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Strong and Weak Approximation Methods for
Stochastic Differential Equations – Some Recent
Developments

Andreas Rößler

Abstract Some efficient stochastic Runge–Kutta (SRK) methods for thestrong as
well as for the weak approximation of solutions of stochastic differential equa-
tions (SDEs) with improved computational complexity are considered. Their con-
vergence is analyzed by a concise colored rooted tree approach for both, Itô as well
as Stratonovich SDEs. Further, order conditions for the coefficients of order 1.0 and
1.5 strong SRK methods as well as for order 2.0 weak SRK methods are given. As
the main novelty, the computational complexity of the presented order 1.0 strong
SRK method and the order 2.0 weak SRK method depends only linearly on the di-
mension of the driving Wiener process. This is a significant improvement compared
to well known methods where the computational complexity depends quadratically
on the dimension of the Wiener process.

1 Approximation of Solutions of Stochastic Differential
Equations

Let (Ω ,F ,P) be a complete probability space with a filtration(Ft)t≥0 fulfilling
the usual conditions and letI = [t0,T] for some 0≤ t0 < T < ∞. We denote by
X = (Xt)t∈I the solution of thed–dimensional SDE system

Xt = Xt0 +
∫ t

t0
a(s,Xs)ds+

m

∑
j=1

∫ t

t0
b j(s,Xs) ∗dW j

s (1)

with anm–dimensional driving Wiener process(Wt)t≥0 = ((W1
t , . . . ,Wm

t )T)t≥0 w.r.t.
(Ft)t≥0 for d,m≥ 1 andt ∈I . We write∗dW j

s = dW j
s in the case of an Itô stochas-

tic integral and∗dW j
s = ◦dW j

s for a Stratonovich stochastic integral. Suppose that
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a : I ×R
d → R

d andb : I ×R
d → R

d×m are continuous functions which fulfill
a global Lipschitz condition and denote byb j the jth column of thed×m-matrix
function b = (bi, j) for j = 1, . . . ,m. Let Xt0 ∈ L2(Ω) be theFt0-measurable ini-
tial value. In the following, we suppose that the conditionsof the Existence and
Uniqueness Theorem (cf., e.g., Kloeden and Platen (1999)) are fulfilled for SDE (1)
and we denote by‖ · ‖ the Euclidean norm. LetCl

P(Rd,R) denote the space of all
g∈Cl (Rd,R) with polynomial growth, see e.g. Kloeden and Platen (1999) or Rößler
(2006,2009) for details. Theng belongs toCk,l

P (I ×R
d,R) if g∈Ck,l (I ×R

d,R)
andg(t, ·) ∈Cl

P(Rd,R) is fulfilled uniformly in t ∈ I .
For the numerical approximation let a discretizationIh = {t0,t1, . . . ,tN} with

t0 < t1 < .. . < tN = T of the time intervalI with step sizeshn = tn+1 − tn for
n = 0,1, . . . ,N− 1 be given. Further, leth = max0≤n<N hn denote the maximum
step size. If one is interested in a good pathwise approximation of the solution of
SDE (1), then strong approximation methods converging in the mean–square sense
are applied. Note that mean–square convergence implies strong convergence.

Definition 1. A sequence of approximation processesYh = (Y(t))t∈Ih converges in
the mean–square sense with orderp to the solutionX of SDE (1) at timeT if there
exists a constantC > 0 and someδ0 > 0 such that for eachh∈ ]0,δ0]

(E(‖XT −Yh(T)‖2))1/2 ≤Chp . (2)

However, if one is interested in the approximation of some distributional character-
istics of the solution of SDE (1), then weak approximation methods are applied.

Definition 2. A sequence of approximation processesYh = (Y(t))t∈Ih converges
in the weak sense with orderp to the solutionX of SDE (1) at timeT if for each
f ∈C2(p+1)

P (Rd,R) exists a constantCf and someδ0 > 0 such that for eachh∈ ]0,δ0]

|E( f (XT))−E( f (Yh(T)))| ≤Cf hp . (3)

2 A General Class of Stochastic Runge–Kutta Methods

For the approximation of the solutionX of SDE (1) we consider the universal class
of stochastic Runge–Kutta (SRK) methods introduced in Rößler (2006): LetM be

an arbitrary finite set of multi-indices withκ = |M | elements, letθ (k)
ι (h) ∈ L2(Ω)

for ι ∈ M and 0≤ k ≤ m be some suitable random variables. Further, define
b0(t,x) := a(t,x). Then, ans–stages SRK method is given byY0 = Xt0 and

Yn+1 = Yn +
s

∑
i=1

m

∑
k=0

∑
ν∈M

z(k),(ν)
i bk

(

tn +c(ν)
i hn,H

(ν)
i

)

(4)

for n = 0,1, . . . ,N−1 with Yn = Y(tn), tn ∈ Ih, and with stages
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H(ν)
i = Yn +

s

∑
j=1

m

∑
l=0

∑
µ∈M

Z(ν),(l),(µ)
i j bl

(

tn +c(µ)
j hn,H

(µ)
j

)

for i = 1, . . . ,s andν ∈ M . Here, let 0∈ M and let fori, j = 1, . . . ,s

z(k),(ν)
i = ∑

ι∈M

γ(ι)
i

(k),(ν)
θ (k)

ι (hn) , Z(ν),(l),(µ)
i j = ∑

ι∈M

C(ι)
i j

(ν),(l),(µ)
θ (l)

ι (hn)

with θ (0)
0 (hn) = hn and the coefficientsγ(ι)

i

(k),(ν)
,C(ι)

i j

(ν),(l),(µ)
∈ R of the SRK

method. In the following, we use the notationz(k),(ν) = (z(k),(ν)
i )1≤i≤s ∈ R

s and

Z(ν),(l),(µ) = (Z(ν),(l),(µ)
i j )1≤i, j≤s ∈ R

s×s. The vector of weights can be defined by

c(ν) = ∑
µ∈M

C(0)
i j

(ν),(0),(µ)
e (5)

with e= (1, . . . ,1)T ∈ R
s. If C(ι)

i j

(ν),(l),(µ)
= 0 for j ≥ i then (4) is called an explicit

SRK method, otherwise it is called implicit. We assume that the random variables

θ (k)
ι (h) satisfy the moment condition

E(
m

∏
k=0

((θ (k)
ι1 (h))pk

1 · . . . · (θ (k)
ικ (h))pk

κ )) = O
(

hp0
1+...+p0

κ+∑m
k=1(pk

1+...+pk
κ )/2) (6)

for all pk
i ∈ N0, k = 0,1, . . . ,m, and ιi ∈ M , 1 ≤ i ≤ κ . Further, we assume

that in the case of an implicit method each random variable can be expressed as

θ (0)
ι (h) = h · ϑ (0)

ι and θ (k)
ι (h) =

√
h · ϑ (k)

ι , 1 ≤ k ≤ m, for ι ∈ M with suitable

bounded random variablesϑ (0)
ι ,ϑ (k)

ι ∈ L2(Ω) such that each stage can be solved

w.r.t. H(ν)
i for sufficiently smallh. These conditions are not necessary in the case of

explicit SRK methods (see also Rößler (2006) or Milstein and Tretyakov (2004)).

3 Colored Rooted Tree Analysis

In the following, we present a concise rooted tree analysis for the convergence of
the general class of SRK methods (4). For simplicity, we restrict our investigations
without loss of generality to the autonomous SDE (1) in this section. We denote by
TS the set of all stochastic trees, see also Rößler (2004,2010), which have a root
τγ = ⊗ and which can furthermore be composed of deterministic nodes τ0 =
and stochastic nodesτ j = j with some j ∈ {1, . . . ,m}. The indexj is associated
with the jth component of them-dimensional driving Wiener process of the consid-
ered SDE. Some examples of trees inTSare presented in Fig. 1. Letd(t) denote the
number of deterministic nodesτ0 and lets(t) denote the number of stochastic nodes
τ j with j ∈ {1, . . . ,m} of the treet ∈ TS. The orderρ(t) of the treet ∈ TSis defined
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t I =

⊗

j1

j2

t II =

⊗

j1

j2

j3 j4

tIII =

⊗

j1 tIV =

⊗

j1

j3

j2

j4

Fig. 1 Four elements ofTSwith some j1, j2, j3, j4 ∈ {1, . . . ,m}.

asρ(τγ ) = 0 andρ(t) = d(t)+ 1
2s(t). As an example, for the trees in Fig. 1 we have

ρ(tI ) = ρ(tII ) = ρ(tIV ) = 2 andρ(tIII ) = 2.5.
Every tree can be written by a combination of brackets: Ift1, . . . , tk are colored

subtrees then we denote by[t1, . . . , tk] j the tree in whicht1, . . . , tk are each joined by
a single branch to the nodeτ j for some j ∈ {γ,0,1, . . . ,m}. Therefore proceeding
recursively, for the trees in Fig. 1 we obtaintI = [[τ0,τ j2] j1]γ , tII = [[[τ j3,τ j4 ] j2] j1]γ ,
tIII = [τ0, [τ0] j1]γ andtIV = [[τ j3] j1, [τ j4] j2]γ .

Next, we assign to each treet ∈ TSan elementary differential which is defined
recursively byF(τγ )(x) = f (x), F(τ j)(x) = b j(x) and

F(t)(x) =

{

f (k)(x) · (F(t1)(x), . . . ,F(tk)(x)) for t = [t1, . . . , tk]γ

b j (k)(x) · (F(t1)(x), . . . ,F(tk)(x)) for t = [t1, . . . , tk] j
(7)

for j ∈ {0,1, . . . ,m}. Here f (k) and b j (k) define a symmetrick-linear differential
operator, and one can choose the sequence of subtreest1, . . . , tk in an arbitrary order.

Finally, we assign to every tree a multiple stochastic integral. Let (Zt )t≥t0 be a
progressively measurable stochastic process. Then, we define for t ∈ TSthe corre-
sponding multiple stochastic integral recursively by

It;t0,t [Z·] =



















(
k

∏
i=1

Iti ;t0,t)[Z·] if t = [t1, . . . , tk]γ

(
∫ t

t0

k

∏
i=1

Iti ;t0,s∗dW j
s )[Z·] if t = [t1, . . . , tk] j , j ∈ {0,1, . . . ,m}

(8)

with ∗dW0
s = ds, Iτ j ;t0,t [Z·] =

∫ t
t0

Zs∗ dW j
s , Iτγ ;t0,t [Z·] = Zt , It;t0,t = It;t0,t [1] provided

that the stochastic integral exists and by using the notation

(
∫ t

t0

∫ sn

t0
· · ·
∫ s2

t0
∗dW j1

s1
∗dW j2

s2
· · · ∗dW jn

sn
)[Z·] = I( j1, j2,..., jn)[Z·]t0,t

=

∫ t

t0

∫ sn

t0
· · ·
∫ s2

t0
Zs1 ∗dW j1

s1
∗dW j2

s2
· · · ∗dW jn

sn

(9)

in (8). The product of two stochastic integrals can be written as a sum (cf., e.g.,
Kloeden and Platen (1999))
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∫ t

t0
Xs ∗dWi

s

∫ t

t0
Ys ∗dW j

s =

∫ t

t0
XsYs1{i= j 6=0∧∗6=◦}ds

+

∫ t

t0
Xs(

∫ s

t0
Yu ∗dW j

u ) ∗dWi
s +

∫ t

t0
(

∫ s

t0
Xu ∗dWi

u) Ys ∗dW j
s

(10)

for 0≤ i, j ≤ m, where the first summand on the right hand side appears only inthe
case of Itô calculus. E.g., we calculate fortI andtII

ItI ;t0,t [1] =

∫ t

t0
Iτ0;t0,s Iτ j2

;t0,s∗dW j1
s [1] = I(0, j2, j1)[1]t0,t + I( j2,0, j1)[1]t0,t ,

ItII ;t0,t [1] =

∫ t

t0

∫ s

t0
Iτ j3

;t0,u Iτ j4
;t0,u ∗dW j2

u ∗dW j1
s

= I( j3, j4, j2, j1)[1]t0,t + I( j4, j3, j2, j1)[1]t0,t + I(0, j2, j1)[1{ j3= j4 6=0∧∗6=◦}]t0,t

where the last summand forItII ;t0,t [1] only appears in the case of Itô calculus.

Table 1: All treest ∈ TSof orderρ(t) ≤ 1.5 with j1, j2, j3 ∈ {1, . . . ,m}
arbitrarily eligible.

t tree It;t0,t σ(t) ρ(t)

t0,1 τγ 1 1 0
t0.5,1 [τ j1]γ I( j1)[1]t0,t 1 0.5
t1,1 [τ0]γ I(0)[1]t0,t 1 1
t1,2 [τ j1,τ j2 ]γ I( j1, j2)[1]t0,t + I( j2, j1)[1]t0,t 1+1{ j1= j2} 1

+I(0)[1{ j1= j2∧∗6=◦}]t0,t

t1,3 [[τ j2] j1]γ I( j2, j1)[1]t0,t 1 1
t1.5,1 [[τ j1]0]γ I( j1,0)[1]t0,t 1 1.5
t1.5,2 [[τ0] j1]γ I(0, j1)[1]t0,t 1 1.5
t1.5,3 [τ0,τ j1]γ I(0, j1)[1]t0,t + I( j1,0)[1]t0,t 1 1.5
t1.5,4 [τ j1,τ j2,τ j3 ]γ I( j1, j2, j3)[1]t0,t + I( j1, j3, j2)[1]t0,t 1+1{ j1= j2 6= j3} 1.5

+I( j2, j1, j3)[1]t0,t + I( j2, j3, j1)[1]t0,t +1{ j1= j3 6= j2}
+I( j3, j1, j2)[1]t0,t + I( j3, j2, j1)[1]t0,t +1{ j2= j3 6= j1}

+(I( j1,0)[1]t0,t + I(0, j1)[1]t0,t)1{ j2= j3∧∗6=◦} +5 ·1{ j1= j2= j3}
+(I( j2,0)[1]t0,t + I(0, j2)[1]t0,t)1{ j1= j3∧∗6=◦}
+(I( j3,0)[1]t0,t + I(0, j3)[1]t0,t)1{ j1= j2∧∗6=◦}

t1.5,5 [[τ j2] j1,τ j3]γ I( j2, j3, j1)[1]t0,t + I( j3, j2, j1)[1]t0,t 1 1.5
+I( j2, j1, j3)[1]t0,t + I(0, j1)[1{ j2= j3∧∗6=◦}]t0,t

+I( j2,0)[1{ j1= j3∧∗6=◦}]t0,t

t1.5,6 [[τ j2,τ j3] j1]γ I( j3, j2, j1)[1]t0,t + I( j2, j3, j1)[1]t0,t 1+1{ j2= j3} 1.5
+I(0, j1)[1{ j2= j3∧∗6=◦}]t0,t

t1.5,7 [[[τ j3] j2] j1]γ I( j3, j2, j1)[1]t0,t 1 1.5

Let t ∈ TS with t = [t1, . . . , t1, t2, . . . , t2, . . . , tk, . . . , tk] j = [tn1
1 , tn2

2 , . . . , tnk
k ] j , j ∈

{γ,0,1, . . . ,m}, wheret1, . . . , tk are distinct subtrees with multiplicitiesn1, . . . ,nk,
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respectively. Then the symmetry factorσ is recursively defined byσ(τ j ) = 1 and

σ(t) =
k

∏
i=1

ni ! σ(t i)
ni . (11)

For the trees in Fig. 1, we obtainσ(tI ) = σ(tIII ) = 1. For the treetII we have to
consider two cases: Ifj3 6= j4 we haveσ(tII ) = 1. However, in the case ofj3 = j4
we have some symmetry and thus we calculateσ(tII ) = 2. Further, for treetIV we
getσ(tIV ) = 2 if j1 = j2 and j3 = j4 andσ(tIV ) = 1 otherwise. E.g., all trees up to
order 1.5 and the corresponding multiple integrals are presented in Tab. 1.

Next, we define the coefficient functionΦS which assigns to every tree an ele-
mentary weight. For everyt ∈ TSthe functionΦS is defined byΦS(τγ ) = 1 and

ΦS(t) =



















k

∏
i=1

ΦS(t i) if t = [t1, . . . , tk]γ

∑
ν∈M

z( j),(ν)T k

∏
i=1

Ψ (ν)(t i) if t = [t1, . . . , tk] j , j ∈ {0,1, . . . ,m}
(12)

whereΨ (ν)( /0) = e with the representationτ j = [ /0] j and for each subtreet =
[t1, . . . , tq]l with somel ∈ {0,1, . . . ,m} we recursively define

Ψ (ν)(t) = ∑
µ∈M

Z(ν),(l),(µ)
q

∏
i=1

Ψ (µ)(t i). (13)

Heree= (1, . . . ,1)T and the product of vectors in the definition ofΨ (ν) is defined by
component-wise multiplication, i.e. with(a1, . . . ,an)(b1, . . . ,bn) = (a1b1, . . . ,anbn).
In the following, we also writeΦS(t; t,t + h) = ΦS(t) in order to emphasize the
dependency on the current time step with step sizeh.

Now, the following local Taylor expansions can be proved: For the solutionX
of SDE (1) and forp∈ 1

2N0 with f ∈C2p+2(Rd,R) anda,b j ∈C2p+1(Rd,Rd) for
j = 1, . . . ,m, we obtain the expansion (see Rößler (2004,2010))

f (Xt ) = ∑
t∈TS

ρ(t)≤p

F(t)(Xt0)
It;t0,t

σ(t)
+R

∗
p(t,t0) (14)

P-a.s. with remainder termR∗
p(t,t0) provided all multiple Itô integrals exist. For the

approximationY by the SRK method (4) and forp∈ 1
2N0 with f ∈ C2p+1(Rd,R)

anda,b j ∈C2p(Rd,Rd), j = 1, . . . ,m, we get the expansion (see Rößler (2006,2009))

f (Y(t)) = ∑
t∈TS

ρ(t)≤p

F(t)(Y(t0))
ΦS(t; t0,t)

σ(t)
+R

∆
p (t,t0) (15)

P-a.s. with remainder termR∆
p (t,t0).
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4 Order Conditions for Stochastic Runge–Kutta Methods

Using the colored rooted tree analysis, we obtain order conditions for the random
variables and the coefficients of the SRK method (4) if it is applied to SDE (1).
The following results can be applied for the development of SRK methods for the
Itô as well as the Stratonovich version of SDE (1). First, weconsider conditions
for strong convergence with some orderp ∈ 1

2N due to Rößler (2009). Therefore,
let TS∗ denote the set of treest ∈ TSwhich have only one ramification at the root
nodeτγ , i.e. which are of type[[. . .] j ]γ for some j ∈ {0,1, . . . ,m}. The reason is,
that we are interested in the approximation ofX, thus we have to choosef (x) = x.
However, in this case all elementary differentials vanish except for the trees inTS∗.
For example, the treest1,2, t1.5,3, t1.5,4 andt1.5,5 in Tab. 1 as well as the treestIII and
tIV in Fig. 1 do not belong toTS∗. A comparison of the Taylor expansions (14) and
(15) results in the following two theorems.

Theorem 1.Let p∈ 1
2N0 and a,b j ∈C⌈p⌉,2p+1(I ×R

d,Rd) for j = 1, . . . ,m. Then,
the SRK method (4) has mean–square order of accuracy p if the conditions

a) for all t ∈ TS∗ with ρ(t) ≤ p

It;t,t+h = ΦS(t; t,t +h) P-a.s., (16)

b) for all t ∈ TS∗ with ρ(t) = p+ 1
2

E(It;t,t+h) = E(ΦS(t; t,t +h)), (17)

are fulfilled for arbitrary t,t +h∈ I and if (5) and (6) hold.

For the proof of Theorem 1 we refer to Rößler (2009). Next, wegive conditions
for the weak convergence of the SRK method (4) based on trees in TShaving also
multiple ramifications at the root node (see Theorem 6.4 in R¨oßler (2006)).

Theorem 2.Let p∈ N and a,b j ∈ Cp+1,2p+2
P (I ×R

d,Rd) for j = 1, . . . ,m. Then
the SRK method (4) is of weak order p if for allt ∈ TS withρ(t) ≤ p+ 1

2 the order
conditions

E(It;t,t+h) = E(ΦS(t; t,t +h)) (18)

are fulfilled for arbitrary t,t + h∈ I , provided that (5) and (6) apply and that the
approximation Y has uniformly bounded moments w.r.t. the number N of steps.

For the proof of Theorem 2 we refer to Rößler (2006).

Remark 1.The approximationY by the SRK method (4) has uniformly bounded
moments if bounded random variables are used by the method, if (6) is fulfilled

and if E(z(k,ν)T
e) = 0 for 1≤ k ≤ m andν ∈ M (see Rößler (2006) for details).

Further, Theorem 2 provides uniform weak convergence with order p in the case of
a non-random time discretizationIh.
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5 Strong Approximation of SDEs

For higher order strong numerical approximation methods for SDEs, the simulation
of multiple stochastic integrals is necessary in general. Therefore, fortn,tn+1 ∈ Ih

and 1≤ i, j ≤ m let

I(i),n =

∫ tn+1

tn
dWi

s, I(i, j),n =

∫ tn+1

tn

∫ s

tn
dWi

udW j
s ,

denote the multiple Itô stochastic integrals. For convenience we write e.g.I(i) =
I(i),n if n is obvious from the context. The increments of the Wiener processI(i),n
are independentN(0,hn) distributed withhn = tn+1 − tn. From (10) follows that
I(0,i) = hnI(i) − I(i,0). In the case ofi = j, formula (10) results inI(i,i) = 1

2(I2
(i) −hn).

Further, letI(i,i,i) = 1
6(I3

(i)−3I(0) I(i)). In the following, the multiple integralsI(i,0) can

be simulated byI(i,0) = 1
2hn(I(i) +

1√
3
ζi) with some independentN(0,hn) distributed

random variablesζi which are independent fromI( j) for all 1 ≤ j ≤ m (cf., e.g.,
Kloeden and Platen (1999) or Milstein (1995)). However, since the exact distribution
and thus the exact simulation of the multiple stochastic integralsI(i, j) for 1≤ i, j ≤
m with i 6= j is not known, we substitute them in our numerical experiments by
sufficiently exact and efficient approximations as recentlyproposed by Wiktorsson
(2001). Further, let(pD, pS) with pD ≥ pS denote the order of convergence of the
considered SRK scheme if it is applied to a deterministic or stochastic differential
equation, respectively.

5.1 Order 1.0 Strong SRK Methods

Firstly, we consider an efficient order 1.0 strong SRK methodfor Itô SDEs (1). Yet,
known derivative free order 1.0 strong approximation methods suffer from an inef-
ficiency in the case of anm–dimensional driving Wiener process. For example, the
derivative free scheme (11.1.7) in Kloeden and Platen (1999) needs one evaluation
of the drift coefficienta, howeverm+ 1 evaluations of each diffusion coefficient
b j , j = 1, . . . ,m, each step. Thus, the computational complexity grows quadratically
in m which is a significant drawback especially for high dimensional problems.
Therefore, efficient SRK methods were firstly proposed in Rößler (2009) where the
number of necessary evaluations of each drift and each diffusion coefficient is inde-
pendent of the dimensionm of the driving Wiener process.

For the multi–dimensional Itô SDE (1) withd,m≥ 1, the efficients–stages order
1.0 strong SRK method due to Rößler (2009) is given byY0 = Xt0 and
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Yn+1 = Yn +
s

∑
i=1

αi a(tn +c(0)
i hn,H

(0)
i )hn

+
m

∑
k=1

s

∑
i=1

(

β (1)
i I(k) + β (2)

i

√

hn
)

bk(tn +c(1)
i hn,H

(k)
i )

(19)

for n = 0,1, . . . ,N−1 with stages

H(0)
i = Yn +

s

∑
j=1

A(0)
i j a(tn +c(0)

j hn,H
(0)
j )hn +

m

∑
l=1

s

∑
j=1

B(0)
i j bl (tn +c(1)

j hn,H
(l)
j ) I(l)

H(k)
i = Yn +

s

∑
j=1

A(1)
i j a(tn +c(0)

j hn,H
(0)
j )hn +

m

∑
l=1

s

∑
j=1

B(1)
i j bl (tn +c(1)

j hn,H
(l)
j )

I(l ,k)√
hn

(20)

for i = 1, . . . ,sandk= 1, . . . ,m. A modified version of the efficient SRK method (19)
suitable for Stratonovich SDEs can be found in Rößler (2009). The SRK method
(19) can be characterized by its coefficients given by an extended Butcher tableau:

c(0) A(0) B(0)

c(1) A(1) B(1)

αT β (1)T β (2)T

(21)

Here, the class of SRK methods (4) is applied withM = {ν : 0≤ ν ≤ m} and

z(0),(0)
i = αi hn , Z(0),(0),(0)

i j = A(0)
i j hn , Z(0),(k),(k)

i j = B(0)
i j I(k) ,

z(k),(k)
i = β (1)

i I(k) + β (2)
i

√

hn , Z(k),(0),(0)
i j = A(1)

i j hn , Z(k),(l),(l)
i j = B(1)

i j

I(l ,k)√
hn

,

for 1 ≤ k, l ≤ m and all other coefficients in (4) are set equal to zero. Thus, the
presented SRK method (19) belongs to the general class (4). The application of the
rooted tree analysis and Theorem 1 gives order conditions upto strong order 1.0 for
the coefficients of the SRK method (19), see also Rößler (2009).

Theorem 3.Let a,b j ∈C1,2(I ×R
d,Rd) for j = 1, . . . ,m. If the coefficients of the

SRK method (19) fulfill the equations

1. αTe= 1 2. β (1)T
e= 1 3. β (2)T

e= 0

then the method attains order 0.5 for the strong approximation of the solution of
the Itô SDE (1). If a,b j ∈ C1,3(I ×R

d,Rd) for j = 1, . . . ,m and if in addition the
equations

4. β (1)T
B(1)e= 0 5. β (2)T

B(1)e= 1 6. β (2)T
A(1)e= 0

7. β (2)T
(B(1)e)2 = 0 8. β (2)T

(B(1)(B(1)e)) = 0
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0

0 0 0

0 0 0 0 0

0

0 0 1

0 0 0 −1 0

1 0 0 1 0 0 0 1
2 − 1

2

0

1 1 0

0 0 0 0 0

0

1 1 1

1 1 0 −1 0
1
2

1
2 0 1 0 0 0 1

2 − 1
2

Table 2 Coefficients for the strong SRK schemes SRI1 of order(1.0,1.0) on the left hand side and
SRI2 of order(2.0,1.0) on the right hand side.

are fulfilled and if c(i) = A(i)e for i = 0,1, then the SRK method (19) attains order
1.0 for the strong approximation of the solution of the Itô SDE (1).

For the detailed proof of Theorem 3 we refer to Rößler (2009). The Euler–
Maruyama scheme EM is the basic explicit order 0.5 strong SRKscheme withs= 1

stage,α1 = β (1)
1 = 1 andβ (2)

1 = A(0)
1,1 = A(1)

1,1 = B(0)
1,1 = B(1)

1,1 = 0. As an example for
some explicit order 1.0 strong SRK schemes, the coefficientspresented in Tab. 2
define the order(1.0,1.0) strong SRK scheme SRI1 and the order(2.0,1.0) strong
SRK scheme SRI2. As the main advantage, the scheme SRI1 needsone evaluation
of the drift coefficienta and only 3 evaluations of each diffusion coefficientb j ,
j = 1, . . . ,m, each step. Thus, the number of evaluations of the drift and diffusion
coefficients is independent of the dimensionm of the Wiener process.

5.2 Order 1.5 Strong SRK Methods for SDEs with Scalar Noise

In contrast to the multi-dimensional Wiener process case, higher order 1.5 strong
approximation methods can be applied if the driving Wiener process is scalar. E.g.,
order 1.5 strong SRK methods for Stratonovich SDEs with a scalar Wiener process
have been proposed by Burrage and Burrage (1996,2000). On the other hand, for Itô
SDEs with a scalar Wiener process order 1.5 strong SRK methods have been pro-
posed by Kaneko (1995) and by Kloeden and Platen (1999). However, the scheme
due to Kaneko (1995) is not efficient because it needs 4 evaluations of the drift
coefficienta, 12 evaluations of the diffusion coefficientb and the simulation of two
independent normally distributed random variables for each step. On the other hand,
the scheme (11.2.1) in Kloeden and Platen (1999) due to Platen needs 3 evaluations
of the drift coefficienta, 5 evaluations of the diffusionb and also the simulation of
two independent normally distributed random variables each step. In contrast to this,
we consider the order 1.5 strong SRK method for Itô SDEs withless computational
complexity proposed in Rößler (2009).

For the Itô SDE (1) withd ≥ 1 andm = 1 the efficient order 1.5 strong SRK
method due to Rößler (2009) is defined byY0 = Xt0 and
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Yn+1 = Yn +
s

∑
i=1

αi a(tn +c(0)
i hn,H

(0)
i )hn

+
s

∑
i=1

(

β (1)
i I(1) + β (2)

i

I(1,1)√
hn

+ β (3)
i

I(1,0)

hn
+ β (4)

i

I(1,1,1)

hn

)

b(tn +c(1)
i hn,H

(1)
i )

(22)

for n = 0,1, . . . ,N−1 with stages

H(0)
i = Yn +

s

∑
j=1

A(0)
i j a(tn +c(0)

j hn,H
(0)
j )hn +

s

∑
j=1

B(0)
i j b(tn +c(1)

j hn,H
(1)
j )

I(1,0)

hn

H(1)
i = Yn +

s

∑
j=1

A(1)
i j a(tn +c(0)

j hn,H
(0)
j )hn +

s

∑
j=1

B(1)
i j b(tn +c(1)

j hn,H
(1)
j )
√

hn

(23)

for i = 1, . . . ,s. A more general version of the order 1.5 strong SRK method (22) for
SDEs with diagonal noise and a simplified version for additive noise can be found
in Rößler (2009). The SRK method (22) is characterized by the Butcher tableau:

c(0) A(0) B(0)

c(1) A(1) B(1)

αT β (1)T β (2)T

β (3)T β (4)T

(24)

For the SRK method (22) we chooseM = {0,1} and we then define

z(0),(0)
i = αi hn , z(1),(1)

i = β (1)
i I(1) + β (2)

i

I(1,1)√
hn

+ β (3)
i

I(1,0)

hn
+ β (4)

i

I(1,1,1)

hn
,

Z(0),(0),(0)
i j = A(0)

i j hn , Z(0),(1),(1)
i j = B(0)

i j

I(1,0)

hn
,

Z(1),(0),(0)
i j = A(1)

i j hn , Z(1),(1),(1)
i j = B(1)

i j

√

hn ,

with all remaining coefficients in (4) defined equal to zero. Then, the SRK method
(22) is also covered by the class (4) of SRK methods. Thus, we can apply Theorem 1
with p = 1.5 to obtain strong order 1.5 conditions, see Rößler (2009) for details.

Theorem 4.Let a,b∈C1,2(I ×R
d,Rd). If the coefficients of the SRK method (22)

fulfill the equations

1. αTe= 1 2. β (1)T
e= 1 3. β (2)T

e= 0

4. β (3)T
e= 0 5. β (4)T

e= 0

then the method attains order 0.5 for the strong approximation of the solution of the
Itô SDE (1). If a,b∈C1,3(I ×R

d,Rd) and if in addition the equations
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0
3
4

3
4

3
2

0 0 0 0 0

0 0 0 0 0 0 0

0
1
4

1
4

1
2

1 1 0 −1 0
1
4 0 0 1

4 −5 3 1
2

1
3

2
3 0 0 −1 4

3
2
3 0 −1 4

3 − 1
3 0

2 − 4
3 − 2

3 0 −2 5
3 − 2

3 1

0

1 1 0
1
2

1
4

1
4 1 1

2

0 0 0 0 0 0 0

0
1
4

1
4 − 1

2

1 1 0 1 0
1
4 0 0 1

4 2 −1 1
2

1
6

1
6

2
3 0 −1 4

3
2
3 0 1 − 4

3
1
3 0

2 − 4
3 − 2

3 0 −2 5
3 − 2

3 1

Table 3 Strong SRK scheme SRI1W1 of order(2.0,1.5) on the left hand side and SRI2W1 of
order(3.0,1.5) on the right hand side.

6. β (1)T
B(1)e= 0 7. β (2)T

B(1)e= 1

8. β (3)T
B(1)e= 0 9. β (4)T

B(1)e= 0

are fulfilled and if c(i) = A(i)e for i = 0,1, then the SRK method (22) attains order
1.0 for the strong approximation of the solution of the Itô SDE (1) with scalar noise.
If a,b∈C2,4(I ×R

d,Rd) and if in addition the equations

10. αTA(0)e=
1
2

15. β (3)T
A(1)e= −1 20. β (4)T

(B(1)e)2 = 2

11. αTB(0)e= 1 16. β (4)T
A(1)e= 0 21. β (1)T

(B(1)(B(1)e)) = 0

12. αT(B(0)e)2 =
3
2

17. β (1)T
(B(1)e)2 = 1 22. β (2)T

(B(1)(B(1)e)) = 0

13. β (1)T
A(1)e= 1 18. β (2)T

(B(1)e)2 = 0 23. β (3)T
(B(1)(B(1)e)) = 0

14. β (2)T
A(1)e= 0 19. β (3)T

(B(1)e)2 = −1 24. β (4)T
(B(1)(B(1)e)) = 1

25.
1
2

β (1)T
(A(1)(B(0)e))+

1
3

β (3)T
(A(1)(B(0)e)) = 0

are fulfilled and if c(i) = A(i)e for i = 0,1, then the SRK method (22) attains order
1.5 for the strong approximation of the solution of the Itô SDE (1) in the case of
scalar noise.

For a proof of Theorem 4 we refer to Rößler (2009). Coefficients for the order 1.5
strong SRK schemes SRI1W1 of order(2.0,1.5) and SRI2W1 of order(3.0,1.5)
are given in Tab. 3. The SRK scheme SRI1W1 needs only 2 evaluations of the
drift coefficient, 4 evaluations of the diffusion coefficient b and the simulation of
two independent normally distributed random variables foreach step. Note that the

explicit 2–stages SRK method (22) with coefficientsα1 = β (1)
1 = β (2)

2 = A(1)
2,1 =



Strong and Weak Approximation Methods for SDEs – Some RecentDevelopments 13

number of evaluationsrandom variables

scheme order ak bk, j ∂bk, j

∂xl I( j) I( j ,0) I(i, j)

EM 0.5 d md – + – –
MIL 1.0 d md md2 + – +
SPLI 1.0 d (m2 +m)d – + – +

SPLIW1 1.5 3d 5d – + + –
SRI1 1.0 d 3md – + – +

SRI1W1 1.5 2d 4d – + + –

Table 4 Computational complexity of some schemes per step for ad–dimensional SDE system
with am–dimensional Wiener process (m= 1 for SPLIW1 and SRI1W1).

B(1)
2,1 = 1, β (2)

1 = −1 andα2 = β (1)
2 = A(0)

2,1 = B(0)
2,1 = β (3)

1 = β (3)
2 = β (4)

1 = β (4)
2 = 0

coincides with the order 1.0 strong scheme (11.1.3) in Kloeden and Platen (1999).

5.3 Numerical Results

The presented efficient SRK methods are applied to some test SDEs in order to
analyze their performance. Let EM denote the order 0.5 strong Euler–Maruyama
scheme and let MIL denote the order 1.0 strong Milstein scheme in Milstein (1995).
Further, the order 1.0 strong scheme (11.1.7) denoted as SPLI and the order 1.5
strong scheme (11.2.1) called SPLIW1 for Itô SDEs with scalar noise in Kloeden
and Platen (1999) are applied. As a measure for the computational effort, we take the
number of evaluations of the drift and diffusion coefficients as well as the number
of realizations of (normally distributed) random variables needed each step. If the
approximation method needs the random variablesI(i, j) for 1≤ i, j ≤ m with i 6= j,
thenI(i, j) is simulated by the method due to Wiktorsson (2001) and we need to sim-
ulate 1

2m(m− 1) + 2mq independent normally distributed random variables each

step withq≤ ⌈
√

5m2(m−1)/(24π2)h−1/2⌉ in the mean (see Wiktorsson (2001)),
provided that them random variablesI(i) are given. Thus, the additional computa-

tional effort increases with orderO(h−1/2) ash→ 0. The computational complex-
ity is given in Tab. 4. E.g., the computational complexity ofthe scheme MIL is
d + md+ md2 + m+ 1

2m(m− 1)+ 2mq whereas scheme SRI1 has only complex-
ity d + 3md+ m+ 1

2m(m−1)+ 2mq each step. Thus, the scheme SRI1 has lower
computational complexity than the Milstein scheme MIL in the case ofd > 2 and
m≥ 1 even if we neglect the effort for the calculation of the derivatives ofb j needed
by the Milstein scheme. Further, the scheme SRI1 has also lower computational
complexity than the scheme SPLI1 due to Platen in the case ofd ≥ 1 andm> 2.

We simulate 2000 trajectories and take the mean of the attained errors atT = 1
as an estimator for the expectation in (2). Then, we analyze the mean–square errors
versus the computational effort as well as versus the step size in log–log–diagrams
with base two. We denote bypeff the effective order of convergence which is the
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Fig. 2 Errors vs. effort for SDE (25) and SDE (26) withd = m= 1.
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Fig. 3 Errors vs. effort for SDE (26) and errors vs. step sizes for SDE (26) withd = m= 10.

slope of the resulting line in the mean–square errors versuseffort diagrams. Consid-
ering the effective order may cause an order reduction such that an strong order 1.0
scheme attains the effective orderpeff = 2/3 ash→ 0. This is due to the effort for
the simulation of the multiple integralsI(i, j) which depends onh. Dotted order lines
with slope 0.5, 1.0, 2/3 and 1.5 are plotted as a reference. Clearly, a more efficient
method to simulate the multiple integralsI(i, j) would result in a higher effective or-
der. However, compared to the Euler–Maruyama scheme EM withpeff = 0.5, there
is still a significantly improved convergence for the order 1.0 methods. As a result of
this, the order 1.0 strong approximation methods are superior to the order 0.5 strong
Euler–Maruyama scheme, which is also confirmed by the simulation results.

As the first example, consider ford = m= 1 the nonlinear Itô SDE

dXt = −
(

1
10

)2

sin(Xt)cos3(Xt)dt +
1
10

cos2(Xt)dWt , X0 = 1, (25)

with solutionXt = arctan( 1
10Wt + tan(X0)) in Kloeden and Platen (1999). The results

for h = 20, . . . ,2−16 are plotted on the left of Fig. 2. Scheme SRI1W1 has effective
order 1.5 and performs better than the other schemes due to its reduced complexity.
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In order to consider also a multi-dimensional Itô SDE withd,m≥ 1, we define
A ∈ R

d×d as a matrix with entriesAi j = 1
20 if i 6= j andAii = − 3

2 for 1≤ i, j ≤ d.
Further, defineBk ∈ R

d×d by Bk
i j = 1

100 for i 6= j andBk
ii = 1

5 for 1 ≤ i, j ≤ d and
k = 1, . . . ,m. Then, we consider the Itô SDE

dXt = AXt dt +
m

∑
k=1

BkXt dWk
t , X0 = (1, . . . ,1)T ∈ R

d , (26)

with solutionXt = X0exp((A− 1
2 ∑m

k=1(B
k)2)t + ∑m

k=1BkWk
t ). For the case ofd =

m= 1 the numerical results forh = 20, . . . ,2−16 are presented on the right of Fig. 2
where the scheme SRI1W1 has the best performance. On the other hand, for the case
of d = m= 10 the effective and the strong orders are analyzed forh = 20, . . . ,2−15

in Fig. 3. Here, the schemes MIL, SPLI, and SRI1 have strong order 1.0 while the
Euler–Maruyama scheme EM has order 1/2. Further, due to the effort for the simula-
tion of the multiple integrals, all order 1.0 strong schemesattain the effective order
2/3 and thus perform significantly better than the Euler–Maruyama scheme EM
with effective order 1/2. The scheme SRI1 shows the best performance, especially
compared to the Milstein scheme MIL and the scheme SPLI.

6 Weak Approximation of SDEs

In contrast to strong approximation methods, we now consider methods which are
designed for the approximation of distributional characteristics of the solution of
SDEs. Numerical methods for the weak approximation do not need information
about the driving Wiener process, their random variables can be simulated on a
different probability space. Therefore, we can make use of random variables with
distributions which are easy to simulate. In the following,we make use of random
variables which are defined by

Î(k,l) =











1
2(Î(k) Î(l)−

√
hnĨ(k)) if k < l

1
2(Î(k) Î(l) +

√
hnĨ(l)) if l < k

1
2(Î2

(k) −hn) if k = l

(27)

for 1 ≤ k, l ≤ m with independent random variablesÎ(k), 1≤ k ≤ m, and random
variablesĨ(k), 1≤ k≤ m−1, possessing the moments

E(Îq
(k)) =











0 for q∈ {1,3,5}
(q−1)hq/2

n for q∈ {2,4}
O(hq/2

n ) for q≥ 6

, E(Ĩq
(k)) =











0 for q∈ {1,3}
hn for q = 2

O(hq/2
n ) for q≥ 4

.

(28)
Thus, only 2m− 1 independent random variables are needed for each stepn =
0,1, . . . ,N− 1. For example, we can chooseÎ(k) as three point distributed random



16 Andreas Rößler

variables with P(Î(k) = ±
√

3hn) = 1
6 and P(Î(k) = 0) = 2

3. The random variables̃I(k)
can be defined by a two point distribution with P(Ĩ(k) = ±

√
hn) = 1

2.

6.1 Order 2.0 Weak SRK Methods

We consider the class of efficient SRK methods introduced in Rößler (2009) for the
weak approximation of the solution of the Itô SDE (1) where the number of stagess
is independent of the dimensionmof the driving Wiener process. A similar class of
second order SRK methods for the Stratonovich version of SDE(1) can be found in
Rößler (2007). For the Itô SDE (1) thed-dimensional SRK approximationY with
Yn = Y(tn) for tn ∈ Ih due to Rößler (2009) is defined byY0 = x0 and

Yn+1 = Yn +
s

∑
i=1

αi a(tn +c(0)
i hn,H

(0)
i )hn

+
s

∑
i=1

m

∑
k=1

β (1)
i bk(tn +c(1)

i hn,H
(k)
i )Î(k) +

s

∑
i=1

m

∑
k=1

β (2)
i bk(tn +c(1)

i hn,H
(k)
i )

Î(k,k)√
hn

+
s

∑
i=1

m

∑
k=1

β (3)
i bk(tn +c(2)

i hn,Ĥ
(k)
i )Î(k) +

s

∑
i=1

m

∑
k=1

β (4)
i bk(tn +c(2)

i hn,Ĥ
(k)
i )
√

hn

(29)

for n = 0,1, . . . ,N−1 with stage values

H(0)
i = Yn +

s

∑
j=1

A(0)
i j a(tn +c(0)

j hn,H
(0)
j )hn +

s

∑
j=1

m

∑
l=1

B(0)
i j bl (tn +c(1)

j hn,H
(l)
j ) Î(l)

H(k)
i = Yn +

s

∑
j=1

A(1)
i j a(tn +c(0)

j hn,H
(0)
j )hn +

s

∑
j=1

B(1)
i j bk(tn +c(1)

j hn,H
(k)
j )
√

hn

Ĥ(k)
i = Yn +

s

∑
j=1

A(2)
i j a(tn +c(0)

j hn,H
(0)
j )hn +

s

∑
j=1

m

∑
l=1
l 6=k

B(2)
i j bl (tn +c(1)

j hn,H
(l)
j )

Î(k,l)√
hn

for i = 1, . . . ,s andk = 1, . . . ,m. In the case of a scalar driving Wiener process, i.e.
for m = 1, the SRK method (29) reduces to the SRK method proposed in R¨oßler
(2006). The coefficients of the SRK method (29) can be represented by an extended
Butcher array:

c(0) A(0) B(0)

c(1) A(1) B(1)

c(2) A(2) B(2)

αT β (1)T β (2)T

β (3)T β (4)T
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Applying the rooted tree analysis and Theorem 2 withp = 2, we obtain order
two conditions for the SRK method (29) which were calculatedin Rößler (2009).

Theorem 5.Let ai ,bi, j ∈C2,4
P (I ×R

d,R) for 1≤ i ≤ d,1≤ j ≤m. If the coefficients
of the stochastic Runge–Kutta method (29) fulfill the equations

1. αTe= 1 2. β (4)T
e= 0 3. β (3)T

e= 0

4. (β (1)T
e)2 = 1 5. β (2)T

e= 0 6. β (1)T
B(1)e= 0

7. β (4)T
A(2)e= 0 8. β (3)T

B(2)e= 0 9. β (4)T
(B(2)e)2 = 0

then the method attains order 1 for the weak approximation ofthe solution of the
Itô SDE (1). Further, if ai ,bi, j ∈C3,6

P (I ×R
d,R) for 1≤ i ≤ d, 1≤ j ≤ m and if in

addition the equations

10. αTA(0)e= 1
2 11. αT(B(0)e)2 = 1

2

12. (β (1)T
e)(αTB(0)e) = 1

2 13. (β (1)T
e)(β (1)T

A(1)e) = 1
2

14. β (3)T
A(2)e= 0 15. β (2)T

B(1)e= 1

16. β (4)T
B(2)e= 1 17. (β (1)T

e)(β (1)T
(B(1)e)2) = 1

2

18. (β (1)T
e)(β (3)T

(B(2)e)2) = 1
2 19. β (1)T

(B(1)(B(1)e)) = 0

20. β (3)T
(B(2)(B(1)e)) = 0 21. β (3)T

(B(2)(B(1)(B(1)e))) = 0

22. β (1)T
(A(1)(B(0)e)) = 0 23. β (3)T

(A(2)(B(0)e)) = 0

24. β (4)T
(A(2)e)2 = 0 25. β (4)T

(A(2)(A(0)e)) = 0

26. αT(B(0)(B(1)e)) = 0 27. β (2)T
A(1)e= 0

28. β (1)T
((A(1)e)(B(1)e)) = 0 29. β (3)T

((A(2)e)(B(2)e)) = 0

30. β (4)T
(A(2)(B(0)e)) = 0 31. β (2)T

(A(1)(B(0)e)) = 0

32. β (4)T
((B(2)e)2(A(2)e)) = 0 33. β (4)T

(A(2)(B(0)e)2) = 0

34. β (2)T
(A(1)(B(0)e)2) = 0 35. β (1)T

(B(1)(A(1)e)) = 0

36. β (3)T
(B(2)(A(1)e)) = 0 37. β (2)T

(B(1)e)2 = 0

38. β (4)T
(B(2)(B(1)e)) = 0 39. β (2)T

(B(1)(B(1)e)) = 0

40. β (1)T
(B(1)e)3 = 0 41. β (3)T

(B(2)e)3 = 0

42. β (1)T
(B(1)(B(1)e)2) = 0 43. β (3)T

(B(2)(B(1)e)2) = 0

44. β (4)T
(B(2)e)4 = 0 45. β (4)T

(B(2)(B(1)e))2 = 0

46. β (4)T
((B(2)e)(B(2)(B(1)e))) = 0 47. αT((B(0)e)(B(0)(B(1)e))) = 0
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48. β (1)T
((A(1)(B(0)e))(B(1)e)) = 0 49. β (3)T

((A(2)(B(0)e))(B(2)e)) = 0

50. β (1)T
(A(1)(B(0)(B(1)e))) = 0 51. β (3)T

(A(2)(B(0)(B(1)e))) = 0

52. β (4)T
((B(2)(A(1)e))(B(2)e)) = 0 53. β (1)T

(B(1)(A(1)(B(0)e))) = 0

54. β (3)T
(B(2)(A(1)(B(0)e))) = 0 55. β (1)T

((B(1)e)(B(1)(B(1)e))) = 0

56. β (3)T
((B(2)e)(B(2)(B(1)e))) = 0 57. β (1)T

(B(1)(B(1)(B(1)e))) = 0

58. β (4)T
((B(2)e)(B(2)(B(1)(B(1)e)))) = 0 59. β (4)T

((B(2)e)(B(2)(B(1)e)2)) = 0

are fulfilled and if c(i) = A(i)e for i = 0,1,2, then the stochastic Runge–Kutta
method (29) attains order 2 for the weak approximation of thesolution of the It̂o
SDE (1).

Proof. We only give a sketch of the proof and refer to Rößler (2009) for the detailed
proof. Calculating the order conditions by Theorem 2, it turns out that there are some
trees which restrict the class of efficient SRK methods significantly and which give
a deep insight to the necessary structure of such methods. Therefore, we concentrate
our investigation to the trees

t2,12 = [τ j1,τ j2, [τ j4 ] j3]γ , t2,15 = [[τ j2] j1, [τ j4] j3]γ , (30)

with somej1, j2, j3, j4 ∈ {1, . . . ,m}. Then, we havel(t2,12) = l(t2,15) = 5,ρ(t2,12) =
ρ(t2,15) = 2 ands(t2,12) = s(t2,15) = 4. Now, for the SRK method (29) we choose
M = {(0),(ν),(ν,0),(ν,1) : 1≤ ν ≤ m} and

z(0),(0)
i = αi hn , z(k),(k,0)

i = β (1)
i Î(k) + β (2)

i
Î(k,k)√

hn
, z(k),(k,1)

i = β (3)
i Î(k) + β (4)

i

√

hn ,

Z(0),(0),(0)
i j = A(0)

i j hn , Z(k,0),(0),(0)
i j = A(1)

i j hn , Z(k,1),(0),(0)
i j = A(2)

i j hn ,

Z(0),(k),(k,0)
i j = B(0)

i j Î(k) , Z(k,0),(k),(k,0)
i j = B(1)

i j

√

hn , Z(k,1),(l),(l ,0)
i j = B(2)

i j
Î(k,l )√

hn
,

for 1≤ k, l ≤ m with k 6= l and withH(k,0)
i = H(k)

i andH(k,1)
i = Ĥ(k)

i for 1≤ i, j ≤
s. Thus, the class of SRK methods is covered by the general class (4). Then, the
coefficient function (12) yields

ΦS(t2,12) = (z( j1),( j1,0)T
e+z( j1),( j1,1)T

e)(z( j2),( j2,0)T
e+z( j2),( j2,1)T

e)

× (z( j3),( j3,0)T
Z( j3,0),( j4),( j4,0)e+z( j3),( j3,1)T

Z( j3,1),( j4),( j4,0)e) ,

ΦS(t2,15) = (z( j1),( j1,0)T
Z( j1,0),( j2),( j2,0)e+z( j1),( j1,1)T

Z( j1,1),( j2),( j2,0)e)

× (z( j3),( j3,0)T
Z( j3,0),( j4),( j4,0)e+z( j3),( j3,1)T

Z( j3,1),( j4),( j4,0)e) ,

(31)

for j1, j2, j3, j4 ∈ {1, . . . ,m}. Further, the multiple stochastic integrals are
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It2,12;t,t+h = I( j4, j3, j2, j1);t,t+h + I( j4, j3, j1, j2);t,t+h + I( j1, j4, j3, j2);t,t+h + I( j4, j1, j3, j2);t,t+h

+ I(0, j3, j2);t,t+h[1{ j1= j4}]+ I( j4,0, j2);t,t+h[1{ j1= j3}]+ I( j4, j3,0);t,t+h[1{ j1= j2}]

+ I( j4, j2, j3, j1);t,t+h + I( j4, j2, j1, j3);t,t+h + I( j1, j4, j2, j3);t,t+h + I( j4, j1, j2, j3);t,t+h

+ I(0, j2, j3);t,t+h[1{ j1= j4}]+ I( j4,0, j3);t,t+h[1{ j1= j2}]+ I( j4, j2,0);t,t+h[1{ j1= j3}]

+ I( j2, j4, j3, j1);t,t+h + I( j2, j4, j1, j3);t,t+h + I( j1, j2, j4, j3);t,t+h + I( j2, j1, j4, j3);t,t+h

+ I(0, j4, j3);t,t+h[1{ j1= j2}]+ I( j2,0, j3);t,t+h[1{ j1= j4}]+ I( j2, j4,0);t,t+h[1{ j1= j3}]

+ I(0, j3, j1);t,t+h[1{ j2= j4}]+ I( j1,0, j3);t,t+h[1{ j2= j4}]+ I(0, j1, j3);t,t+h[1{ j2= j4}]

+ I( j4,0, j1);t,t+h[1{ j2= j3}]+ I( j1, j4,0);t,t+h[1{ j2= j3}]+ I( j4, j1,0);t,t+h[1{ j2= j3}]

+ I(0,0);t,t+h[1{ j2= j4}1{ j1= j3}]+ I(0,0);t,t+h[1{ j2= j3}1{ j1= j4}]

and

It2,15;t,t+h = I( j4, j3, j2, j1);t,t+h + I( j4, j2, j3, j1);t,t+h + I( j2, j4, j3, j1);t,t+h + I( j2, j1, j4, j3);t,t+h

+ I(0, j3, j1);t,t+h[1{ j2= j4}]+ I( j4,0, j1);t,t+h[1{ j2= j3}]+ I( j2,0, j3);t,t+h[1{ j1= j4}]

+ I( j2, j4, j1, j3);t,t+h + I( j4, j2, j1, j3);t,t+h + I(0,0);t,t+h[1{ j1= j3}1{ j2= j4}]

+ I( j4, j2,0);t,t+h[1{ j1= j3}]+ I( j2, j4,0);t,t+h[1{ j1= j3}]+ I(0, j1, j3);t,t+h[1{ j2= j4}] .

If we apply Theorem 2 tot2,12 andt2,15, then we have to consider the casesjk = j l
and jk 6= j l for 1≤ k< l ≤ 4. In the case ofj1 = j2 = j3 = j4 we obtainσ(t2,12) = 2
and E(It2,12;t,t+h) = h2. The order condition (18) yields that E(ΦS(t2,12; t,t + h)) =

h2 has to be fulfilled. Applying (31) and taking into account theorder conditions

β (4)T
e= 0 andβ (2)T

e= 0 due to the treest0.5,1 = [τ j1]γ andt1.5,4 = [τ j1,τ j2,τ j3]γ
(see Rößler (2009) for details) yields

E(ΦS(t2,12)) = E(((β (1)T
eÎ( j1) + β (2)T

e
Î( j1, j1)√

h
)+ (β (3)TeÎ( j1) + β (4)Te

√
h))2

× (β (1)T
B(1)eÎ( j1)

√
h+ β (2)T

B(1)e
Î( j1, j1)√

h

√
h))

= (β (1)T
e+ β (3)Te)2(β (2)T

B(1)e) E(Î2
( j1)

Î( j1, j1)) .

Due to E(Î2
( j1)

Î( j1, j1)) = h2, the order condition is fulfilled if for the coefficients

holds (β (1)T
e+ β (3)T

e)2(β (2)T
B(1)e) = 1. In the case ofj1 = j3 6= j2 = j4 we

calculate withσ(t2,12) = 2 and E(It2,12;t,t+h) = 1
2h2 from (18) the order condition

E(ΦS(t2,12; t,t +h)) = 1
2h2. Then, we obtain for the SRK method (29)
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E(ΦS(t2,12)) = E(((β (1)T
eÎ( j1) + β (2)Te

Î( j1, j1)√
h

)+ (β (3)T
eÎ( j1) + β (4)T

e
√

h))

× ((β (1)TeÎ( j2) + β (2)Te
Î( j2, j2)√

h
)+ (β (3)TeÎ( j2) + β (4)Te

√
h))

× (β (3)TB(2)eÎ( j1)
Î( j1, j2)√

h
+ β (4)T

B(2)e
√

h
Î( j1, j2)√

h
))

= (β (1)T
e+ β (3)Te)2(β (4)T

B(2)e) E(Î( j1) Î( j2) Î( j1, j2)) .

Now, we can calculate that E(Î( j1) Î( j2) Î( j1, j2)) = 1
2h2. Thus, the order condition is

fulfilled if (β (1)T
e+ β (3)Te)2(β (4)T

B(2)e) = 1.
For t2,15, we calculate in the case ofj1 = j2 = j3 = j4 with σ(t2,15) = 2 and

E(It2,15;t,t+h) = 1
2h2 from (18) the order condition E(ΦS(t2,15; t,t +h)) = 1

2h2. Again,
applying (31) results in

E(ΦS(t2,15)) = E((β (1)T
B(1)eÎ( j1)

√
h+ β (2)TB(1)e

Î( j1, j1)√
h

√
h)2)

= (β (1)T
B(1)e)2 E(Î2

( j1)
)h+(β (2)TB(1)e)2 E(Î2

( j1, j1)
) .

Now, due to E(Î2
( j1)

) = h and E(Î2
( j1, j1)

) = 1
2h2 the order condition is(β (1)T

B(1)e)2+

1
2(β (2)T

B(1)e)2 = 1
2. On the other hand, in the case ofj1 = j3 6= j2 = j4 with

σ(t2,15) = 2 and E(It2,15;t,t+h) = 1
2h2, we get from (18) that E(ΦS(t2,15; t,t + h)) =

1
2h2 has to be fulfilled. Now, we obtain with (31) that

E(ΦS(t2,15)) = E((β (3)T
B(2)eÎ( j1)

Î( j1, j2)√
h

+ β (4)TB(2)e
√

h
Î( j1, j2)√

h
)2)

= (β (3)T
B(2)e)2 E(Î2

( j1)
Î2
( j1, j2)

)h−1 +(β (4)T
B(2)e)2 E(Î2

( j1, j2)) .

Due to E(Î2
( j1)

Î2
( j1, j2)) = h3 and E(Î2

( j1, j2)
) = 1

2h2, we finally get the order condition

(β (3)T
B(2)e)2 + 1

2(β (4)T
B(2)e)2 = 1

2.
For all remaining cases of typejk = j l or jk 6= j l for 1 ≤ k < l ≤ 4, we have

E(It2,12;t,t+h) = E(It2,15;t,t+h) = 0 and we also calculate that E(ΦS(t2,12; t,t + h)) =
E(ΦS(t2,15; t,t + h)) = 0. Therefore, (18) is fulfilled in these cases without any ad-
ditional restrictions for the coefficients. Applying the rooted tree analysis and The-
orem 2 to all remaining rooted trees up to order 2.5, we can calculate the complete
order two conditions for the SRK method (29), see Rößler (2009). �

Remark 2.In the case ofm= 1 and if we chooseA(2)
i j = 0 for 1≤ i, j ≤ s then the

59 conditions of Theorem 5 reduce to 28 conditions (see also Rößler (2006)). For
an explicit SRK method of type (29)s≥ 3 is needed due to conditions 4., 6. and
17. Further, in the case of commutative noise significantly simplified SRK methods
have been developed in Rößler (2004).

For example, the well known Euler-Maruyama scheme EM belongs to the intro-
duced class of SRK methods having weak order 1 withs= 1 stage and with coeffi-
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0

1 1 1
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25
144

35
144 − 5

6 0

0
1
4

1
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1
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1
4

1
4 0 − 1

2 0

0

0 0 1

0 0 0 −1 0
1
10

3
14

24
35 1 −1 −1 0 1 −1

1
2 − 1

4 − 1
4 0 1

2 − 1
2

0

1 1 1

0 0 0 0 0

0

1 1 1

1 1 0 −1 0

0

0 0 1

0 0 0 −1 0
1
2

1
2 0 1

2
1
4

1
4 0 1

2 − 1
2

− 1
2

1
4

1
4 0 1

2 − 1
2

Table 5 Weak SRK scheme RI5 of orderpD = 3 andpS = 2 and RI6 of orderpD = pS = 2.

cientsα1 = β (1)
1 = 1, β (2)

1 = β (3)
1 = β (4)

1 = 0, A(0)
11 = A(1)

11 = 0 andB(0)
11 = B(1)

11 = 0.
We refer to Debrabant and Rößler (2009) for a detailed analysis of the solution space
of the order conditions in Theorem 5 and for some coefficientswhich minimize the
error constants of the SRK method (29). The SRK scheme RI5 presented on the left
hand side of Table 5, is of orderpS = 2 andpD = 3, while the SRK scheme RI6
on the right hand side of Table 5 is of orderpD = pS = 2. Considering the com-
putational complexity of the efficient SRK schemes RI5 and RI6, we take again the
number of evaluations of the drift and diffusion functions and the number of random
numbers needed in each step as a measure for the complexity ofthe schemes. Then,
the SRK scheme RI5 needs 3 evaluations of the drifta while the SRK scheme RI6
needs 2 evaluations ofa. Furthermore, we have to point out that only 5 evaluations
of each diffusion functionbk for k = 1, . . . ,m are needed by both SRK schemes RI5
and RI6. This is due to the fact that the number of stagess= 3 does not depend on

the dimensionm of the driving Wiener process and because ofH(k)
1 = Ĥ(k)

1 , which
saves one evaluation of eachbk in the case of explicit SRK schemes. As a further
feature, only 2m−1 independent random numbers have to be generated for the new
SRK schemes in each step. Thus, the scheme RI6 has computational complexity
2d + 5md+ 2m− 1 while e.g. the order 2.0 weak SRK method PL1WM due to
Platen (see Kloeden and Platen (1999) or Tocino and Vigo-Aguiar (2002)) has com-
putational complexity 2d+(2m2+m)d+m+ 1

2m(m−1) which grows quadratically
with the dimensionm of the Wiener process. Thus, this is a significant reduction of
complexity for the new SRK method (29) compared to well knownSRK methods.

7 Numerical Results

We compare the schemes RI5 and RI6 with the order one Euler-Maruyama scheme
EM, with the order 2.0 weak SRK scheme PL1WM due to Platen (seeKloeden
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and Platen (1999) or Tocino and Vigo-Aguiar (2002)) and withthe extrapolated
Euler-Maruyama scheme ExEu due to Talay and Tubaro (1990) attaining order two.
In the following, we approximate E( f (XT)) for f (x1, . . . ,xd) = x1 by Monte Carlo
simulation. Therefore, we estimate E( f (YT)) by the sample average ofM indepen-
dently simulated realizations of the approximationsf (YT,k), k = 1, . . . ,M, with YT,k

calculated by the scheme under consideration. The obtainederrors at timeT = 1.0
are plotted versus the corresponding step sizes or the corresponding computational
effort with double logarithmic scale in order to analyze theempirical order of con-
vergence and the performance of the schemes, respectively.

The first test equation is a non-linear SDE system ford = m = 2 with non-
commutative noise given by

d

(

X1
t

X2
t

)

=

(

− 1
2X1

t + 3
2X2

t
3
2X1

t − 1
2X2

t

)

dt +

(√

3
4(X1

t )2− 3
2X1

t X2
t + 3

4(X2
t )2 + 3

20

0

)

dW1
t

+





−
√

1
4(X1

t )2− 1
2X1

t X2
t + 1

4(X2
t )2 + 1

20
√

(X1
t )2−2X1

t X2
t +X2

t + 1
5



 dW2
t ,

(32)

with initial valueX0 = ( 1
10,

1
10)

T . Then, we calculate the first moments as E(Xi
t ) =

1
10 exp(t) for i = 1,2. Here, we chooseM = 109 and the corresponding results are
presented in Figure 4.

Next, we consider a non-linear SDE with non-commutative noise and some
higher dimensiond = 4 which is given forλ ,µ ∈ {0,1} as

d
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t
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t
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t
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154X
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154X

2
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154X3
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154X
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t

5
154X1
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154X

2
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154X1
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154X
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77 X4
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√
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Fig. 4 Computational effort vs. error for the approximation of E(X1
T ) for SDE (32) in the left and

for SDE (33) forλ = µ = 0 with m= 2 in the right figure.
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with initial valueX0 = (1
8, 1

8,1, 1
8)T . Then, we havem= 2+2λ +2µ as the dimen-

sion of the driving Wiener process. The moments of the solution can be calculated
as E(Xi

T) = 1
8 exp(2T) for i = 1,2,4 and E(X3

T) = exp(2T). We compare the perfor-
mance of the considered schemes for the casesm= 2 with λ = µ = 0, for m= 4
with λ = 1 andµ = 0, and form = 6 if λ = µ = 1. Here,M = 108 independent
trajectories are simulated and the results are presented inFigures 4–5. On the right

Fig. 5 Computational effort vs. error for the approximation of E(X1
T ) for SDE (33) forλ = 1,

µ = 0 with m= 4 in the left and forλ = µ = 1 with m= 6 in the right figure.
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hand side in Figure 4 and in Figure 5, we can see the performance of the consid-
ered schemes as the dimensionm increases from 2 to 6. Comparing these results,
we can see the significantly reduced complexity for the new SRK schemes RI5 and
RI6 compared to the well known SRK scheme PL1WM in the case ofm> 2. This
benefit becomes more and more significant if we increase the dimensionm of the



24 Andreas Rößler

driving Wiener process, which confirms our theoretical results. For the considered
examples, we obtained very good results especially for the SRK scheme RI5 having
orderpD = 3 andpS = 2.
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33. A. RÖSSLER, Stochastic Taylor Expansions for Functionals of DiffusionProcesses, To appear
in: Stochastic Analysis and Applications (2010).
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