a scale dependent manner, depending on the choice of the time scale τ and

√
gH0, the phase velocity

of gravity waves in a layer of depth H0. Notice also that both SW-α and SW-τ involve the solution of
a modified Helmholtz problem, for the computation of the regularized velocity in the first case and for
the computation of the regularized layer depth in the second case. A length scale β = τ

√
gH0 can be

defined for the SW-τ model for comparison to the length scale α of the SW-α model. Concerning the
nondissipative nature of the pressure regularization, it can be verified that (2.7) results, in the inviscid
case, in the potential enstrophy conservation (2.6). Finally, a characterization of the effect of SW-τ on
the gravity wave propagation is provided in § 3.3.2.

2.3. Analogies and relations among SW-0, SW-α, SW-τ and LES turbulence models.

Since the solutions of SW-α and SW-τ are different from each other as well as from the solution of SW-
0, and since both SW-α and SW-τ introduce additional variables ũ and h̃, the question arises of how
to establish a correspondence among the variables of the regularized systems and those of the original
problem SW-0. We address this topic borrowing some ideas from the LES approach [2].

To start with, let us consider the shallow water problems (2.1), (2.2) and (2.7) in their continuous
formulation, let us assume that SW-0 is the “true” mathematical model of the physical flow, and let us
denote by v and µ a solution of (2.1) (such a solution can be viewed also as the result of a direct numerical
simulation of the flow). Concerning the pressure regularization, we assume that uτ and hτ of (2.7) are
approximations of v and µ, respectively, and that h̃τ is a filtered free surface elevation introduced to
modify the propagation of the fast (unresolved) gravity waves on time-scales smaller than τ . Concerning
the velocity regularization, we proceed as follows. We first consider the regularized system obtained by
simply filtering the advection velocity in (2.1)2

∂thL + ∇ · (hLuL) = 0

∂tuL + ũL · ∇uL + fu⊥
L + g∇hL = ν∇ · (hL∇uL) ,

(2.12)

where ũL is obtained from uL using the filter (2.3). System (2.12) corresponds to the Leray model
discussed in [12, 13, 14] and, extending the viewpoint given in these references for incompressible LES
to the compressible, low Mach number case considered here, we can regard the velocity ũL as a filtered
version of v and uL as an approximate deconvolution of ũL [2] (since the resolution of uL is determined
by the spatial grid resolution); uL should thus approximate the grid interpolated velocity v, and the
same relation is assumed to hold between hL and µ. The construction of SW-α from (2.12) requires now
two modifications. The first modification is the introduction of the additional terms quadratic in uα

and ũα appearing in (2.2)2; this exactly corresponds to what is done in the incompressible case, where
it is motivated by the need of restoring the Kelvin circulation theorem. The second modification is the
substitution of h with h̃, and hence the use of the filtered continuity equation

∂th̃α + ∇ · (h̃αũα) = 0, (2.13)

where the approximation h̃αuα ≈ h̃αũα has been made. This modification has no counterpart in the
incompressible case and is motivated by the restoration of energy and enstrophy conservation in the
compressible system. This second modification also has the side effect of modifying the gravity wave
propagation in SW-α, as already mentioned in § 2.1. As shown in [41], in the non-rotating case this
is equivalent to the effect of semi-implicit time-stepping on a linearized equation level and, hence, is
linearly equivalent to the SW-τ regularization for β = α.

So far, we have identified some parallelisms among the SW-α and SW-τ models as they have been
independently proposed in previous works. The aforementioned considerations, however, can also provide
the starting point for introducing a new regularized model, resulting from the combination of the SW-α
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momentum equation with the SW-τ regularization, namely

∂th + ∇ · (hu) = 0

∂tu + ũ · ∇u +

2
∑

j=1

(uj − ũj)∇uj + fu⊥ + g∇h̃ = ν∇ ·
(

h̃∇u
)

.
(2.14)

together with

Hαũ = u, Hτ h̃ = h + Π. (2.15)

In (2.14), the nonlinear advection is treated as in SW-α, thereby resulting in modified energy and
enstrophy cascades, while the pressure gradient term is treated as in SW-τ , thereby ensuring that large
time steps can be taken in the numerical integration. A potential advantage of this approach is the
independent choice of the two regularization parameters τ and α. Another important aspect of (2.14) is
that it recovers the two-dimensional Navier–Stokes-α system in the incompressible case (as does SW-α)
and it recovers SW-τ whenever the nonlinearity is negligible. As a consequence, linear Rossby waves
are not retarded by (2.14) as they are in SW-α, provided either (2.10) or (2.11) is used. Note that the
nonlinear balance relation (2.11) should be modified to

Π = τ2H0∇ ·



ũ · ∇u +

2
∑

j=1

(uj − ũj)∇ũj + fu⊥



 (2.16)

while the linear balance formulation (2.10) remains unchanged. Finally, we mention that the regulariza-
tion of the velocity field could be simplified to

(

1 − α2∇ · ∇
)

ũ = u. (2.17)

3. Numerical Approximation of the Regularized Models. We consider in this section the
numerical approximation of the regularized models SW-α and SW-τ , introduced in § 2.1 and § 2.2,
respectively. To this end, two elements are worth noting. The first one is that transferring the regu-
larization effects to the continuous model results in a significant freedom in the design of the numerical
discretization. The second one is that such a discretization should, in principle, preserve the main fea-
tures of the regularized models, and in particular the conservation laws (2.5) and (2.6). Previous works
on this topic have considered finite difference approaches on quadrilateral grids [33, 38, 34, 18, 31], or, for
SW-α only, pseudospectral methods [5, 29, 27, 25]. Finite differences on regular quadrilateral grids are
known to posses very good dispersion and accuracy properties, but they are not necessarily the optimal
solution in spherical geometry, since in this case one has to deal with pole singularities or non-orthogonal
grids or non-homogeneous distributions of the grid points (see [32] and the references therein). Spectral
methods are widely used in current GCMs on spherical geometry. They have optimal dispersion prop-
erties, are useful for the investigation of turbulent flows, and greatly simplify the solution of the elliptic
problems (2.3) and (2.8), but due to the cost of global communication, they might not be competitive
with grid point methods for very high resolution GCMs on distributed memory computers. For these
reasons, a finite difference formulation based on triangular icosahedral grids has been chosen as the basis
for the ICON GCM (see [4] and the references therein for further details) and, since our final goal is to
include the space and time regularizations in ICON, we consider in this paper this latter formulation.
Hence, we need to extend the approach of [4] to SW-α and SW-τ , thus obtaining a numerical scheme
which is different from those already described in the literature. After summarizing the method of [4] in
§ 3.1, we illustrate the extension to the regularized systems in § 3.2. An off-centering procedure of SW-α
and SW-τ , which is useful to avoid an unphysical accumulation of energy in short wavelength gravity
waves, is proposed in § 3.3. Finally, the discrete conservation properties of the resulting numerical scheme
are discussed in § 3.4.

3.1. The ICON Shallow Water Model. We summarize in this section the discretization pro-
posed in [4] for the SW-0 system. In doing this, we also address the treatment of the diffusion term,
omitted in [4], since it is strongly related to the numerical treatment of SW-α. The required notation is
introduced in § 3.1.1, in § 3.1.2 the approximate reconstruction and differentiation operators are defined
and the discrete approximation of the continuous SW-0 problem is then discussed in § 3.1.3 and § 3.1.4.
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3.1.1. Notation. Let Ω be the computational domain represented by either a rectangle [0 , Lx) ×
[0 , Ly) with periodic boundary conditions or by the sphere of radius REarth, and let Tλ denote a
Delaunay triangulation of Ω, i.e. a partition of Ω into Ncell closed non-overlapping triangular cells c
such that none of the cell vertices lies inside the circumcircle of any cell. In the following, it is understood
that all the geometric quantities are computed with respect to the appropriate metric defined on Ω. The
boundary and the area of c are denoted by ∂c and |c|, respectively. The set of the Nedge edges l of
the triangulation is denoted by Lλ, and we denote by |l| the length of l. We let λ = maxl∈Lλ

|l|. A

dual grid, or Voronoi tessellation, Dλ is naturally associated to Tλ as the collection of the N̂cell cells ĉ
given by the closures of the sets of all points of Ω that are closer to one vertex of Tλ than to any other
vertex. The set of the N̂edge edges l̂ of Dλ is denoted by L̂λ, and we denote by |l̂| the length of l̂. It

can be verified that N̂edge = Nedge. Each edge l ∈ Lλ intersects exactly one edge l̂ ∈ L̂λ, which will be

denoted by l̂l, and the converse is also true. We have l̂l ⊥ l. To each l ∈ Lλ a normal unit vector Nl is
associated, with arbitrarily chosen orientation, as well as a tangential unit vector Tl such that

Nl × Tl = kl. (3.1)

In (3.1), kl is a unit vector normal to Ω and directed toward increasing vertical (flat geometry) or radial

(spherical geometry) coordinates. A pair of unit vectors is also associated to each l̂ ∈ L̂λ by N̂
l̂
= Tl

l̂
,

T̂
l̂

= −Nl
l̂
, so that N̂

l̂
× T̂

l̂
= k

l̂
. To each pair c ∈ Tλ, l ∈ ∂c, two normal unit vectors nc,l and tc,l

are associated such that nc,l is the outward unit vector on l with respect to c and nc,l × tc,l = kl. Unit

vectors n̂
ĉ,l̂

and t̂
ĉ,l̂

are analogously associated to each pair ĉ ∈ Dλ, l̂ ∈ ∂ĉ. A generic scalar field φ
is represented by its cell averaged values on either c ∈ Tλ, denoted φc, or on ĉ ∈ Dλ, denoted φĉ. A
generic vector field χ is represented by its edge averaged normal and tangential components on l ∈ Lλ,
denoted by χNl

and χTl
, respectively. The normal and tangential components on l̂ ∈ L̂λ are immediately

obtained as

χ
N̂

l̂
= χTl

l̂

χ
T̂

l̂
= −χNl

l̂
.

Finally, for l ∈ Lλ we denote by c1l
and c2l

the two cells such that l = ∂c1l
∩ ∂c2l

and Nl points from

c1l
to c2l

and, symmetrically, for l̂ ∈ L̂λ we denote by ĉ1
l̂
and ĉ2

l̂
the two cells such that l̂ = ∂ĉ1

l̂
∩ ∂ĉ2

l̂

and N̂
l̂
points from ĉ1

l̂
to ĉ2

l̂
.

3.1.2. Discrete operators. As it will be clear from § 3.1.3, the use of a staggered finite difference
approach implies that each variable is directly available only on a limited set of grid elements, typically
represented by either the primal cells c or the dual cells ĉ or the edges l. Whenever a variable is
required on a different set of grid elements, a reconstruction operator is required. The complete set
of reconstruction operators used in the numerical approximation of SW-0, SW-α and SW-τ is listed in
Tab. 3.1. Notice that, in this section, φ and χ represent two generic scalar and vector fields, respectively.
With the exception of Rĉ�l, the definition of which is important for enstrophy conservation and will be

operator from to
Rc�l primal cells φc edges φl

Rc�ĉ primal cells φc dual cells φĉ

Rĉ�l dual cells φĉ edges φl

Rl�c edges φl primal cells φc

RN�T normal components χNl
tangential components χTl

~Rl�c normal components χNl
primal cells χc

Table 3.1

List of the reconstruction operators.

given in § 3.1.3, the precise form of the reconstruction operators does not affect the main structure, nor
the main properties, of the method, as far as such reconstructions are consistent. For Rc�l we use simple
averaging of φc1l

and φc2l
, while Rc�ĉ, Rl�c, RN�T and ~Rl�c are second order accurate interpolations.



8 M. GIORGETTA, T. HUNDERTMARK, P. KORN, S. REICH, M. RESTELLI

The discrete divergence and curl operators are defined as

div (χN )c =
1

|c|
∑

l∈∂c

|l|Nl · nc,l χNl
, div (χT )ĉ =

1

|ĉ|
∑

l̂∈∂ĉ

|l̂|Tl
l̂
· n̂

ĉ,l̂
χTl

l̂

and

curl (χN )ĉ =
1

|ĉ|
∑

l̂∈∂ĉ

|l̂|Nl
l̂
· t̂

ĉ,l̂
χNl

l̂

=
1

|ĉ|
∑

l̂∈∂ĉ

|l̂| T̂
l̂
· t̂

ĉ,l̂
χ

T̂
l̂
.

The discrete normal derivatives are defined as

δN (φ)l =
1

|l̂l|

(

φc2l
− φc1l

)

, δ
N̂

(φ)
l̂
=

1

|l
l̂
|
(

φĉ2
l̂
− φĉ1

l̂

)

.

Notice that

curl (δN (φ))ĉ ≡ 0. (3.2)

The differential operator associated to the diffusion term, (∇ · (φ∇χ)) · Nl, is approximated by

∆λ,N (φ, χN )l = −δ
N̂

(Rc�ĉ (φ) curl (χN ))
l̂l

+Rc�l (φ)l δN (div (χN ))l

+δN (φ)l gradNN (χN )l + δ
N̂

(φ)
l̂l

gradTN (χN )l ,

where the discrete gradients gradNN and gradTN are computed by constructing a 3rd-order least square
polynomial fitting χλ of χNl

and setting

gradNN (χN )l =
∂χλN

∂N

∣

∣

∣

∣

l

, gradTN (χN )l =
∂χλT

∂N

∣

∣

∣

∣

l

.

Starting from χλ, we also define the cell based gradient operator

grad (χN )c = ∇χλ|c .

The use of least square fitting yields a method which is robust even in the case of the unstructured
spherical icosahedral grid, while the use of third order accuracy is motivated by the need of having at
least second order accuracy on the components of the gradient, as it will be clear in § 3.2.

3.1.3. Space discretization. The space discretization is based on the Arakawa C-grid staggering,
where the prognostic variables are the normal components of the velocity on the edges, vNl

, and the free
surface elevation on the primal cells, µc. The diagnostic variables are the absolute vorticity ηĉ, on the
dual cells, and the dynamic pressure (kinetic energy) pDc

on the primal cells. To construct the space
discretization, the SW-0 system (2.1) is first rewritten in invariant form as

∂tµ = −∇ · (µv)

∂tv = ηv⊥ −∇ (gµ + pD) + ν∇ · (µ∇v) ,
(3.3)

where η = k · ∇ × v + f and pD = 1
2 |v|2. Equation (3.3)1 is discretized as

∂tµc = −div (µ vN )c , (3.4)

where µl = Rc�l (µ)l. Equation (3.3)2 is first multiplied by Nl and then discretized as

∂tvNl
= ηlvTl

− δN (gµ + pD)l + ν∆λ,N (µ, vN )l . (3.5)
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In (3.5), ηl = Rĉ�l (η)l is the reconstructed total vorticity from dual cells to edges, and the total vorticity
ηĉ is in turn computed as

ηĉ = curl (vN )ĉ + fĉ.

As shown in [4], and as it will be also discussed in § 3.4, in order to obtain discrete conservation of
potential enstrophy the reconstruction operator Rĉ�l must have the form

Rĉ�l (η)l =
µl

2





ηĉ1
l̂l

µĉ1
l̂l

+
ηĉ2

l̂l

µĉ2
l̂l



 , (3.6)

where µl is the same reconstruction used in (3.4) and hĉ = Rc�ĉ (µ)ĉ. The tangential components of the
velocity are obtained as vTl

= RN�T (vN )l. Concerning pDc
, two options are available: in the first case

it is computed at the edges from vNl
and vTl

and then interpolated on the primal cells by by means of
Rl�c, while in the second case the complete velocity is first reconstructed on the primal cells through
the vector valued operator ~Rl�c, and then pDc

is evaluated.

3.1.4. Time discretization. The system composed of (3.4) and (3.5) represents and ordinary
differential equation (ODE) which, following the classical method of lines, can now be numerically
integrated in time with an arbitrary time integrator. In this paper, we consider the explicit, 4th-order
accurate, five stage, strongly stability preserving (SSP) Runge–Kutta (RK) scheme SSPRK(5,4) proposed
in [36]. The family of SSPRK methods is widely used in computational fluid dynamics application (see
for instance [15] and the references therein). The use of high order accuracy, together with the stability
constraint of the explicit time discretization, results in a small error, allowing us to focus on the effects of
the space discretization. In fact, in all our numerical experiments, we do not see any significant change in
the solution by reducing the time-step at a fixed spatial resolution. An analysis of the trade-off between
efficiency and accuracy in the choice of the time integrator is beyond the scope of this work.

We now summarize the SSPRK(5,4) algorithm. Let us first rewrite (3.4) and (3.5) in the compact
form

dU

dt
= S (U) , (3.7)

with U = [µc, vNl
]
T

and

S (U) =

[

−div (µ vN )c

ηlvTl
− δN (gµ + pD)l + ν∆λ,N (µ, vN )l

]

.

To advance the solution from time level tn to time level tn+1 = tn + ∆t we use
• let U (0) = Un;
• for i = 1, · · · , s compute U (i) =

∑i−1
k=0

(

αikU (k) + ∆tβikS
(

U (k)
))

;

• set Un+1 = U (s);
where s = 5 is the number of stages and αik, βik are suitable coefficients which are listed in Tab. 3.2.
The stability region for the SSPRK(5,4) time integrator for the scalar model problem

dU

dt
= ωU, (3.8)

with ω ∈ C, is shown in Fig. 3.1.

3.2. The α- and τ-Regularized ICON Shallow Water Model. In this section, the numerical
scheme outlined in § 3.1 is extended to SW-α and SW-τ . For this purpose, we first rewrite (2.2) and (2.7)
in the unified, invariant form

∂th
⋆ = −∇ · (h⋆u⋆)

∂tu = ηu⋆⊥ −∇
(

gh̃ + p⋆
D

)

+ ν∇ ·
(

h̃∇u
)

,
(3.9)
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1.00000000000000 0 0 0 0

0.44437049406734 0.55562950593266 0 0 0

αik 0.62010185138540 0 0.37989814861460 0 0

0.17807995410773 0 0 0.82192004589227 0

0.00683325884039 0 0.51723167208978 0.12759831133288 0.34833675773694

0.39175222700392 0 0 0 0

0 0.36841059262959 0 0 0

βik 0 0 0.25189177424738 0 0

0 0 0 0.54497475021237 0

0 0 0 0.08460416338212 0.22600748319395

Table 3.2

Coefficients αik and βik for the SSPRK(5,4) time integrator (see table A.2 in [36]).

-6 -5 -4 -3 -2 -1  0  1

Re(ω ∆t)

-4

-3

-2

-1

 0

 1

 2

 3

 4
Im

(ω
 ∆

t)

Figure 3.1. Stability region for the model problem (3.8) for SSPRK(5,4) as a function of the dimensionless parameter
ω∆t. Contour lines of the absolute value of the amplification factor for amplitudes 1 (dotted line), 0.8 (dash-dotted line)
and 1.2 (dashed line).

where the meaning of the symbols u⋆, h⋆ and p⋆
D is summarized in Tab. 3.3. Notice that (3.9) is a

generalization of (3.3). The spatial discretization of (3.9) can now proceed along the same lines of
§ 3.1.3, yielding the ODE system

∂th
⋆
c = −div

(

h⋆u⋆
N

)

c

∂tuNl
= ηlu

⋆
Tl

− δN

(

gh̃ + p⋆
D

)

l
+ ν∆λ,N

(

h̃, uN

)

l

(3.10)

with prognostic variables h⋆
c and uNl

. In (3.10), h⋆
l and ηl are treated as in (3.4) and (3.5), respectively.

Two additional diagnostic variables ũNl
(for SW-α) and h̃c (for SW-τ) are introduced, obtained by

solving the elliptic problems
(

h̃l − α2∆λ,N

(

h̃, ·
)

l

)

ũNl
= h̃l uNl

(3.11)

and
(

1 − β2div (δN (·))c

)

h̃c = hc + Πc, (3.12)

where

Πc =















0 simple filtering

−β2

g
div
(

fu⋆
T

)

c
filtering under linear balance

−β2

g

(

div (ηu⋆
T )

c
− div (δN (p⋆

D))
c

)

filtering under nonlinear balance.
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u⋆ h⋆ p⋆
D

SW-α ũ h̃ ũ · u− 1
2

(

|ũ|2 + α2|∇ũ|2
)

SW-τ u h 1
2 |u|2

Table 3.3

Unified notation for SW-α and SW-τ in invariant form.

Equations (3.11) and (3.12) are the discrete counterparts of (2.3) and (2.8). Finally, for the case of
SW-α, in order to compute p⋆

Dc
, the complete velocities uc and ũc are reconstructed on the primal cells

by means of ~Rl�c, as well as the complete gradient grad (ũ)c, and then p⋆
Dc

is evaluated. Notice that,
to obtain a consistent approximation of the gradient of p⋆

D, as it is required in (3.10)2, at least a second
order approximation of |∇ũ|2 is required.

Concerning the time discretization, the method described in § 3.1.4 can be immediately applied,
upon suitable redefinition of the operator S according to the right hand side of (3.10). Notice that the
smoothed fields ũNl

and h̃c have to be diagnosed from (3.11) and (3.12) at each stage of the SSPRK(5,4).
We plan to consider the possibility of freezing these variables during each RK time-step in future work.

3.3. Off-Centering of the Regularized Systems. In the pressure regularization, short wave-
length gravity waves are slowed down, and, as discussed in [41] and in § 2.3, a similar effect also takes
place for the velocity regularization. The slowdown of short wave modes can be problematic for the
numerical approximation of SW-α and SW-τ , since for long integration times energy can accumulate in
almost stationary short waves. In fact, even for moderately large integration times, the accumulation of
energy at the shortest resolved wavelengths can lead to inaccurate results for the unfiltered velocity u

and free surface elevation h. To circumvent this problem, we modify the filter operators along the lines
of [37].

3.3.1. Off-centering of the SW-α system. For the case of SW-α, we substitute (2.3) with
(

h̃ − α2∇ ·
(

h̃∇
))

ũ = h̃
(

u + Tε

(

−g∇h̃ − f ũ⊥
))

, (3.13)

where Tε is a damping parameter having the dimension of time. Qualitatively, the additional term in
the right hand side of (3.13) corresponds to extrapolating u from time level t to time level t + Tε, since
the coefficient of Tε is, up to the nonlinear and viscous terms, the tendency of u in (2.2)2. The resulting
damping effect can be characterized by performing the dispersion analysis of the linear problem

∂th̃ = −H0∇ · ũ
∂tu = −g∇h̃ − f ũ⊥

(

1 − α2∆
)

ũ = u + Tε

(

−g∇h̃ − f ũ⊥
)

,

where H0 is a uniform reference depth and we consider a planar geometry for simplicity. The resulting
dispersion relation is

iω
(

Aω2 + B ω − C
)

= 0, (3.14)

where

A = 1 + T 2
ε F, B = iTε (D + 2F ) , C = D + F,

and, denoting by k and l the zonal and meridional wave numbers, with K2 = k2 + l2, we define

D =
gH0K

2

1 + α2K2
, F =

f2

(1 + α2K2)
2 . (3.15)

Apart from the trivial root ω = 0, corresponding to geostrophically balanced flow, a Taylor expansion
for Tε → 0 gives the two roots

ω1,2 = ±
√

D + F − 1

2
iTε (D + 2F ) + O

(

T 2
ε

)

. (3.16)
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Both frequencies in (3.16) indicate a damped solution, and for gH0

f2α2 ≫ 1, αK ≥ 1 the e-folding time is

τε ≈ 2α2

gH0

1

Tε

(

1 +
1

α2K2
− 2

f2α2

gH0

1

α4K4

)

.

The modification of the filter operator (3.13) is attractive for the following reasons: in contrast to the
introduction of viscosity, it does not affect geostrophic flows; it has a minor impact on the numerical
discretization of the problem, and in particular it does not affect the discrete conservation of potential
vorticity and enstrophy, as it will be clear from § 3.4; it is similar to the divergence damping approach
employed for the time regularization (see [37] and § 3.3.2), thereby simplifying comparisons of the two
regularization. A drawback of (3.13) is represented by the fact that, as shown by (3.16), the damping
coefficient does not vanish for K → 0; the limiting value f2Tε however can be expected to be negligible
in most of the practical applications. Concerning the discretized problem, the use of (3.13) in place
of (2.3) implies that (3.11) must be modified as

(

h̃l (1 − TεfRN�T (·)l) − α2∆λ,N

(

h̃, ·
)

l

)

ũNl
= h̃l

(

uNl
− TεgδN

(

h̃
)

l

)

. (3.17)

3.3.2. Off-centering of the SW-τ system. For the case of SW-τ , we modify (2.8) as

(

1 − β2∆
)

h̃ = h + Π + Tε (−∇ · (hu)) , (3.18)

where Tε is a damping parameter. Notice the similarity between the time extrapolations in (3.18)
and (3.13). The resulting damping effect can be characterized by performing the dispersion analysis of
the linear problem

∂th = −H0∇ · u
∂tu = −g∇h̃− fu⊥

(

1 − β2∆
)

h̃ = h − Bβ2 f
g
∇ · u⊥ − TεH0∇ · u,

where B = 0 corresponds to simple filtering and B = 1 corresponds to filtering under linear balance. The
resulting dispersion relation is

iω
(

ω2 + B ω − C
)

= 0, (3.19)

where

B = iTεP, C = P + Q,

and we define

P =
gH0K

2

1 + β2K2
, Q =

1 + (1 − B)β2K2

1 + β2K2
f2. (3.20)

Apart from the trivial root ω = 0, corresponding to geostrophically balanced flow, a Taylor expansion
for Tε → 0 gives the two roots

ω1,2 = ±
√

P + Q − 1

2
iTεD + O

(

T 2
ε

)

. (3.21)

Both frequencies in (3.16) indicate a damped solution with e-folding time

τε =
2β2

gH0

1

Tε

(

1 +
1

β2K2

)

,

which can be immediately compared to the e-folding time derived in § 3.3.1 for SW-α.
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3.4. Discrete Conservation of Potential Vorticity and Enstrophy. In this section, it is
shown how the spatial discretization (3.10) results, for the inviscid case, in the discrete conservation of
potential vorticity and enstrophy. The presentation closely follows § 6 of [4]; we omit the superscipt in
h⋆ for simplicity. First of all, we need to introduce a discrete continuity equation on the dual grid, given
by

∂tĥĉ = −div
(

hu⋆
T

)

ĉ
. (3.22)

In (3.22), h
l̂l

and u⋆
T

l̂l

are the same as in (3.10)1 and (3.10)2, respectively, while ĥĉ is an approximation

of the free surface height on the dual cells which is initialized as ĥĉ(0) = Rc�ĉ (h)ĉ (0) at the initial time

level and then evolved according to (3.22). Notice that, in general, we have ĥĉ 6= Rc�ĉ (h)ĉ for time
levels different from the initial one. We now take the discrete curl of (3.10)2, assume ν = 0 and use (3.2),
obtaining

∂t (curl (uN )ĉ) = −div (ηu⋆
T )ĉ . (3.23)

If the potential vorticity is now defined on the dual grid as

qĉ =
curl (uN)ĉ + f

ĥĉ

and the edge-averaged potential vorticity is given by ql = ηl/hl, from (3.23) follows

∂t

(

qĉ ĥĉ

)

= −div
(

qhu⋆
T

)

ĉ
, (3.24)

which, combined with (3.22), provides discrete conservation of qĉ. In particular, we have

∑

ĉ∈Dλ

qĉ ĥĉ =
∑

ĉ∈Dλ

ηĉ = const. (3.25)

Remark 3.1. Notice that the second equality in (3.25) follows immediately from (3.23). The

introduction of ĥĉ, qĉ and (3.24) represents simply a rephrasing of (3.23). More subtle is, however, the
issue of potential enstrophy conservation.

To obtain a discrete conservation equation for the potential enstrophy, we first notice that, thanks
to (3.22) and (3.24),

ĥĉ ∂tqĉ = ∂t

(

qĉ ĥĉ

)

− qĉ ∂tĥĉ = −div
(

qh u⋆
T

)

ĉ
+ qĉdiv

(

hu⋆
T

)

ĉ
. (3.26)

Hence, we have

∂t

(

q2
ĉ ĥĉ

)

= q2
ĉ ∂tĥĉ + 2qĉ ĥĉ ∂tqĉ

= −q2
ĉdiv

(

hu⋆
T

)

ĉ
− 2qĉdiv

(

qh u⋆
T

)

ĉ
+ 2q2

ĉdiv
(

hu⋆
T

)

ĉ

= q2
ĉdiv

(

hu⋆
T

)

ĉ
− 2qĉdiv

(

qh u⋆
T

)

= − 1

|ĉ|
∑

l̂∈∂ĉ

|l̂|Tl
l̂
· n̂

ĉ,l̂
hl

l̂
u⋆

Tl
l̂

(

2qĉql
l̂
− q2

ĉ

)

(3.27)

For (3.27) to represent a discrete balance equation, the term
(

2qĉql
l̂
− q2

ĉ

)

must be single valued on l̂,
or

2qĉ1
l̂
ql

l̂
− q2

ĉ1
l̂

= 2qĉ2
l̂
ql

l̂
− q2

ĉ2
l̂

which can be solved in ql
l̂

to obtain

ql
l̂
=

qĉ1
l̂
+ qĉ2

l̂

2
. (3.28)
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Averaging (3.28) in turns implies

ηl =
hl

2





ηĉ1
l̂l

ĥĉ1
l̂l

+
ηĉ2

l̂l

ĥĉ2
l̂l



 , (3.29)

which is analogous to (3.6) except for the use of ĥĉ in place of hĉ. As a consequence of (3.27) and (3.28),
one has

∑

ĉ∈Dλ

q2
ĉ ĥĉ =

∑

ĉ∈Dλ

η2
ĉ

ĥĉ

= const. (3.30)

Remark 3.2. While the introduction of ĥĉ and the associated prognostic equation (3.22) has no

practical impact on (3.25), as noted in remark 3.1, it does have an impact on (3.30). In fact, ĥĉ must
be known in order to compute ηl in (3.29). In practice, however, the prognostic equation (3.22) is not

solved, since it would result in a drift between hc and ĥĉ, each of which is independently obtained from
a prognostic equation, and (3.6) is used instead of (3.29). As a consequence, Eq. (3.30) is not exactly
satisfied.

4. Numerical Results. In this section, a numerical validation of the proposed discretization of
the velocity and pressure regularized equations is presented, with two main purposes: assess the stabil-
ity properties of the resulting numerical scheme and analyze the impact of the regularizations on the
computed solution. For each test case, we provide results for SW-α and SW-τ as well as for explicit
integrations of the unfiltered SW-0 system which serves as a reference. Stability is studied considering
the size of the maximum allowable Courant number and the amount of off-centering required in the
computation; the effect of the regularization is analyzed by comparing the computed solutions and by
verifying that the observed differences are consistent with what is expected for the continuous problem
on the basis of the discussion of § 2, rather than being an artifact of the numerical discretization. The
time evolution of the total energy and enstrophy is also diagnosed, while we do not show results for the
mass and vorticity conservations since these quantities are always conserved up to machine precision
by our method. The considered test cases are two-dimensional and the geometry is either planar, with
uniform Coriolis parameter (f -plane) and periodic boundary conditions, or spherical. The computa-
tional domain for the f -plane tests of § 4.1, § 4.2 and § 4.4 is is the rectangle [0 , Lx] × [0 , Ly], with
Lx = 5000 km, Ly = 4330 km, and we set f = 6.147 · 10−5 s−1, which corresponds to a latitude of 25◦.
The grid is structured and composed of equilateral triangles. For the Rossby-Haurwitz wave test of
§ 4.3 the computational domain is the sphere of radius REarth = 6.371 · 103 km and angular velocity
ΩEarth = 7.292 · 10−5s−1. In this case, an icosahedral triangular grid is used [4]. For all the runs, the
time integration is performed with the SSPRK(5,4) method summarized in § 3.1.4. Consistently with
§ 2.3, a unique, prescribed initial condition is used to initialize SW-0, SW-τ and the velocity field of
SW-α, while h̃ in this latter model is initialized with a smoothed free surface elevation profile.

4.1. Vortex pair interaction. For the first test case, we consider the vortex pair problem de-
scribed in [33, 38, 34], where the time evolution of two interacting, corotating vortices is studied in the
inviscid case. The initial condition is prescribed through the free surface elevation and the constraint of
geostrophic balance, and the time integration is carried out up to T fin = 10 days. More in details, we
set

h(x, y, 0) = H0 − H ′
[

e−
1

2 (x′

1

2+y′

1

2) + e−
1

2 (x′

2

2+y′

2

2) − 4πσxσy

LxLy

]

,
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fσy
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,
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fσx
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1

2 (x′
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2e−

1

2 (x′

2
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2
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,

(4.1)
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with

x′
1,2 =

Lx

πσx

sin

(

π

Lx

(

x − xc1,2

)

)

, y′
1,2 =

Ly

πσy

sin

(

π

Ly

(

y − yc1,2

)

)

,

x′′
1,2 =

Lx

2πσx

sin

(

2π

Lx

(

x − xc1,2

)

)

, y′′
1,2 =

Ly

2πσy

sin

(

2π

Ly

(

y − yc1,2

)

)

.

In our experiment we use

xc1
=
(

1
2 − o

)

Lx, xc2
=
(

1
2 + o

)

Lx, σx = 3
40Lx,

yc1
=
(

1
2 − o

)

Ly, yc2
=
(

1
2 + o

)

Ly, σy = 3
40Ly,

and o = 0.1. Figure 4.1 illustrates the initial surface elevation and relative potential vorticity q − f/h =
|∇ × u| /h. In order to characterize the flow resulting from (4.1), we now consider a set of dimensionless
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Figure 4.1. Vortex pair test case with H0 = 10000 m, initial condition (axes in km). Layer depth pertubation,
h − H0, left, contours between −70 m and 0 m, contour interval of 5 m. Relative potential vorticity, right, contours
between −0.45 days−1km−1 and 1.7 days−1km−1, contour interval of 0.1 days−1km−1 (negative values in gray, positive
values in black, zero contour thicker).

parameter. To this end, since σx ≈ σy, we can define the characteristic length scale d = 4σ, with
σ = 1

2 (σx + σy) and obtain the characteristic velocity U and characteristic time T as

U = 2
gH ′

fd
, T =

d

U
=

1

2

fd2

gH ′ .

The resulting Froude, Rossby and Burger numbers are

F =
U√
gH0

= 2

√
gH ′

fd

√

H ′

H0
, R =

U

fd
= 2

gH ′

f2d2
, B ≡ R2

F 2
=

L2
D

d2
=

gH0

f2d2
,

where LD =
√

gH0

f
is the Rossby deformation radius. As discussed in [30], Chap. 3.12, the flow is in

geostrophic regime for R ≪ 1, or H ′ ≪ 1
2

f2d2

g
. Among geostrophic flows, we can further distinguish

the semi-geostrophic regime, for B ≪ 1, the quasi-geostrophic regime, for B ≈ 1, and the incompressible
regime for B ≫ 1 (see for instance [7]). Concerning the Froude number, we notice that it provides
an indication of the ratio between the explicit and the semi-implicit stable time steps. This analysis
indicates that geostrophically balanced flows with different Burger numbers, and hence different degrees
of compressibility, can be obtained by varying H0, and in particular divergence free flows correspond
to H0 → ∞. We thus fix H ′ = 75 m and consider the three cases H0 = 450 m, which is in the semi-
geostrophic regime, H0 = 750 m, corresponding to the quasi-geostrophic regime, and H0 = 10000 m,
where the flow is almost incompressible. The resulting characteristic scales are summarized in Tab. 4.1.
The numerical setup is given by a grid of 256 rows, each row consisting of 256 upward pointing triangles
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H0 = 450 m H0 = 750 m H0 = 10000 m
d 1.40 · 103 km 1.40 · 103 km 1.40 · 103 km
U 17.1 ms−1 17.1 ms−1 17.1 ms−1

T 0.947 days 0.947 days 0.947 days
LD 1.08 · 103 km 1.40 · 103 km 5.10 · 103 km
F 0.257 0.199 0.055
R 0.199 0.199 0.199
B 0.596 0.994 13.26

Table 4.1

Characteristic scales and dimensionless numbers for the vortex pair test case for three different choices of H0 in (4.1),
corresponding to semi-geostrophic, quasi-geostrophic and incompressible flows, respectively.

and the same number of downward pointing triangles, so that the domain consists of a total of 2 ·2562 =
131072 triangles. Hence, the spatial resolution, defined as the edge length of a triangle, is λ = 19.5 km.
The time step of SW-0 is determined by setting the Courant number C = ∆t

√
gH0/λ to the rather

conservative value 0.5, while for SW-α and SW-τ we use the maximum time step allowed by the velocity
and pressure regularizations. For ease of comparison, we set α = β, and the resulting time steps are
summarized in Tab. 4.2. No off-centering is used for any of the regularized models. As expected, both

H0 = 10000 m H0 = 750 m H0 = 450 m
λ 19.5 km 19.5 km 19.5 km√
gH0 313 ms−1 85.8 ms−1 66.4 ms−1

α 95.8 km 26.0 km 20.3 km
β 95.8 km 26.0 km 20.3 km

α/λ 4.9 1.3 1.04
β/λ 4.9 1.3 1.04
∆t0 30 s 120 s 150 s
∆tα 540 s 540 s 570 s
∆tτ 600 s 600 s 600 s

Table 4.2

Summary of the main parameters used in the vortex pair experiments for various flow regimes. ∆t0, ∆tα and ∆tτ
are the time steps used in SW-0, SW-α and SW-τ , respectively.

models, SW-α and SW-τ , allow time steps which are larger than the stable explicit one and almost
independent from the velocity of the gravity waves. Moreover, for a fixed smoothing length, the stable
time step for SW-τ is found to be slightly larger than for SW-α.

The surface elevation and the relative potential vorticity of the computed solutions at time T fin are
plotted in Figs. 4.2-4.4. An overall agreement of the three models can be observed in all the considered
flow regimes. The potential vorticity plots are essentially undistinguishable, while from the plots of the
free surface elevation it can be seen that both SW-α and SW-τ result in a similar pattern for 1000 km <
y < 3000 km, which is different from SW-0 and which is associated with a modified propagation of the
gravity waves. Since the scale separation between gravity waves and advection decreases with increasing
Froude number, this effect is less observable in Fig. 4.4. The evolution in time of the energy and
enstrophy integrals is represented in Fig. 4.5 for the incompressible case. It can be seen that the
integration of the regularized models yields very small relative energy and enstrophy deviations of the
order of 10−6. Within this range, rather a decay of energy and enstrophy than a growth can be observed,
which is expected to be beneficial for the stability of the method. Analogous results are obtained in the
other two regimes.

4.2. Shear flow evolution. In the second test case, the evolution of a shear flow is considered.
The initial condition is prescribed through the free surface elevation and the constraint of geostrophic
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Figure 4.2. Vortex pair test case with H0 = 10000 m at time 10 days. Upper row: relative potential vorticity,
contours between −0.7 days−1km−1 and 1.9 days−1km−1 with contour interval of 0.1days−1km−1 (negative values in
gray, positive values in black, zero contour line omitted), results for SW-0, left, SW-τ , center, and SW-α, right. Bottom
row: surface elevation h − H0, contours between −120 m and 20 m with contour interval 10 m, results for SW-0, SW-τ
and SW-α as above.

balance. More in details, we set

h(x, y, 0) = H0 − H ′ y′′

σy

e
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+ 1
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with x′ = x
Lx

and c(y) = cos
(

2π
Ly

(

y − Ly

2

))

,

y′ =
1

π
sin

(

π

Ly

(

y − Ly

2

))

, y′′ =
1

2π
sin

(

2π

Ly

(

y − Ly

2

))

,

λx = 1
2 , σy = 1

12 and κ = 0.1. The characteristic lengths of the problem are λxLx in the zonal direction
and 4σyLy in the meridional direction. Noting that these two scales are similar, we can choose d = 4σyLy

as reference length of the problem. The characteristic velocity and time scales are then

U = 6
gH ′

fd
, T =

d

U
=

1

6

fd2

gH ′ ,

while the Froude, Rossby and Burger numbers are

F = 6

√
gH ′

fd

√

H ′

H0
, R = 6

gH ′

f2d2
, B =

gH0

f2d2
.

Upon setting H0 = 1076 m and H ′ = 30 m, we obtain the characteristic scales listed in Tab. 4.3. The
flow is in the quasi-geostrophic regime, and it is inviscid. The numerical setup is as follows. The
computational grid described in § 4.1 is used and the smoothing length is 30 km for both SW-α and
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Figure 4.3. Vortex pair test case with H0 = 750 m at time 10 days. Upper row: relative potential vorticity, contours
between −8 days−1km−1 and 26 days−1km−1 with contour interval of 2 days−1km−1 (negative values in gray, positive
values in black, zero contour line omitted), results for SW-0, left, SW-τ , center, and SW-α, right. Bottom row: surface
elevation h − H0, contours between −120 m and 20 m with contour interval 10 m, results for SW-0, SW-τ and SW-α as
above.
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Figure 4.4. Vortex pair test case with H0 = 450 m at time 10 days. Upper row: relative potential vorticity, contours
between −13 days−1km−1 and 50 days−1km−1 with contour interval of 3 days−1km−1 (negative values in gray, positive
values in black, zero contour line omitted), results for SW-0, left, SW-τ , center, and SW-α, right. Bottom row: surface
elevation h − H0, contours between −120 m and 20 m with contour interval 10 m, results for SW-0, SW-τ and SW-α as
above.

SW-τ . Concerning the time step, while the Courant–Friedrichs–Lewy condition for SW-0 results in a
time step of 120 s, a significantly larger time step can be used with SW-α and SW-τ , namely 480 s for
SW-α and 600 s for SW-τ . No off-centering is applied to any of the regularized systems.

The evolution of the flow up to day 10 is represented for SW-0 in Fig. 4.6, where the relative
potential vorticity is plotted. Qualitatively similar results are obtained for SW-α and SW-τ . It can be
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Figure 4.5. Vortex pair test case with H0 = 10000 m: relative deviations of energy (left) and enstrophy (right)
during the time integration for SW-0 (black, label “SSPRK45”), SW-τ (red, label “SSPRK45-τ”) and SW-α (green, label
“SSPRK45-α”).

d 1.44 · 103 km
U 19.9 ms−1

T 0.839 days
LD 1.67 · 103 km
F 0.194
R 0.224
B 1.34

Table 4.3

Characteristic scales and dimensionless number for the shear flow test case.

seen that the perturbation superimposed on the initial zonal jet grows in amplitude, and a dominant,
wave number two component is clearly visible at day 3. The instability evolves in two couples of counter-
rotating vortices, which can be seen at day 6, and by day 10 the whole domain is occupied by the vortical
motion. At this point, the vorticity filaments have reached scales that are beyond the spatial resolution
of the grid. For a discussion of the results, we present plots of the displacement of the free surface
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Figure 4.6. Shear flow test case, relative potential vorticity at days 3 (left), 6 (center) and 10 (right). Contours
between −11 days−1km−1 and 12 days−1km−1 with contour interval of 0.5 days−1km−1. Axis in km, notice that the
limits of the y axis are adjusted in each plot to the region of the domain interested by the flow.

height for days 3, 6 and 10 in Fig. 4.7. From this figure, we conclude first of all that SW-0, SW-α and
SW-τ yield similar results, the maximum difference in free surface height being 0.3%. We also note
that SW-α and SW-τ affect in a very similar way the propagation of the gravity waves, as it can be
seen from the analogous patterns that are present for y ≤ 1500 km and y ≥ 3500 km in the center and
right panels of Fig. 4.7. In addition, SW-α also determines a phase shift in the position of the resulting
vortices, which can be seen for 1500 < y < 3500 in the right panel of Fig. 4.7 and is particularly evident
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at day 6. This is a consequence of the modified advection term and of the presence of flow features
with spatial scale comparable to α. In order to assess the extent to which the conservation properties
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Figure 4.7. Shear flow test case, displacement of the free surface elevation h − H0. The plots are organized so that
the first, second and third row corresponds to time level 3 days, 6 days and 10 days, respectively, while the first, second
and third column corresponds to SW-0, relative difference between SW-τ and SW-0 and relative difference between SW-α
and SW-0, respectively. In the first column the contours range from −60 m to 40 m with contour intervals of 4 m, while
in the second and third columns contours between −0.003 and 0.003 with contour interval 2 · 10−4 are used. Axis in km,
gray lines for negative values, black lines for positive values and thicker line for the zero level.

of the continuous problem are preserved by the numerical scheme, a 100 day integration has also been
performed, well beyond the time at which the flow starts to develop unresolved features. The relative
variations of total energy and potential enstrophy for this run are plotted in Fig. 4.8, where it can be
seen that these quantities are preserved for all the considered models up to relative deviations of the
order 10−7 for energy and 10−5 for potential enstrophy. A detail of the evolution of two components of
the total energy, namely the potential energy and, only for the SW-α system, the gradient kinetic energy
(see (2.5))

Eα,∇ =
1

2

∫

Ω

α2h̃|∇ũ|2dx,

is provided in Fig. 4.9. Notice that Eα,∇ is the complement to the complete kinetic energy of the velocity
component

Eα,u =
1

2

∫

Ω

h̃|ũ|2dx.
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Figure 4.8. Shear flow test case, relative variations of the total energy (left) and potential enstrophy (right) during
a long time integration for SW-0, blue, SW-τ , green and SW-α, red.

Here, it can be seen that the gradient kinetic energy exhibits variations which are approximately one
fourth of those of the potential energy (which are, in turn, of the same order of the variations of the
kinetic energy). This fact shows that a proper representation of Eα,∇ in the model is essential in order
to close the energy balance. It should also be noted that Eα,∇ decreases during the integration. This is
a very general characteristic of all our experiments, and is in stark contrast with what is reported in [27],
Sect. IV, where the initial transient is characterized by an increase of the gradient kinetic energy. In
comparing our results with [27], however, we have to consider that in this latter work a three dimensional
experiment is considered, and the increase of the gradient term indicates an increase in enstrophy. On
the other hand, in our two dimensional test enstrophy is almost constant.
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Figure 4.9. Shear flow test case, detail of the energy evolution during a long time integration. Left: potential energy
for SW-0, blue, SW-τ , green and SW-α, red. Right: gradient kinetic energy for the SW-α model. For visualization
purposes a low pass filter with cut-off frequency corresponding to 0.5 days has been applied to filter the gravity waves in
the plots of the potential energy.

4.2.1. Development of the shear instability in the regularized models. As shown in [21],
the use of a regularized set of equation can modify the stability properties of the flow, shifting the onset
of the instability. To verify the effect of the velocity and pressure regularizations on the instability
of the shear flow, we compare in the present section various experiments with varying regularization
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parameters. More in details, we consider the test case (4.2) and we reduce the initial disturbance by
setting κ = 0.025. A mesh size λ = 78.125 km, which corresponds to 2 · 642 = 8192 triangles, is
considered. A qualitative indication of the onset of the instability is provided by the maximum value of
the meridional velocity, which is negligible in the initial condition and reaches a value of approximately
20 ms−1 after the formation of the four vortices. Figure 4.10, left, shows the value of the maximum
meridional velocity for the following cases: SW-0, SW-τ with ∆t = 30 min, corresponding to a smoothing
length of 94.17 km, and the space regularized SW equations with α equal to 63 km, 126 km, 188 km,
251 km, 314 km and 377 km, with ∆t = 16 min for α = 63 km (dictated by the gravity wave CFL
condition) and ∆t = 32 min for the other cases (dictated by the advective CFL condition). For the cases
with α ≥ 251 km an off-centering has also been used with Tε = 11 s in (3.13). From this picture it is
clear that the two regularizations have a different impact on the onset of the instability: the pressure
regularization does not affect the large scale instability, which is, on the contrary, delayed by the velocity
regularization. Figure 4.10, right, shows the time evolution of the kinetic energy contributions for the
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Figure 4.10. Effect of the regularization parameter on the onset of the instability for the shear flow test case. Left:
maximum meridional velocity for SW-0 (blue, practically coinciding with SW-τ), SW-τ with β = 94.17 km (green) and
SW-α for varying α (see figure the legend). Right: time evolution of the two components of the kinetic energy of the
SW-α system for four different choices of α, gradient kinetic energy, dash-dot line, and velocity kinetic energy, solid line.

velocity regularized system for the four cases of α equal to 63 km, 126 km, 188 km, and 251 km. It can
be noted that Eα,u decreases for increasing values of α, while Eα,∇ increases for increasing values of α.
Moreover, as already mentioned, regardless of the value of α, the onset of the instability is associated
with a decrease of Eα,∇ which is almost compensated by an increase of the velocity energy term; the
energy balance being closed by a small increase of the potential energy, not shown in the plot.

4.3. Rossby–Haurwitz Wave. We consider here the classical test case 6
from [40], where the propagation of a Rossby–Haurwitz wave is considered. The results of the inte-
gration of the regularized problem at time 11.76 days, on an icosahedral grid with average resolution
of approximately 500 km, are plotted in Fig. 4.11, together with a reference explicit integration and
the analytic solution of the barotropic vorticity equation, for comparison. The time step is 2400 s for
both SW-α and SW-τ and 900 s for SW-0. For the regularized computations, the smoothing lengths are
α = 400 km and β = 386 km. An off centering is used for the space regularized system with τε = 4 hours,
while no off-centering is used for the time regularized run. To simplify comparisons with results in the
literature, the free surface elevation in SW-α is initialized with the same profile used for SW-0 and
SW-τ . Concerning SW-τ , the computed solution is almost indistinguishable from the reference explicit
run, which in turn shows an overall similarity with the analytic solution. In fact, the differences between
the SW-0 solution and the analytic one are due partly to the fact that this latter considers a simplified,
nondivergent barotropic case, partly to the instability of the wave in the compressible case and partly
to the rather coarse resolution, and are within the range of deviations usually observed for this test, as
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shown for instance in [39]. Concerning SW-α, two points should be mentioned. The first one is the fact
that the space regularization results in a significant change of the phase velocity of the wave, the net
effect of which is a higher eastward propagation. This corresponds to a slower westward propagation of
the wave with respect to the background flow, in agreement with what discussed in [41] concerning the
slowing down of Rossby waves. The second point is that SW-α determines a delay in the break-down of
the wave pattern, a fact that is confirmed by the analysis of the complete time evolution of the flow. Such
an effect is consistent with the results reported in § 4.2.1. Notice also the appearance of the local maxima
at ±50◦, common to SW-0, SW-α and SW-τ . The energy balance for this test case is also reported in
Fig. 4.12 for a much longer time interval of 100 days. In the time regularized system the total energy
is well preserved, with small deviations which are analogous to those of a control explicit integration
(not reported here). For the space regularized system, the total energy initially increases during the first
20 days, and remains constant during the rest of the time span. The gradient kinetic energy decreases
during the first part of the simulation, and then remains constant, a pattern which is common to all our
numerical results. For this test case, the combined velocity and pressure regularization (2.14) has also
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Figure 4.11. Rossby–Haurwitz wave test case as in [40], free surface height after 11.76 days simulation time, contour
lines from 8030 m to 10530 m with contour intervals of 100 m. Analytic solution of the barotropic vorticity equation (top,
left), reference explicit solution with ∆t = 900 s (top right), space and time regularized solutions (bottom left and right,
respectively), both with ∆t = 2400 s.

been tested using a time step of 2400 s, smoothing lengths α = β = 400 km and no off-centering. The
results (not shown here) are very similar to the SW-τ case, thus confirming that the propagation of the
Rossby-Haurwitz wave is not modified in this system.

4.4. Decaying turbulence simulation. In this section, we analyze the evolution of the energy
and enstrophy spectra in a planar decaying turbulence experiment. Compared to previous works on SW-
α, the results presented here are the first ones including the compressibility effect associated with the
presence of a free surface. Except for the fact that we use second order Laplacian diffusion, rather than
hyper-diffusion, the experiment setup is similar to [9], and it is as follows. The initial depth h(x, y, 0) has
mean H0 = 4000 m, yielding the Rossby deformation radius LD = 3220 km, and a random distribution
peaked at total wavenumber KI = 0.0054 km−1, with corresponding wave length λI = 1

4
Lx+Ly

2 , and
standard deviation 13.49 m. The velocity field is initialized, as in the other experiments, by enforcing
linear geostrophic balance, yielding for |u| a mean value U = 22.33 ms−1 and a standard deviation
13.49 ms−1. The final time of the integration is T fin = 100 days. The mean value 〈|u|〉, where 〈·〉
indicates spatial averaging at a fixed time level, changes only by 17% during the whole integration, so
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Figure 4.12. Rossby–Haurwitz wave test case as in [40], energy balance for a 100 days run. Potential energy (red),
kinetic energy u (blue), kinetic energy gradu (green) and total energy (black) for the time regularized system (left) and
the space regularized system (right).

that U is a significant velocity scale throughout the experiment and the Froude number is

F =
U√
gH0

= 0.113.

Concerning the Rossby number, we redefine it as

R =
〈|ζ|〉
f

,

as in [9]. At the initial time level we have R = 10.72, this number however rapidly decreases and
we have R = 0.5 at time 10 days, R = 0.321 at time 30 days and R = 0.267 at times larger than
50 days. In general, our setup fits into the “mostly rotational, moderate rotation” (RM) regime described
in [9]. Concerning the values of the viscosity and the regularization parameters, four configurations are
considered: SW-0 with ν = 446 m2s−1, SW-0 with ν = 891 m2s−1, SW-α with ν = 446 m2s−1 and
α = 20 km and SW-τ with ν = 446 m2s−1 and β = 17.83 km. The spatial resolution is λ = 19.53 km,
and the time step is 60 s for both SW-0 experiments, 120 s for SW-α and 180 s for SW-τ . No off-centering
is introduced.

4.4.1. Definition of the energy and enstrophy spectra. Energy and enstrophy are computed
generalizing the expressions provided in [9] to SW-α and SW-τ , so that the compressibility of the flow is
fully taken into account. To this end, we start by considering the linearized SW-α system, rewritten for
convenience in terms of relative vorticity ζ = k · ∇ × u, divergence δ = ∇ · u and geopotential φ = gh̃,

∂tζ + f
(

1 − α2∆
)−1

δ = 0

∂tδ − f
(

1 − α2∆
)−1

ζ + ∆φ = 0

∂tφ + gH0

(

1 − α2∆
)−1

δ = 0.

(4.3)

This system has a complete set of eigemodes which can be grouped in two classes: the potentio-vortical
modes, denoted by V , and the inertio-gravitational modes, denoted by G. Using the notation ϕ =
[ζ, δ, φ]

T
and the coefficients D and F introduced in (3.15), the potentio-vortical modes are of the form

ω0 = 0, ϕ0
K(x, y, t) =





f
0

−gH0
F
D



 ei(kx+ly−ω0t),
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where K2 = k2 + l2, and they are stationary (ω = 0), nondivergent (δ = 0) and geostrophic (∆φ =

f
(

1 − α2∆
)−1

ζ). The inertio-gravitational modes are of the form

ω1,2 = ±
√

D + F , ϕ
1,2
K (x, y, t) =









∓i f√
D
F

+1

f

∓i gH0√
D
F

+1









ei(kx+ly−ω1,2t)

and are divergent and ageostrophic. We then observe that (4.3) has the two quadratic invariants

E′
α (ϕ) =

1

2

∫

Ω

(

φ2

g
+ H0

(

|ũ|2 + α2|∇ũ|2
)

)

dΩ (4.4)

and

S′ (ϕ) =
1

2

∫

Ω

q′
2
dΩ, (4.5)

with q′ = ζ − f
gH0

φ, which are approximations of the invariants of the full SW-α system for deviations

of h̃ small compared to the mean value H0. Being quadratic, E′
α and S′ can be expressed, for a

generic configuration ϕ, as the sum of the contributions of the eigenmodes ϕi
K , for i = 0, 1, 2. More

precisely, after expanding ϕ into the eigemodes ϕi
K , both potentio-vortical modes and inertio-gravity

modes contribute to E′
α, while only the formers contribute to S′, since q′ vanishes for ϕ

1,2
K . This allows

us to define a potentio-vortical energy spectrum as the collection of the contributions to E′
α from ϕ0

K ,

an inertio-gravitational energy spectrum as the collection of the contributions to E′
α from ϕ

1,2
K and an

enstrophy spectrum as the collection of the contributions to S′ from ϕ0
K . After some algebra we obtain

the one-dimensional spectra

E′
αV

(K̄) =
1

δK

∑

K̄− δK
2

<K≤K̄+ δK
2

1

2
gH2

0

1
D
F

+ 1

∣

∣

∣

∣

−ζK

f
+

φK

gH0

∣

∣

∣

∣

2

(4.6)

E′
αG

(K̄) =
1

δK

∑

K̄− δK
2

<K≤K̄+ δK
2

1

2
gH2

0

F

D

(

∣

∣

∣

∣

δK

f

∣

∣

∣

∣

2

+
1

D
F

+ 1

∣

∣

∣

∣

−ζK

f
− D

F

φK

gH0

∣

∣

∣

∣

2
)

(4.7)

and

S′
V (K̄) =

1

δK

∑

K̄− δK
2

<K≤K̄+ δK
2

1

2
f2

∣

∣

∣

∣

−ζK

f
+

φK

gH0

∣

∣

∣

∣

2

, (4.8)

where ζK , δK and φK are the spectral components of ζ, δ and φ, respectively. Formulas (4.6–4.8)
generalize (10–13) of [9] to the case of SW-α.

A similar procedure can be followed for SW-τ . In this case, we first consider the linearized system

∂tζ + fδ = 0

∂tδ − fζ + ∆
[

(

1 − β2∆
)−1 (

φ − Bβ2fζ
)

]

= 0

∂tφ + gH0δ = 0,

(4.9)

where B is defined as in § 3.3.2. As for (4.3), system (4.9) has a complete set of eigemodes which can
be grouped in two classes: the potentio-vortical modes, and the inertio-gravitational modes. Using the
coefficients P and Q introduced in (3.20), the potentio-vortical modes are of the form

ω0 = 0, ϕ0
K(x, y, t) =





f
0

−gH0
Q
P



 ei(kx+ly−ω0t),
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and are stationary, nondivergent, geostrophic and coincide with the potentio-vortical modes of SW-0 for
B = 1. The inertio-gravitational modes are of the form

ω1,2 = ±
√

P + Q, ϕ
1,2
K (x, y, t) =











∓i
√

1+β2K2

1+(1−B)β2K2

f
q

P
Q

+1

f

∓i
√

1+β2K2

1+(1−B)β2K2

gH0
q

P
Q

+1











ei(kx+ly−ω1,2t)

and are divergent and ageostrophic. We then observe that (4.9) has the two quadratic invariants (4.5)
and

E′
τ (ϕ) =

1

2

∫

Ω

(

H0|u|2 +
ξ

g

(

φ̃2 + β2|∇φ̃|2
)

)

dΩ, (4.10)

with

ξ =

(

1 − Bβ2f2

gH0

)−1

.

Proceeding as for SW-α, we obtain the one-dimensional energy spectra

E′
τV

(K̄) =
1

δK

∑

K̄− δK
2

<K≤K̄+ δK
2

1

2
gH2

0

ξ

1 + (1 − B)β2K2

1
P
Q

+ 1

∣

∣

∣

∣

−ζK

f
+

φK

gH0

∣

∣

∣

∣

2

(4.11)

E′
τG
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2
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P

(
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1 + (1 − B)β2K2

∣
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∣
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∣
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1

1 + β2K2

1
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Q

+ 1

∣

∣

∣

∣

−ζK

f
− P

Q

φK

gH0

∣

∣

∣

∣

2
)

,

(4.12)

while the enstrophy spectrum is given by (4.8). The energy and enstrophy spectra of the initial condition
for the various configurations are plotted in Fig. 4.13.
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Figure 4.13. Decaying turbulence test case, energy and enstrophy spectra of the initial configuration. Left: E′
V

for
SW-0, black, and SW-α, red; for SW-τ , E′

τV
coincides with SW-0. Right: S′ for SW-0, which essentially coincides with

the cases SW-α and SW-τ .



Space-Time Regularizations for the ICON Model 27

4.4.2. Discussion of the results. We first consider the time evolution of the total energy E′ and
enstropy S′, represented in Fig. 4.14 left and right, respectively. The main conclusion that can be drawn
from these plots is that the dissipation rates of E′ and S′ only depend on the viscosity coefficient, with
the three experiments at ν = 446m2s−1 having the same decay rate, with the exception of E′

α which
is dissipated at a lower rate during the first 10 days of integration. Hence, neither of the examined
regularizations enhances the overall dissipation. We also observe that only 30% of the initial energy is
dissipated after 100 days, while only 0.2% of the initial potential enstrophy is left at the same time.
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Figure 4.14. Time evolution of the total energy E′ (left, linear scale), and potential enstrophy S′ (right, logarithmic
scale) for the decaying turbulence experiment, with values normalized by the initial conditions E′(t = 0) and S′(t = 0).
Results for SW-0, ν = 446m2s−1, black, SW-0, ν = 891m2s−1, purple, SW-α, red, and SW-τ , green.

Concerning the qualitative evolution of the flow, we notice that all the simulations finally reach a
two vortex configuration, after which no significant changes appear. Such a configuration is reached at
time level 46 days for SW-0, ν = 446 m2s−1, 60 days for SW-0, ν = 891 m2s−1, 44 days for SW-α and
47 days for SW-τ .

The spectral distributions of E′
V , E′

G and S′ at time levels 2 days, 5 days, 10 days, 25 days, 50 days
and 100 days are plotted in figures 4.15, 4.16 and 4.17. More precisely, snapshots of the flow are used
at time levels 2 days and 5 days, while for the larger time levels a low pass filter with cutoff frequency
of two days has been applied separately to the time evolution of each wavenumber before evaluating the
spectral distribution. This is done in order to remove the short term differences which arise in the spectra
as the number of vortices decreases due to the inverse cascade, and is a surrogate of performing ensemble
simulation, which would go beyond our current computational possibilities. Figure 4.15 shows that, on
the one hand, E′

αV
is close the SW-0 spectrum with the same viscosity at low wave numbers, while it is

lower at high wave numbers. With our setup, in particular, the effect of the space regularization at high
wave numbers is comparable to the effect of doubling the viscosity coefficient in SW-0. This result is
similar to that reported in [5], concerning the sharper roll-off of the energy spectrum of the regularized
Navier–Stokes equations. On the other hand, E′

τ is very close to the SW-0 spectrum with the same
viscosity at all wave numbers, so that we can conclude that the time regularization has no effect on the
potentio-vortical modes. The situation is different when looking at the inertio-gravitational modes, as
shown in Fig. 4.16. Here, it can be seen that E′

αG
and E′

τG
both deviate from the spectrum of SW-0

at the same viscosity approximately at wave number 0.02 km−1, and show a further change in the slope
at wave number 0.07 km−1. This effect is different from the effect of increasing the viscosity coefficient.
Somewhat surprisingly, E′

αG
always contains more energy at high wave numbers compared to SW-0 and

SW-τ , as opposite to the effect of the space regularization on the incompressible modes. This fact, if
confirmed by further tests, might be related, on the one hand, to the fact that, for a fixed smoothing
length, a larger time step can be taken for SW-τ than for SW-α (see the previous sections § 4.1, § 4.2 and
§ 4.3), and might indicate, on the other hand, a difficulty in using the Lagrangian averaging idea when
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dealing with compressible flows. Our results, however, also suggest that a coupling of the velocity and
pressure regularizations, where the former is applied only to the incompressible component of the flow
and the latter is applied only to its divergent component, might overcome such a difficulty, since SW-τ
results in a tail of the spectrum which is analogous to the SW-0 case. We also mention that in our results
E′

V ≫ E′
G at all but the highest wave numbers, so that the spectrum of the total energy is dominated

by the potentio-vortical component. Finally, concerning the potential enstrophy spectra, figure 4.17
shows that the behavior of SW-α and SW-τ is very similar to the case SW-0 with equal viscosity, thus
confirming the picture emerging from Fig. 4.14, up to time level 50 days. For larger times, SW-α and
SW-τ seem to deviate from the SW-0, ν = 446 m2s−1 case at wave numbers higher than 0.2 km−1, and
remain close to each other. However, a precise understanding of this effect requires further investigation.

5. Summary of Main Results. In this article, we have considered two modified (regularized)
versions of the shallow water equations, showing how they can be discretized in a natural way within
the finite difference formulation adopted for the ICON GCM and analyzing their effect on the computed
solution in a series of idealized test cases. The first modified system is the Lagrangian averaged α shallow
water system, which involves the use of a regularized advection velocity and which has been recently
proposed as a turbulence parametrization for ocean models in order to avoid an excessive damping of
the computed solution. The second modified system is the pressure regularized τ shallow water system,
which provides an alternative to traditional semi-implicit time integration schemes and which results
in larger freedom in the design of the time integrator and in a better treatment of nearly geostrophic
flows. The main outcomes of our investigation are as follows. First, both regularizations efficiently
slowdown the high frequency gravity waves and, therefore, allow much larger time steps in the time
integration compared to a standard explicit approach. The stable time step for the pressure regularized
system then turns out to be larger that that of the velocity regularized one. In most cases, stability can
be retained without introducing any off-centering; for those cases where such a damping mechanism is
required, a way to incorporate the off-centering in the regularization approach has been proposed. The
computational results for SW-τ are very similar to those obtained for SW-0, with discrepancies due to
the different propagation of the short gravity waves. The results obtained for SW-α, although showing
an overall similarity with the reference SW-0 case, present two types of differences: a behavior similar to
the SW-τ case characterizes the divergent, gravity wave component of the flow, and further deviations
can be observed in the vortical component. These latter deviations involve: different position of the
vortical structures having a scale comparable to α, different development of flow instabilities, different
propagation of Rossby-Haurwitz waves and different energy spectra, with a sharper roll-off at high wave
numbers. We plan to investigate the consequences of such effects on more realistic flow configurations,
involving also baroclinicity, in future research work. Finally, for all the test cases, numerical evidence
has been provided that the proposed numerical discretization correctly reproduces the nondissipative
nature of the two continuous regularized systems.
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