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Abstract: We consider a sequence of cycles of exponential single server nodes, where the number of
nodes is fixed and the number of customers grows unboundedly. We prove a central limit theorem for the
cycle times distribution. We investigate the idle time structure of the bottleneck nodes and the joint sojourn
time distribution that a test customer observes at the non-bottleneck nodes during a cycle. Furthermore, we
study the filling behaviour of the bottleneck nodes and show that there is a different asymptotic depending
on having a single bottleneck or having multiple bottlenecks.
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Introduction

The aim of this paper is to analyze the behaviour of cyclic Gordon-Newell networks in equilibrium with
single-server nodes as the number of customers in the system increases to infinity. There are two different
cases to consider:
(i) All nodes have the same service rate. Then the customers are uniformly distributed over the nodes.
(ii) Different service rates exist. Then at least one bottleneck (node with the smallest service rate) exists.
Almost all the customers will be queued up at the bottleneck nodes.
We will focus on the second case where bottlenecks occur. We are particularly interested in the distribution
of a customer’s cycle time for which a central limit theorem will be proved. Furthermore, we are interested
in the differences of the filling behaviour of the nodes, in case of a single bottleneck and in case of multiple
bottlenecks.

It will turn out, that an important aspect of the networks’ behaviour is characterized by the mean idle
time of the bottleneck nodes during the cycle of a test customer, whose cycle time distribution is investigated.

The paper is organized as follows: In Section 1, the model (a closed cyclic queueing network) will be
described and some properties needed in the sequel will be referenced . In Section 2, we compute a test
customer’s cycle time distribution and discuss the intimate connection of this distribution to the mean idle
times of the bottlenecks. This connection originates from the description of the cycle time from the viewpoint
of a node: For population size N the time between N departures from some specified node is the typical
cycle time of the first of the N departing customers which are observed [Box88].

Starting with the limiting distribution of the cycle time, we will prove a central limit theorem in the
general setting of this paper. This result generalizes the central limit theorem for the cycle time distribution

1



when the number of nodes is fixed and all service rates are distinct [DMS08]. In Section 3 we analyze
differences in the filling behaviour of the network in case of a single bottleneck and in case of multiple
bottlenecks. We start from the observation that there is a fundamental difference with respect to the mean
idle times between these two cases:
Considering the possible service rate vectors of the cyclic networks as parameter space the observed jump in
the mean idle times constitutes a phase transition, when reaching a certain boundary region of the parameter
space.

Motivated by this, we analyze in detail the speed with which the bottleneck nodes are filled up. It
turns out that there is a fundamental difference in the speed of convergence between the cases of single and
multiple bottlenecks.

In Section 4, we will prove a weak convergence theorem for the joint steady-state queue length distribution
of the non-bottleneck nodes.

1 Model specification and previous results

We consider a closed cyclic queueing network consisting of M nodes Q[1], . . . , Q[M ] and N indistinguishable
circulating customers. Node Q[i], i = 1, . . . , M , is a single-server with infinite waiting room, which is
organized according to FCFS (First Come, First Served) regime. The dynamic of the system is as follows: If
a customer arrives at node Q[i], i = 1, . . . ,M , and finds an idle service channel, i.e. no other customers are
present at that node, his service begins immediately. Otherwise, he will join the tail of the queue. Service
times requested by the customers at node Q[i] are exp (µi)-distributed. If the service of the customer at node
Q[i] is finished, he will move instantenously to node Q[i + 1] (with Q[M + 1] := Q[1]). The other customers
waiting in the line (if there are any) move one position forward. All jumps of the customers (in the queue or
to other nodes) happen without any time lag. The service times at node Q[i] form a sequence of iid random
variables which is independent of the service times at other nodes.

Denote by X
(M,N)
i (t) the queue length at node Q[i], i.e. the number of customers present at node Q[i]

(waiting or in service), at time t ≥ 0. We define X(M,N)(t) := (X(M,N)
1 (t), . . . , X(M,N)

M (t)) as the joint queue
length vector at time t and X(M,N) :=

(
X(M,N)(t), t ≥ 0

)
as the joint queue length process. The state space

of X(M,N) is Z(M, N) := {(n1, . . . , nM ) ∈ NM | n1 + . . . + nM = N}.
For more information on Gordon-Newell networks, see [Rob03][Section 4.4.].

Proposition 1.1 The joint queue length process X(M,N) = (X(M,N)(t), t ≥ 0) described above is a strong
Markov process, which is irreducible and positive recurrent. The limiting and stationary distribution is

π(M,N)(n) = G(M, N)−1
M∏

i=1

(
1
µi

)ni

(1.1)

with n = (n1, . . . , nM ) ∈ Z(M, N) and normalising constant

G(M, N) =
∑

n∈Z(M,N)

M∏

i=1

(
1
µi

)ni

. (1.2)

Assumption. In the following we will assume that the joint queue length process is in equilibrium. We
will therefore omit the time parameter t, i.e., we will write X(M,N) instead of X(M,N)(t).
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We want to investigate individual behaviour of customers in the cycle. Therefore in the following we fix
one customer, called TC (the Test Customer). The random time between two entrances of the TC into node
Q[1] is called the cycle time. Formally, we get a sequence of cycle times (c(i)

N , i ∈ N+) with c
(i)
N being the

i-th passage time through the cycle.

Theorem 1.2 (Limiting distribution of the cycle time and sojourn time vector) The limiting dis-
tribution of the TC’s cycle time is given by its the Laplace-Stieltjes Transform (LST)

ψ(M,N)(θ) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)
M∏

j=1

(
µj

µj + θ

)nj+1

, θ ≥ 0, (1.3)

where π(M,N−1)(n1, . . . , nM ) (defined by (1.1)) is the steady-state probability that at the arrival instants of
the TC at node Q[1], he observes n1 customers before him at node Q[1] and ni customers present at node
Q[i], i = 2, . . . ,M , without counting himself.

The limiting joint distribution of the TC’s successive sojourn times during a cycle is given by its the
Laplace-Stieltjes Transform (LST)

φ(M,N)(θ1, . . . , θJ) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)
M∏

j=1

(
µj

µj + θj

)nj+1

, θj ≥ 0, j = 1, . . . , J. (1.4)

A proof can be found in [BKK84].

Comment.

(i) Note that the limiting distribution of the TC’s cycle time is a mixture of convolutions of Gamma
distributions:

L (cN ) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)
(
∗M

j=1Γµj ,nj+1

)
. (1.5)

We see that for large values of N the limiting distribution is rather complicated. Therefore, asymptotic
expansions would be of value. E.g., we shall prove a central limit theorem for the cycle time.

(ii) Note that the steady state distribution of the joint queue length process (1.1) and the limiting distri-
bution of the cycle time are not influenced by the ordering of the nodes.

Notation. Denote by cN a real valued non-negative random variable with LST given by (1.3), i.e.,

cN ∼ ψ(M,N).

From now on, when recalling a cycle time, we always refer to a random variable cN with LST ψ(M,N).
In any case the number M of nodes is fixed.
Similarly, an M -dimensional vector with non negative real coordinates

(S(N)
1 , S

(N)
2 , . . . , S

(N)
M ) ∼ φ(M,N)(θ1, . . . , θM ),

i.e., having distribution with LST φ(M,N)(θ1, . . . , θM ) is considered as the vector of TC’s successive sojourn
times during a cycle under customer stationary conditions.

3



Definition 1.3 The node Q[i], i = 1, . . . , M , is said to be a bottleneck node if Q[i] has the slowest service
rate, i.e., µi = min{µk, k = 1, . . . , M}.

Assumption. In order to keep the notation and the computations as simple as possible, we will always
assume that without loss of generality µ1 ≤ . . . ≤ µM . This assumption is made only to keep the calculations
simple.
Notation. Denote m the number of different service rates, i.e. the number of different values of µ1 ≤ . . . ≤
µM . The distinct service rates will be denoted by η1 < η2 < . . . < ηm and let νl, 1 ≤ l ≤ m, be the number
of i ∈ {1, . . . , M} with µi = ηl. (Note that ν1 is the number of bottleneck nodes and that µ1 = η1 and
µM = ηm.)

It was already noticed by Gordon and Newell [GN67] that the bottlenecks have an overwhelming influence
on the asymptotic and steady state behaviour of a closed network, whenever the number of customers is high
compared to the number of nodes. A precise meaning of this statement was proved [GN67] in case of node
1 being the single bottleneck of the network when M is constant and N →∞. Gordon and Newell proved

lim
N→∞

P (X(M,N)
1 ≥ n) = 1, ∀n ∈ N, (1.6)

lim
N→∞

P (X(M,N)
2 = n2, . . . , X

(M,N)
M = nM ) =

M∏

j=2

(
1− 1

µj

)(
1
µj

)nj

, ∀ nj ≥ 0, j = 2, . . . ,M. (1.7)

The usual interpretation of the results obtained by Gordon and Newell [GN67] is in case of a cyclic network
that with increasing number of customers the bottleneck node approaches asymptotically a Poissonian source
feeding the rest of the network, while all the other nodes eventually form an open ergodic tandem system, the
behaviour of which is well understood: Local geometrical queue length distribution and independence over
the nodes in steady state. It is rather obvious that a similar property should follow for the non-bottleneck
nodes in the one-bottleneck case from (1.3), resp., (1.4), for the sojourn times and partial cycle times and
their asymptotic behaviour, see Theorem 5.1 in [DMS08].

On the other hand it is a tempting conjecture (but not obvious) that a similar interpretation should be
available for the case of several bottlenecks which are distributed over the cycle and divide the cycle into
bottlenecks and (possibly empty) sequences of non-bottleneck nodes between them. This will be proved
below in Section 4.

If Q[1] is the only bottleneck (µ1 < µ2 ≤ · · · ≤ µM ) it is not surprising to TC that in case of large
population almost all other customers are waiting before him at Q[1] when his cycle commences. Then in
particular it follows ([Box88]) that

E
(
cN

)
= Nµ−1

1

{
1 + O

(
[
µ1

µ2
]N

)}
, Var

(
cN

)
= Nµ−2

1

{
1 + O

(
[
µ1

µ2
]N

)}
, N →∞ . (1.8)

From (1.8) obviously in heavy traffic the slowest queue generates the main fraction of the cycle time of TC.
This clearly reflects the bottleneck behaviour with respect to the number of customers. So it is reasonable
to approximate the distribution of the cycle time for large values of N by the sum of N consecutive service
times at the slowest queue. This tempting conjecture is supported by Chow’s observation that in a two-stage
cycle a result parallel to (1.8) holds for the LST of the cycle times as well [Cho80]. This suggests that there
should hold a central limit theorem for the rescaled cycle time, when the number of customers tends to
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infinity, while the number of stations remains fixed:
In case of a single bottleneck Q[1], the TC finds almost all other customers waiting before him at the
bottleneck node, which in precise terms is

lim
N→∞

E
[
X

(M,N)
1

]

N
= 1.

As a result, the TC’s cycle time is mainly the time needed to serve all customers before him at the bottleneck.
These times are i.i.d., with finite mean and variance.

The central limit theorem for the rescaled cycle time was proved by Daduna, Malchin and Szekli
[DMS08][Theorem 4.1] for the case of pairwise distinct service rates (µ1 < . . . < µM ), i.e., in case of a
single bottleneck. Furthermore, they proved a convergence property of the joint sojourn times vectors, with
the bottleneck under central limit scaling, the non-bottlenecks without scaling.

On the other hand the usual interpretation suggests that even the unscaled sojourn times at the non-
bottleneck nodes should converge in some sense to exponential distributions. This will be proved in Theorem
4.1 and supports anew the usual interpretation.

We shall investigate in the following the similar problems without restrictions on the number of bottle-
necks. It turns out, that the proofs are much more involved.

2 Cycle times and idle times of bottlenecks

Our approach resumes the description of cycle times given by Boxma [Box88][p. 19.]
The cycle time is defined as the random time between two successive entrances of TC into Q[1]. In the

following, we analyze the cycle time from the viewpoint of a server: We start the observation of the server
Q[1] at a time instant, when TC leaves Q[1]. We denote by i1 the random idle time (which may be zero)
until the next customer starts his service at node Q[1]. Afterwards, we denote by τ1 the random service time
of the next customer in service. When this customers leaves Q[1], we denote by i2 the next idle time (which
may be zero again) of the service channel and so on. By and by, the customers pass Q[1] and we denote the
idle times by ij and the service times by τj , j = 1, . . . , N . (Idle times are zero if there are customers waiting
in the queue of Q[1].)
After TC leaves Q[1] again, we sum up the service times and the idle times to get the cycle time. Therefore,
the cycle time can be expressed by

cN = i1 + . . . + iN + τ1 + . . . + τN (2.1)

Defining δN := τ1 + . . . + τN as the sum of all service times and ρN := i1 + . . . + iN as the cumulative idle
time, we have

cN = ρN + δN (2.2)

where δN is the sum of N iid exp(µ1)-distributed service times.
A first simple observation yields a bound for E[ρN ] which is independent on N . We have

E[cN ]
(1.5)
=

∑

n∈Z(M,N−1)

π(M,N−1)(n)
M∑

j=1

(nj + 1) µ−1
j︸︷︷︸

≤µ−1
1

≤
∑

n∈Z(M,N−1)

π(M,N−1)(n)µ−1
1

M∑

j=1

(nj + 1)

︸ ︷︷ ︸
=N+M−1

= (N + M − 1)µ−1
1

∑

n∈Z(M,N−1)

π(M,N−1)(n) = (N + M − 1)µ−1
1 .
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Since E[ρN ] = E[cN ]− E[δN ] = E[cN ]−Nµ−1
1 , it follows

E[ρN ] ≤ (M − 1)µ−1
1 . (2.3)

Boxma [Box88] observed that (in his setting with exactly one bottleneck) holds

E[ρN ] → 0, n →∞.

The observation (2.3) is of importance because the cycle time consists of two components: δN , the sum of
N iid exp(µ1)-distributed random service times and the cumulative idle time ρN , whose expected values
remain bounded, whereares the expected values of δN grow to infinity as N → ∞. One would therefore
assume that for large values of N , the influence of ρN on the cycle time is not significant compared to the
influence of δN . This suggests

cN − E[cN ]√
V ar(cN )

≈ δN − E[δN ]√
V ar(δN )

.

For the right side holds an elementary central limit theorem. The main problem will be to sharpen and to
extend (2.3).

2.1 Idle times at the bottlenecks

Recall that node Q[1] is always a bottleneck, and that ν1 ≥ 1 is the number of bottlenecks. For the expected
cumulative idle times at Q[1] during TC’s cycle in steady state regime we have a precise asymptotic. This is
obtained from moment properties of the cycle time, which will be used to prove the central limit theorem.

Theorem 2.1 It holds
lim

N→∞
(
E[cN ]− µ−1

1 N
)

= µ−1
1 (ν1 − 1). (2.4)

Theorem 2.2 It holds
lim

N→∞
(
V ar(cN )− µ−2

1 N
)

= µ−2
1 (ν1 − 1). (2.5)

An immediate corollary is now

Corollary 2.3 It holds
lim

N→∞
E[ρN ] = µ−1

1 (ν1 − 1). (2.6)

and
lim

N→∞
(V ar(ρN ) + Cov(ρN , δN )) = µ−2

1 (ν1 − 1). (2.7)

While (2.7) does not admit a direct interpretation, (2.6) has a surprising interpretation.
Assume that we have a single bottleneck which is Q[1]. Then

lim
N→∞

E[ρN ] = 0.

Assume further, that for nodes Q[2], Q[3], . . . , Q[k], with k < M we let converge µj → µ1, j = 2, . . . , k, then
we have a discontinuity of the asymptotic expected idle times in this limiting procedure. Saying it in the
simplest setting the other way round:
Consider our sequence of networks to be dependent on the parameter vector (µ1, . . . , µM ), and assume that
the parameters vary in a way that we start with a single bottleneck Q[1]. Consider the function which maps
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any sequence of networks to the value limN→∞E[ρN ]. This function starts at zero and stays there until
at least one other µj reaches µj = µ1. Then the mean value function E[ρN ] immediately jumps to a value
≥ µ−1

1 > 0, a phase transition occurs, when the parameter vector reaches the boundary region defined by
{µ1 = µ2}.

We shall discuss this behaviour in more detail in Section 3.
The proofs of Theorem 2.1 and 2.2 need several preparatory steps which will be given now.

The following interchange formula for sums and products is a direct consequence of the most general
form of Harrison’s formula [Har85].

Lemma 2.4

∑

n∈Z(M,N)

M∏

j=1

(
1
µj

)nj

=
m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N−νl+al+1 (
N + al

N

)
(2.8)

·



m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au


 .

Proof.

∑

n∈Z(M,N)

M∏

j=1

(
1
µj

)nj

(1)
=

m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N+M−νl
(

N + al

N

) 


m∏

u=1, u 6=l

η−au
u

(
νu + au − 1

νu − 1

)(
1
ηl
− 1

ηu

)−νu−au




=
m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N+M−νl
(

N + al

N

) 


m∏

u=1, u 6=l

η−au
u

(
νu + au − 1

νu − 1

)(
ηlηu

ηu − ηl

)νu+au




=
m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N+M−νl
(

N + al

N

)
η

∑
u6=l(νu+au)

l

·



m∏

u=1, u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




=
m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N−νl+al+1 (
N + al

N

) 


m∏

u=1, u 6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




(1)
= is the generalization of Harrison’s formula, see [Ser99][Proposition 1.32]. Note that in the expression given
there, typos occur, see [Mal08][Equation (1.19)].

The following constants will help to keep the computations with sometimes lengthy expressions shorter.
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Definition 2.5 For the general cycle we set

(i) K1 := 1{ν1>1}
m∑

u=2

νu

ηu − η1
,

(ii) K2 := 1{ν1>2}
∑

a2+...+aM=2

m∏
u=2

(
1

ηu − η1

)au
(

νu + au − 1
νu − 1

)
,

(iii) K̃1 := (ν1 − 1)K1,

(iv) K̃2 := (ν1 − 1)(ν1 − 2)K2,

(v) by (aN )N∈N we denote sequences with the property

aN := 1− η1
1

N + ν1 − 1
K̃1 + η2

1

1
(N + ν1 − 1)(N + ν1 − 2)

K̃2 + O

((
1
N

)3
)

.

Note that K1 = K̃1 = 0 if ν1 = 1 and that K2 = K̃2 = 0 if ν1 ≤ 2. The following fact is a direct consequence
of the definitions.

Lemma 2.6 Let (aN )N∈N denote a sequence with

aN := 1− η1
1

N + ν1 − 1
K̃1 + η2

1

1
(N + ν1 − 1)(N + ν1 − 2)

K̃2 + O

((
1
N

)3
)

Then
lim

N→∞
N(aN − 1) = −η1K̃1. (2.9)

Proposition 2.7 The norming constant in the general cycle is

G(M, N) (2.10)

=
m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N−νl+al+1 (
N + al

N

)
·



m∏

u=1,u 6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




The norming constants obey the following asymptotic expansion:

G(M, N) =
(

1
η1

)N (
N + ν1 − 1

N

) (
m∏

u=2

(
ηu

ηu − η1

)νu
)

aN , (2.11)

where (aN )N∈N is a sequence according to (v) in Definition 2.5.

(2.11) tells us that the partition function G(M,N) is dominated by the term

(
1
η1

)N (
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu

.

It turns out that the proof of (2.11) is of a prototype structure for many of our later arguments. We therefore
give the details here.
Proof. (i) Equation (2.10) follows immediately from (2.8).
(ii) We start with the norming constant in the form (2.10) and split the term where l = 1, i.e., the summand
representing the bottlenecks. As we will show later on, only this summand is persistent and therefore of
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importance for computing asymptotic distributions.

G(M, N)

=
m∑

l=2

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N−νl+al+1 (
N + al

N

) 


m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




+
∑

a∈Z(m,ν1−1)

(−1)a1−ν1+1

(
1
η1

)N−ν1+a1+1 (
N + a1

N

) (
m∏

u=2

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au
)

=
m∑

l=2

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N−νl+al+1 (
N + al

N

) 


m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




+
∑

a∈Z(m,ν1−1),a1<ν1−3

(−1)a1−ν1+1

(
1
η1

)N−ν1+a1+1 (
N + a1

N

) (
m∏

u=2

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au
)

+
∑

a∈Z(m,ν1−1),a1≥ν1−3

(−1)a1−ν1+1

(
1
η1

)N−ν1+a1+1 (
N + a1

N

) (
m∏

u=2

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au
)

Splitting the last expressions for a1 ≥ ν1 − 3, i.e. a1 = ν1 − 1, a1 = ν1 − 2 and a1 = ν1 − 3, yields

G(M, N)

=
m∑

l=2

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N−νl+al+1 (
N + al

N

) 


m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




+
∑

a∈Z(m,ν1−1),a1<ν1−3

(−1)a1−ν1+1

(
1
η1

)N−ν1+a1+1 (
N + a1

N

) (
m∏

u=2

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au
)

+
(

1
η1

)N−2 (
N + ν1 − 3

N

) (
m∏

u=2

(
ηu

ηu − η1

)νu
)

K2

−
(

1
η1

)N−1 (
N + ν1 − 2

N

) (
m∏

u=2

(
ηu

ηu − η1

)νu
)

K1

+
(

1
η1

)N (
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu

.

A short comment may be in order here: So far, we only have split the sum. First, we extracted the summand
with l = 1, then we extracted the summands with a1 ≥ ν1−3. Finally, we wrote down the explicit expressions

for a1 = ν1 − 1, a1 = ν1 − 2 and a1 = ν1 − 3. Now we factor out
(

1
η1

)N (
N+ν1−1

N

) ∏m
u=2

(
ηu

ηu−η1

)νu

.
Since

lim
N→∞

Np

(
η1

ηl

)N

= 0, p ∈ N, 2 ≤ l ≤ m,

it follows that
((

1
η1

)N (
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu
)−1

·
m∑

l=2

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N−νl+al+1 (
N + al

N

)
·



m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




= O

((
1
N

)r)
, for all r ∈ N.
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We choose r = 3 and receive O
((

1
N

)3
)
. Since

(
N+a1

N

)
(
N+ν1−1

N

) = O

((
1
N

)3
)

for a1 < ν1 − 3,

it follows that

G(M, N) =
(

1
η1

)N (
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu

·
[
1− η1

ν1 − 1
N + ν1 − 1

K1 + η2
1

(ν1 − 1)(ν1 − 2)
(N + ν1 − 1)(N + ν1 − 2)

K2 + O

((
1
N

)3
)]

=
(

1
η1

)N (
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu

·
[
1− η1

1
N + ν1 − 1

K̃1 + η2
1

1
(N + ν1 − 1)(N + ν1 − 2)

K̃2 + O

((
1
N

)3
)]

=
(

1
η1

)N (
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu

aN .

The next calculations prepare to obtain asymptotic expansions of the first two cycle time moments.

Proposition 2.8 It holds

(i)

ψ(M,N+1)(θ) = G(M, N)−1
m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1ηνl

l

(
1

ηl + θ

)N+al+1

(2.12)

·
(

N + al

N

) 


m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




(ii)

E[cN+1] = η−1
1 (N + ν1)

1
aN

− 1
aN

K̃1 + η1
1

aN

1
(N + ν1 − 1)

K̃2 + O

((
1
N

)2
)

(2.13)

(iii)

E[cN+1] = η−1
1 (N + ν1)

1
aN

− 1
aN

K̃1 + O

(
1
N

)
(2.14)

(iv)

E[c2
N+1] = η−2

1 (N + ν1)(N + ν1 + 1)
1

aN
− η−1

1 (N + ν1)
1

aN
K̃1 +

1
aN

K̃2 + O

(
1
N

)
(2.15)

Proof. (i)

ψ(M,N+1)(θ)G(M, N)
(1.3)
= G(M, N)

∑

n∈Z(M,N)

π(M,N)(n)
M∏

j=1

(
µj

µj + θ

)nj+1
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=




M∏

j=1

µj

µj + θ


 ∑

n∈Z(M,N)

M∏

j=1

(
1
µj

)nj M∏

j=1

(
µj

µj + θ

)nj

=
m∏

l=1

(
ηl

ηl + θ

)νl

·
∑

n∈Z(M,N)

M∏

j=1

(
1

µj + θ

)nj

(2.8)
=

m∏

l=1

(
ηl

ηl + θ

)νl m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1

ηl + θ

)N−νl+al+1 (
N + al

N

)

·



m∏

u=1,u 6=l

(ηu + θ)νu

(
νu + au − 1

νu − 1

) (
1

ηu − ηl

)νu+au




=
m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1ηνl

l

(
1

ηl + θ

)N+al+1 (
N + al

N

)

·



m∏

u=1,u 6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au


 .

(ii) Since E[cN+1] = − ∂
∂θ ψ(M,N+1)(θ)|θ=0, we first calculate ∂

∂θ ψ(M,N+1)(θ):

∂

∂θ
ψ(M,N+1)(θ)

(2.12)
= −G(M, N)−1

m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1ηνl

l (N + al + 1)

·
(

1
ηl + θ

)N+al+2 (
N + al

N

) 


m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au


 .

So, E[cN+1] = − ∂

∂θ
ψ(M,N+1)(θ)|θ=0

(2.16)
= G(M,N)−1

m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1(N + al + 1)
(

1
ηl

)N−νl+al+2 (
N + al

N

)




m∏

u=1,u 6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




= G(M,N)−1
m∑

l=2

∑

a∈Z(m,νl−1)

(−1)al−νl+1(N + al + 1)
(

1
ηl

)N−νl+al+2 (
N + al

N

)




m∏

u=1,u 6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




+G(M, N)−1
∑

a∈Z(m,ν1−1),a1<ν1−3

(−1)a1−ν1+1(N + a1 + 1)
(

1
η1

)N−ν1+a1+2 (
N + a1

N

)

(
m∏

u=2

ηνu
u

(
νu + au − 1

νu − 1

) (
1

ηu − η1

)νu+au
)

+G(M, N)−1
∑

a∈Z(m,ν1−1),a1≥ν1−3)

(−1)a1−ν1+1(N + a1 + 1)
(

1
η1

)N−ν1+a1+2 (
N + a1

N

)

(
m∏

u=2

ηνu
u

(
νu + au − 1

νu − 1

) (
1

ηu − η1

)νu+au
)

.
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Applying equation (2.11) leads to the result that the first two sums are of order O
((

1
N

)2
)
, therefore

E[cN+1] = G(M, N)−1(N + ν1)
(

1
η1

)N+1 (
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu

−G(M, N)−1(N + ν1 − 1)
(

1
η1

)N (
N + ν1 − 2

N

) (
m∏

u=2

(
ηu

ηu − η1

)νu
)

K1

+G(M, N)−1(N + ν1 − 2)
(

1
η1

)N−1 (
N + ν1 − 3

N

) (
m∏

u=2

(
ηu

ηu − η1

)νu
)

K2

+O

((
1
N

)2
)

(2.11)
= (N + ν1)η−1

1

1
aN

− 1
aN

(N + ν1 − 1)(ν1 − 1)
N + ν1 − 1

K1

+η1
1

aN

(N + ν1 − 2)(ν1 − 1)(ν1 − 2)
(N + ν1 − 1)(N + ν1 − 2)

K2 + O

((
1
N

)2
)

= (N + ν1)η−1
1

1
aN

− 1
aN

K̃1 + η1
1

aN

1
(N + ν1 − 1)

K̃2 + O

((
1
N

)2
)

.

(iii) This is an immediate corollary of (2.13).

(iv) Since E[c2
N+1] = ∂2

∂θ2 ψ(M,N+1)(θ)|θ=0, we first have to calculate ∂2

∂θ2 ψ(M,N+1)(θ):

∂2

∂θ2
ψ(M,N+1)(θ)

(2.16)
= G(M,N)−1

m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1ηνl

l (N + al + 1)(N + al + 2)

·
(

1
ηl + θ

)N+al+3 (
N + al

N

) 


m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au


 .

Applying this result yields

E[c2
N+1] =

∂2

∂θ2
ψ(M,N+1)(θ)|θ=0

= G(M,N)−1
m∑

l=1

∑

a∈Z(m,νl−1)

(−1)al−νl+1(N + al + 1)(N + al + 2)

·
(

1
ηl

)N−νl+al+3 (
N + al

N

) 


m∏

u=1,u 6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




= (N + ν1)(N + ν1 + 1)η−2
1

1
aN

− (N + ν1 − 1)(N + ν1)η−1
1

1
aN

1
N + ν1 − 1

K̃1

+(N + ν1 − 2)(N + ν1 − 1)
1

aN

1
(N + ν1 − 1)(N + ν1 − 2)

K̃2 + O

(
1
N

)

= (N + ν1)(N + ν1 + 1)η−2
1

1
aN

− (N + ν1)η−1
1

1
aN

K̃1 +
1

aN
K̃2 + O

(
1
N

)
.

After all these preparations, we are now in a position to prove our Theorems 2.1 and 2.2.
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Proof of Theorem 2.1. Note that µ1 = η1. It follows

lim
N→∞

(
E[cN+1]− η−1

1 (N + ν1)
) (2.14)

= lim
N→∞

(
η−1
1 (N + ν1)

1
aN

− 1
aN

K̃1 + O

(
1
N

)
− η−1

1 (N + ν1)
)

= η−1
1 lim

N→∞

(
N(1− aN )

aN

)
− K̃1

(2.9)
= 0.

The theorem follows.

Proof of Theorem 2.2. Since µ1 = η1, it is sufficient to show that

lim
N→∞

(
V ar(cN+1)− η−2

1 (N + ν1)
)

= 0.

E2[cN+1]
(2.13)
=

(
η−1
1 (N + ν1)

1
aN

− 1
aN

K̃1 + η1
1

aN

1
(N + ν1 − 1)

K̃2 + O

((
1
N

)2
))2

=
(

η−1
1 (N + ν1)

1
aN

− 1
aN

K̃1 + η1
1

aN

1
(N + ν1 − 1)

K̃2

)2

+ O

(
1
N

)

=
(

η−1
1 (N + ν1)

1
aN

− 1
aN

K̃1

)2

+ 2
(

η−1
1 (N + ν1)

1
aN

− 1
aN

K̃1

)(
η1

1
aN

1
(N + ν1 − 1)

K̃2

)

+
(

η1
1

aN

1
(N + ν1 − 1)

K̃2

)2

+ O

(
1
N

)

=
(

η−1
1 (N + ν1)

1
aN

− 1
aN

K̃1

)2

+ 2
1

a2
N

N + ν1

N + ν1 − 1
K̃2 + O

(
1
N

)

= η−2
1 (N + ν1)2

1
a2

N

− 2η−1
1 (N + ν1)

1
a2

N

K̃1 +
1

a2
N

K̃1
2

+ 2
1

a2
N

N + ν1

N + ν1 − 1
K̃2 + O

(
1
N

)

lim
N→∞

(
V ar(cN+1)− η−2

1 (N + ν1)
)

= lim
N→∞

(
E[c2

N+1]− E2[cN+2]− η−2
1 (N + ν1)

)

(2.15)
= lim

N→∞

[
η−2
1 (N + ν1)(N + ν1 + 1)

1
aN

− η−1
1 (N + ν1)

1
aN

K̃1 +
1

aN
K̃2

−η−2
1 (N + ν1)2

1
a2

N

+ 2η−1
1 (N + ν1)

1
a2

N

K̃1

− 1
a2

N

K̃1
2 − 2

1
a2

N

N + ν1

N + ν1 − 1
K̃2 − η−2

1 (N + ν1)
]

= lim
N→∞

[
η−2
1 (N + ν1)2

1
aN

− η−2
1 (N + ν1)2

1
a2

N

(2.16)

−η−1
1 (N + ν1)

1
aN

K̃1 + 2η−1
1 (N + ν1)

1
a2

N

K̃1

]

+ lim
N→∞

(
η−2
1 (N + ν1)

1
aN

− η−2
1 (N + ν1)

)
− K̃1

2 − K̃2

Note that

lim
N→∞

(
η−2
1 (N + ν1)

1
aN

− η−2
1 (N + ν1)

)
= η−2

1 lim
N→∞

(
N(1− aN )

aN

)
(2.5.1)

= η−1
1 K̃1. (2.17)
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Also note that with using Lemma 2.6 at
(1)
=

η−2
1 (N + ν1)2

1
aN

− η−2
1 (N + ν1)2

1
a2

N

= η−2
1

1
a2

N

(N + ν1)2(aN − 1)

(1)
= η−2

1

1
a2

N

(N2 + 2Nν1 + ν2
1)

(
−η1

1
N + ν1 − 1

K̃1 + η2
1

1
(N + ν1 − 1)(N + ν1 − 2)

K̃2 + O

((
1
N

)3
))

= −η−1
1

1
a2

N

N2

N + ν1 − 1
K̃1 +

1
a2

N

N2

(N + ν1 − 1)(N + ν1 − 2)
K̃2

−2η−1
1 ν1

N

N + ν1 − 1
K̃1 + O

(
1
N

)
. (2.18)

Inserting (2.17) and (2.18) into (2.16) leads to

lim
N→∞

(
V ar(cN+1)− η−2

1 (N + ν1)
)

= lim
N→∞

[
−η−1

1

1
a2

N

N2

N + ν1 − 1
K̃1 − η−1

1 (N + ν1)
1

aN
K̃1 + 2η−1

1 (N + ν1)
1

a2
N

K̃1

]

+η−1
1 K̃1 − 2η−1

1 ν1K̃1 − K̃1
2

+ K̃2 − K̃2

= η−1
1 K̃1 lim

N→∞




1
a2

N

(N + ν1)(N + ν1 − 1)−N2

N + ν1 − 1︸ ︷︷ ︸
→2ν1−1

+
1

a2
N

(N + ν1)(1− aN )
︸ ︷︷ ︸

→η1K̃1




+ η−1
1 K̃1 − 2η−1

1 ν1K̃1 − K̃1
2

= 0.

2.2 Central limit theorem for cycle times

The following theorem removes the requirement of distinct service rates at all nodes in Theorem 4.1 of
[DMS08]. Our preparatory derivations revealed that the methods needed for the proof are completely
different.

Theorem 2.9 (Central limit theorem for the cycle time) Let µ1 ≤ . . . ≤ µM . Then

cN − E[cN ]√
V ar(cN )

D−→ X ∼ N (0, 1) as N →∞. (2.19)

Proof. We shall utilize from Slutsky’s theorem [BD77][p. 461] the following facts: Let X, Xn, Yn, n ≥ 1,
be real-valued random variables so that Xn

D−→ X and Yn
P−→ c for some c ∈ R. Then it holds

Xn + Yn
D−→ X + c (2.20)

XnYn
D−→ Xc (2.21)

Recall now from (2.2) that cN can be expressed as cN = δN + ρN , with δN being the sum of N iid exp(µ1)-
distributed service times and ρN being the cumulative idle time. Therefore the normalized cycle time can
be written as

cN − E[cN ]√
V ar(cN )

=
δN − E[δN ] + ρN − E[ρN ]√

V ar(cN )
=

δN − E[δN ]√
V ar(δN )

√
V ar(δN )√
V ar(cN )

+
ρN − E[ρN ]√

V ar(cN )
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First, note that because of the central limit theorem for iid random variables

δN − E[δN ]√
V ar(δN )

D−→ X ∼ N (0, 1) as N →∞. (2.22)

Since V ar(δN ) = µ−2
1 N →∞ as N →∞ and limN→∞ |V ar(cN )− V ar(δN )| = const. (see (2.5)), it holds

lim
N→∞

√
V ar(δN )√
V ar(cN )

= 1

and therefore √
V ar(δN )√
V ar(cN )

P−→ 1 as N →∞. (2.23)

Combining (2.22) and (2.23) and applying (2.21), we get

δN − E[δN ]√
V ar(δN )

√
V ar(δN )√
V ar(cN )

D−→ X ∼ N (0, 1) as N →∞. (2.24)

Finally, let us analyze the last term ρN−E[ρN ]√
V ar(cN )

. It holds

E

[∣∣∣∣∣
ρN − E[ρN ]√

V ar(cN )

∣∣∣∣∣

]
=

E [|ρN − E[ρN ]|]√
V ar(cN )

≤ 2E[ρN ]√
V ar(cN )

→ 0 as N →∞ (2.25)

since V ar(cN ) →∞ as N →∞ and

lim
N→∞

E[ρN ] = lim
N→∞

(E[cN ]− E[δN ]) = lim
N→∞

(
E[cN ]−Nµ−1

1

) (2.4)
= const.

Applying the Markov inequality

P

(∣∣∣∣∣
ρN − E[ρN ]√

V ar(cN )

∣∣∣∣∣ ≥ ε

)
≤

E

[∣∣∣∣ ρN−E[ρN ]√
V ar(cN )

∣∣∣∣
]

ε
→ 0 as N →∞ ∀ε > 0,

it follows that
ρN − E[ρN ]√

V ar(cN )
P−→ 0 as N →∞. (2.26)

Combining (2.24) and (2.26) and applying (2.20) yields

cN − E[cN ]√
V ar(cN )

D−→ X ∼ N (0, 1) as N →∞.

3 Single bottleneck case versus multi bottleneck case

In this section, we analyze differences in the filling behaviour of the network in case of a single bottleneck and
in case of multiple bottlenecks: How does the dynamic of the networks depend on the number of bottleneck
nodes. Recall that we already noticed in Corollary 2.1 a surprising discontinuity of the asymptotic idle time
behaviour when varying the service rates.

lim
N→∞

E[ρN ] =

{
(ν1 − 1)µ−1

1 > 0 for ν1 > 1

0 for ν1 = 1
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In case of pairwise distinct service rates (µ1 < . . . < µM ), it even holds (cf. [Box88])

E[ρN ] = Nµ−1
1 O

((
µ1

µ2

)N
)

.

For the cumulative idle time ρN , it makes a major difference whether the network has a single bottleneck
node or multiple bottleneck nodes: In case of a single bottleneck, the cumulative idle time of a bottleneck
node during a customer’s cycle does not only converge stochastically to zero as the number of customers
in the network goes to infinity, but the rate of convergence is very high. Thus, for large values of N , the
bottleneck node will almost never be empty. Also, since cN = δN + ρN and ρN is converging stochastically
to zero, for large values of N the cycle time cN can be approximated by δN , i.e. by the sum of N iid

exp(µ1)-distributed random variables. In contrast, in case of multiple bottleneck nodes, the expected values
of the cumulative idle times converges towards a positive constant, i.e. during one cycle, the bottleneck
node Q[1] will on average be empty for a positive time period. By symmetry this also holds for the other
bottleneck nodes.

We now consider the filling behaviour of bottleneck nodes and observe a similar dichotomy.

Theorem 3.1 Let Q[i] be a bottleneck node. Then it holds

P
(
X

(M,N)
i ≥ r

)
=





1−O
(

1
N

)
for ν1 > 1

1−Nν2−1O

((
µ1
µ2

)N
)

for ν1 = 1
(3.1)

and the equation is sharp with respect to speed of convergence.

Proof. Without loss of generality, we assume that Q[i] = Q[1].

P
(
X

(M,N)
1 < r

)
=

∑

n∈Z(M,N)

π(n)P
(
X

(M,N)
1 < r

∣∣∣ X(M,N) = n
)

(1.1)
=

r−1∑
n1=0


 ∑

n2+...+nM=N−n1

G(M, N)−1
M∏

j=1

(
1
µj

)nj




=
r−1∑

n1=0

(
1
µ1

)n1




∑
n2+...+nM=N−n1

∏M
j=2

(
1
µj

)nj

G(M, N)


 (3.2)

Let us first consider the case of multiple bottlenecks, i.e. ν1 > 1. Note that

∑

n2+...+nM=N−n1

M∏

j=2

(
1
µj

)nj

is the normalizing constant of a network with the same service rates, but with one bottleneck node and n1

customers less. We therefore define for j = 1, . . . , m

ν̃j =

{
ν1 − 1 for j = 1

νj for j 6= 1
.

It follows

∑

n2+...+nM=N−n1

M∏

j=2

(
1
µj

)nj
(2.8)
=

m∑

l=1

∑

a∈Z(m,ν̃l−1)

(−1)al−ν̃l+1

(
1
ηl

)N−n1−ν̃l+al+1 (
N − n1 + al

N − n1

)

·



m∏

u=1,u 6=l

ην̃u
u

(
ν̃u + au − 1

ν̃u − 1

)(
1

ηu − ηl

)ν̃u+au


 .
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From (2.11) we know that

G(M, N) =
(

1
η1

)N (
N + ν1 − 1

N

) (
m∏

u=2

(
ηu

ηu − η1

)νu
)

aN ,

with aN = 1 + O
(

1
N

)
. Since

lim
N→∞

Np

(
η1

ηl

)N

= 0, p ∈ N, 2 ≤ l ≤ m,

it follows that

G(M, N)−1
∑

n2+...+nM=N−n1

M∏

j=2

(
1
µj

)nj

= G(M, N)−1
∑

a∈Z(m,ν̃1−1)

(−1)a1−ν̃1+1

(
1
η1

)N−n1−ν̃1+a1+1

·
(

N − n1 + a1

N − n1

) (
m∏

u=2

ην̃u
u

(
ν̃u + au − 1

ν̃u − 1

) (
1

ηu − η1

)ν̃u+au
)

+ O

((
1
N

)2
)

.

Only the term with a1 = ν̃1 − 1 = ν1 − 2 needs to be considered, the rest is of order O
((

1
N

)2
)
. Therefore

G(M, N)−1
∑

n2+...+nM=N−n1

M∏

j=2

(
1
µj

)nj

=

(
1
η1

)N−n1 (
N−n1+ν1−2

N−n1

)∏m
u=2

(
ηu

ηu−η1

)νu

(
1
η1

)N (
N+ν1−1

N

) (∏m
u=2

(
ηu

ηu−η1

)νu
) (

1 + O
(

1
N

)) + O

((
1
N

)2
)

=

(
1
η1

)−n1 (
N−n1+ν1−2

N−n1

)
(
N+ν1−1

N

) (
1 + O

(
1
N

)) + O

((
1
N

)2
)

(3.3)

=
O

(
1
N

)

1 + O
(

1
N

) + O

((
1
N

)2
)

= O

(
1
N

)
. (3.4)

Substituting (3.4) into (3.2) leads to the first part of (3.1). From (3.3), we see that

lim
N→∞


N ·G(M, N)−1

∑

n2+...+nM=N−n1

M∏

j=2

(
1
µj

)nj


 =

{
> 0 for n1 < N

≥ 0 for n1 = N
.

This shows that for ν1 > 1 it holds P
(
X

(M,N)
i ≥ r

)
= 1−O

(
1
N

)
and P

(
X

(M,N)
i ≥ r

)
6= 1− o

(
1
N

)
.
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For the case of a single bottleneck, i.e. ν1 = 1, we have

∑

n2+...+nM=N−n1

M∏

j=2

(
1
µj

)nj

(2.8)
=

m∑

l=2

∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)N−n1−νl+al+1 (
N − n1 + al

N − n1

)

·



m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




=
m∑

l=2

(
1
ηl

)N ∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)−n1−νl+al+1 (
N − n1 + al

N − n1

)

·



m∏

u=1,u6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




It follows with G(M,N) =
(

1
η1

)N (∏m
u=2

(
ηu

ηu−η1

)νu
)

aN (cf. (2.11)):

G(M, N)−1
∑

n2+...+nM=N−n1

M∏

j=2

(
1
µj

)nj

=
1

aN

m∑

l=2

(
η1

ηl

)N ∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)−n1−νl+al+1 (
N − n1 + al

N − n1

) (
m∏

u=2

(
ηu

ηu − η1

)νu
)−1

·



m∏

u=1,u 6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au




=
1

aN

(
η1

η2

)N m∑

l=2

(
η2

ηl

)N ∑

a∈Z(m,νl−1)

(−1)al−νl+1

(
1
ηl

)−n1−νl+al+1 (
N − n1 + al

N − n1

) (
m∏

u=2

(
ηu

ηu − η1

)νu
)−1

·



m∏

u=1,u 6=l

ηνu
u

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au


 (3.5)

Since limN→∞Np
(

η2
ηl

)N

= 0, 3 ≤ l ≤ m, for all p ∈ N, only the sum for l = 2 is of importance and only
the summand with a2 = ν2 − 1 needs to be considered. This leads to

G(M,N)−1
∑

n2+...+nM=N−n1

M∏

j=2

(
1
µj

)nj

=
1

aN

(
N − n1 + ν2 − 1

N − n1

)(
η1

η2

)N [
1 + O

(
1
N

)]

= Nν2−1O

((
η1

η2

)N
)

µ2=η2= Nν2−1O

((
µ1

µ2

)N
)

(3.6)

Substituting (3.6) into (3.2) leads to the second part of (3.1).We can show that (3.5) implies

lim
N→∞




{
Nν2−1

(
η1

η2

)N
}−1

G(M, N)−1
∑

n2+...+nM=N−n1

M∏

j=2

(
1
µj

)nj


 =

{
> 0 for n1 < N

≥ 0 for n1 = N
.

This shows that the second equation of (3.1) is sharp according to the speed.
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Comment.

(i) From (3.1), we see that limN→∞ P
(
X

(M,N)
1 ≥ r

)
= 1 for every r ∈ N. This means that the bottlenecks

are filled up asymptotically. But the way they get filled up is essentially different: In case of a
single bottleneck, we have a very high rate of convergence, in case of multiple bottlenecks, the rate of
convergence is quite low ( O

(
1
N

)
). The fact that in case of multiple bottlenecks, the bottleneck nodes

are filled up slower, is comprehensible since the customers will spread over the bottleneck nodes. But
the size of the difference as described by (3.1) is surprising.

(ii) Let us consider the filling behaviour in case of a single bottleneck. We see that the rate of convergence
is mainly determined by the quotient of the slowest service rate and the second slowest service rate

(
(

µ1
µ2

)N

). This is well known [Box88] and not surprising. But, the speed of convergence is also
influenced by the number of second slowest servers (Nν2−1), i.e. the more second slowest servers there
are in the network, the more customers will be present at non-bottleneck nodes. This is an interesting
result, an interpretation of which can be given as follows: The second slowest servers resist more against
fast passing by customers than all other non-bottleneck nodes. Calling these nodes “semi-bottlenecks
” would make this phenomenon intuitive: The semi-bottlenecks are the most important hills which
customers have to climb up on their way to the single bottleneck. The more hills, the longer the time
to reach the bottleneck for almost all customers.

(iii) Since the bottlenecks are filled up asymptotically, one might assume that the bottleneck nodes approach
asymptotically Poissonian sources as the number of customers in the network increases to infinity and
that the rest of the network forms an open ergodic tandem system. To be more precise: One might
assume that the sections between two bottleneck nodes form an open ergodic tandem system. This is
the topic of the following section.

4 Weak convergence of sojourn times at non-bottleneck nodes

In case of a single bottleneck the joint distribution of the queue lengths at the non-bottleneck nodes converges
for N →∞ to the joint distribution of the queue lengths in an open tandem of nodes Q[2], Q[3],. . . , Q[J ] fed
by a Poisson-µ1 stream. This suggests that the joint sojourn time distribution at the non-bottleneck nodes
for TC during his cycle converges for N → ∞ to the joint distribution of the sojourn times of a customer
passing this tandem. For the case of distinct service rates this follows from Theorem 5.1 in [DMS08].

Consequently, in case of multiple bottlenecks the conjecture is:
Consider two subsequent bottlenecks with some non-bottleneck nodes between them. Then the joint sojourn
time distribution for TC at these non-bottleneck nodes converges weakly to the joint sojourn time distribution
of a customer in an open ergodic tandem system with exactly these nodes, fed by a Poisson-µ1 stream.

We can show more:
The limiting vectors of the joint sojourn time distribution for TC at the successive sequences of neighboured
bottleneck nodes are independent.

So the limiting picture is:
The joint sojourn time distribution for TC at the non-bottleneck nodes during his cycle converges for N →∞
to the joint distribution of the sojourn times of a customer passing a sequence of independent tandems, where
each of these tandem networks consists of a sequence of non-bottleneck nodes (which have in the original
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cycle at both sides of their boundary a bottleneck node).
Note: For fixing this interpretation of the following result the position of the nodes in the cycle matters
and we incorporate this into the statement of our theorem.

Theorem 4.1 Let (S(N)
1 , S

(N)
2 , . . . , S

(N)
M ) denote a vector distributed according to φ(M,N)(θ1, . . . , θM ) from

(1.4). Let A := {l ∈ {1, . . . , M} : µl 6= µ1} be the set of indices of the non-bottleneck nodes.
Then the sequence (S(N)

j , j ∈ A) converges for N →∞ to a vector with distribution
⊗

j∈A

exp(µj − µ1). (4.1)

Proof. The proof is a direct consequence of the formula (1.4), the fact that the mapping from NA to R

(nj : j ∈ A) →
∏

j∈A

(
µj

µj + θj

)nj+1

is continuous for any fixed (θj , j ∈ A), and the result of the following Theorem 4.2.

Theorem 4.2 The joint steady-state queue length distribution of the non-bottleneck nodes converges weakly
to an independent product of geometrical distributions, which can be represented as the respective steady-state
queue length distribution of an open ergodic tandem system with a Poisson-µ1 arrival stream, i.e., it holds

P (X(M,N)
s ,s∈A) D−→

⊗

s∈A

Geo(1− µ1

µs
) as N →∞. (4.2)

Proof. To keep notation in the proof concise, we assume (without loss of generality) µ1 ≤ µ2 ≤ . . . ≤ µM .
(Removing this assumption makes the notation more involved but the same arguments apply.)
Then A = {ν1 + 1, ν1 + 2, . . . , M}. We have to show that for all ns ∈ N, ν1 + 1 ≤ s ≤ M , with n0 :=

nν1+1 + . . . + nM ≤ N :

lim
N→∞

P
(
X

(M,N)
ν1+1 = nν1+1, . . . , X

(M,N)
M = nM

)
=

M∏
s=ν1+1

(
1− µ1

µs

)(
µ1

µs

)ns

.

Let therefore ns ∈ N, ν1 + 1 ≤ s ≤ M , with n0 := nν1+1 + . . . + nM ≤ N be arbitrary, but fixed.

P
(
X

(M,N)
ν1+1 = nν1+1, . . . , X

(M,N)
M = nM

)

=
∑

n1+...+nν1=N−n0

ν1∏

j=1

(
1
µ1

)nj M∏

j=ν1+1

(
1
µj

)nj

G(M, N)−1

=
∑

n1+...+nν1=N−n0

(
1
µ1

)N−nν1+1−...−nM M∏

j=ν1+1

(
1
µj

)nj

G(M, N)−1

=
∑

n1+...+nν1=N−n0

(
1
µ1

)N M∏

j=ν1+1

(
µ1

µj

)nj

G(M, N)−1

=

(
N−n0+ν1−1

N−n0

) (
1

µ1

)N ∏M
j=ν1+1

(
µ1
µj

)nj

∑N
k0=0

(
N−k0+ν1−1

N−k0

) (
1

µ1

)N ∑
mν1+1+...+mM=k0

∏M
j=ν1+1

(
µ1
µj

)mj

=

(
N−n0+ν1−1

N−n0

)∏M
j=ν1+1

(
µ1
µj

)nj

∑N
k0=0

(
N−k0+ν1−1

N−k0

)∑
mν1+1+...+mM=k0

∏M
j=ν1+1

(
µ1
µj

)mj
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In the following, we will assume that ν1 ≥ 2. For ν1 = 1, (the setting of [GN67]) the proposition follows
immediately from the above equation. For ν1 ≥ 2, it follows

P
(
X

(M,N)
ν1+1 = nν1+1, . . . , X

(M,N)
M = nM

)

=

∏M
j=ν1+1

(
µ1
µj

)nj

ν1−1 factors︷ ︸︸ ︷
(N − n0 + ν1 − 1)(N − n0 + ν1 − 2) · . . . · (N − n0 + 1)

∑N
k0=0

∑
mν1+1+...+mM=k0

∏M
j=ν1+1

(
µ1
µj

)mj · (N − k0 + ν1 − 1)(N − k0 + ν1 − 2) · . . . · (N − k0 + 1)︸ ︷︷ ︸
ν1−1 factors

=

∏M
j=ν1+1

(
µ1
µj

)nj

∑N
k0=0

∑
mν1+1+...+mM=k0

∏M
j=ν1+1

(
µ1
µj

)mj · (N−k0+ν1−1)(N−k0+ν1−2)·...·(N−k0+1)
(N−n0+ν1−1)(N−n0+ν1−2)·...·(N−n0+1)

The proposition will be proven if we can show that the denominator converges to
(∏M

s=ν1+1

(
1− µ1

µs

))−1

.
Setting

a(k0) :=
∑

mν1+1+...+mM=k0

M∏

j=ν1+1

(
µ1

µj

)mj

,

bN (k0) :=
(N − k0 + ν1 − 1)(N − k0 + ν1 − 2) · . . . · (N − k0 + 1)
(N − n0 + ν1 − 1)(N − n0 + ν1 − 2) · . . . · (N − n0 + 1)

,

the denominator can be written as
N∑

k0=0

a(k0)bN (k0).

Note that bN (k0) > 1 for k0 < n0 and is decreasing towards 1 for N →∞ and that bN (k0) < 1 for k0 > n0

and is increasing towards 1 for N →∞. With

fN (k0) :=

{
a(k0)bN (k0) for k0 ≤ N

0 for k0 > N
,

the denominator is ∞∑

k0=0

fN (k0) =
n0∑

k0=0

fN (k0) +
∞∑

k0=n0+1

fN (k0).

Clearly, limN→∞
∑n0

k0=0 fN (k0) =
∑n0

k0=0 a(k0) because every fN (k0) converges to a(k0).
Let us now consider the second sum

∑∞
k0=n0+1 fN (k0). Because fN (·) converges point wise to a(·), it follows

by monotone convergence that

lim
N→∞

∞∑

k0=n0+1

fN (k0) =
∞∑

k0=n0+1

lim
N→∞

fN (k0) =
∞∑

k0=n0+1

a(k0).

Summarizing, we have shown

∞∑

k0=0

a(k0) =
∞∑

k0=0

∑

mν1+1+...+mM=k0

M∏

j=ν1+1

(
µ1

µj

)mj

=
M∏

j=ν1+1

∞∑
mj=0

(
µ1

µj

)mj

=




M∏

j=ν1+1

(
1− µ1

µj

)

−1

.
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