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Abstract

We consider the general nonparametric regression model Y = m(X) + ε, where the
distribution of the error ε, given the covariate X = x, is modelled by a conditional
distribution function P (ε ≤ y | X = x) = Fε|X(y|x). For estimation of Fε|X a kernel
approach as well as the (kernel based) empirical likelihood method are discussed. The
latter method allows for incorporation of the centeredness assumption E[ε | X = x] = 0
and other assumptions on the error distribution into the estimation. We show weak
convergence of the corresponding empirical processes to Gaussian processes. Further,
we discuss possible application of the results to modified residual bootstrap in the
general regression model and to hypotheses tests, e. g. tests for parametric structure of
the conditional variance function σ2(x) = E[ε2 | X = x].
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1 Introduction

Assume a sample of independent copies (X1, Y1), . . . , (Xn, Yn) of a bivariate random variable

(X, Y ) is collected, where one is interested in modelling the functional dependence of the

observation Y on the covariable X by the regression function m(x) = E[Y | X = x]. Having

estimated the regression function, one is interested in the remaining dependence of Y and X,

namely the distribution of Y around its conditional mean, which is given by the conditional

∗corresponding author, e-mail: neumeyer@math.uni-hamburg.de
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distribution of the centered observation Y −m(X), usually modelled as measurement error ε

[cf. Efromovich (2005, 2007), for instance]. To this end consider the nonparametric regression

model

Y = m(X) + ε (1.1)

and let εi = Yi − m(Xi), i = 1, . . . , n. Here no structural assumptions on the regression

function m are made except for smoothness, and the error ε is not observable.

Sometimes for statistical inference homoscedasticity is assumed in model (1.1), i. e. inde-

pendence of the conditional variance Var(Y | X) of the covariable X. Often homoscedasticity

is even modelled more restrictively by assuming independence of covariable and error, and

this is what we will mean by “homoscedastic model” throughout the paper:

Y = m(X) + ε, where X ⊥ ε, E[ε] = 0. (1.2)

Techniques of proofs for instance for asymptotic distributions of procedures in mathematical

statistics are made easier by the independence assumption. The conditional error distribu-

tion, given the covariate, as mentioned before is then the (unconditional) distribution of ε,

and can be estimated by the empirical distribution of residuals ε̂i = Yi−m̂(Xi), i = 1, . . . , n,

where m̂ denotes the estimation of the regression function. See Cheng (2002) for strong con-

sistency and Müller, Schick & Wefelmeyer (2007, 2009) for central limit theorems. However,

in many applications such a model is too restrictive, and a number of tests for constant

variance (i. e. Var(Y | X) independent of X) are available in the literature, see for instance

Dette & Munk (1998), Dette (2002), and Liero (2003). Tests for independence of ε and X

[i. e. for validity of the homoscedastic model (1.2)] are given by Einmahl & Van Keilegom

(2008a) and Neumeyer (2009).

If homoscedasticity is rejected, heteroscedastic regression is often modelled in the form

Y = m(X) + ε, ε = σ(X)η, where X ⊥ η, E[η] = 0, E[η2] = 1. (1.3)

Here again, techniques of proofs usually make extensive use of the independence of X and η.

Akritas & Van Keilegom (2001) consider the estimation of the (unconditional) distribution

of η by the empirical distribution function of standardized residuals η̂i = (Yi−m̂(Xi))/σ̂(Xi),

where σ̂2 denotes some nonparametric estimator of the conditional variance function σ2(x) =

Var(Y | X = x). In some applications it might be questionable whether the independence as-

sumption is met and Einmahl & Van Keilegom (2008b) and Neumeyer (2009) have proposed

tests for the hypothesis X ⊥ η.

If the hypothesis is rejected, a more general model should be used, where the distribution

of the error ε, given the covariate X = x, is modelled by a conditional distribution function

Fε|X(·|x), which is known to be centered (by definition of m). This is the model we will

consider in the paper at hand, namely

Y = m(X) + ε, where E[ε | X = x] =

∫
yFε|X(dy|x) = 0. (1.4)
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For example, Zhu, Fujikoshi & Naito (2001), Dette & Hetzler (2009a, 2009b), and Koul &

Song (2010) consider such a model in the context of lack-of-fit tests for the variance function.

To the authors’ knowlegde the estimation of the conditional error distribution in model (1.4)

has not yet been considered in the literature. It will be of major importance in the derivation

of bootstrap procedures in model (1.4), and further can be applied for model tests in the

context of model (1.4).

In section 2 we suggest a simple residual-based kernel estimator F̂n(·|x) for Fε|X(·|x), we

give an asymptotic expansion, and show weak convergence of a bias-corrected version of the

process (nh)1/2(F̂n(·|x) − Fε|X(·|x)) to a centered Gaussian process, where h denotes some

smoothing parameter.

In section 3 we suggest a modified kernel estimator F̂ ∗n(·|x) for Fε|X(·|x) based on the

empirical likelihood method as introduced by Owen (1988, 2001) [see also DiCiccio, Hall

& Romano (1991), Kitamura (1997), Molanes Lopez, Van Keilegom & Veraverbeke (2009),

among many others]. This method enables us to incorporate the centeredness assumption

as in (1.4) into the estimation, as well as other information given by a condition∫
g(y, x)Fε|X(dy|x) = 0 (1.5)

for some known function g. We will show an asymptotic expansion of F̂ ∗n(·|x) and discuss

weak convergence of a bias-corrected version of the process (nh)1/2(F̂ ∗n(·|x) − Fε|X(·|x)) to

a centered Gaussian process. This generalizes results by Kiwitt, Nagel & Neumeyer (2008)

who considered estimation of the distributions of ε in model (1.2) and η in model (1.3),

respectively, by the empirical likelihood method.

We investigate whether the estimation of the conditional error distribution Fε|X(·|x) can

be improved by incorporating the additional information (1.5) [in comparison to the simple

kernel estimator Fn(·|x)]. To this end, in section 4 we consider examples in asymptotic

theory as well as by means of a simulation study. We demonstrate the good performance of

both estimators and show examples where bias as well as variance of the estimation can be

reduced considerably by the empirical likelihood method.

In section 5 possible applications are discussed. First, an important motivation for ap-

plication of the empirical likelihood estimation is for constructing bootstrap versions of

statistical procedures in the general model (1.4). In the homoscedastic model (1.2) usually

residual bootstrap as introduced by Härdle & Bowman (1988) can be applied, whereas in the

heteroscedastic model (1.3) to preserve the conditional variance often the wild bootstrap is

used, see Härdle & Mammen (1993), Härdle & Marron (1991), and Stute, González Manteiga

& Presedo Quindimil (1998), among others. However, in the general model considered here,

both methods usually cannot be applied directly and need to be modified. We will discuss

how this can be done and how the estimators F̂n and F̂ ∗n can be useful. We particularly

consider the bootstrap versions of tests for the hypothesis of a parametric structure of the

variance function, H0 : ∃ϑ ∈ Θ s. t. σ2(·) = σ2
ϑ(·), where the function σ2

ϑ(·) is known except
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for some finite dimensional parameter ϑ. Dette, Neumeyer & Van Keilegom (2007) consider

a test for such hypothesis in the heteroscedastic model (1.3) and Zhu, Fujikoshi & Naito

(2001), Dette & Hetzler (2009a, 2009b), and Koul & Song (2010) in model (1.4). Tests

for constant variance (independence of Var(Y | X) of X, often called homoscedasticity), as

mentioned earlier, are a special case.

Secondly, hypotheses tests for validity of the information (1.5) are discussed briefly, which

are based on a measure of distance between the simple kernel estimator and the empirical

likelihood estimator for the conditional error distribution function. A special case are again

goodness-of-fit tests for the variance function.

The last subsection of section 5 concludes the paper.

The technical assumptions and all proofs are given in an appendix.

2 Kernel based estimation

As the errors ε1, ..., εn in model (1.4) are not observable, they need to be estimated by

residuals

ε̂i = Yi − m̂(Xi), i = 1, . . . , n.

To this end let K̃ be a kernel function and b = bn a sequence of bandwidths, and let

m̂ denote the Nadaraya-Watson estimator for the regression function m [Nadaraya (1964),

Watson (1964)] defined as

m̂(x) =
1

n

n∑
i=1

1

b
K̃
(Xi − x

b

)
Yi

1

f̂X(x)
,

where f̂X denotes the kernel estimator for the covariate density fX , i.e.

f̂X(x) =
1

n

n∑
i=1

1

b
K̃
(Xi − x

b

)
.

The residuals are used to estimate the conditional distribution function Fε|X also by kernel

approach. Let K denote a kernel function and h = hn a sequence of bandwidths and let the

estimator be defined as

F̂n(y|x) =
n∑
i=1

K(Xi−x
h

)∑n
j=1K(

Xj−x
h

)
I{ε̂i ≤ y}. (2.1)

We further define the analogous estimator built from the errors ε1, ..., εn as

Fn(y|x) =
n∑
i=1

K(Xi−x
h

)∑n
j=1K(

Xj−x
h

)
I{εi ≤ y}. (2.2)
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This function is not known, but will be used for the proof of the asymptotic expansion given

in the theorem below.

Kernel based estimators such as Fn(·|x) for conditional distributions Fε|X(·|x) based on

iid samples (Xi, εi), i = 1, ..., n, have been considered by Stute (1986), Horwáth & Yandell

(1988), and Hall, Wolff & Yao (1999), among others. Note that the approach (2.2) could

be used in our case to estimate the conditional distribution of the observations Y , given the

covariate X = x, i. e. FY |X(·|x), by Ĝn(·|x) based on the iid-sample (Xi, Yi), i = 1, ..., n. Due

to the equality Fε|X(y|x) = FY |X(y+m(x)|x) an alternative to the estimator F̂n(·|x) is given

by Ĝn(·+m̂(x)|x). Both estimators have very similar asymptotic properties and we will only

consider F̂n in the following.

Technical assumptions are listed in the appendix for reasons of clarity and better read-

ability. Note that we assume limn→∞
bn
hn

= λ ∈ [0, 1) and smoothness of m and fX .

Theorem 2.1 (a) Under model (1.4) and the assumptions listed in section A we have the

asymptotic expansion

F̂n(y|x) = Fε|X(y|x) +
1

fX(x)

1

nh

n∑
i=1

K
(Xi − x

h

)
(I{εi ≤ y} − Fε|X(y|x))

+
1

fX(x)

1

n

n∑
i=1

εi

∫
1

h
K
(t− x

h

)
fε|X(y|t)1

b
K̃
(Xi − t

b

)
dt+ b2B(y|x)

+ op(
1√
nh

)

uniformly with respect to y ∈ R for each x ∈ (0, 1), where

B(y|x) =
1

2

fε|X(y|x)

fX(x)
((mfX)′′(x)− (mf ′′X)(x))

∫
K̃(u)u2 du.

(b) Under model (1.4) and the assumptions listed in section A the process

Gn(y|x) =
√
nh
(
F̂n(y|x)− Fε|X(y|x)− h2H(y|x)− b2B(y|x)

)
, y ∈ R,

converges weakly to a centered Gaussian process G(y|x), y ∈ R, with covariance structure

Cov(G(y|x), G(z|x))

=
1

fX(x)

(
Fε|X(y ∧ z|x)− Fε|X(y|x)Fε|X(z|x)

)∫
K2(u) du

+
1

fX(x)
E[ε2 | X = x]fε|X(y|x)fε|X(z|x)k2(λ)

+
1

fX(x)

(
E[εI{ε ≤ y} | X = x]fε|X(z|x) + E[εI{ε ≤ z} | X = x]fε|X(y|x)

)
k1(λ).

Here, k1(0) = k2(0) =
∫
K2(u) du and for λ > 0,

k1(λ) =

∫
(K ∗ K̃λ)(u)K(u) du, k2(λ) =

∫
(K ∗ K̃λ)

2(u) du,
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where ∗ denotes convolution and K̃λ(·) = 1
λ
K̃( ·

λ
). Further, B(y|x) is defined in (a), and

H(y|x) =
1

2fX(x)

(∂2(Fε|X(y|t)fX(t))

∂t2

∣∣∣
t=x
− Fε|X(y|x)f ′′X(x)

)∫
K(u)u2 du.

The proof of Theorem 2.1 is given in the appendix.

Remark 2.2 Note that for λ = 0 (i. e. b = o(h)) the bias term of order b2 is o((nh)−1/2)

and hence negligible. Further in this case due to
∫
K2(u) du = k2(0) = k1(0) the covariance

does no longer depend on the kernel K̃ used for estimating the regression function.

Remark 2.3 From the proof of Theorem 2.1 it follows for the estimator based on the true

errors [see (2.2)] that

Fn(y|x) = Fε|X(y|x) +
1

fX(x)

1

nh

n∑
i=1

K
(Xi − x

h

)
(I{εi ≤ y} − Fε|X(y|x)) + op(

1√
nh

)

and the process
√
nh(Fn(y|x)−Fε|X(y|x))−h2H(y|x)), y ∈ R, weakly converges to a centered

Gaussian process G̃(y|x), y ∈ R, with covariance structure

Cov(G̃(y|x), G̃(z|x)) =
1

fX(x)

(
Fε|X(y ∧ z|x)− Fε|X(y|x)Fε|X(z|x)

)∫
K2(u) du.

Hence, we have shown that the errors ε1, . . . , εn cannot be replaced by estimators ε̂1, . . . , ε̂n
without changing the asymptotic distribution.

3 Empirical likelihood estimation

An empirical likelihood method distributes possibly different weights pi to the ith obser-

vation, i = 1, . . . , n. In our context this means to consider the following class of kernel

estimators for the conditional distribution of ε, given X = x,

Gε|X(y|x) =
1

h

n∑
i=1

K
(Xi − x

h

)
piI{ε̂i ≤ y} 1

f̃X(x)
(3.1)

for some density K and positive bandwidth h, where the denominator

f̃X(x) =
1

h

n∑
j=1

K
(Xj − x

h

)
pj

assures that Gε|X(·|x) is a distribution function. Under the conditions

pi > 0 ∀i = 1, .., n,
n∑
i=1

pi = 1 (3.2)
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f̃X can be interpreted as an asymptotically unbiased estimator for the covariate density fX .

The weights are chosen such that the product
∏n

i=1 pi is maximized while fulfilling (3.2).

This maximization problem (without further constraints) gives pi = 1
n
, i = 1, . . . , n, and

thus Gε|X(·|x) reduces to the simple kernel estimator F̂n(·|x) as considered in section 2.

However, now we also take into account the condition

n∑
i=1

pi g(ε̂i, x)K
(Xi − x

h

)
= 0 (3.3)

which, by definition of the estimator Gε|X in (3.1), is in fact the empirical version
∫
g(y, x)

Gε|X(dy|x) = 0 of our additional information (1.5). Maximization of the likelihood
∏n

i=1 pi
means to minimize the Kullback-Leibler distance of the estimator Gε|X to the standard

estimator F̂n, compare to Hall, Wolff & Yao (1999). See also Einmahl & McKeague (2003)

or Antoine, Bonnal & Renault (2007) for empirical likelihood methods with conditional

additional information.

For the observed sample we assume that

min
1≤i≤n

gj(ε̂i, x)K
(Xi − x

h

)
< 0 < max

1≤i≤n
gj(ε̂i, x)K

(Xi − x
h

)
for all j ∈ {1, . . . , k} and the matrix (nh)−1

n∑
i=1

K2((Xi−x)/h)g(ε̂i, x)g>(ε̂i, x) to be positive

definite. Those assumptions are needed for the existence of the unique solution of the

empirical likelihood maximization. One obtains analogously to Qin and Lawless (1994) and

Kiwitt, Nagel & Neumeyer (2008) the solution

pi = pi(x) =
1

n

1

1 + η̂n(x)>g(ε̂i, x)K(Xi−x
h

)

of the maximization of
∏n

i=1 pi under (3.2) and (3.3). Here η̂n(x) is the solution of

n∑
i=1

pi(x) g(ε̂i, x)K
(Xi − x

h

)
=

n∑
i=1

g(ε̂i, x)K(Xi−x
h

)

1 + η̂n(x)>g(ε̂i, x)K(Xi−x
h

)
= 0

such that mini=1,...,n(1 + η̂n(x)>g(ε̂i, x)K(Xi−x
h

)) > 1/n. Inserting the weights into the defi-

nition of the estimator Gε|X finally gives our empirical likelihood estimator F̂ ∗n for Fε|X ,

F̂ ∗n(y|x) =
n∑
i=1

1
h
K(Xi−x

h
)pi(x)

1
h

∑n
j=1K(Xi−x

h
)pj(x)

I{ε̂i ≤ y}.

We will investigate whether the incorporation of the additional information (1.5) improves

the estimate in comparison to the simple kernel estimator F̂n considered in section 2. Another

main motivation for the consideration of the empirical likelihood estimator is the bootstrap

data generation for model (1.4). The detailed explanations are postponed to section 5.
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Theorem 3.1 (a) Under model (1.4) and the assumptions listed in this section and in sec-

tion A we have the stochastic expansion

F̂ ∗n(y|x) = F̂n(y|x)− 1

fX(x)

( 1

nh

n∑
i=1

K
(Xi − x

h

)
g(εi, x)>

− 1

n

n∑
i=1

εi

∫
1

h
K
(t− x

h

)
g′(z, x)>

1

b
K̃
(Xi − t

b

)
fε|X(z|t) d(z, t)− b2B̃(x)>

)
× Σ∗(x)−1E[g(ε,X)I{ε ≤ y} | X = x] + op(

1√
nh

)

uniformly with respect to y ∈ R for each x ∈ (0, 1), where the expansion for F̂n(·|x) is given

in Theorem 2.1 (a),

B̃(x) =
1

2fX(x)
((mfX)′′(x)− (mf ′′X)(x))

∫
K̃(u)u2 duE[g′(ε, x) | X = x],

g′(y, x) = ∂ g(y,x)
∂ y

and Σ∗(x) = E[g(ε,X)g>(ε,X) | X = x].

(b) Under model (1.4) and the assumptions listed in this section and in section A the process

G∗n(y|x) =
√
nh
(
F̂ ∗n(y|x)− Fε|X(y|x)− h2H∗(y|x)− b2B∗(y|x)

)
, y ∈ R,

converges weakly to a centered Gaussian process G∗(y|x), y ∈ R, with covariance structure

Cov(G∗(y|x), G∗(z|x)) = Cov(G(y|x), G(z|x)) +
1

fX(x)
A(y|x)>S(x)A(z|x)

+
1

fX(x)
R(y|x)>A(z|x) +

1

fX(x)
R(z|x)>A(y|x),

where

A(y|x) = Σ∗(x)−1E[g(ε,X)I{ε ≤ y} | X = x]

S(x) = Σ∗(x)

∫
K2(u) du+ E[ε2 | X = x]E[g′(ε, x) | X = x]E[g′(ε, x) | X = x]>k2(λ)

− 2E[g(ε, x)ε | X = x]E[g′(ε, x) | X = x]>k1(λ)

R(y|x) = −E[I{ε ≤ y}g(ε, x) | X = x]

∫
K2(u) du

+
(
E[I{ε ≤ y}ε | X = x]E[g′(ε, x) | X = x]− E[εg(ε, x) | X = x]fε|X(y|x)

)
k1(λ)

+ E[ε2 | X = x]E[g′(ε, x) | X = x]fε|X(y|x)k2(λ)

and for the bias constants we have

H∗(y|x) = H(y|x)− 1

2fX(x)

∫
K(u)u2 du

∂2(E[g(ε, x)> | X = t]fX(t))

∂t2

∣∣∣
t=x

Σ∗(x)−1

× E[g(ε,X)I{ε ≤ y} | X = x]

B∗(y|x) = B(y|x) + B̃(x)>Σ∗(x)−1E[g(ε,X)I{ε ≤ y} | X = x].
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Here B̃(x) and Σ∗(x) are defined in (a), and the process G as well as H(·|x), B(·|x) and

k1, k2 are defined in Theorem 2.1.

The proof of Theorem 3.1 is given in the appendix.

Remark 3.2 Similar to Remark 2.3 consider the case where the estimation is based on an

iid-sample ε1, . . . , εn, and let F ∗n denote the corresponding empirical likelihood estimator.

Then it follows from the proof of Theorem 3.1 that the process

√
nh
(
F ∗n(y|x)− Fε|X(y|x)− h2H∗(y|x)− b2B(y|x)

)
, y ∈ R,

converges weakly to a centered Gaussian process with a variance

Var(G̃(y|x))− 1

fX(x)
Σ∗(x)−1(E[I{ε ≤ y}ε | X = x])2

∫
K(u)u2 du

that is uniformly smaller than the variance Var(G̃(y|x)) as given in Remark 2.3 resulting

from the standard estimator.

Remark 3.3 We assumed smoothness of the function g defining the additional information

(1.5). However, results similar to Theorem 3.1 can be obtained for indicator functions like

g(ε, x) = I{ε ≤ a(x)} − b(x) for incorporation of information on the conditional quantiles

[compare to Kiwitt, Nagel & Neumeyer (2008)].

Remark 3.4 The additional information (1.5) can include unknown finite-dimensional pa-

rameters in the form that

∃ϑ such that E[gϑ(ε, x) | X = x] = 0

[see also Qin & Lawless (1994) who consider estimation of an (unconditional) distribution

function based on iid data where the (unconditional) additional information includes some

unknown parameter which is also estimated by the empirical likelihood method]. In the

typical case where ϑ can be estimated by a
√
n-consistent estimator ϑ̂ one uses the empirical

likelihood estimation as explained before where in (3.3) the function g is replaced by gϑ̂.

Theorem 3.1 remains valid with g replaced by gϑ, where ϑ denotes the “true” parameter

(because the convergence rate of ϑ̂ to the true ϑ is faster than
√
nh).

Consider for example an assumed linear structure of the variance function Var(ε | X = x) =

σ2
ϑ(x) = ϑ0 + ϑ1x by defining gϑ(ε, x) = ε2 − σ2

ϑ(x). The parameter ϑ = (ϑ0, ϑ1)
> can be

estimated by least-squares approach in a linear model of observations Z = (ε̂2
1, . . . , ε̂

2
n)> with

design matrix

D =


1 X1

...
...

1 Xn

 .

9



We obtain the estimator

ϑ̂ = (D>D)−1D>Z = ϑ+

(
1 Xn

Xn X2
n

)−1(
1
n

∑n
i=1(ε̂

2
i − E[ε2

i | Xi])
1
n

∑n
i=1Xi(ε̂

2
i − E[ε2

i | Xi])

)

= ϑ+Op(
1√
n

),

where the rate can be shown analogously to Lemma B.2(ii) by Kiwitt, Nagel & Neumeyer

(2008) [see also Müller, Schick & Wefelmeyer (2004)].

4 Comparison in asymptotic theory and simulations

In examples we will compare both considered estimators F̂n(y|x) and F̂ ∗n(y|x) in terms of

the asymptotic biases and variances to investigate whether incorporating the additional

information by the empirical likelihood yields an improved estimator.

First we consider the simple residual-based kernel estimator F̂n. Here for the asymptotic

variance we have from Theorem 2.1 that

Var(G(y|x)) =
1

fX(x)

(
Fε|X(y|x)− F 2

ε|X(y|x)
)∫

K2(u) du+
1

fX(x)
σ2(x)f 2

ε|X(y|x)k2(λ)

+
2

fX(x)
U1(y|x)fε|X(y|x)k1(λ) (4.1)

with the notation U1(y|x) = E[εI{ε ≤ y} | X = x] and σ2(x) = E[ε2 | X = x]. For

example with uniformly distributed covariates X ∼ U [0, 1] and normally distributed errors

ε ∼ N(0, σ2(x)) one obtains

Var(G(y|x)) = Φ
( y

σ(x)

)
Φ
( −y
σ(x)

)∫
K2(u) du+ ϕ2

( y

σ(x)

)
(k2(λ)− 2k1(λ))

because U1(y|x) = −σ2(x)fε|X(y|x). Here Φ and ϕ denote the standard normal distribution

and density function, respectively. A straightforward calculation shows that the integrated

variance is equal to∫
Var(G(y|x)) dy =

σ(x)

2
√
π

(∫
K2 +

∫
(K −K ∗K)2

)
. (4.2)

Under those assumptions with K = K̃ the bias terms from Theorem 2.1 reduce to

B(y|x) =
1

2σ(x)
ϕ
( y

σ(x)

)
m′′(x)

∫
K(u)u2 du.

and

H(y|x) =
1

2

( 1

σ2(x)
ϕ′
( y

σ(x)

)
− σ′(x)

σ2(x)
ϕ
( y

σ(x)

))∫
K(u)u2 du.

10



The integrated squared bias is∫
(h2H(y|x) + b2B(y|x))2 dy =

(
∫
K(u)u2 du)2

8
√
πσ(x)

((
b2m′′(x)− h2σ

′(x)

σ(x)

)2

+
h4

2σ2(x)

)
. (4.3)

Example 1. Let g(ε, x) = ε, i. e. we explicitly incorporate the information that the

errors are centered into the estimation. This is no additional information, but given by the

model definition (1.4). Although the estimator m̂ implicitly already uses the information of

centered errors, the explicit use of this information can improve both the asymptotic variance

and the bias; the latter especially in cases where the regression estimation bias is large. For

the asymptotic variance of the empirical likelihood estimator we obtain with above notations

that

Var(G∗(y|x)) = Var(G(y|x)) +
U2

1 (y|x)

fX(x)σ2(x)
(k2(λ)− k2(0)) + 2

U1(y|x)fε(y|x)

fX(x)
(k2(λ)− k1(λ)),

where Var(G(y|x)) is given in (4.1) and both variances are equal for λ = 0. Further k2(λ)−
k2(0) ≤ 0 and U1(y|x) ≤ 0. E. g., for normal distribution we always have an improvement as

then

Var(G∗(y|x)) = Var(G(y|x))− 1

fX(x)
ϕ2
( y

σ(x)

)∫
(K(u)− (K ∗ K̃λ)(u))2 du.

In that example with uniformly distributed covariates integrating with respect to y one

obtains as overall variance improvement∫
(Var(G∗(y|x))− Var(G(y|x))) dy = −σ(x)

2
√
π

∫
(K(u)− (K ∗ K̃λ)(u))2 du,

where
∫

Var(G(y|x)) dy is given in (4.2).

We now consider the bias of order b2 that is due to the estimation of the regression

function m. For the constant defined in Theorem 3.1 we have here

B∗(y|x) =
1

2fX(x)
((mfX)′′(x)− (mf ′′X)(x))

∫
K̃(u)u2 du

(
fε|X(y|x) +

U1(y|x)

σ2(x)

)
.

Especially for normally distributed errors here one obtains that B∗(y|x) = 0 and hence that

by the empirical likelihood method the bias of order b2 cancels completely. For the bias

that stems from the kernel approach for estimating the conditional distribution we have

H∗(y|x) = H(y|x) which follows directly from the definition in Theorem 3.1 for g(ε, x) = ε.

Hence the empirical likelihood method in that case does not change the bias of order h2. A

calculation of the integrated squared bias yields, e. g., for uniformly distributed covariates,

normally distributed errors and K = K̃ that∫
(h2H∗(y|x) + b2B∗(y|x))2 dy = h4

∫
H2(y|x) dy = h4 (

∫
K(u)u2 du)2

8
√
πσ3(x)

(1

2
+ (σ′(x))2

)
11



and a comparison with (4.3) shows that the empirical likelihood method improves upon the

bias iff b2(m′′(x))2 ≥ 2h2m′′(x)σ′(x)/σ(x) which is the case for constant variances σ2(x) ≡ σ2,

for instance.

Example 2. Let g(ε, x) = ε2 − σ2(x) for some known function σ2(·). Due to E[g′(ε, x) |
X = x] = 0 and E[εg(ε, x) | X = x] = 0 for error distributions with vanishing third moment

we have

Var(G∗(y|x)) = Var(G(y|x))−
∫
K2(u) du

fX(x)

U2
2 (y|x)

η(x)

with the notations U2(y|x) = E[(ε2 − σ2(x))I{ε ≤ y} | X = x] and η(x) = E[(ε2 − σ2(x))2 |
X = x]. The asymptotic variance of the empirical likelihood estimator is smaller than

the asymptotic variance of the simple kernel estimator uniformly in y. For instance, for

uniformly distributed covariates and normally distributed errors we obtain η(x) = 2σ4(x),

U2(y|x) = −σ2(x)yfε|X(y|x) and thus

Var(G∗(y|x)) = Var(G(y|x))−
∫
K2(u) du

2σ2(x)
y2ϕ2

( y

σ(x)

)
with an overall improvement of∫

(Var(G∗(y|x))− Var(G(y|x))) dy = −σ(x)

8
√
π

∫
K2(u) du.

Note further that B̃(x) = 0 in Theorem 3.1 and hence B∗(y|x) = B(y|x) and there is no

change in the bias arising from estimation of the regression function. Furthermore we have

H∗(y|x) = H(y|x)− 1

2fX(x)

∫
K(u)u2 du

(
(σ2fX)′′(x)− (σ2f ′′X)(x)

)U2(y|x)

η(x)
.

For uniformly distributed covariates and normally distributed errors we have

H∗(y|x) = H(y|x) +
1

4

∫
K(u)u2 du

(σ2)′′(x)

σ3(x)
yϕ
( y

σ(x)

)
and (with K = K̃)∫

(h2H∗(y|x) + b2B∗(y|x))2 dy

=
(
∫
K(u)u2 du)2

8
√
πσ(x)

((
b2m′′(x)− h2σ

′(x)

σ(x)

)2

+
h4

8σ2(x)

(
((σ2)′′(x))2 − 2

)2)
.

A comparison with (4.3) shows that the empirical likelihood method improves upon the bias

iff ((σ2)′′(x))2 ≤ 4(σ2)′′(x). As in this example σ2 is known, this condition can be checked.

It yields, e. g. that no bias improvement can be obtained for x-values with (σ2)′′(x) < 0.

12



Example 3. As the information E[ε | X = x] = 0 is “for free” we consider g(ε) =

(ε, ε2−σ2(x))> in this example to see whether compared to Example 2 further improvements

can be achieved. The improvement of the variance cumulates as here (for distributions with

vanishing conditional third moment) one obtains

Var(G∗(y|x)) = Var(G(y|x))−
∫
K2(u) du

fX(x)

U2
2 (y|x)

η(x)

+
U2

1 (y|x)

fX(x)σ2(x)
(k2(λ)− k2(0)) + 2

U1(y|x)fε(y|x)

fX(x)
(k2(λ)− k1(λ)),

which for uniform covariates and normal errors reduces to

Var(G∗(y|x)) = Var(G(y|x))−
∫
K2(u) du

2σ2(x)
y2ϕ2

( y

σ(x)

)
− ϕ2

( y

σ(x)

)∫
(K(u)− (K ∗ K̃λ)(u))2 du

with an overall improvement of∫
(Var(G∗(y|x))−Var(G(y|x))) dy = −σ(x)

8
√
π

(∫
K2(u) du+ 4

∫
(K(u)− (K ∗ K̃λ)(u))2 du

)
.

For the bias one obtains B∗ as in Example 1 and H∗ as in Example 2 and hence for uniform

covariates and normal errors that∫
(h2H∗(y|x) + b2B∗(y|x))2 dy = h4

∫
(H∗(y|x))2 dy

= h4 (
∫
K(u)u2 du)2

16
√
πσ3(x)

(1

4

(
(σ2)′′(x) + 2

)2

+ 2(σ′(x))2
)
.

FIGURES 1–3 HERE

In figures 1–3 the good performance of the empirical likelihood estimator is demonstrated.

Figure 1 corresponds to example 1, figure 2 to example 2 and figure 3 to example 3. In

all three figures the first and third row show the asymptotic integrated squared bias (left

panel), integrated variance (middle panel) and integrated mean squared error (right panel)

as functions in x for the estimators F̂n (dashed line) and F̂ ∗n (solid line). The second and

fourth row show for a fixed x = 0.5 the squared bias (left), variance (middle) and mean

squared error (right) as functions in y (graphics for other x-values were similar and are thus

not depicted). We took X to be uniformly distributed, ε to be normally distributed and

m(x) = x2. In all three figures the first two rows depict results for the variance function

σ2(x) = e−3x, whereas the last two rows show results for σ2(x) = (1 + 0.5x)2. We chose

equal bandwidths h = b = n−1/5 such that the squared bias factors b4 = h4 are equal to

the variance factor (nh)−1. Those factors are neglected to obtain results independent of n.
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Although the bias of the empirical likelihood estimator is not always smaller than that of

the simple kernel estimator it can be seen from the graphics that the empirical likelihood

method can improve the overall performance of the conditional distribution estimator by far.

We also investigated the small sample performance of both conditional distribution es-

timators in simulations. To this end we considered the above setting and examples for

sample size n = 100, bandwidths h = b = n−1/5 and Gaussian kernels. The results are

based on 500 simulation runs. In figure 4 the estimated mean integrated squared error is

shown as function in x and the estimated mean squared error is shown as function in y for

fixed x = 0.5. We observe almost no difference between the performances of F̂n and F̂ ∗n
for examples 1 (first row in figure 4) and 2 (second row), but for example 3 (third row)

the empirical likelihood method clearly outperforms the simple kernel estimator. In the last

row of figure 4 we also present results for examples g(ε, x) = (ε, ε3, ε5) (first two panels) and

g(ε, x) = (ε, I{ε ≤ 0}−0.5) (last two panels), cf. Remark 3.3. Especially for the last example

we observe a great improvement by the empirical likelihood method due to the knowlegde

of the error distribution in one particular point.

FIGURE 4 HERE

5 Discussion of future applications and conclusion

5.1 Bootstrap for the general nonparametric regression model

In nonparametric regression asymptotic distributions of estimators and test statistics often

depend on unknown features and estimation of these leads to slow convergence of asymptotic

procedures. Hence, often resampling methods such as bootstrap are applied. For bootstrap

a new data set (X?
i , Y

?
i ), i = 1, . . . , n, has to be generated. In regression usually one uses

the same measurement points as in the original data set, i. e. X?
i = Xi and defines bootstrap

observations by Y ?
i = m̃(Xi)+ε?i . Here, m̃ denotes some suitable estimator for the regression

function and new errors ε?i are generated with different methods.

In the homoscedastic model (1.2) usually residual bootstrap is applied, where the errors

ε?i are drawn with replacement from residuals ε̂j = Yj − m̂(Xj), j = 1, . . . , n, i. e. they are

generated from the empirical distribution function of residuals. In most cases the bootstrap

errors are also centered with respect to the conditional distribution given the original data

(by substracting the mean n−1
∑n

j=1 ε̂j) to reflect the condition E[ε] = 0 for the bootstrap

model, see Härdle & Bowman (1988). Note that the centering is not necessary to prove

asymptotic validity of most bootstrap procedures, because n−1
∑n

j=1 ε̂j = op(n
−1/2), see

Müller, Schick & Wefelmeyer (2004), but can have advantages for finite sample sizes and is

often recommended.
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In the heteroscedastic model (1.3) the described bootstrap data generation does not

reflect the original model and wild bootstrap is mostly applied, see Härdle & Mammen (1993).

As alternative, heteroscedastic residual bootstrap can be applied, where the bootstrap errors

are built as ε?i = σ̂(Xi)η
?
i and η?i is generated from the empirical distribution function of

residuals η̂j = (Yj − m̂(Xj))/σ̂(Xj), j = 1, . . . , n, standardized by substracting the mean

n−1
∑n

j=1 η̂j and dividing by the standard deviation (n−1
∑n

k=1(η̂k − n−1
∑n

j=1 η̂j)
2)1/2 to

reflect the conditions E[η] = 0, E[η2] = 1 in the original model. See for instance Neumeyer

(2008).

Both methods will not work in general in the model (1.4) considered in the paper at

hand. This was already observed by Zhu, Fujikoshi & Naito (2001). Those authors consider

a test for constant variance and a modification of the wild bootstrap for cases where model

(1.3) is violated and E[ε4 | X = x] depends on x [i. e. they consider our general model (1.4)].

They show that in this case wild bootstrap does not work in general. They do not give

a general solution to that problem, but a modification of the wild bootstrap, which works

specific for their test statistic.

A general solution would be to generate ε?i for a given covariate Xi = x from an estimator

for the distribution Fε|X(·|x). The kernel based estimator F̂n(·|x) from section 2 can be

applied, for instance, and Theorem 2.1 will be helpful for proving asymptotic correctness of

such bootstrap procedures. The centeredness of the error, i. e. E[ε | X] =
∫
yFε|X(dy|X) = 0

should be reflected in the bootstrap data generation as well. This can either be done by

substracting the mean
∫
yF̂n(dy|x) [i. e. a Nadaraya-Watson estimator based on the sample

(Xi, ε̂i), i = 1, . . . , n] from the generated bootstrap errors, or by application of the proposed

empirical likelihood method by setting g(ε, x) = ε.

When generating bootstrap samples for hypotheses testing, it is necessary to generate

data, which fulfill the null hypothesis, see e. g. Shao & Tu (1995). If the null hypothesis

can be written in the form of equation (1.5) this can be done by the empirical likelihood

method. Consider for example a test for a parametric form of the variance function with the

null hypothesis

H0 : ∃ϑ ∈ Θ such that Var(Y | X) = σ2
ϑ(X), (5.1)

where the parametric variance function σ2
ϑ is known except for a finite dimensional parameter

ϑ. A test for constant variance (often called homoscedasticity) is a special case, where σ2
ϑ = ϑ

and Θ = R+. To generate a (centered) bootstrap error ε?i for covariate Xi one would now

sample from the empirical likelihood distribution function F̂ ∗n(·|Xi) as defined above by

setting g(ε, x) = (ε, ε2− σ2
ϑ̂
(x))>, where ϑ beforehand has been estimated by ϑ̂ (see Remark

3.4). Doing so would be suitable to obtain an alternative version of the test by Zhu, Fujikoshi

& Naito (2001) and would moreover generalize other procedures for testing hypothesis (5.1)

from the literature, see the introduction for references. For instance, Dette & Hetzler (2009a)

assume our general model (1.4) and suggest a test for (5.1) based on an empirical process
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of pseudo residuals. For application of the test, those authors consider a heteroscedastic

residual bootstrap as described above and show its good performance in simulations for the

heteroscedastic regression model (1.3). This bootstrap method presumably will fail when

the conditional fourth moment of the error actually depends on the covariate, because this

function explicitely appears in the asymptotic distribution of the test statistic, but the

heteroscedastic residual bootstrap does not reflect this dependence correctly. The stochastic

expansion as given in our Theorem 3.1 (a) will be helpful to prove asymptotic validity of

the general bootstrap version of Dette & Hetzler’s (2009a) test. However, this is beyond the

scope of the paper at hand. Note that although in Dette & Hetzler (2009b) the same authors

consider an asymptotically distribution-free version of their test [based on a martingale

transformation due to Khmaladze (1981)] they show that for small sample sizes the bootstrap

version has better power (those simulations are only for model (1.3), where their bootstrap

version is valid).

In this paper we only consider mean regression models. Similar theory can be developed

for quantile regression models . In such a model for a given α ∈ (0, 1) the regression function

m is defined as the conditional α-quantile of Y , given the covariate X, i. e. P (Y ≤ m(x) |
X = x) = α. Hence, when writing such a model as Y = m(X)+ε it is essential that the error

distribution is allowed to depend on the covariate such as in model (1.4) for mean regression.

The error ε has conditional α-quantile (given X) zero. Bootstrap samples for such a model

can now be built as Y ?
i = m̃(Xi) + ε?i , where ε?i is generated from the empirical likelihood

distribution F̂ ∗n(·|Xi) defined as above, based on residuals εj = Yj − m̂(Xj) [here m̃ and m̂

denote nonparametric quantile curve estimators, see for instance Koenker (2005) or Dette

& Volgushev (2008)], and with g(ε, x) = I{ε ≤ 0} − α. This way one forces the bootstrap

observations to fulfill the original model. Higher dimensional functions g can be chosen,

when additional information has to be incorporated, for instance for the sake of generating

observations that fulfill some null hypothesis. See also Härdle, Ritov & Song (2010) who

construct confidence bands for the regression function by using a similar bootstrap where ε?i
is generated from the quantile regression version of F̂n(·|Xi).

5.2 Empirical likelihood hypotheses testing

Hypothesis tests for validity of (1.5) can be based on a distance measure between the kernel

estimator and the empirical likelihood estimator for the conditional error distribution, where

the latter one is only consistent under the null hypothesis (1.5). When an L2-distance is

applied, e. g., we end with a consistent test statistic

nh

∫
(F̂n(y|x)− F̂ ∗n(y|x))2d(y, x) (5.2)

The asymptotic distribution can be derived with similar methods as used in the proof of

Theorem 3.1. Detailed asymptotic theory and investigation of the numerical performance
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are a future research project, but beyond the scope of the paper at hand.

The method can e. g. be used to test for a vanishing conditional third moment (g(ε, x) =

ε3) or median (g(ε, x) = I{ε ≤ 0} − 0.5) or to test whether the conditional fourth error

moment depends on the covariate or not [gϑ(ε, x) = ε4 − ϑ with pre-estimated ϑ = ϑ̂;

this hypothesis is important for the tests explained in section 5.1, see e. g. Zhu, Fujikoshi

& Naito (2001)]. More complicated hypotheses such as (1.5) with g(ε, x) = ε2 − L(m(x))

for dependence of the conditional variance from the conditional mean by some specified

link function L are possible. The method can also be used to test for parametric variance

structure (5.1) (with pre-estimated ϑ = ϑ̂ as explained before) and so gives an alternative

procedure to the ones discussed in section 5.1. For this hypothesis test statistic (5.2) is a

generalization of Dette, Neumeyer & Van Keilegom’s (2007) test from model (1.3) to the

general model (1.4).

5.3 Conclusion

For a general nonparametic regression model we have suggested two different estimators for

the conditional error distribution, given the covariate. The first estimator, F̂n, uses the typ-

ical kernel approach based on nonparametically estimated residuals. The second estimator,

F̂ ∗n , is a modification of F̂n and applies empirical likelihood weights. It can explicitly make

use of the centeredness assumption on the errors as well as other additional information.

For both estimators we have given asymptotic expansions and weak convergence results.

Although from a comparison of the estimators it could not be concluded that the empirical

likelihood method always improves upon the estimation, we have seen its good performance

in some examples.

The estimators F̂n und F̂ ∗n both will presumably be useful in bootstrap procedures for the

general nonparametric repression model and can also be applied for testing of model assump-

tions.

A Technical assumptions

Let (Xi, Yi) be independent and identically distributed such as (X, Y ) from model (1.4)

and let εi = Yi − m(Xi), i = 1, . . . , n. Let Fε|X(·|t) and fε|X(·|t) denote the conditional

distribution and density function, respectively, of ε, given X = t. Our aim is to estimate

Fε|X(·|x) for some (fixed) x ∈ (0, 1). Let in the following U denote a suitable neighborhood

of x. Let further fX denote the density of X with support [0, 1] such that inft∈[0,1] fX(t) > 0.

Let (y, t) 7→ fε,X(y, t) = fε|X(y|t)fX(t) denote the joint density of (ε,X).

Model smoothness assumptions. We assume the regression function m as well as fX
to be twice continuously differentiable. We assume fε|X(·|t) to be twice continuously differ-

entiable with respect to t and t 7→ (m · fX)′′(t)−m(t) f ′′X(t) to be Lipschitz-continuous. We
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assume fε|X(y|t) to be continuously differentiable with respect to y for all t and y 7→ fε|X(y|x)

to be of bounded variation. We assume fε|X(y|t) as well as ∂fε|X(y|t)/∂t, ∂2fε|X(y|t)/∂t2,
∂fε|X(y|t)/∂y to be bounded by some constant c uniformly for y ∈ R and t ∈ U .

Assumptions on the kernels. Let the kernelK be twice continuously differentiable and

symmetric with support [−1, 1] such that
∫
uK(u) du = 0, K(−1) = K(1) = 0,

∫
K(u) du =

1. Let the kernel K̃ fulfill the same assumptions.

Bandwidth assumptions. For the sequences of bandwidths h = hn and b = bn we

assume for n → ∞ that nh5 = O(1), b/h → λ ≥ 0, (log(b−1))2/(nhb2) → 0, nb3+3α → ∞
for some α > 0, (h/b)(log(b−1))β+1/(nb)β → 0 for β defined below, (log n)2+γ/(nh3)→ 0 for

some γ > 0.

Note that then Akritas & Van Keilegom’s (2001) bandwidth condition nb3+2α/ log(b−1)→
∞ is valid and also b2 = O((nh)−1/2), h2 = O((nh)−1/2).

We assume suitable boundary modifications for the Nadaraya-Watson estimator m̂ to

obtain convergence in probability of supt∈[0,1] |m̂(t) − m(t)|, supt∈[0,1] |m̂′(t) − m′(t)| and

sups,t |m̂′(s)−m′(s)− m̂′(t) +m′(t)| /|s− t|α to zero [compare to Neumeyer (2009) and see,

e.g. Müller (1984) or Härdle (1989, p. 130) for boundary corrections].

Empirical likelihood regularity assumptions. Let g = (g1, . . . , gk)
> : R×[0, 1]→ Rk

be a known function such that (1.5) is valid. Let Σ∗(x) = E[g(ε,X)g>(ε,X) | X = x] exist

and be positive definite. We assume t 7→ E[g(ε,X) | X = t] to be continuous and t 7→
E[g(ε,X)ε | X = t] to be twice continuously differentiable. We assume for all j ∈ {1, . . . , k}
that g′j(y, t) = ∂gj(y, t)/∂y and g′′j (y, t) = ∂2gj(y, x)/∂y2 exist for all y and all t ∈ U such

that the following integrals exist and are uniformly bounded with respect to t ∈ U ,∫
|g′j(y, t)|fε,X(y, t) dy,

∫
(g′j(y, t))

2|∂fε,X(y, t)/∂t| dy,
∫
|g′j(y, t)∂2fε,X(y, t)/∂t2| dy,∫

|gj(y, t)||∂fε,X(y, t)/∂t| dy,
∫
g2
j (y, t)|∂2fε,X(y, t)/∂t2| dy,

∫
(g′j(y, t))

2fε,X(y, t) dy.

We further assume t 7→ E[g′j(ε,X) | X = t] and t 7→ E[g′′j (ε,X) | X = t] to be continuously

differentiable. We assume the existence of some ι > 0 such that

E
[1

h

(
K
(X − x

h

)
gj(ε, x)

)2+ι]
= O(1).

We assume the existence of C, β > 0 such that∣∣∣ ∫ 1

h
K
(u− x

h

) (
gj(y + ϕ(u), x)− gj(y, x)− ϕ(u)g′j(y)

)
fε,X(y, u) d(y, u)

∣∣∣
≤ C ·

∫ ∣∣∣1
h
K
(u− x

h

)∣∣∣|ϕ(u)|1+βfX(u) du (A.1)

for all j ∈ {1, . . . , k} and ϕ ∈ C1+α
δ [0, 1]. Here, the constant β was already mentioned in

the bandwidth assumptions, where also α is defined. Moreover, C1+α
δ [0, 1] is defined as the
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space of all differentiable functions ϕ : [0, 1]→ R such that

max
(

sup
x∈[0,1]

|ϕ(x)|+ sup
x∈[0,1]

|ϕ′(x)|
)

+ sup
x,z∈[0,1]

|ϕ′(x)− ϕ′(z)|
|x− z|α

≤ δ.

We assume the existence of some δ, C > 0 and some κ ∈ (0, 2(1 + α)) such that

E
[1

h
K2
(X − x

h

)
sup

y,z∈R:|y|≤δ,
|z|≤δ,|y−z|≤ξ

(gj(ε1 + y, x)− gj(ε1 + z, x))2
]
≤ Cξ2/κ (A.2)

E
[1

h
K4
(X − x

h

)
sup

y∈R:|y|≤δ
(gj(ε1 + y, x)− gj(ε1, x))4

]
= O(1)

for all j ∈ {1, . . . , k}.

B Proofs

We start with a lemma, which is similar to Lemma 19.24 by van der Vaart (1998, p. 280).

Lemma B.1 Let Z1, Z2, . . . be independent random variables with distribution P , and (Y ×
T , ρ) a totally bounded semimetric space. Let

Gn(y, t) =
1√
n

n∑
i=1

(
ϕn,y,t(Zi)−

∫
ϕn,y,t dP

)
,

y ∈ Y, t ∈ T , be a sequence of empirical processes that converges weakly to a process G(y, t),

y ∈ Y, t ∈ T , and is asymptotically equicontinuous with respect to ρ. Let t̂n = t̂n(Z1, . . . , Zn)

be a random sequence such that limn→∞ P (t̂n ∈ T ) = 1 and t̂n converges to 0 ∈ T in

probability. Let further G(y, 0) = 0 almost surely for all y ∈ Y, and

sup
y∈Y

ρ((y, tn), (y, 0))→ 0 whenever tn → 0 in T . (B.1)

Then, Gn(y, t̂n) converges to zero in probability uniformly with respect to y ∈ Y.

Proof of Lemma B.1. We may assume for the proof that t̂n ∈ T .

Now (Gn(·, ·), t̂n) converges weakly to (G(·, ·), 0) by Slutsky’s lemma [see Kosorok (2008),

Theorem 7.15, p. 112]. Let D = `∞(Y × T ) × T and D0 = UC(Y × T ) × {0} ⊂ D, where

UC(Y × T ) denotes the subset of maps in `∞(Y × T ), which are uniformly continuous

with respect to ρ. From Theorem 7.19 in Kosorok (2008, p. 114) and our assumptions it

follows that P ((G(·, ·), 0) ∈ D0) = 1. Let further the map g : D → `∞(Y) be defined by

g(x(·, ·), t) = x(·, t). Then, g is continuous in D0. To see this consider a sequence (xn(·, ·), tn)

in D which converges to (x(·, ·), 0) ∈ D0, i. e.

sup
y∈Y,t∈T

|xn(y, t)− x(y, t)| → 0, (B.2)
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where x is uniformly continuous with respect to ρ, and tn → 0 in T . Note that

sup
y∈Y
|g(xn(·, ·), tn)(y)− g(x(·, ·), 0)(y)| = sup

y∈Y
|xn(y, tn)− x(y, 0)|

≤ sup
y∈Y
|xn(y, tn)− x(y, tn)|+ sup

y∈Y
|x(y, tn)− x(y, 0)|.

Here, the first term on the right-hand side converges to zero by (B.2). Further because of

(B.1) for each δ > 0 there exists some n0 such that for all n ≥ n0 the second term can be

bounded by

sup
y∈Y,t∈T

ρ((y,t),(y,0))<δ

|x(y, t)− x(y, 0)|.

Now the latter term converges to zero for δ → 0 because of the assumed uniform continuity

of x.

From the continuous mapping theorem [see Kosorok (2008), Theorem 7.7, p. 109] it

follows that the process g(Gn(·, ·), t̂n) = Gn(·, t̂n) converges weakly to g(G(·, ·), 0) = G(·, 0) =

0. The asserted uniform convergence in probability follows from Lemma 1.10.2 in van der

Vaart and Wellner (2000). 2

B.1 Proof of Theorem 2.1

(a) For F̂n defined in (2.1) we use the decomposition

F̂n(y|x)− Fε|X(y|x) = [Fn(y|x)− Fε|X(y|x)] + [F̂n(y|x)− Fn(y|x)], (B.3)

where, by definition in (2.2),

Fn(y|x)− Fε|X(y|x) = Sn(y)
(

1− f̄X(x)− fX(x)

f̄X(x)

)
with

Sn(y) =
1

fX(x)

1

nh

n∑
i=1

K
(Xi − x

h

)
(I{εi ≤ y} − Fε|X(y|x)), (B.4)

and where f̄X(x) = (nh)−1
∑n

j=1K(
Xj−x
h

) is a uniformly consistent estimator for the density

value fX(x) > 0. From the proof of Theorem 2.1 (b) below we have that Sn(y) is of order

O(h2) +Op((nh)−1/2) = Op((nh)−1/2). Hence it follows that

Fn(y|x)− Fε|X(y|x) = Sn(y) + op(
1√
nh

) (B.5)

uniformly with respect to y ∈ R.
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Now we will consider the second process in the decomposition (B.3), i. e.

F̂n(y|x)− Fn(y|x) =
1

f̄X(x)

1

nh

n∑
i=1

K
(Xi − x

h

)
(I{ε̂i ≤ y} − I{εi ≤ y})

=
1

fX(x)

1

nh

n∑
i=1

K
(Xi − x

h

)
(I{ε̂i ≤ y} − I{εi ≤ y}) + op(

1√
nh

) (B.6)

uniformly with respect to y ∈ R, where the replacement of the density estimator in the

denominator follows similarly to the argumentation before. Let

Rn(y) =
1

nh

n∑
i=1

K
(Xi − x

h

)
(I{ε̂i ≤ y} − I{εi ≤ y}) (B.7)

−
∫

1

h
K
(z − x

h

)
(I{ε+m(z)− m̂(z) ≤ y} − I{ε ≤ y})fε,X(ε, z) d(ε, z),

then we will show in Lemma B.2 that supy∈R |Rn(y)| = op(
1√
nh

).

From this and (B.6), (B.7) it follows that

F̂n(y|x)− Fn(y|x)

=

∫
1

h
K
(z − x

h

)
(I{ε+m(z)− m̂(z) ≤ y} − I{ε ≤ y})fε,X(ε, z)

fX(x)
d(ε, z) + op(

1√
nh

)

=

∫
1

h
K
(z − x

h

)(
Fε|X(y −m(z) + m̂(z)|z)− Fε|X(y|z)

)fX(z)

fX(x)
dz + op(

1√
nh

)

=

∫
1

h
K
(z − x

h

)
fε|X(y|z)(m̂(z)−m(z))

fX(z)

fX(x)
dz + op(

1√
nh

)

by Taylor’s expansion. Inserting the definition of m̂ we obtain

F̂n(y|x)− Fn(y|x)

=
1

fX(x)

∫
1

h
K
(z − x

h

)
fε|X(y|z)

1

n

n∑
i=1

1

b
K̃
(Xi − z

b

)
εi dz (B.8)

+
1

fX(x)

∫
1

h
K
(z − x

h

)
fε|X(y|z)

1

n

n∑
i=1

1

b
K̃
(Xi − z

b

)
(m(Xi)−m(z)) dz

+ op(
1√
nh

)

where we have replaced the random denominator f̂X(z) by fX(z). Further one can show

by arguments that are standard in kernel estimation theory that uniformly with respect to

y ∈ R,

1

fX(x)

∫
1

h
K
(z − x

h

)
fε|X(y|z)

1

n

n∑
i=1

1

b
K̃
(Xi − z

b

)
(m(Xi)−m(z)) dz

=
b2

2

fε|X(y|x)

fX(x)
((mfX)′′(x)− (mf ′′X)(x))

∫
K̃(u)u2 du+ op(

1√
nh

), (B.9)
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and the assertion now follows from (B.3), (B.4), (B.5) and (B.8), (B.9). 2

(b) For the structure of the bias term note that

E
[ 1

fX(x)

1

nh

n∑
i=1

K
(Xi − x

h

)
(I{εi ≤ y} − Fε|X(y|x))

]
= h2H(y|x) + o(h2)

by standard arguments of kernel estimation theory, and that o(h2) = o((nh)−1/2). Hence,

from Theorem 2.1(a) we obtain that Gn(y|x) = G
(1)
n (y|x) +G

(2)
n (y|x) + op(1) uniformly with

respect to y ∈ R, where (k = 1, 2)

G(k)
n (y|x) =

1√
n

n∑
i=1

(
ϕ(k)
n,y(εi, Xi)− E[ϕ(k)

n,y(ε,X)]
)

and

ϕ(1)
n,y(ε,X) =

1

fX(x)

1√
h
K
(X − x

h

)
(I{ε ≤ y} − Fε|X(y|x))

ϕ(2)
n,y(ε,X) =

1

fX(x)
ε

∫
1√
h
K
(z − x

h

)
fε|X(y|z)

1

b
K̃
(X − z

b

)
dz.

In the following we will sketch a proof of weak convergence of the processes G
(k)
n (·|x) (k =

1, 2). From this follows asymptotic stochastic equicontinuity for both processes and, hence,

for the sum G
(1)
n (·|x) + G

(2)
n (·|x). Convergence of the finite dimensional distributions of

G
(1)
n (·|x) + G

(2)
n (·|x) is shown by standard arguments applying Cramér-Wold’s device and

the Central Limit Theorem (including a straightforward calculation of the covariances).

From Theorem 2.1 in Kosorok (2008, p. 15) then follows the desired weak convergence of

G
(1)
n (·|x) +G

(2)
n (·|x) and thus of Gn(·|x).

To show weak convergence of the process G
(1)
n (·|x) consider the function class {ϕ(1)

n,y | y ∈
R} = Φn · (F − G) with envelope Φn(ε, z) = K((X − x)/h)/(

√
hfX(x)), where F = {ε 7→

I{ε ≤ y} | y ∈ R} and G = {ε 7→ Fε|X(y|x) | y ∈ R}, and the class F − G has the constant

envelope 1. Then from the proof of Theorem 9.15 by Kosorok (2008) it follows that

N(η||Φn||2,Q,Φn · (F − G), L2(Q)) ≤ sup
Q′

N(η,F − G, L2(Q
′))

which is of polynomial growth in η because F and G are both VC-classes. An application

of Theorem 2.11.22 by van der Vaart & Wellner (2000, p. 220) (where the index space R
is equipped with the semimetric ρ(s, t) = |Fε|X(s|x) − Fε|X(t|x)|) yields the desired weak

convergence.

To show weak convergence of the process G
(2)
n (·|x) note that the functions have the

structure ϕ
(2)
n,y(ε,X) =

∫
ψn(ε,X, z)fε|X(y|z) dz, where the class G = {z 7→ fε|X(y|z) | y ∈ R}

is a subset of the space C2
c [0, 1] of twice differentiable functions on [0, 1], where the function

as well as the derivatives are bounded by the constant c. From Theorem 2.7.1, van der
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Vaart and Wellner (2000, p. 155), it follows that for the bracketing number of G with respect

to the supremum norm it follows that logN[](η,G, || · ||∞) ≤ Kη−1/2 for some constant K.

Those brackets [`, u] in G are used to cover the class {ϕ(2)
n,y | y ∈ R} by (the same number

of) c̃η-brackets (for some constant c̃) of the form [
∫
ψn(ε,X, z)`(z) dz,

∫
ψn(ε,X, z)u(z) dz]

(consider ε ≥ 0 here for simplicity). The assertion follows with an application of Theorem

2.11.23 by van der Vaart & Wellner (2000, p. 220). 2

Lemma B.2 For Rn defined in (B.7) we have under the assumptions of Theorem 2.1 that

supy∈R |Rn(y)| = op(
1√
nh

).

Proof of Lemma B.2. Consider the empirical process

Hn(y, t) =
1√
n

n∑
i=1

(
ϕn,y,t(εi, Xi)−

∫
ϕn,y,t(ε, z)fε,X(ε, z)d(ε, z)

)
,

where

ϕn,y,t(ε, z) =
1√
h
K
(z − x

h

)[
I{ε+ t(z) ≤ y} − I{ε ≤ y}

]
indexed by y ∈ R and functions t ∈ T = C1+α

δ [0, 1] (the space is defined in appendix section

A). The dependence of the function ϕn,y,t on the sample size n arises from the bandwidths

h = hn. Note that ε̂i = εi + t̂n(Xi) for t̂n = m− m̂,

√
nhRn(y) = Hn(y, t̂n),

and Akritas & Van Keilegom (2001) show that limn→∞ P (t̂n ∈ T ) = 1. Further t̂n converges

in probability to 0 ∈ T , and ϕn,y,0 = 0. To prove (B.14) we will apply Lemma B.1. To this

end, first we show weak convergence of the process Hn(y, t), y ∈ R, t ∈ T to a centered

Gaussian process H(y, t), y ∈ R, t ∈ T , by an application of Theorem 2.11.23 of van der

Vaart & Wellner (2000, p. 220). The function class Fn = {ϕn,y,t | y ∈ R, t ∈ T } has the

square-integrable envelope

Φn(ε, z) =
1√
h
K
(z − x

h

)
.

Hence, the first two conditions in (2.11.21) of the aforementioned reference follow. We further

have pointwise convergence of the covariances and R × T is a totally bounded semimetric

space with semimetric

ρ((y, t), (z, s)) = |Fε|X(y|x)− Fε|X(z|x)|+ |Fε|X(y − t(x)|x)− Fε|X(z − s(x)|x)|.

We have validity of the third condition in (2.11.21), i. e.

sup
ρ((y,t),(z,s))<δn

E
[
(ϕn,y,t(ε,X)− ϕn,z,s(ε,X))2

]
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= sup
ρ((y,t),(z,s))<δn

1

h
E
[
K2
(X − x

h

)(
I{ε ≤ y − t(X)} − I{ε ≤ y} − I{ε ≤ z − s(X)}+ I{ε ≤ z}

)2]
≤ sup

ρ((y,t),(z,s))<δn

2

∫
1

h
K2
(u− x

h

)(
|Fε|X(y − t(u)|u)− Fε|X(z − s(u)|u)|

+ |Fε|X(y|u)− Fε|X(z|u)|
)
fX(u) du

≤ Cρ((y, t), (z, s)) + rn = O(δn) + rn = o(1),

by a change of variable (u− x)/h = v and suitable bounding of remainder terms such that

the sequence rn = o(1) does not depend on y, t, z or s. The function class Fn is the product

of the envelope Φn and the difference F1 −F2 of function classes

F1 = {(ε, z) 7→ I{ε+ t(z) ≤ y} | y ∈ R, t ∈ T }, F2 = {(ε, z) 7→ I{ε ≤ y} | y ∈ R, t ∈ T }.

Because F1 ⊂ F2, in the following we only consider Fn,1 = ΦnF1. Let [dLi , d
U
i ], i = 1, . . . ,m

denote η2-brackets for C1+α
δ [0, 1] with respect to the supremum norm. For this we have

m = N[](η
2, T , || · ||∞) ≤ exp(cη−2/(1+α)) for some constant c by Theorem 2.7.1, van der

Vaart and Wellner (2000). Let for given z the numbers yLi,k give a partition of the line in

segments having probability less or equal to η2 with respect to y 7→ P (ε+dLi (z) ≤ y | X = z)

and the analogous definition is valid for yUi,k with respect to y 7→ P (ε+ dUi (z) ≤ y | X = z).

For given z ∈ [0, 1] and y ∈ R let now yLi,k1(z) be the largest of the yLi,k that is less or

equal to y and yUi,k2(z) the smallest of the yUi,k(z) greater than or equal to y. For this

we need k1, k2 ∈ {1, . . . , K}, K = O(ε−2). The construction defines a bracket [`, u] for

(ε, z) 7→ I{ε+ t(z) ≤ y} in the class F1 by considering

`(ε, z) = I{ε+ dLi (z) ≤ yLi,k1(z)}, u(ε, z) = I{ε+ dUi (z) ≤ yUi,k2(z)},

By multiplication of those brackets with the envelope Φn we obtain brackets for the class

Fn,1. Those have L2(P )-length(1

h

∫
K2(

z − x
h

)(u(y, z)− `(y, z))2fε|X(y|z)fX(z) d(y, z)
)1/2

≤
(1

h

∫
K2(

z − x
h

)fX(z) dz sup
s∈[0,1]

∫
(u(y, s)− `(y, s))2fε|X(y|s) dy

)1/2

≤ C
(

sup
s∈[0,1]

∣∣∣Fε|X(yUi,k2(s)− d
U
i (s)|s)− Fε|X(yLi,k1(s)− d

L
i (s)|s)

∣∣∣)1/2

≤ C
(

sup
s∈[0,1]

∣∣∣Fε|X(y(s)− dUi (s)|s)− Fε|X(y(s)− dLi (s)|s)
∣∣∣+ η2

)1/2

for some constant C by construction of the brackets for all y(s) ∈ [yLi,k1(s), y
U
i,k2

(s)]. This

further can be bounded by

C
(

sup
s∈[0,1]y∈R

|fε|X(y|s)| sup
s∈[0,1]

|dUi (s)− dLi (s)|+ η2
)1/2

≤ C̃η2
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for some constant C̃. Because there exist positive constants c1, c2 such that c1 ≤ ||Φn||2,P ≤
c2 for all n we obtain for the class Fn,1 that

N[](η||Φn||2,P ,Fn,1, L2(P )) ≤ N[](cη,F , L2(P )) = O(η−2 exp(c̃η−2/(1+α)))

and the same bound is valid for the bracketing number of Fn. Hence, we obtain that∫ δn

0

√
logN[](η||Φn||2,P ,Fn, L2(P )) dη → 0 for all δn → 0

which is the remaining condition of Theorem 2.11.23 by van der Vaart & Wellner (2000, p.

220). With this theorem weak convergence of the process Hn to a centered Gaussian process

and asymptotic equicontinuity with respect to ρ follows.

From the defintion of ρ and continuity of Fε|X it follows that ρ((y, tn), (y, 0)) → 0 uni-

formly in y whenever tn → 0. Hence, Lemma B.1 is applicable and yields uniform convergence

of Hn(·, t̂n) to zero in probability. 2

B.2 Proof of Theorem 3.1

Proposition B.3 Under the assumptions of Theorem 3.1 one has

η̂n(x) = Σ−1(x)
[ 1

nh

n∑
i=1

K
(Xi − x

h

)
g(εi, x)

− 1

n

n∑
i=1

εi

∫
1

h
K
(z − x

h

)
g′(y, x)

1

b
K̃
(Xi − z

b

)
fε|X(y|z) d(y, z)

− b2

2
((mfX)′′(x)− (mf ′′X)(x))

∫
g′(y, x)fε|X(y|x) dy

∫
K̃(u)u2 du

]
+ op(

1√
nh

),

where g′(y, x) = ∂ g(y,x)
∂ y

and Σ(x) = E[g(ε,X)g>(ε,X) | X = x]fX(x)
∫
K2(u) du.

Proof of Proposition B.3. The coefficient η̂n(x) was defined via the following equality,

0 =
1

n

n∑
i=1

g(ε̂i, x) 1
h
K(Xi−x

h
)

1 + η̂>n (x)g(ε̂i, x)K(Xi−x
h

)

=
1

nh

n∑
i=1

g(ε̂i, x)K
(Xi − x

h

)
− 1

nh

n∑
i=1

g(ε̂i, x)g>(ε̂i, x)K2
(Xi − x

h

)
η̂n(x)

+
1

nh

n∑
i=1

g(ε̂i, x)K(Xi−x
h

) ( η̂>n (x)g(ε̂i, x)K(Xi−x
h

) )2

1 + η̂>n (x)g(ε̂i, x)K(Xi−x
h

)

=
1

nh

n∑
i=1

g(ε̂i, x)K
(Xi − x

h

)
− Σn(x)η̂n(x) + op(

1√
nh

), (B.10)
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where the last equality can be shown analogously to the proof of Proposition 3.2 by Kiwitt,

Nagel & Neumeyer (2008), and

Σn(x) =
1

nh

n∑
i=1

g(ε̂i, x)g>(ε̂i, x)K2
(Xi − x

h

)
= Σ(x) + op(1). (B.11)

Combining (B.10) and (B.11) one now obtains

η̂n(x) = Σ−1(x)
1

nh

n∑
i=1

K
(Xi − x

h

)
g(ε̂i, x) + op(

1√
nh

). (B.12)

Now let j ∈ {1, . . . , k}. For

Rn =
1

nh

n∑
i=1

K
(Xi − x

h

)
gj(ε̂i, x)− 1

nh

n∑
i=1

K
(Xi − x

h

)
gj(εi, x) (B.13)

−
∫

1

h
K
(z − x

h

)
g′j(y, x)(m(z)− m̂(z))fε,X(y, z) d(y, z)

we will show that

Rn = op(
1√
nh

). (B.14)

To this end, we will apply Lemma B.1 to the empirical process

Gn(t) =
1√
n

n∑
i=1

(
ϕn,t(εi, Xi)−

∫
ϕn,t(y, z)fε,X(y, z)d(y, z)

)
,

where

ϕn,t(ε, z) =
1√
h
K
(z − x

h

)[
gj(ε+ t(z), x)− gj(ε, x)

]
indexed by functions t ∈ T = C1+α

δ [0, 1] defined as in the proof of Lemma B.2. The

dependence from the sample size n arises from the bandwidths h = hn. Note that ε̂i =

εi + t̂n(Xi) for t̂n = m− m̂,

√
nhRn = Gn(t̂n),

and limn→∞ P (t̂n ∈ T ) = 1. Further t̂n uniformly converges to zero almost surely and

ϕn,0 = 0. First we will show weak convergence of the process Gn(t), t ∈ T , to a Gaussian

process G(t), t ∈ T . By definition of T ,

Φn(ε, z) =
1√
h

∣∣∣K(z − x
h

)∣∣∣ sup
y∈R: |y|≤δ

|gj(ε+ y, x)− gj(ε, x)|

is an envelope for the function class Fn = {ϕn,t | t ∈ T } with finite second moment. Weak

convergence of the process (Gn(t))t∈T can now be shown by applying Theorem 2.11.23 by
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van der Vaart & Wellner (2000). To this end T is equipped with the semimetric ρ defined

by the supremum norm, and one uses the bracketing[ 1√
h
K(

z − x
h

)
(

(gj(ε+ ck(z), x)− gj(ε, x))− sup
z,z̃∈R:|z|≤δ,
|z̃|≤δ,|z−z̃|≤ε̃

(gj(ε+ z, x)− gj(ε+ z̃, x))
)
,

1√
h
K(

z − x
h

)
(

(gj(ε+ ck(z), x)− gj(ε, x)) + sup
z,z̃∈R:|z|≤δ,
|z̃|≤δ,|z−z̃|≤ε̃

(gj(ε+ z, x)− gj(ε+ z̃, x))
)]
,

k = 1, . . . , K, for Fn with L2(P )-length ε. Here ε̃ = εκ/2(4C2||K||∞||fX ||∞)−κ/2 and K =

N(ε̃, T , || · ||∞), with κ and C from assumption (A.2) and where c1, . . . , cK denote the centers

of balls with || · ||∞-radius ε̃ used to cover T . Using those brackets one can show that

logN[](ε||Φn||2,P ,Fn, L2(P )) = O(logN(ε̃, T , || · ||∞)) = O(ε−κ/(1+α)), where the last equality

follows from Theorem 2.7.1 by van der Vaart & Wellner (2000, p. 154). Details are omitted

for the sake of brevity. Weak convergence of Gn(t̂n) to G(0) = 0 [and hence, (B.14)] now

follows from Lemma B.1 (where Y has only one element).

From (B.12), (B.13) and (B.14) we obtain that

η̂n(x) = Σ−1(x)
[ 1

nh

n∑
i=1

K
(Xi − x

h

)
g(εi, x)

+

∫
1

h
K
(z − x

h

)
(g(y + (m− m̂)(z), x)− g(y, x))fε,X(y, z) d(y, z)

]
+ op(

1√
nh

).

The assertion of the Proposition now follows from (j ∈ {1, . . . , k})∫ ∫
1

h
K
(z − x

h

)
(gj(y + (m− m̂)(z), x)− gj(y, x))fε,X(y, z) dz dy

=

∫ ∫
1

h
K
(z − x

h

)
g′j(y, x)(m− m̂)(z)fε,X(y, z) dz dy + op(

1√
nh

)

[by assumption (A.1) and the bandwidth condition h(log b−1)1+β/(nβbβ+1) = o(1)], inserting

the definition of m̂,∫ ∫
1

h
K
(z − x

h

)
g′j(y, x)(m− m̂)(z)fε,X(y, z) dz dy

= − 1

n

n∑
i=1

εi

∫
1

h
K
(z − x

h

)
g′j(y, x)

1

b
K̃
(Xi − z

b

)fε,X(y, z)

f̂X(z)
d(y, z)

− 1

n

n∑
i=1

∫
1

h
K
(z − x

h

)
g′j(y, x)

1

b
K̃
(Xi − z

b

)
(m(Xi)−m(z))

fε,X(y, z)

f̂X(z)
d(y, z)

+ op(
1√
nh

),

replacing the density estimtor f̂X in the denominator by the density fX and calculations of

expectations and variances as are typical for proofs in the context of kernel estimation. 2
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Proposition B.4 Under the assumptions of Theorem 3.1 one has

F̂ ∗n(y|x)− F̂n(y|x) = −η̂>n (x)E[g(ε,X)I{ε ≤ y} | X = x]

∫
K2(u) du+ op(

1√
nh

)

uniformly with respect to y ∈ R for each x ∈ (0, 1).

Proof of Proposition B.4.

Let f̃X(x) =
∑n

j=1 h
−1K(

Xj−x
h

)pj(x) and f̄X(x) = (nh)−1
∑n

j=1K(
Xj−x
h

) denote the density

estimators. Then, by definition,

F̂ ∗n(y|x)− F̂n(y|x)

=
1

n

n∑
i=1

1

h
K
(Xi − x

h

)
I{ε̂i ≤ y}

( 1

f̃X(x)

1

1 + η̂n(x)>g(ε̂i, x)K(Xi−x
h

)
− 1

f̄X(x)

)
= An(y) +Bn(y) + Cn(y),

where

An(y) = −η̂n(x)>
1

nh

n∑
i=1

K2
(Xi − x

h

)
I{ε̂i ≤ y}g(ε̂i, x)

1

f̃X(x)

Bn(y) =
1

nh

n∑
i=1

K
(Xi − x

h

)
I{ε̂i ≤ y} f̄X(x)− f̃X(x)

f̄X(x)f̃X(x)

Cn(y) =
1

nh

n∑
i=1

K
(Xi − x

h

)
I{ε̂i ≤ y} 1

f̃X(x)

(η̂n(x)>g(ε̂i, x)K(Xi−x
h

))2

1 + η̂n(x)>g(ε̂i, x)K(Xi−x
h

)
.

Now, by Proposition B.3 we have that η̂n(x) = Op((nh)−1/2) and this can be used to show

that Cn(y) = op((nh)−1/2) and

An(y) = −η̂n(x)>E
[
K2
(X − x

h

)
I{ε ≤ y}g(ε, x)

] 1

fX(x)
+ op(

1√
nh

)

= −η̂n(x)>
∫
K2
(z − x

h

)
E[I{ε ≤ y}g(ε, x) | X = z]

fX(z)

fX(x)
dz + op(

1√
nh

)

= −η̂n(x)>
∫
K2(u) duE[I{ε ≤ y}g(ε, x) | X = x] + op(

1√
nh

).

Uniformity of these results in y ∈ R can be obtained by some simple estimations and an

application of Theorem 37 by Pollard (1984, p. 34) to bound the remainder term. For the

sake of brevity technical details are omitted.

Further, by definition of f̄X and f̃X with F̂n from (2.1),

Bn(y) = F̂n(y|x)
1

f̃X(x)

1

nh

n∑
j=1

K
(Xj − x

h

)(
1− 1

1 + η̂n(x)>g(ε̂j, x)K(
Xj−x
h

)

)
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= η̂n(x)>F̂n(y|x)
1

nh

n∑
j=1

K2
(Xj − x

h

)
g(ε̂j, x)

1

f̃X(x)
+ op(

1√
nh

)

= η̂n(x)>F̂n(y|x)
(
E
[1

h
K2
(X − x

h

)
g(ε, x)

] 1

f̃X(x)
+ op(1)

)
+ op(

1√
nh

)

= Op(
1√
nh

)(Fε|X(y|x) + op(1))
(

0 + o(1) + op(1)
)

+ op(
1√
nh

)

= op(
1√
nh

)

uniformly with respect to y ∈ R by Theorem 2.1, Proposition B.3 and (1.5). 2

Proof of Theorem 3.1.

(a) The expansion follows directly from Propositions B.3 and B.4. 2

(b) The bias structure follows directly from part (a) together with Theorem 2.1 and the

following calculation. Note that for φ(t|x) = E[g(ε, x) | X = t]fX(t) we have φ(x|x) = 0 by

(1.5), and hence

E
[1

h
K
(X − x

h

)
g(ε, x)

]
=

∫
1

h
K
(t− x

h

)
φ(t|x) dt =

h2

2

∫
K(u)u2 du

∂2φ(t|x)

∂t2

∣∣∣
t=x

+ o(h2)

from which the formula for H∗(·|x) in the Theorem follows.

Weak convergence follows similarly to the proof of Theorem 2.1 (b) and the covariance

structure follows by tedious, but straightforward calculations. 2
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É. A. Nadaraya (1964). On non–parametric estimates of density functions and regression

curves. J. Probab. Appl. 10, 186–190.

N. Neumeyer (2008). A bootstrap version of the residual-based smooth empirical distribu-

tion function. J. Nonparam. Statist. 20, 153–174.

N. Neumeyer (2009). Testing independence in nonparametric regression. J. Mult. Anal.

100, 1551–1566.

A. B. Owen (1988). Empirical Likelihood ratio confidence intervals for a single functional.

Biometrika 75, 2, 237–249.

A. B. Owen (2001). Empirical Likelihood. Chapman & Hall/CRC.

D. Pollard (1984). Convergence of Stochastic Processes. Springer.

J. Qin and J. Lawless (1994). Empirical likelihood and general estimating equations. Ann.

Statist. 22, 300–325.

J. Shao and D. Tu (1995). The Jackknife and bootstrap. Springer.

W. Stute (1986). On almost Sure Convergence of Conditional Empirical Distribution Func-

tions. Ann. Probab. 14, 891–901.

W. Stute, W. Gonzalez Manteiga and M. Presedo Quindimil (1998). Bootstrap Ap-

proximations in Model Checks for Regression. J. Am. Statist. Assoc. 93, 141–149.

A. W. van der Vaart (1998). Asymptotic Statistics. Cambridge University Press.

A. W. van der Vaart and J. A. Wellner (2000). Weak Convergence and Empirical Pro-

cesses. Springer Series in Statistics.

G. S. Watson (1964). Smooth Regression Analysis. Sankhya A 26, 359–372.

L. Zhu, Y. Fujikoshi and K. Naito (2001). Heteroscedasticity checks for regression mod-

els. Science in China (Series A) 44, 1236–1252.

32



0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
20

x

in
te

gr
at

ed
 b

ia
s²

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
20

x

in
te

gr
at

ed
 b

ia
s²

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
15

x

in
te

gr
at

ed
 v

ar
ia

nc
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
15

x

in
te

gr
at

ed
 v

ar
ia

nc
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
20

x

M
IS

E

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
20

x

M
IS

E

−6 −2 0 2 4 6

0.
00

0.
15

y

bi
as

²

−6 −2 0 2 4 6

0.
00

0.
15

y

bi
as

²

−6 −2 0 2 4 6

0.
00

0.
04

y

va
ria

nc
e

−6 −2 0 2 4 6

0.
00

0.
04

y

va
ria

nc
e

−6 −2 0 2 4 6

0.
00

0.
15

y

M
S

E

−6 −2 0 2 4 6

0.
00

0.
15

y

M
S

E

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
04

x

in
te

gr
at

ed
 b

ia
s²

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
04

x

in
te

gr
at

ed
 b

ia
s²

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
15

x

in
te

gr
at

ed
 v

ar
ia

nc
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
15

x

in
te

gr
at

ed
 v

ar
ia

nc
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
15

x

M
IS

E

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
15

x

M
IS

E

−6 −2 0 2 4 6

0.
00

0
0.

00
4

y

bi
as

²

−6 −2 0 2 4 6

0.
00

0
0.

00
4

y

bi
as

²

−6 −2 0 2 4 6

0.
00

0.
04

y

va
ria

nc
e

−6 −2 0 2 4 6

0.
00

0.
04

y

va
ria

nc
e

−6 −2 0 2 4 6

0.
00

0.
04

y

M
S

E

−6 −2 0 2 4 6

0.
00

0.
04

y

M
S

E

Figure 1: For the example g(ε, x) = ε the figure shows comparisons of the integrated

squared bias (left panel), variance (middle panel) and integrated mean squared error (right

panel) as functions in x (first and third row) as well as the squared bias (left), variance

(middle) and mean squared error (right) for fixed x = 0.5 as function in y (second and

fourth row) for F̂n (dashed lines) and F̂ ∗n (solid lines). The results are for X ∼ U [0, 1],

ε ∼ N(0, σ2(x)) and m(x) = x2. The variance function is σ2(x) = e−3x in the first two rows

and σ2(x) = (1 + 0.5x)2 in the last two rows.
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Figure 2: The figure shows curves as described in the caption of figure 1, but for g(ε, x) =

ε2 − σ2(x).
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Figure 3: The figure shows curves as described in the caption of figure 1, but for g(ε, x) =

(ε, ε2 − σ2(x))>.
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Figure 4: The figure shows results from simulations for the examples g(ε, x) = ε (first row),

g(ε, x) = ε2 − σ2(x) (second row), g(ε, x) = (ε, ε2 − σ2(x))> (third row), g(ε, x) = (ε, ε3, ε5)

(last row, first two panels), and g(ε, x) = (ε, I{ε ≤ 0}− 0.5) (last row, last two panels). For

sample size n = 100 data were generated according to X ∼ U [0, 1], ε ∼ N(0, σ2(x)) and

m(x) = x2, where σ2(x) = e−3x (first two columns in first three rows) and σ2(x) = (1+0.5x)2

(last two columns in first three rows, and in the last row). The panels in the first and third

column show the simulated mean integrated squared error as function in x, whereas the

remaining panels show the mean squared error as function in y for fixed x = 0.5. The

dashed lines correspond to F̂n and the solid lines to F̂ ∗n . The results are based on 500

simulation runs.
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