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ACCURACY OF EMPIRICAL PROJECTIONS OF

HIGH-DIMENSIONAL GAUSSIAN MATRICES

By Angelika Rohde

Universität Hamburg

Let X = C + E with a deterministic matrix C ∈ RM×M and E some

centered Gaussian M ×M -matrix whose entries are independent with vari-

ance σ2. In the present work, the accuracy of reduced-rank projections of

X is studied. Non-asymptotic universal upper and lower bounds are de-

rived, and favorable and unfavorable prototypes of matrices C in terms of

the accuracy of approximation are characterized. The approach does not

involve analytic perturbation theory of linear operators and allows for mul-

tiplicities in the singular value spectrum. Our main result is some general

non-asymptotic upper bound on the accuracy of approximation which in-

volves explicitly the singular values of C, and which is shown to be sharp in

various regimes of C. The results are accompanied by lower bounds under

diverse assumptions. Consequences on statistical estimation problems, in

particular in the recent area of low-rank matrix recovery, are discussed.

1. Introduction. As a consequence of the Bai and Yin (1993) law, the maxi-
mal singular value λmax(E) of an iid standard Gaussian M ×M -matrix E is equal
to 2

√
M(1 + o(1)) a.s. Since in addition the sequence λmax(E)/

√
M is uniformly

integrable (Johnson and Lindenstrauss (2001), Chapter 8, Theorem 2.4), the corre-
sponding bound holds in expectation as well. Similarly, Eλmax(E)

2 = 4M(1+o(1)).
Let ‖ · ‖S2

denote the Hilbert-Schmidt or Frobenius norm. Define π̂1 to be the
orthogonal projection matrix onto the one-dimensional subspace of R

M maxi-
mizing ‖π̃1E‖2S2

over all one-dimensional orthogonal projections π̃1. Rewriting
λmax(E)

2 = ‖π̂1E‖2S2
yields

(1.1) E‖π̂1E‖2S2
= 4M(1 + o(1)).

In contrast, E‖π̃1E‖2S2
= M for every fixed π̃1. Thus, replacing one single projection

by the supremum over all projections increases the Hilbert-Schmidt norm by a
positive factor:

(1.2) E‖π̂1E‖2S2
− E‖π̃1E‖2S2

= 3(1 + o(1))M.

This effect raises the question about the accuracy for empirical reduced-rank pro-
jections in general. Consider the model

(1.3) X = C + E

with a deterministic matrix C ∈ R
M×M and E some centered Gaussian M × M -

matrix whose entries are independent with variance σ2. Here and subsequently,
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let

(1.4) π̂r := Argmax
π̃r∈SM,r

‖π̃rX‖2S2
and πr ∈ Argmax

π̃r∈SM,r

E‖π̃rX‖2S2

with SM,r denoting the set of all M × M -matrices representing orthogonal pro-
jections onto r-dimensional linear subspaces of RM . How close is E‖π̂rX‖2S2

to its
deterministic counterpart E‖πrX‖2S2

= ‖πrC‖2S2
+σ2rM if the Gaussian matrix X

is not centered? For every fixed M ∈ N and σ2 > 0, the following questions are
natural:

(A) Does there exist some favorable matrix C = EX for which the accuracy of
approximation E‖π̂rX‖2S2

−E‖πrX‖2S2
improves over the situation described

in (1.2)?

(B) Does there exist for any arbitrarily large real number c some unfavorable
matrix C(c) such that E‖π̂rX‖2S2

−E‖πrX‖2S2
≥ c?

Based on the random variable X = C+E within model (1.3), denote the difference
by

δC,M,σ2,r := E‖π̂rX‖2S2
−E‖πrX‖2S2

,(1.5)

which, in terms of singular values, is equal to

r∑

i=1

E
(
λ̂2
i − λ2

i − σ2M
)
,

where λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂M and λ1 ≥ λ2 ≥ ... ≥ λM denote the singular values
of X and C, respectively. The goal in the present article is to study this quantity
δC,M,σ2,r, to derive universal upper and lower bounds, and to characterize favorable
and unfavorable types of matrices C in terms of the accuracy of approximation
δC,M,σ2,r.

The motivation for considering this problem is two-fold. First of all, as

E‖π̂rX‖2S2
=
(
E‖π̂rX‖2S2

− E‖πrX‖2S2

)
+ ‖πrC‖2S2

+ σ2rM

and E‖π̂rX‖2S2
− E‖πrX‖2S2

= δC,M,σ2,r ≥ 0, the problem is of theoretical inter-
est as our results complement the bound in (1.1) for centered Gaussian matrices
with a detailed non-asymptotic analysis of the noncentered case, extending also to
more general rank-r projections. Finite-rank perturbations of random matrices have
found recently a lot of attention, see Capitaine et al. (2009), Capitaine et al. (2012),
Pizzo et al. (2012), Tao (2012) among others. Tao (2012), Theorem 1.7, studies the
the eigenvalue value spectrum of low rank perturbations of an iid complex random
matrix and proves, as a special case, that γmax(C+E/(σ

√
M)) = γmax(C)+op(1) as

M → ∞ and rank(C) = O(1) as long as |γmax(C)| = O(1) is sufficiently large, with
γmax(C) the eigenvalue of C which is maximal in absolute value. Capitaine et al.
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(2009) and Pizzo et al. (2012) study Wigner matrices instead of iid random ma-
trices. Somewhat remarkably, the outlier eigenvalues of the perturbed matrix are
not close in probability to those of the original matrix C but to some shifted value
λi(C) + σ2/λi(C), where σ2 is the common variance of the entries of the Wigner
matrix, and λi(C) the eigenvalues of an Hermitian matrix C. Our results are com-
plementary:

• We derive non-asymptotic cumulated second moment bounds on the singular
values in the deformed (non-Hermitian) iid real Gaussian matrix case, i.e. the
noise level σ2 and the dimension M are fixed but arbitrary throughout the
analysis, and the constants involved in our bounds do not depend on them.

• The perturbation matrix C is not required to be of low or uniformly bounded
rank, for example, our results cover the case rank(C) = ⌊M/2⌋ or rank(C) =
M .

• Our proofs differ significantly from the techniques of the above mentioned re-
sults but rely on empirical process techniques without making use of classical
random matrix tools. The novelty in the proof of the subsequent Theorem
5.1 is that a slicing argument is used for bounding the expectation of the
supremum over some non-centered process.

Although our results extend without difficulties to the self-adjoint dilation X̃ of
X in R

2M×2M , it remains open whether, in an appropriate asymptotic sense, the
eigenvalue spectrum of X̃ behaves similarly to the deformed Wigner case as studied
by Capitaine et al. (2009) and Pizzo et al. (2012) with finite-rank perturbations, as
their assumptions do not apply to this setting.

As concerns applicability in mathematical statistics, the study of E‖π̂rX‖2S2
=∑r

i=1 E λ̂2
i arises naturally when infering about quantities like

(1.6) ‖C‖2S2
− ‖πrC‖2S2

or argmin
r≥1

{‖πrC‖2S2

‖C‖2S2

≥ α

}
, α ∈ (0, 1],

which are of interest for analyzing and understanding the singular value spectrum,
in particular in high dimension. As above and subsequently, for any matrix C ∈
R

M×M , its singular values λ1, ..., λM are ordered in decreasing magnitude. In terms
of singular values,

‖C‖2S2
=

M∑

i=1

λ2
i and ‖πrC‖2S2

=

r∑

i=1

λ2
i .

If C =
∑M

i=1 λiUiV
′
i denotes some singular value decomposition of C, where

U1, ..., UM and V1, ..., VM are two sets of orthonormal vectors in R
M , then the

maximizer

Argmax
π̃r∈SM,r

E‖π̃r(C + E)‖2S2
= Argmax

π̃r∈SM,r

‖π̃rC‖2S2
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is unique if and only if λr > λr+1, in which case it is equal to the orthogonal projec-
tion

∑r
i=1 UiU

′
i onto the linear space spanned by the orthonormal column vectors

U1, ..., Ur, and πrC =
∑r

i=1 λiUiV
′
i . In the context of covariance matrices, the ratio

‖πrC‖2S2
/‖C‖2S2

is often referred to as percentage of the ”explained variance” by
the first r principal components, and the second expression in (1.6) determines the
smallest number of principal components needed to explain a prescribed percentage
α of the overall variance. Within our model, the statistics ‖πrX‖2S2

− σ2rM esti-
mates the expression ‖πrC‖2S2

in (1.6) unbiasedly, but note that πr = πr(C) is not
available in advance as C itself and in particular its singular spaces are unknown.
Thus, the first question in the analysis is whether the empirical counterpart

‖π̂rX‖2S2
− σ2rM =

r∑

i=1

λ̂2
i − σ2rM

does the job as well, where λ̂1, ..., λ̂r denote the first r largest singular values of X .
Our profound analysis about this problem will show that its bias depends strongly
on the unknown matrix C itself, and even for favorable rank-r matrices C = EX of
arbitrarily large amplitude and rank-r projections, the bias E‖π̂rX‖2S2

−E‖πrX‖2S2

remains of the order σ2r(M − r), which is shown to be unimprovable in general.
Note at this point that E‖π̂rX‖2S2

− ‖πrC‖2S2
≥ E‖πrX‖2S2

− ‖πrC‖2S2
= σ2rM ,

but there is a priori no reason why the difference

E‖π̂rX‖2S2
− E‖πrX‖2S2

cannot be even of substantially smaller order for ”good” choices C, see question
(A). In order to keep the technical expenditure as small as possible, we consider
the model X = C + E as mentioned above, but we conjecture that similar non-
asymptotic implications (somewhat different and still to be derived for the Wishart
case) will be valid for the squared Hilbert-Schmidt norm of rank-r projections of
high-dimensional empirical covariance matrices Y Y ′, with Y ∼ N (0, C) for some
positive semidefinite matrix C, with consequences on the robustness properties of
principal component analysis.

In the simplest special cases where the question is non-trivial, the main findings of
the article can be summarized as follows:

Theorem 1.1 (Prototype of weak accuracy). Let Cα = αId for some arbitrary
real number α ∈ R, where Id denotes the M×M -identity matrix. Then the following
statements hold true: (i) The case C = Cα = αId, α 6= 0, is always worse than the
case C = 0:

δCα,M,σ2,r ≥ δ0,M,σ2,r.

(ii) The difference δCα,M,σ2,r explodes at least linearly in the amplitude |α|: There
exists some constant c1 > 0, independent of σ2, r and M , such that

lim inf
|α|→∞

δCα,M,σ2,r

|α| ≥ c1 σr
√
M − r for all r ≤ M − r.
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Theorem 1.2 (Universal upper and lower bound in case r = 1). (i) There exists
some constant c2 > 0 independent of C,M, σ2, such that for all C ∈ R

M×M and
M ≥ 2

(1.7) δC,M,σ2,1 ≤ c2

(
σ2M + σ

√
M‖C‖S∞

)
,

where ‖C‖S∞
denotes the spectral norm of C.

(ii) There exist constants c3 > 0 and M0 ∈ N, independent of σ2, such that

(1.8) inf
C∈RM×M

δC,M,σ2,1 ≥ c3σ
2(M − 1) for all M ≥ M0.

Theorem 1.3 (Prototype of high accuracy). Let Cα,s = diag(α, , ..., α, 0, ..., 0)
with rank(Cα) = s. Then the following statements hold true: (i) There exists some
constant c4 > 0 independent of α, r,M and σ2, such that

(1.9) δCα,r,M,σ2,r ≤ c4 σ
2rM for r ≤ M − r and every α ∈ R.

(ii) There exists some constant c5 > 0 independent of M , r and σ2, such that the
bound (1.1) is asymptotically sharp in the following sense:

lim inf
|α|→∞

max
s∈{r,M−r}

δCα,s,M,σ2,s ≥ c5σ
2r(M − r).

The same result holds true even without the maximum over {1,M−1} for s = r = 1.

Theorem 1.3 (i) describes some special case of the more general upper bound in
Theorem 5.1, which applies for every matrix C ∈ R

M×M of rank(C) ≥ r. In case
that λi = α for i ≤ r and λi = β < α for i > r, the bound of Theorem 5.1 approaches
the unimprovable upper bound for matrices C of constant singular value spectrum
as β → α.

The article is organized as follows. In Section 2, we introduce the notation and
describe some basic observations about δC,M,σ2,r. Prototypes of matrices C of weak
accuracy and first lower bounds are studied in Section 3. The supremum over the
centered differences

sup
π̃r∈SM,r

(
‖π̃r(C+E)‖2S2

−E‖π̃r(C +E)‖2S2
−
[
‖πr(C +E)‖2S2

−E‖πr(C+E)‖2S2

])

is analyzed in Section 4. The process of centered differences and modifications
thereof are central for our analysis. Our main results are given in Section 5. Our
general idea on how to derive potentially sharp upper bounds on δC,M,σ2,r for gen-
eral M × M -matrices C is described at the beginning of that section. The upper
bounds are complemented with lower bounds in Section 6. Consequences on sta-
tistical estimation problems, in particular in the recent area of low-rank matrix
recovery, are discussed in Section 7. Section 8 is devoted to the proof of Theorem
5.1. The proof of Theorem 6.2 is deferred to Section 9.
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2. Preliminaries.

2.1. Notation. The notation . means less or equal up to some non-negative
multiplicative constant which does not depend on the variable parameters in the
expression. A ∼ B should be read as A . B and B . A at once. If not stated
otherwise, E is a centered Gaussian matrix whose entries are independent with
variance σ2. Subsequently, ‖.‖Sp

, 1 ≤ p ≤ ∞, denotes the Schatten-p-norm on
R

M×M , i.e. for any C ∈ R
M×M , the ‖C‖Sp

coincides with the ℓp-norm of its
singular values λ1 ≥ λ2 ≥ ... ≥ λM :

‖C‖Sp
=

( M∑

i=1

λp
i

)1/p

for 1 ≤ p < ∞, and ‖C‖S∞
= λ1.

Specifically, ‖·‖S1
, ‖·‖S2

and ‖·‖S∞
are referred to as nuclear norm, Hilbert-Schmidt

or Frobenius norm, and spectral norm, respectively. tr(C) denotes the trace of
C ∈ R

M×M . For any A ∈ R
d×M , A′ denotes its transpose in R

M×d. Id denotes the
M × M -identity matrix, and Idr the diagonal matrix diag(1, ..., 1, 0, ..., 0) of rank
r. As usual, O(M) describes the orthogonal group, i.e. the group of orthogonal
M × M -matrices. For any totally-bounded, pseudometric space (X , d) and any
subset E ⊂ X , the covering number N(E, d, δ) is the smallest number of closed
d-balls in X of radius δ needed to cover E.

2.2. Some basic observation about δC,M,σ2,r. The following representation clar-

ifies the problem under consideration. For some arbitrary matrix A ∈ R
M×M ,

‖A‖S∞
= 1, and α ∈ R, inspection of the quantity δαA,σ2,M,r shows

δαA,M,σ2,r = E
wwπ̂r(αA+ E)

ww2

S2
− E

wwπr(αA+ E)
ww2

S2

= E

(
sup

π̃r∈SM,r

{wwπ̃rE
ww2

S2
−
wwπrE

ww2

S2
+ 2α tr

(
E′(π̃r − πr)A

)

−α2
(wwπrA

ww2

S2
−
wwπ̃rA

ww2

S2

)

︸ ︷︷ ︸
”compensation term”, ≤0

})
.

The two processes

(
‖π̃rE‖2S2

− ‖πrE‖2S2

)
π̃r∈SM,r

and
(
αtr
(
E′(π̃r − πr)A

))
π̃r∈SM,r

are centered, while the deterministic compensation term −α2
(
‖πrA‖2S2

−‖π̃rA‖2S2

)

is less or equal to zero, for any choice of A and every π̃r ∈ SM,r. Note that the
stochastic term αtr

(
E′(π̃r−πr)A

)
is linear in α, but the deterministic compensation

term depends quadratically on α. This representation suggests that an interplay of
amplitude |α| and structure of A determine the accuracy of approximation.
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3. The prototype of weak accuracy – the case without determinis-
tic compensation term. Recall the definition (1.5), with π̂r and πr as defined
in (1.4). The first result is a lower bound on the expected squared Hilbert-Schmidt
norm of the rank-r-projection in case that the singular value spectrum of C is
constant.

Proposition 3.1. Let Cα ∈ R
M×M with singular value decomposition UΛαV

′.
Assume that Λα = αId with some non-negative number α ∈ R. Then

(i) δCα,M,σ2,r ≥ δ0,M,σ2,r for every α > 0,

and

(ii) lim inf
α→∞

δCα,M,σ2,r

α
& rσ

√
M − r for any r ≤ M − r.

Remark. Proposition 3.1 (i) demonstrates that the accuracy in case C = αId
is always worse than in case C = 0. (ii) complements this observation with an
asymptotic lower bound: the difference δCα,M,σ2,r explodes at least linearly in the
amplitude α. In particular, (ii) provides a positive answer to question (B) in the
Introduction.

Proof. Y =D Z for two random variables Y and Z means that their distribu-
tions coincide. Since U ′π̃rU ∈ SM,r for any π̃r ∈ SM,r, U

′EV =D E for two fixed
orthogonal matrices U and V , and ‖U ′AV ‖2S2

= ‖A‖2S2
for any A ∈ R

M×M , we
may assume without loss of generality that C = αId. Let πr be as given in (1.4),
i.e. in this case, πr denotes some arbitrary but fixed element of SM,r. First,

wwπ̃r(αId+E)
ww2

S2
−
wwπr(αId+E)

ww2

S2
= 2αtr

(
E′(π̃r−πr

))
+ ‖π̃rE‖2S2

−‖πrE‖2S2
,

i.e. we need a lower bound on

E

(
sup

π̃r∈SM,r

2αtr
(
E′(π̃r − πr

))
+ ‖π̃rE‖2S2

− ‖πrE‖2S2

)
.

Note that the supremum within the expectation is non-negative simply because
πr ∈ SM,r. Let E∗ ∈ R

M×M be the matrix with the entries E∗
ij = −Eij, i, j =

1, ...,M . By the symmetry of the Gaussian distribution,

2αtr
(
E′(π̃r−πr

))
+ ‖π̃rE‖2S2

− ‖πrE‖2S2

=D 2αtr
(
E∗′(π̃r − πr

))
+ ‖π̃rE

∗‖2S2
− ‖πrE

∗‖2S2

= −2αtr
(
E′(π̃r − πr

))
+ ‖π̃rE‖2S2

− ‖πrE‖2S2
.
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Consequently,

E

(
sup

π̃r∈SM,r

2αtr
(
E′(π̃r − πr

))
+ ‖π̃rE‖2S2

− ‖πrE‖2S2

)

=
1

2
E

(
sup

π̃r∈SM,r

2αtr
(
E′(π̃r − πr

))
+ ‖π̃rE‖2S2

− ‖πrE‖2S2

)

+
1

2
E

(
sup

π̃r∈SM,r

2αtr
(
E∗′(π̃r − πr

))
+ ‖π̃rE

∗‖2S2
− ‖πrE

∗‖2S2

)

=
1

2
E

[
sup

π̃r∈SM,r

2αtr
(
E′(π̃r − πr

))
+ ‖π̃rE‖2S2

− ‖πrE‖2S2

+ sup
π̃r∈SM,r

2αtr
(
E∗′(π̃r − πr

))
+ ‖π̃rE

∗‖2S2
− ‖πrE

∗‖2S2

]

≥ 1

2
E

[
sup

π̃r∈SM,r

(
2αtr

(
E′(π̃r − πr

))
+ ‖π̃rE‖2S2

− ‖πrE‖2S2

+ 2αtr
(
E∗′(π̃r − πr

))
+ ‖π̃rE

∗‖2S2
− ‖πrE

∗‖2S2

)]

= E

(
sup

π̃r∈SM,r

‖π̃rE‖2S2
− ‖πrE‖2S2

)
,

which proves part (i) of the proposition. As concerns the proof of (ii), observe that

E

(
sup

π̃r∈SM,r

2αtr
(
E′(π̃r − πr

))
+ ‖π̃rE‖2S2

− ‖πrE‖2S2

)

≥ 2αE

(
sup

π̃r∈SM,r

tr
(
E′(π̃r − πr

)))
− E

(
sup

π̃r∈SM,r

‖πrE‖2S2
− ‖π̃rE‖2S2

)

≥ 2αE

(
sup

π̃r∈SM,r

tr
(
E′(π̃r − πr

)))
− σ2rM,(3.1)

since E
(
supπ̃r∈SM,r

‖πrE‖2S2
−‖π̃rE‖2S2

)
≤ σ2rM . By Sudakov’s minoration, there

exists some universal constant cSud such that

(3.2) E sup
π̃r∈SM,r

tr
(
E′(π̃r − πr

))
≥ σ cSud δ

√
logN

(
Sm,r, dS2

, δ
)

for any δ > 0. Proposition 8 in Pajor (1998) states for any r ≤ M − r

(c′
ξ

)r(M−r)

≤ N
(
SM,r, dS2

, ξ
√
r
)
, ∀ ξ > 0,

with some universal constant c′ > 0 which does not depend on r and M . Choosing
δ =

√
rc′/e and plugging (3.2) into (3.1) yields, for some constant c which does not

depend on σ2, r,M and α:

δαId,M,σ2,r ≥ cσrα
√
M − r − σ2rM.
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Dividing both sides by α and taking the limes inferior proves (ii). �

In view of the representation in Section 2, the case C = αId is the prototype of
weak accuracy as there is no deterministic compensation term in the expression of
the supremum. It follows from the subsequent Corollary 4.2 that the lower bound
of Proposition 3.1 (ii) is sharp.

4. S2-S∞-chaining bounds for the supremum over the centered
process and first consequences on δC,M,σ2,r. LetX = C+E as described
in (1.3). Recall the definition from the Introduction

πr ∈ Argmax
π̃r∈SM,r

E‖ π̃rX‖2S2
= Argmax

π̃r∈SM,r

‖ π̃rC‖2S2
.

Because of E‖πr(C +E)‖2S2
≥ E‖π̃r(C +E)‖2S2

for every π̃r ∈ SM,r, it follows that

E sup
π̃r∈SM,r

(
‖π̃r(C + E)‖2S2

− ‖πr(C + E)‖2S2

)

≤ E sup
π̃r∈SM,r

(
‖π̃r(C + E)‖2S2

−E‖π̃r(C + E)‖2S2
(4.1)

−
[
‖πr(C + E)‖2S2

−E‖πr(C + E)‖2S2

])
.

That is, the study of the supremum over the centered process

Z := sup
π̃r∈SM,r

(
‖π̃r(C+E)‖2S2

−E‖π̃r(C+E)‖2S2
−
[
‖πr(C+E)‖2S2

−E‖πr(C+E)‖2S2

])
.

yields some first (possibly very rough) estimate of δC,M,σ2,r from above. Variants
thereof are central for our subsequent analysis in Section 5.

Proposition 4.1. Let (Eij)
M
i,j=1 be a centered matrix of iid Gaussian entries with

variance σ2. Then there exists some constant c > 0 such that for every 1 ≤ r <
M ∈ N and every C ∈ R

M×M

(4.2) EZ ≤ c
(
σ2rM + σr

√
M‖C‖S∞

)
.

The proof of Proposition 4.1 is deferred to the end of this section. We draw some
first consequences on δC,M,σ2,r.

Corollary 4.2. (i) (Universal upper bound) For all C ∈ R
M×M ,

δC,M,σ2,r . σ2rM + σr
√
M‖C‖S∞

.

(ii) (Upper bound in the ”small amplitude” regime)

sup
C∈R

M×M :
‖C‖S∞

≤σ
√
M

δC,M,σ2,r . σ2rM.
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Proof of the Corollary 4.2 (i) follows from (4.1) and the bound on EZ given in
Proposition 4.1; (ii) follows from (i).

Remark. It is worth being mentioned that EZ grows linearly with ‖C‖S∞
, and

this linear dependence is optimal for matricesX = αId+E, α ∈ R, in view of Propo-
sition 3.1. In particular, the lower bound of Proposition 3.1 (ii) is sharp, and the
universal upper bound cannot be improved without further structural assumptions
on C.

The next lemma complements the upper bound of the Corollary 4.2 (ii) in the small
amplitude regime with a lower bound.

Lemma 4.3. For any real constant κ > 0,

inf
C∈R

M×M :
‖C‖S∞

≤κσ
√
M

δC,M,σ2,r ≥ δ0,M,σ2,r − κ2σ2rM.

Proof. With the same symmetry argument as used in the proof of Proposition
3.1 (i), we obtain for any C ∈ R

M×M with ‖C‖S∞
≤ κσ

√
M

E

(
sup

π̃r∈SM,r

wwπ̃r(C + E)
ww2

S2
−
wwπr(C + E)

ww2

S2

)

≥ E

(
sup

π̃r∈SM,r

‖π̃rE‖2S2
− ‖πrE‖2S2

+ ‖π̃rC‖2S2
− ‖πrC‖2S2

)

≥ E

(
sup

π̃r∈SM,r

‖π̃rE‖2S2
− ‖πrE‖2S2

)
− κ2σ2rM.

�

Remark. Together with the upper Bai-Yin bound in expectation (1.1), Lemma
4.3 implies in particular for r = 1 that there exists some M0 ∈ N, independent of
σ2, such that

inf
C∈R

M×M :
‖C‖S∞

≤σ
√
M

δC,M,σ2,1 ≥ 1

2
δ0,M,σ2,1 ∼ σ2M for all M ≥ M0.

That is, in the small amplitude regime ‖C‖S∞
≤ σ

√
M , the accuracy is never better

in order than in the case C = 0, independent of the specific structure of the matrix
C.

Proof of Proposition 4.1. For any r-dimensional subspace U ⊂ R
M , let

PU ∈ SM,r denote the orthogonal projection onto U . The proof is based on the
classical generic chaining device. In order to make this technique applicable, we
need to investigate pairwise differences of the centered process Zσ,M,r which is
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pointwise given by

Zσ,M,r
PU

:=
(
‖PU (C + E)‖2S2

−E‖PU (C + E)‖2S2

)

=
(
tr
(
E′PUE

)
− rMσ2 + 2tr

(
C′PUE

))
, PU ∈ SM,r.

Denote π
(1)
r = PU1

∈ SM,r, π
(2)
r = PU2

∈ SM,r, and A = π
(1)
r − π

(2)
r . Recall that

P ′
Ui

= PUi
and P 2

Ui
= PUi

for i = 1, 2. For any B = (bij)
M
i,j=1 ∈ R

M×M , vec(B)
denotes the associated vector obtained by sticking together its columns,

vec(B) := (b11, · · · , bM1, b12, · · · , bM2, · · · , bMM )′ ∈ R
M2

.

Observe furthermore that

‖PU1
E‖2S2

− ‖PU2
E‖2S2

= tr
(
E′(P ′

U1
PU1

− P ′
U2
PU2

)
E
)

=

M∑

l,k,i=1

AlkEkiEli = vec(E)′Ã vec(E),

where Ã denotes the block-diagonal matrix diag(A, ..., A) ∈ R
M2×M2

, and, analo-
gously,

tr
(
C′PU1

E
)
− tr

(
C′PU2

E
)

= vec(C)′Ã vec(E).

Noting that ‖Ã‖S2
=

√
M‖A‖S2

and ‖Ã‖S∞
= ‖A‖S∞

, Bernstein’s inequality for
quadratic forms of Gaussian variables (see, for instance, Bechar (2009), Lemma 0.2)
yields the exponential bound

P

(
Zσ,M,,r
PU1

− Zσ,M,r
PU2

≥

2
√
σ4M‖PU1

− PU2
‖2S2

+ 2σ2‖Ãvec(C)‖22 ·
√
t+ 2σ2‖PU1

− PU2
‖S∞

t

)
≤ exp(−t)

(4.3)

for all t > 0. Note that the bound is fully symmetric in U1 and U2. Since
‖Ãvec(C)‖22 = ‖AC‖2S2

≤ ‖A′A‖S1
‖C′C‖S∞

= ‖A‖2S2
‖C‖2S∞

, it follows that

√
σ4M‖PU1

− PU2
‖2S2

+ 2σ2‖Ãvec(C)‖22 ≤
√
σ4M + 2σ2‖C‖2S∞

‖PU1
− PU2

‖S2
,

(4.4)

i.e. the exponentail tail bound for the differences Zσ,M,,r
PU1

− Zσ,M,r
PU2

is characterized

by an interplay of Hilbert-Schmidt and spectral norm, which take over the roles of
the ℓ2- and ℓ∞-norms of the classical Bernstein inequality from the vector case. We
prove first the case r ≤ M − r. Note that

(4.5) sup
πr,π̃r∈SM,r

‖πr − π̃r‖2S2
≤ 2r and sup

πr,π̃r∈SM,r

‖πr − π̃r‖S∞
≤ 2.
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Since Zσ,M,r
x depends continuously on x, it holds that

E

(
sup

π̃r∈SM,r

(
Zσ,M,r
π̃r

− Zσ,M,r
πr

))
= E

(
sup
π̃r∈S

(
Zσ,M,r
π̃r

− Zσ,M,r
πr

))

for any countable, dense subset S of SM,r, and by the Theorem of monotone con-
vergence, it is sufficient to assume subsequently that S is finite. We define now
recursively an increasing family of partitions (An)n≥0 of S such that A0 = S, and
for n ≥ 1 and A ∈ An

(i) ‖π(1)
r − π(2)

r ‖S2
≤ 2−n

√
2r and (ii) ‖π(1)

r − π(2)
r ‖S∞

≤ 2−n+1(4.6)

∀π(1)
r , π

(2)
r ∈ A, with An+1 ⊂ An for all n ≥ 0. This can be realized as follows: For

n = 0, A0,2 := A0,∞ := {S}. For any totally-bounded, pseudometric space (X , d)
and any subset E ⊂ X , the covering number N(E, d, δ) is the smallest number of
closed d-balls in X of radius δ needed to cover E. It is proved in Szarek (1982), see
also Pajor (1998) for a different proof, that for 1 ≤ r ≤ M − r and any C′ > ξ > 0

(4.7) N
(
SM,r, dS2

, ξ
√
r
)

≤
(C′

ξ

)r(M−r)

and N
(
SM,r, dS∞

, ξ
)

≤
(C′

ξ

)r(M−r)

for some universal constant C′ > 0. Hence, S can be covered with at most
(C′)r(M−r) S2-balls B1,2, ..., BN1,2,2 of radius

√
2r, and with at most (C′)r(M−r)

S∞-balls B1,∞, ..., BN1,∞,∞ of radius 2. From such finite coverings of S2- and S∞-
balls, the partitions A1,2 and A1,∞ are canonically constructed by

A1,j :=
{(

Bk,j \
⋃

1≤l<k

Bl,j

)
∩ S, k = 1, ..., N1,j

}
, j = 2,∞.

For n ≥ 2 we proceed inductively using the bounds (8.11) and (8.15) for q =
∞ of Lemma 8.2. Indeed, each element A ∈ An−1,j is element of an Sj-ball in
SM,r of radius 2−n

√
2r and 2−n+1, respectively, and can be partitioned as above

into (2C)r(M−r) subsets of balls of radius 2−(n+1)
√
2r and 2−n, respectively. By

construction, the partitions (An,2)n≥0 and (An,∞)n≥0 are nested, and card(An,2) ≤
Dnr(M−r), card(An,∞) ≤ Dnr(M−r) for some universal constantD > 0. Setting now
An := {A2 ∩ A∞ : A2 ∈ A2,n and A∞ ∈ An,∞} yields some partition with the
above mentioned properties (4.6). Obviously,

(4.8) card(An) ≤ card(An,2)card(An,∞).

For each n ≥ 1 and A ∈ An, let sn(A) be some arbitrarily chosen rank-r-projection
matrix in A. For each s ∈ S and n ≥ 1, there exists some unique A ∈ An with
s ∈ A, and we set Πn(s) = sn(A). When n = 0, define Π0(s) = πr. Now,

E

[
sup
s∈S

(
Zσ,M,r
s − Zσ,M,r

πr

)]
= E

[
sup
s∈S

∑

n≥0

(
Zσ,M,r
Πn+1(s)

− Zσ,M,r
Πn(s)

)]
(4.9)

≤
∑

n≥0

E

[
sup
s∈S

(
Zσ,M,r
Πn+1(s)

− Zσ,M,r
Πn(s)

)]
.(4.10)



ACCURACY OF EMPIRICAL PROJECTIONS 13

Note that the decomposition
∑

n≥0 Z
σ,M,r
Πn+1(s)

− Zσ,M,r
Πn(s)

of each Zσ,M,r
s − Zσ,M,r

πr
in

(4.9) is finite since S is finite. By construction,

sup
s∈S

‖Πn(s)− s‖S2
≤ 2−n

√
2r and sup

s∈S
‖Πn(s)− s‖S∞

≤ 2−n+1,

hence ‖Πn+1(s)−Πn(s)‖S2
≤ 3 ·2−n

√
2r and ‖Πn+1(s)−Πn(s)‖S∞

≤ 3 ·2−n+1, for
every s ∈ S. Note that card

(
{Πn+1(s) − Πn(s) : s ∈ S}

)
≤ card(An+1)card(An),

n ∈ N. Applying now Lemma A.1, van der Vaart (1996), to each expectation within
(4.10), yields

E

[
sup
s∈S

(
Zσ,M,r
s − Zσ,M,r

πr

)]

.
∑

n≥0

1

2n

(√
2r
√

σ4M + 2σ2‖C‖2S∞

√
2 log

(
Nn

)
+ 2σ2 log

(
Nn

))

. σ2rM + σr
√
M‖C‖S∞

,

where Nn := card(An+1)card(An) ≤ D(4n+2)r(M−r). Note further that the case
r = M is obvious, the case M > r > M − r follows by consideration of the
orthogonal complements ‖PU (C + E)‖2S2

= ‖C + E‖2S2
− ‖P⊥

U (C + E)‖2S2
. �

5. The main result – a general expectation bound for non-centered
Gaussian matrices. Corollary 4.2 (i) provides some upper bound on δC,M,σ2,r

which is valid for every M × M -matrix C, and which is achieved, for instance,
for C = 0 and r = 1 in the small amplitude regime, and for C = αId with |α|
sufficiently large in the large amplitude regime, i.e. |α| ≫ σ

√
M . In this section,

we present some new and more refined analysis for bounding δC,M,σ2,r which takes
advantage of some potentially favorable structure of C - resulting in the presence
of the deterministic compensation term as explained in Section 2. Some protype
of matrices of ”high accuracy” in the large amplitude regime is discovered and
analyzed.

Our approach is motivated and explained in what follows. The conjecture about
the possibility of improvement over Corollary 4.2 (i) for a certain type of matrices
follows from the fact that, in contrast to the situation in Section 3, the differences

(5.1) ‖π̃r(C + E)‖2S2
− ‖πr(C + E)‖2S2

are usually not centered. With πr = πr(C) maximizing the expression ‖π̃rC‖2S2

over SM,r here and subsequently, the expectation of (5.1) is less or equal to zero.
Depending on the structure of C, it may be substantially smaller than zero for some
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appreciable amount of rank-r-projections. Consequently, for any subsetAC ⊂ SM,r,

sup
π̃r∈AC

(
‖π̃r(C + E)‖2S2

− ‖πr(C + E)‖2S2

)
(5.2)

≤ sup
π̃r∈AC

(
‖π̃r(C + E)‖2S2

−E‖π̃r(C + E)‖2S2

−
[
‖πr(C + E)‖2S2

−E‖πr(C + E)‖2S2

])
−∆AC

,

with ∆AC
:= inf

π̃r∈AC

(
E‖πr(C + E)‖2S2

−E‖π̃r(C + E)‖2S2

)
.

Roughly speaking, the expectation of the supremum in (5.2) is small if the supre-
mum of the corresponding centered process over AC is small as compared to ∆AC

.
The idea for the general bound is based on decomposing the Grassmann manifold
along the geometric grid of slices AC,k, k ∈ N:

AC,k :=

{
π̃r ∈ SM,r :

‖πrC‖2S2

2k+1
< E‖πr(C + E)‖2S2

−E‖π̃r(C + E)‖2S2
≤ ‖πrC‖2S2

2k

}
.

Define the random variables Yk := sup
π̃r∈AC,k

(
‖π̃r(C + E)‖2S2

− ‖πr(C + E)‖2S2

)

and

Y 0
k = sup

π̃r∈AC,k

(
‖π̃r(C+E)‖2S2

−E‖π̃r(C+E)‖2S2
−
[
‖πr(C+E)‖2S2

−E‖πr(C+E)‖2S2

])
.

With Z̃ := sup
π̃r∈SM,r:

‖π̃rC‖S2
=‖πrC‖S2

(
‖π̃r(C + E)‖2S2

− ‖πr(C + E)‖2S2

)
,

we obtain the series expansion

δC,Mσ2,r = E sup
π̃r∈SM,r

(
‖π̃r(C + E)‖2S2

− ‖πr(C + E)‖2S2

)

≤ EZ̃ +
∑

k∈N

E
(
0 ∨ Yk

)

≤ EZ̃ +
∑

k∈N

E
(
0 ∨

(
Y 0
k −∆AC,k

))
.(5.3)

In view of this expansion, it is clear that good bounds can be reached in principal
only if EY 0

k is small as compared to ∆AC,k
. The evaluation of the expectations

E
(
0 ∨

(
Y 0
k −∆AC,k

))
, k ∈ N,

is however quite a difficult task in general: It requires some suitable characterization
of the subsets AC,k of the Grassmannian for general matrices C ∈ R

M×M and tight
bounds on their metric entropy. Before discussing this serious issue, we present first
the main result of this section.



ACCURACY OF EMPIRICAL PROJECTIONS 15

Theorem 5.1. Let (Eij)
M
i,j=1 be a centered matrix of independent Gaussian entries

with variance σ2. Then for any C ∈ R
M×M with rank(C) ≥ r and r ≤ M − r, the

following bound holds true:

δC,M,σ2,r . σ2rM
(
I + min

(
II, III

))
,

where, with λ1 ≥ λ2 ≥ ... ≥ λM denoting the singular values of C,

I = min

(
λ2
1

λ2
r

, 1 +
λ1

σ
√
M

)
,

II =

( 1
r

∑2r
i=r+1 λ

2
i

λ2
r

)1/2

· λ1

σ
√
M

, and

III =
λ2
1

λ2
r − λ2

r+1

if λr+1 < λr, and III = ∞ else.

In particular for the case r = 1, the bound applies to any 0 6= C ∈ R
M×M . Some

immediate consequence of Theorem 5.1 is the following.

Corollary 5.2. Let Cα,β,r ∈ R
M×M with singular values λi = α for i ≤ r and

λi = β ≤ α for i > r. As usual, set c/0 := ∞ for any c > 0. Then

δCα,β,r,M,σ2,r . σ2rM

{
1 + min

(
α2

α2 − β2
,

β

σ
√
M

)}
for every 0 ≤ β ≤ α.

Remark. Corollary (5.2) covers the two extreme cases:

(i) Prototype of high accuracy in the ”large amplitude”-regime α ≫ σ
√
M :

δCα,0,r ,M,σ2,r . σ2rM for every α ≥ 0.

(ii) Prototype of weak accuracy in the ”large amplitude”-regime α ≫ σ
√
M :

the bound of Corrollary 5.2 approaches the unimprovable upper bound for
matrices C of constant singular value spectrum as β → α, see Proposition
3.1.

Note that the upper bound in case C = 0 is covered by Proposition 4.1.

The proof of Theorem 5.1 is deferred to Section 8. Subsection 8.1 deals with the
description of the sets GM,r(δ) := {π̃r ∈ SM,r : ‖πrC‖2S2

− ‖π̃rC‖2S2
≤ δ}, which

characterize the slices AC,k = GM,r

(
2−k‖πrC‖2S2

)
\ GM,r

(
2−(k+1)‖πrC‖2S2

)
. It is

shown that these sets can be approximated by sets of very simple geometric struc-
ture. In case of some substantial spectral gap in r, this approximation is very tight.
Sharp bounds on their metric entropy are derived in Subsection 8.2. The final ar-
guments differ slightly from from the description at the beginning of this Section.
They are given in Subsection 8.3.
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6. Lower bounds. The best possible upper bound for the accuracy of aproxi-
mation in Theorem 5.1 is of the order σ2rM , which is attained for matrices C = 0
or C = αIdr in the large amplitude regime. The question arises whether this bound
is sharp, i.e. whether it indicates some fundamental limit on the accuracy of approx-
imation. For fixed A ∈ R

M×M with ‖A‖S∞
= 1 and some arbitrary real number

α ∈ R, inspection of δαA,M,σ2,r shows

E
wwπ̂r(αA+ E)

ww2

S2
− E

wwπr(αA + E)
ww2

S2

= E

(
sup

π̃r∈SM,r

wwπ̃rE
ww2

S2
−
wwπrE

ww2

S2
+ 2α tr

(
E′(π̃r − πr)A

)
(6.1)

− α2
(wwπrA

ww2

S2
−
wwπ̃rA

ww2

S2

))
.(6.2)

Now, ‖πrC‖2S2
−‖π̃rC‖2S2

≥ 0 since πr optimizes the Hilbert-Schmidt norm, and the
dependence on α in the deterministic compensation term in line (6.2) is quadratic
while it is only linear in the stochastic part in line (6.1). So, for any fixed σ2, r,
M and A, one may wonder whether the accuracy of approximation E‖π̂r(αIdr +
E)‖2S2

−E‖πr(αIdr +E)‖2S2
tends even to zero as |α| goes to infinity if A is suitably

chosen, like, for instance, A = Idr. In this section, we demonstrate that this is not
the case. We provide some complete proof of the conjecture

(6.3) inf
C∈RM×M

δC,M,σ2,r & δ0,M,σ2,r

in case r = 1. For r > 1 we present some partial solution in the large amplitude
regime.

6.1. The universal lower bound for r = 1.

Theorem 6.1. Let (Eij)
M
i,j=1 be a centered matrix of independent Gaussian entries

with variance σ2. Then there exists some M0 ∈ N, independent of σ2, such that

(6.4) inf
C∈RM×M

δC,M,σ2,1 & δ0,M,σ2,1

for any M ≥ M0.

Proof. In view of Lemma 4.3 and its subsequent remark, it is sufficient to prove
that for every β > 0, there exists some constant cβ > 0, independent of σ2 and M ,
such that

inf
C∈R

M×M :
‖C‖S∞

≥βσ
√
M

≥ cβσ
2(M − 1) for all M ≥ 2.(6.5)

Let C =
∑M

i=1 λiUiV
′
i denote some singular value decomposition of C, and define

π1 := U1U
′
1. Since for any 1 ≤ s < M and πs, π̃s ∈ SM,s, πs − π̃s = (Id − πs)π̃s −
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πs(Id− π̃s) is an orthogonal decomposition and ‖πs(Id− π̃s)‖2S2
= ‖(Id−πs)π̃s‖2S2

,
observe that

‖π1C‖2S2
− ‖π̃1C‖2S2

≤ ‖π1C‖2S2
− ‖π̃1π1C‖2S2

= λ2
1

(
‖π1‖2S2

− ‖π̃1π1‖2S2

)

= λ2
1‖(Id− π̃1)π1‖2S2

= λ2
1‖π̃1(Id− π1)‖2S2

=
λ2
1

2
‖π̃1 − π1‖2S2

.

Consequently,

δC,M,σ2,1 = E
wwπ̂1(C + E)

ww2

S2
− E

wwπ1(C + E)
ww2

S2

= E

(
sup

π̃1∈SM,r

{wwπ̃1E
ww2

S2
−
wwπ1E

ww2

S2
+ 2 tr

(
E′(π̃1 − π1)C

)

−
(wwπ1C

ww2

S2
−
wwπ̃1C

ww2

S2

)})

≥ E

(
sup

π̃1∈SM,r

{wwπ̃1E
ww2

S2
−
wwπ1E

ww2

S2
+ 2 tr

(
E′(π̃1 − π1)C

)

− λ2
1

2
‖π1 − π̃1‖2S2

})

≥ E

(
sup

π̃1∈SM,1(δ)

{wwπ̃1E
ww2

S2
−
wwπ1E

ww2

S2
+ 2 tr

(
E′(π̃1 − π1)C

)
(6.6)

− λ2
1

2
‖π1 − π̃1‖2S2

})
(6.7)

for any subset

SM,1(δ) :=
{
π̃1 ∈ SM,1 : ‖π̃1 − π1‖S2

≤
√
2δ
}
, δ > 0.

The idea of the proof is to choose δ = δ(M,σ2, λ1, β) in some specific way in order
to guarantee that the deterministic compensation term in (6.7) is lower bounded
by −λ2

1δ, and to pick afterwards some suitable projection in dependence of C and
E out of this class which realizes the lower bound in expectation. Since π̌r,U =
U ′π̃rU ∈ SM,r for any π̃r ∈ SM,r and U ∈ O(M), ĚU,V = U ′EV =D E for any two
fixed orthogonal matrices U and V , and ‖U ′AV ‖2S2

= ‖A‖2S2
for any A ∈ R

M×M ,
i.e., wwπ̃r

(
UΛV ′ + E

)ww2

S2
=
wwπ̌r,U

(
Λ + ĚU,V

)ww2

S2
,

we may and do assume subsequently without loss of generality that U = V = Id
and π1 = Id1 in particular. With e1, e2, ..., eM denoting the canonical basis vectors
of RM , every projection matrix in SM,1 can be written as

( M∑

i=1

γiei

)( M∑

i=1

γie
′
i

)
=: π̃1,γ , with

M∑

i=1

γ2
i = 1.
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In order bound δC,M,σ2,1 from below by means of (6.6) – (6.7), define

δ∗∗ := d
(M − 1)σ2

2λ2
1

for some constant d ∈ (0,min(β2, 1)) to be chosen later. Note that d shall be chosen
independently ofM , σ2, λ1 and C, but is allowed to depend on β only. Furthermore,
δ∗ ≤ 1/2 because λ1 ≥ βσ

√
M . Now, since

π̃1,γId1 =




γ2
1 0 · · · 0

γ1γ2 0 · · · 0
... 0

. . .
...

γ1γM 0 · · · 0


 ,

the constraint

π̃1,γ ∈ SM,1(δ∗∗) ⇔ ‖π̃1,γ − Id1‖2S2
≤ 2δ∗∗ ⇔ ‖(Id− π̃1,γ)Id1‖2S2

≤ δ∗∗

translates into

(
(1 − γ2

1)
2 +

M∑

i=2

γ2
1γ

2
i = (1− γ2

1)
2 + γ2

1(1− γ2
1) =

)
1− γ2

1 ≤ δ∗∗.

With the choice

γ∗
1 :=

√
1− δ∗∗ and γ∗

i := sign(Ei1) δ
1/2
∗∗ /

√
M − 1 for i = 2, ...,M,

it holds that ‖π̃1,γ∗ − Id1‖2S2
≤ 2δ∗∗, i.e. π̃1,γ∗ belongs to SM,1(δ∗∗). Together with

δ = δ∗∗ in (6.6) – (6.7), this yields
(6.8)

δC,M,σ2,1 ≥ E

(wwπ̃1,γ∗E
ww2

S2
−
wwId1E

ww2

S2
+2 tr

(
E′(π̃1,γ∗−Id1)C

)
− dσ2(M−r)

)
.

We evaluate the expressions within the expectation separately. For any 1 ≤ i, j ≤
M ,

(
π̃1,γE

)
ij

=

M∑

l=1

γiγlElj .
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Since
∑M

i=1 γ
∗
i
2 = 1, sign(Ei1) and |Ei1| are stochastically independent, and Eij ,

1 ≤ i, j ≤ M , are independent by assumption with E(Eij) = 0 and E sign(Eij) = 0,

E‖π̃1,γ∗E‖2S2
=

M∑

i,j=1

E

( M∑

l=1

γ∗
i γ

∗
l Elj

)2

=

M∑

i,j=1

M∑

l=1

γ∗
i
2γ∗

l
2
E
(
E2
lj

)
+

M∑

l,l′≥2:
l 6=l′

|γ∗
l γ

∗
l′ |E

El1El′1



= Mσ2 +

M∑

l,l′≥2:
l 6=l′

|γ∗
l γ

∗
l′ |E

El1El′1

.

Therefore,

(6.9) E
(wwπ̃1,γ∗E

ww2

S2
−
wwId1E

ww2

S2

)
≥ 0.

Next, we decompose

(6.10) 2 tr
(
E′π̃1,γ∗C

)
= 2 tr

(
E′π̃1,γ∗Id1C

)
+ 2 tr

(
E′π̃1,γ∗(Id− Id1)C

)
.

In order to check E tr
(
E′π̃1,γ∗(Id − Id1)C

)
= 0, it is sufficient to notice that all

entries of the matrix E′π̃1,γ∗(Id− Id1) have expectation 0. Indeed, its first column
is equal to zero, and one easily verifies for the remaining indices 1 ≤ i ≤ M ,
2 ≤ j ≤ M that E

(
Eliγ

∗
j γ

∗
l

)
= 0 for every 1 ≤ l ≤ M , hence

(
E
(
E′π̃1,γ∗(Id− Id1)

))
ij

=
M∑

l=1

E
(
Eliγ

∗
j γ

∗
l

)
= 0.

Together with (6.9) and Id1C = λ1Id1, (6.8) reduces to

δC,M,σ2,1 ≥ E

(
2 tr
(
E′(π̃1,γ∗ − Id1)Id1C

)
− dσ2(M − 1)

)

= E

(
2λ1 tr

(
E′π̃1,γ∗Id1

)
− dσ2(M − 1)

)

= σ · 2λ1 E

(
γ∗
1
2(E11/σ) +

M∑

i=2

γ∗
1γ

∗
i (Ei1/σ)

)
− dσ2(M − 1)

= (1 − δ∗∗)
1/2δ

1/2
∗∗ (M − 1)−1/2σ2λ1

M∑

i=2

E|Ei1/σ| − dσ2(M − 1)

≥
√
d σ2(M − 1)

2√
2π

− dσ2(M − 1).

Choosing now some d ∈
(
0,min(β2, 1)

)
such that 2

√
d/

√
2π−d > 0 proves (6.5). �

Remark. Theorem 6.1 answers to question (A) from the Introduction in the neg-
ative.
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6.2. A partial solution to the conjecture (6.3) for r > 1 in the large ampli-
tude regime. The specific construction of the (random) projection π̃1,γ∗ in the
proof from the previous paragraph cannot canonically be extended to arbitrary
r > 1. For the result in this subsection, we use finally a different approach based
on abstract lower bounds on suprema of Gaussian processes which applies to any
r ≤ M − r. For the prototype Cα = αIdr of high accuracy in the large amplitude
regime |α| ≫ σ

√
M of Theorem 5.1, the following result is deduced. Its substantially

more involved extension to a non-asymptotic optimal lower bound for general ma-
trices C may also involve the Sudakov-type minoration for Gaussian chaos processes
(Talagrand (1992)).

Theorem 6.2. Let (Eij)
M
i,j=1 be a centered matrix of independent Gaussian entries

with variance σ2. Let Cα,s ∈ R
M×M with singular value decomposition UΛα,sV

′,
where Λα,s = αIds with 0 < α ∈ R and 1 ≤ s < M . Then

(6.11) lim inf
α→∞

max
s∈{r,M−r}

δCα,s,M,σ2,s & σ2r(M − r).

The proof of Theorem 6.2 is deferred to Section 9.

Remark. In view of the polar decomposition of (Id− π̃r)πr and π̃r(Id−πr) which
shows in particular that these two matrices have the same singular values, we
conjecture that the bound holds true also without the maximum over s ∈ {r,M−r},
but do not have a rigorous and elegant proof for it yet. Note that this maximum is
redundant if r = M/2, M ∈ 2N.

7. Consequences on statistical estimation problems. Let X = C+E
as described in (1.3). Let λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂M and λ1 ≥ λ2 ≥ ... ≥ λM denote

the singular values of X and C, respectively. Recall that
∑r

i=1 λ̂
2
i = ‖π̂rX‖2S2

and
∑r

i=1 λ
2
i = ‖πrC‖2S2

with the rank-r-projections π̂r and πr as defined in the
Introduction.

7.1. The largest singular value. We begin with the simplest example of esti-
mating λ2

1, the largest eigenvalue of C′C, based on the observation X = C +E. As
explained in the introduction, the maximal eigenvalue of X ′X is positively biased
as an estimator for λ2

1, because

E λ̂2
1 = E‖π̂1X‖2S2

≥ E‖π1X‖2S2
= λ2

1 + σ2M.

Therefore, one immediate improvement is to consider ŝ := λ̂2
1−σ2M as an estimator

for λ2
1. As Theorem 6.1 reveals for the particular case r = 1,

(7.1) E ŝ− λ2
1 = E λ̂2

1 − σ2M − λ2
1

is stricly positive and bounded away from zero, uniformly over C ∈ R
M×M . As a

consequence of Corollary 4.2 and Theorem 6.1,

δC,M,σ2,1 = E ŝ− λ2
1 ∈

[
c1σ

2M, c2
(
σ2M + σ

√
M‖C‖S∞

)]
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for some universal real constants c1, c2 > 0 which do not depend on M,σ2 and C,
and it follows from (1.2) for C = 0 and Proposition 3.1 (ii) for C = αId that these
bounds cannot be improved in general. Hence, one message of our analysis is:

The quantity σ2M always underestimates the bias E
(
λ̂2
1 − λ2

1

)
by at least

some universal factor strictly larger than 1, independently on how favorable
the matrix C is.

In other words, even after correction by σ2M , the difference

(7.2) E λ̂2
1 − λ2

1 − σ2M

remains of the same order σ2M at least, independently of C. Moreover, there exist
matrices C for which (7.1) is not smaller in order than σ2M+σ

√
M‖C‖S∞

. That is,
large amplitude ‖C‖S∞

never improves (in order) the acuracy as compared to C =
0, but it may result in substantially worse accuracy of approximation. Therefore,
some further consequence is that small magnitude of σ2M is necessary but far
from being sufficient for the bias of ŝ in (7.1) to be small. The worst case error
is non-asymptotically quantified in terms of ‖C‖S∞

, σ2 and M in Corollary 4.2
(i). Theorem 5.1 describes more precisely the effect of the shape of the singular
value spectrum on the accuracy of approximation. For example, if C = αId, then
(7.2) grows like |α|σ

√
M as |α| → ∞, cf. Proposition 3.1 (ii), for any fixed σ2

and M . On the other hand, if C = αId1, then (7.2) remains bounded by some
universal constant times σ2M , independently of α. The same holds true for the full
rank matrix C = αId1 + αId. Consequently, Theorem 5.1 demonstrates that large
amplitude ‖C‖S∞

does not necessarily result in worse accuracy of approximation
as compared to the case C = 0, and discovers some prototypes of high accuracy in
the large amplitude regime. Similar conclusions for r > 1, i.e. statistics of the form∑r

i=1 λ̂
2
i , are valid as well.

7.2. Relative quantities. This subsection is devoted to the consequences of our
results on relative quantities as described in the introduction. Consider, for instance,
the ratio

tr :=
‖πrC‖2S2

‖C‖2S2

=

∑r
i=1 λ

2
i∑M

i=1 λ
2
i

.

Assuming ‖C‖2S2
to be known, some natural candidate estimator of tr is

t̂r :=
‖π̂rX‖2S2

− σ2rM

‖C‖2S2

.

In this situation, increasing amplitude of C always results in smaller bias of the
estimator t̂r. Suppose that C = αA for some real number α ∈ R and an M ×M -
matrix A with ‖A‖S∞

= 1. Note that ‖A‖2S2
≥ ‖A‖2S∞

= 1. Then Corollary 4.2 (i)
yields

sup
A∈R

M×M :
rank(A)≥r, ‖A‖S∞

=1

E
(
t̂r − tr

)
.

σ2rM

α2

{
1 +

|α|
σ
√
M

}
.
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For every fixed A, σ2, r and M , the bias E(t̂r − tr) tends to zero as |α| → ∞, in
contrast to the situation for the absolute difference in the previous Subsection 7.1.
Note that it decreases of the order |α|−1 at least and of the order α−2 at most,
depending on the shape of the singular value spectrum of A, cf. Theorem 5.1. So,
whereas, for every fixed A, σ2, r and M , the absolute difference as described in
Subsection 7.1 for r = 1 cannot get closer to zero as the amplitude |α| of C =
αA increases, independently on how favorable the matrix C may be, the relative
difference E(t̂r− tr) tends to zero as the amplitude goes to infinity for every matrix
C = αA. The shape of the singular value spectrum however clearly influences the
accuracy of approximation, in the same fashion as explained in Subsection 7.1, cf.
Theorem 5.1.

7.3. Quadratic functionals of low-rank matrices. One natural candidate for
estimating ‖C‖2S2

, based on the observation X = C + E described by (1.3), is the
unbiased estimator ‖X‖2S2

− σ2M2. Simple calculation yields

(7.3) Var
(
‖X‖2S2

− σ2M2
)

= 2σ4M2 + 4σ2‖C‖2S2
.

One disadvantage of this estimator is its large variance for large values of M : it
depends quadratically on the dimension. If r = rank(C) < M , then the matrix C
can be fully characterized by (2M − r)r parameters as can be seen by the singular
value decomposition. That is, if r ≪ M , the intrinsic dimension of the problem
is of the order rM rather than M2. Now observe that for every matrix C with
rank(C) = r,

‖C‖2S2
= ‖πrC‖2S2

.

Elementary calculation reveals that ‖πrX‖2S2
− σ2rM unbiasedly estimates ‖C‖2S2

,
and

(7.4) Var
(
‖πrX‖2S2

− σ2rM
)

= 2σ4rM + 4σ2‖C‖2S2
.

As compared to (7.3), its variance does not depend on the squared dimension M2

but grows like rM , which can be substantially smaller. Moreover,

E
(
‖πrX‖2S2

− σ2rM − ‖C‖2S2
− 2σtr

(
E′C

))2
= 2σ4rM,

that is, σ−1
(
‖πrX‖2S2

− σ2rM − ‖C‖2S2

)
is approximately centered normal with

variance 4‖C‖2S2
if σ2rM = o(1) in an asymptotic framework, and 4‖C‖2S2

is
the asymptotic efficiency lower bound (Laurent and Massart (2000)). The statistics
‖πrX‖2S2

− σ2rM , however, cannot be used for estimating ‖C‖2S2
since πr = πr(C)

depends on C itself and is unknown a priori. Unfortunately, Theorem 6.1 and The-
orem 6.2 demonstrate that the same result cannot be shown with ‖π̂rX‖2S2

−σ2rM
in place of ‖πrX‖2S2

− σ2rM , because the bias E‖π̂rX‖2S2
− E‖πrX‖2S2

is of the
order not smaller than σ2r(M − r), i.e.

σ−1
(
E‖π̂rX‖2S2

−E‖πrX‖2S2

)
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is not negligible under the same conditions, even not for very favorable matrices C =
αIdr. That is, empirical low-rank projections ‖π̂rX‖2S2

− σ2rM cannot be succes-
sively used for efficient estimation of ‖C‖2S2

, even if the rank(C) ≪ M is explicitly
known beforehand. Note that in contrast, empirical low-rank approximations have
been proved useful when estimating a low-rank matrix C under Hilbert-Schmidt
norm loss, see Bunea et al. (2011), Koltchinskii (2011), Negahban and Wainwright
(2011), and Rohde and Tsybakov (2011).

The problem of quadratic functional estimation in the matrix context appears, for
instance, in the recent area of low-rank matrix recovery, when one is interested
in recovering the linear entropy 1 − ‖C‖2S2

of a quantum density matrix C as an
approximation of von Neumann entropy based on noisy observations. We refer the
reader to Artiles et al. (2004) for a detailed description of applications in quantum
state tomography and the recent article of Koltchinskii (2011) for low-rank matrix
recovery of quantum density matrices. Note however that our results do not take
into account that a quantum density matrix C is self-adjoint, and the Wigner
ensemble may behave differently as already outlined in the introduction. In view
of model selection issues, an estimate of the bias is even required over the whole
scale r ∈ {1, ...,M} since the rank is typically unknown a priori and low at most
approximately, for which reason exact asymptotic results for uniformly bounded
rank perturbations are of limited value for this application.

8. Proof of Theorem 5.1. This section is devoted to the proof of our main
result. Subsection 8.1 deals with the description of the sets GM,r(δ) := {π̃r ∈ SM,r :
‖πrC‖2S2

−‖π̃rC‖2S2
≤ δ}, which characterize the slices AC,k = GM,r

(
2−k‖πrC‖2S2

)
\

GM,r

(
2−(k+1)‖πrC‖2S2

)
. It is shown that these sets can be approximated by sets

of simple geometric structure. In case of some substantial spectral gap in r, this
approximation is very tight. Sharp bounds on their metric entropy are derived in
Subsection 8.2. The final arguments are given in Subsection 8.3.

8.1. Characterizing the sets GM,r(δ). The first goal for a sophisticated analysis
is to characterize the sets

GM,r(δ, C) :=
{
π̃r ∈ SM,r : ‖πrC‖2S2

− ‖π̃rC‖2S2
≤ δ
}
, δ > 0.

Note that

AC,k = GM,r

(
2−k‖πrC‖2S2

)
\ GM,r

(
2−(k+1)‖πrC‖2S2

)
.

This is a very delicate part and quite involved in general, but we find below a
tight characterization in case of approximate rank-r-matrices, i.e. those matrices
for which ‖(Id − πr)C‖S2

is small. For reasons of clarity, we restrict attention to
matrices of rank larger or equal to r.

Proposition 8.1. Let C ∈ R
M×M , rank(C) ≥ r, with singular values

λi, i = 1, ...,M , ordered in decreasing magnitude. Denote ∆∗
r :=

∑2r
i=r+1 λ

2
i
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and γ∗
r := (λ2

r − λ2
r+1)

−1/2 if λr > λr+1, and γ∗ = ∞ else. Then for any
πr ∈ Argmaxπ̃r∈SM,r

‖π̃rC‖2S2
,

GM,r(δ, C) ⊂
{
π̃r ∈ SM,r : ‖πr − π̃r‖S2

≤ min

(
λ−1
r

√
2(δ +∆∗

r), γ
∗
r

√
2δ

)}
(8.1)

and

{
π̃r ∈ SM,r : ‖πr − π̃r‖S2

≤ λ−1
1

√
2δ
}
⊂ GM,r(δ, C).(8.2)

Proof. Let UΛV ′ denote some singular value decomposition of C, with

Λr := diag
(
λ1, λ2, ..., λr, 0, ..., 0

)
and ΛM−r := Λ− Λr.

Recall that πr :=
∑r

i=1 UiU
′
i is some maximizer of ‖π̃rC‖2S2

over π̃r ∈ SM,r, where
the Ui’s denote the column vectors of U . Note at this point that due to multiplicities
in the singular value spectrum, the orthonormal vectors U1, ..., Ur are not unique
in general. As concerns the proof of (8.1), we check first that

(8.3) ‖πrC‖2S2
− ‖π̃rC‖2S2

≥ λ2
r

1

2
‖πr − π̃r‖2S2

− Ξr

for all π̃r ∈ SM,r, where Ξr := ‖π̃rUΛM−rU
′‖2S2

= ‖(Id − πr)π̃r(Id −
πr)UΛM−rU

′‖2S2
. Using the symmetry of the projection matrices πr and π̃r and

the invariance of the trace operator under cyclic permutation, we obtain the iden-
tity

‖πrC‖2S2
− ‖π̃rC‖2S2

(8.4)

= tr
(
C′(π′

rπr − π̃′
rπ̃r

)
C
)

= tr
(
CC′(πr − π̃r

))

= tr
(
Λ2
rU

′(πr − πrπ̃rπr

)
U
)
− tr

(
Λ2
M−rU

′(Id− πr)π̃r(Id− πr)U
)

=

r∑

i=1

λ2
i

[
U ′(πr(Id− π̃r)πr

)
U
]
ii

(8.5)

−
M∑

i=r+1

λ2
i

[
U ′(Id− πr)π̃r(Id− πr)U

]
ii

(8.6)

Note that the sum in (8.6) equals Ξr. Since πr − πrπ̃rπr = πr(Id− π̃r)πr = π′
r(Id−

π̃r)πr is positive semidefinite, all summands in the first term of (8.5) are non-
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negative. Consequently,

(8.5) ≥ λ2
r

r∑

i=1

[
U ′(πr − πr π̃rπr

)
U
]
ii

= λ2
r

M∑

i=1

[
U ′(πr − πr π̃rπr

)
U
]
ii

(8.7)

= λ2
rtr
(
πr − πrπ̃rπr

)
,

where (8.7) follows from
[
U ′(πr − πrπ̃rπr

)
U
]
ii
= 0 for i > r. By positive semidefi-

niteness again and symmetry, the eigenvalue decomposition of πr −πrπ̃rπr and the
invariance of the trace operator under basis transformation yield tr

(
πr−πrπ̃rπr

)
=

‖πr − πrπ̃rπr‖S1
, hence

‖πrC‖2S2
− ‖π̃rC‖2S2

≥ λ2
r‖πr − πrπ̃rπr‖S1

− Ξr.

Now, since πr = πrπ̃r + πr(Id− π̃r) is an orthogonal decomposition,

‖πrπ̃r‖2S2
+ ‖πr(Id− π̃r)‖2S2

= ‖πr‖2S2
= r = ‖π̃r‖2S2

= ‖πrπ̃r‖2S2
+ ‖(Id− πr)π̃r‖2S2

,

implying that ‖πr(Id− π̃r)‖2S2
= ‖(Id− πr)π̃r‖2S2

. Consequently,

‖πr − πrπ̃rπr‖S1
= tr

(
πr − πrπ̃rπr

)
= tr

(
π′
rπr − π′

rπ̃
′
rπ̃rπr

)
(8.8)

= ‖πr‖2S2
− ‖πrπ̃r‖2S2

= ‖πr(Id− π̃r)‖2S2
=

1

2
‖πr − π̃r‖2S2

,

where the last equality follows by the orthogonality of the decomposition π̃r−πr =
(Id−πr)π̃r −πr(Id− π̃r). This implies (8.3). In order to deduce the bound in (8.1),
note first that because of the positive semidefiniteness of (Id− πr)π̃r(Id− πr), also
all summands in the second sum (8.6) are non-negative, whence

M∑

i=r+1

λ2
i

[
U(Id− πr)π̃r(Id− πr)U

′]
ii

≤ λ2
r+1

M∑

i=r+1

[
U(Id− πr)π̃r(Id− πr)U

′]
ii
.

With the same arguments as provided above for πr − πrπ̃rπr = πr(Id − π̃r)πr, we
deduce

Ξr ≤ λ2
r+1

1

2
‖(Id− πr)− (Id− π̃r)‖2S2

= λ2
r+1

1

2
‖πr − π̃r‖2S2

.(8.9)

Moreover, because U ′π̃rU ∈ SM,r for every U ∈ O(M),

(8.10) Ξr = ‖π̃rUΛM−rU
′‖2S2

= ‖U ′π̃rUΛM−r‖2S2
≤

2r∑

i=r+1

λ2
i ,

and claim (8.1) follows from (8.3), together with (8.9) and (8.10). The proof of (8.2)
uses that the expression (8.5) is in turn upper bounded by λ2

1‖πr−πrπ̃rπr‖S1
while
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(8.6) is less or equal to zero, and concludes finally with the same equality chain
(8.8). �

We note that in the particular case of rank-r-matrices,
∑2r

i=r+1 λi = 0, i.e. the first
term in the upper bound on the radius of the S2-ball in (8.1) coincides up to the
ratio λ1/λr with the lower bound in (8.2). Equality holds for rank-r-matrices with
rectangular singular value spectrum λ1 = λ2 = · · · = λr. If C = αId for some
α 6= 0, then ∆∗

r = α2r and the inclusion (8.1) is trivial:

{
π̃r ∈ SM,r : ‖πr − π̃r‖S2

≤ α−1
√
2(δ + α2r)

}
= SM,r, for any δ > 0.

This is in accordance with the fact that in this case, also GM,r(δ) = SM,r for any
δ > 0.

8.2. Metric entropy bounds. The nice feature of the results from the previous
paragraph is that they enable us to determine tight bounds on the metric entropy
on these particular subsets of the Grassmannian by the volumetric argument. We
provide a slightly refined version. Recall at this point the definition of the covering
numbers. For any totally-bounded, pseudometric space (X , d) and any subset E ⊂
X , the covering number N(E, d, δ) is the smallest number of closed d-balls in X of
radius δ needed to cover E.

Lemma 8.2. For any πr ∈ SM,r and δ > 0, let BSq
(πr , δ) denote the closed Sq-ball

with center πr of radius δ. Then there exist universal constants ĉ, C, c > 0 such that
for all 0 < ∆ ≤ r, r ≤ M − r and 0 < δ ≤ ∆,

logN
(
BS2

(πr ,∆) ∩ SM,r, dS2
, δ
)
≤ min

(
ĉrM

∆2

δ2
, r(M − r)log

(
C∆

δ

))
,(8.11)

logN
(
BS2

(πr,∆) ∩ SM,r, dS∞
, δ
)
≤ min

(
ĉrM

∆√
rδ

, r(M − r)log

(
C∆

δ

))
(8.12)

as well as

logN
(
BS2

(πr,∆) ∩ SM,r, dS2
, δ
)

≥ r(M − r) log

(
c∆

δ

)
and(8.13)

logN
(
BS2

(πr,∆)∩SM,r, dS∞
, δ
)

≥ r(M − r) log

(
c∆√
rδ

)
(8.14)

Remark. (i) ĉ1/2 equals cSud times a uniform (in M) bound on the expected
spectral norm of E/(

√
Mσ), where cSud is the universal constant of Sudakov’s mi-

noration which is bounded by 6 (see Ledoux (1996)). C is proportional to the
ratio of the constants C′/c′ which appear in the bounds of the metric entropy of
the Grassmann manifold, see the proof below. Estimates on their values are not
provided in Szarek (1982).
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(ii) For arbitrary 1 ≤ q ≤ ∞, the bound
(8.15)

r(M − r) log

(
c∆

δ

)
≤ logN

(
BSq

(πr,∆) ∩ SM,r, dSq
, δ
)

≤ r(M − r) log

(
C∆

δ

)

can be proved completely analogously, replacing below S2 by Sq.

Proof. By the geometric formulation of Sudakov’s minoration, the trace duality
and the Cauchy-Schwarz inequaliy,

δ

√
logN

(
BS2

(πr,∆) ∩ SM,r dS2
, δ
)

. E sup
T∈BS2

(πr ,∆)∩SM,r

tr
(
T (E/σ)

)

≤ E sup
T∈BS2

(πr ,∆)∩SM,r

tr
(
(T − πr)(E/σ)

)
+E tr

(
πr(E/σ)

)

≤ sup
T∈BS2

(πr,∆)∩SM,r

‖T − πr‖S1
E‖E/σ‖S∞

. ∆
√
rM,

which provides the first estimate in the minimum of (8.11). In order to prove the
second term, note first that N

(
BS2

(πr,∆) ∩ SM,r, dS2
, δ
)
does not depend on the

specific πr ∈ SM,r. Similarly to the covering number, the capacity numberD(E, d, δ)
is the largest number of elements of E having distance d strictly larger than δ to
each other. Using the relations between covering and packing (capacity) numbers
(cf. Theorem 1.2.1, Dudley (1999)),

N
(
BS2

(πr ,∆) ∩ SM,r, dS2
, δ
)
N
(
SM,r, dS2

, 4∆
)

≤ D
(
BS2

(πr ,∆) ∩ SM,r, dS2
, δ
)
D
(
SM,r, dS2

, 4∆
)
.

Let {π(1)
r , ..., π

(k4∆)
r } be some maximal subset of SM,r with dS2

(π
(l)
r , π

(m)
r ) > 4∆ for

all l 6= m ∈ {1, ..., k4∆}, k4∆ = D(SM,r, dS2
, 4∆). Then

k4∆∑

j=1

D
(
BS2

(π(j)
r ,∆) ∩ SM,r, dS2

, δ
)

≤ D(SM,r, dS2
, δ/2) ≤ N

(
SM,r, dS2

, δ/4
)
,

that is N
(
BS2

(πr ,∆) ∩ SM,r, dS2
, δ
)

≤ N
(
SM,r, dS2

, δ/4
)/

N
(
SM,r, dS2

, 4∆
)
.

Now (8.11) follows by an immediate application of Proposition 8, Pajor (1998),
which states

(c′
ξ

)r(M−r)

≤ N
(
SM,r, dSq

, ξr1/q
)

≤
(C′

ξ

)r(M−r)

for 1 ≤ q ≤ ∞ and universal constants c′, C′ > 0. As concerns bound (8.12), first
observe that
(8.16)

N
(
BS2

(πr,∆)∩SM,r , dS∞
, δ
)
≤ N

(
BS2

(πr ,∆)∩SM,r, dS2
, δ/θ

)
N
(
BS2

(0, 1), dS∞
, θ
)
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for any θ > 0. Combining (8.16) with (8.11) and the bound
logN

(
BS2

(0, 1), dS∞
, δ
)
. Mδ−2 (cf. Pajor 1998, Lemma 4), we obtain

logN
(
BS2

(πr,∆) ∩ SM,r, dS∞
, δ
)

. rM
∆2θ2

δ2
+Mθ−2.

Choosing θ2 = δ∆−1r−1/2 gives the first term in the minimum on the RHS of (8.12).
The proof of the second bound in (8.12) follows from (8.11) since dS∞

≤ dS2
. As

concerns the reverse inequality (8.13), it is sufficient to note that

D
(
SM,r, dS2

,∆
)
N
(
BS2

(πr,∆) ∩ SM,r, dS2
, δ
)

≥ N
(
SM,r, dS2

, δ
)

which after applying the inequalities of Theorem 1.2.1 in Dudley (1999) again is
lower bounded by

N
(
BS2

(πr ,∆) ∩ SM,r, dS2
, δ
)

≥ N
(
SM,r, dS2

, δ
)

N
(
SM,r, dS2

,∆/2
) ,

and the result follows as above by an application of Proposition 8, Pajor (1998).
(8.14) follows analogously from dS∞

≥ (2r)−1/2dS2
on SM,r. �

8.3. Slicing the Grassmann manifold. As has been seen in Section 6, the bound
involves some term of the order σ2r(M − r) at least. Since Proposition 4.1 yields
in case C = 0 the bound δ0,M,σ2,r . σ2rM , we decompose the supremum

sup
π̃r∈SM,r

(wwπ̂r(C + E)
ww2

S2
−
wwπr(C + E)

ww2

S2

)

= sup
π̃r∈SM,r

{wwπ̃rE
ww2

S2
−
wwπrE

ww2

S2
+ 2 tr

(
E′(π̃r − πr)C

)

−
(wwπrC

ww2

S2
−
wwπ̃rC

ww2

S2

)}

≤ sup
π̃r∈SM,r

{wwπ̃rE
ww2

S2
−
wwπrE

ww2

S2

}

+ sup
π̃r∈SM,r

{
2tr
(
E′(π̃r − πr)C

)
−
(wwπrC

ww2

S2
−
wwπ̃rC

ww2

S2

)}

and treat these two suprema separately. Since

E

(
sup

π̃r∈SM,r

{wwπ̃rE
ww2

S2
−
wwπrE

ww2

S2

})
. σ2rM

by Proposition 4.1 applied to the situation C = 0, it is sufficient to prove that the
expectation of

W := sup
π̃r∈SM,r

{
2tr
(
E′(π̃r − πr)C

)
−
(wwπrC

ww2

S2
−
wwπ̃rC

ww2

S2

)}
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satisfies the bound of Theorem 5.1. For any C ∈ R
M×M , rank(C) ≥ r, let

C = UΛV ′ denote some singular value decomposition, with diagonal matrix
Λ = diag(λ1, λ2, ..., λM ). The singular values are assumed to be ordered in de-
creasing magnitude. Let

SM,r(δ) :=
{
π̃r ∈ SM,r : ‖π̃r − πr‖S2

≤
√
2δ
}
.

In view of the inclusion provided by Proposition 8.1, we deviate slightly from the
description at the beginning of Section 5 and conduct the proof of Theorem 5.1
along two different decompositions of SM,r. We shall decompose SM,r into slices

CC,i(∆̃k) = BC,i(∆̃k) \ BC,i(∆̃k−1)

along a geometric grid ∆̃k = 2−k+2r up to k < k0,i with k0,i specified below. First,
we take

(8.17) BC,1(∆̃k) :=
{
π̃r ∈ SM,r : ‖πrC‖2S2

− ‖π̃rC‖2S2
≥ ∆̃kλ

2
r −

2r∑

i=r+1

λ2
i

}
.

In a second step, whenever λr > λr+1, we choose

(8.18) BC,2(∆̃k) :=
{
π̃r ∈ SM,r : ‖πrC‖2S2

− ‖π̃rC‖2S2
≥ (λ2

r − λ2
r+1)∆̃k

}
.

By Proposition 8.1, CC,i(∆̃k) ⊂ SM,r(2∆̃k). Recall that by construction, ‖πrC‖2S2
−

‖π̃rC‖2S2
≥ ∆̃kλ

2
r −

∑2r
i=r+1 λ

2
i if π̃r ∈ CC,1(∆̃k). Whenever λr+1 > 0, define

(8.19)

k0,1 := argmax
k∈N0

{
∆̃kλ

2
r −

2r∑

i=r+1

λ2
i ≥ 1

2
∆̃kλ

2
r

}
, and set k0,1 := ∞ if λr+1 = 0.

Define k0,2 := ∞. Denoting

Wk,i := sup
π̃r∈CC,i(∆̃k)

{
2 tr
(
E′(π̃r − πr)C

)
−
(wwπrC

ww2

S2
−
wwπ̃rC

ww2

S2

)}
,

W 0
k,i := sup

π̃r∈CC,i(∆̃k)

2 tr
(
E′(π̃r − πr)C

)

and
W̃k0,1

:= sup
π̃r∈SM,r(∆̃k0,1

)

2 tr
(
E′(π̃r − πr)C

)

with ∆̃∞ := 0, we obtain the expansions

EW ≤





∑
k<k0,1

E
(
0 ∨

(
W 0

k,1 − Ωk,1

))
+ E W̃k0,1

∑
k∈N

E
(
0 ∨

(
W 0

k,2 − Ωk,2

))(8.20)

where Ωk,1 = ∆̃kλ
2
r −

∑2r
i=r+1 λ

2
i and Ωk,2 = (λ2

r − λ2
r+1)∆̃k. Note that E W̃∞ = 0,

that is, E W̃k0,1
= 0 if λr+1 = 0.
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Proof of Theorem 5.1. Note that each W 0
k,i is the supremum over some

Gaussian process, and

sup
π̃r∈CC,i(∆̃k)

Var

(
tr
(
E′(π̃r−πr)C

))
≤ sup

π̃r∈CC,i(∆̃k)

σ2λ2
1‖π̃r−πr‖2S2

≤ 2σ2λ2
1∆̃k =: σ2

k,

where the last equality follows from the inclusion CC,i(∆̃k) ⊂ SM,r(2∆̃k). By Lemma

8.2 and S2-chaining over SM,r(2∆̃k),

E
(
0 ∨W 0

k,i

)
.

∫ 1

0

σλ1∆̃
1/2
k

(
2 log

(
N
(
SM,r(∆̃k), dS2

, 2∆̃
1/2
k δ

)))1/2
dδ

. σλ1∆̃
1/2
k

√
r(M − r).

I.e., there exists some constant c > 0, independent of M, r, σ2 and C, such that

(8.21) E
(
0 ∨W 0

k,i

)
≤ cσλ1∆̃

1/2
k

√
r(M − r),

and by the Borell (1975) - Sudakov and Cirel’son (1974) inequality,
(8.22)

P

(
W 0

k,i ≥ cσλ1∆̃
1/2
k

√
r(M − r) +

√
2σλ1∆̃

1/2
k

√
2η

)
≤ exp(−η) for any η > 0.

(The case i = 1) With the help of (8.22) we evaluate the first term

∑

k<k0,1

E
(
0 ∨

(
W 0

k,1 − Ωk,1

))
≤

∑

k<k0,1

E
(
0 ∨

(
W 0

k,1 −
1

2
∆̃kλ

2
r

))

in expansion (8.20). For the ease of notation, define ∆k := cσλ1∆̃
1/2
k

√
r(M − r).

Since ∆k depends only linearly on ∆̃
1/2
k , while

‖πrC‖2S2
− ‖π̃rC‖2S2

≥ 1

2
∆̃kλ

2
r for all π̃r ∈ CC(∆̃k) and k ≤ k0,1,

define the additional auxiliary integer

k∗1 := arg max
k≤k0,1

{
1

2
∆̃kλ

2
r −∆k ≥ 1

4
∆̃kλ

2
r

}
,

and set k∗1 = 0 if the relation never holds. If k∗1 = 0, then

√
rλ2

r ≤ 4cσλ1

√
r(M − r),

and the bound

E sup
π̃r∈SM,r

(
‖π̃r(C + E)‖2S2

− ‖πr(C + E)‖2S2

)
. σ2rM

(
1 +

λ1

σ
√
M

)
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follows immediately by Corollary 4.2 (i). Thus, we assume k∗1 ≥ 1. We first treat
the case k ≤ k∗1 . By the representation formula for the expectation of non-negative
random variables and the definition of k∗1 ,

E
(
0 ∨

(
W 0

k,1 −
1

2
∆̃kλ

2
r

))
=

∫ ∞

0

P
(
W 0

k,1 −
1

2
∆̃kλ

2
r > u

)
du

≤
∫ ∞

0

P

(
Z0
k −∆k > u+

1

4
∆̃kλ

2
r

)
du

for all k ≤ k∗1 . Next, by (8.22) and with Ak = (2σk)
−1 1

4∆̃kλ
2
r ,

∫ ∞

0

P

(
W 0

k,1 > u+
1

4
∆̃kλ

2
r

)
du ≤

∫ ∞

0

exp

(
−
(
u+ 1

4∆̃kλ
2
r

)2

4σ2
k

)
du

.
σk

2 +Ak
exp

(
−A2

k/2
)

(8.23)

≤ σk

(2 +Ak)(1 +A2
k/2)

,(8.24)

where we used P(N ≥ x) ≤ (2 + x)−1 exp(−x2/2) for N ∼ N (0, 1) in (8.23) and
the inequality exp(−x) ≤ 1/(1 + x) ∀x > 0 in (8.24). Thus

∑

k≤k∗

1

E
(
0 ∨

(
W 0

k,1 −∆k − 1

2
∆̃kλ

2
r

))
.

∑

k≤k∗

1

(
σk

1 +A2
k/2

)
.(8.25)

We evaluate (8.25). Recall σk =
√
2σλ1∆̃

1/2
k . Then, bounding the sum by an intgral

and by change of variables,

∑

k≤k∗

1

σk

1 +A2
k/2

≤
∑

k∈N

√
2σλ1∆̃

1/2
k

(
1 +

∆̃2
kλ

4
r

128σ2λ2
1∆̃k

)−1

. σλ1

∫ 1

0

(
1 + x2 λ4

r

σ2λ2
1

)−1

dx

. σ2 λ2
1

λ2
r

∫ ∞

0

(1 + x2)−1dx.

In order to estimate the expression
∑k0,1−1

k≥k∗

1+1 E(0 ∨ (W 0
k,1 − (1/2)∆̃kλ

2
r)) we need

to determine a lower bound on k∗1 in dependence of λ1, λr. By its definition, k > k∗1
implies

(8.26) cσλ1∆̃
1/2
k

√
r(M − r) > ∆̃kλ

2
r/4

as long as k∗1 < k0,1. Recalling by (8.21) that E(0 ∨W 0
k,1) ≤ ∆k, and using (8.26)

and the representation for the tail of the geometric series,

k0,1−1∑

k>k∗

1

E
(
0 ∨W 0

k,1

)
.

∑

k>k∗

1

∆̃
1/2
k σλ1

√
r(M − r) . σ2rM

λ2
1

λ2
r
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As concerns the second term EW̃k0,1
in expansion (8.20), we obtain by definition

(8.19) of k0,1, if k0,1 < ∞,

E W̃k0,1
. ∆̃k0,1

σλ1

√
r(M − r) .

( 1
r

∑2r
i=r+1 λ

2
i

λ2
r

)1/2

· σλ1r
√

(M − r).

If k0,1 = ∞, then rank(C) = r and the rank-r-projection πr is unique, i.e. W̃k0,1
= 0.

Collecting things together, this proves the bound

(8.27) δC,M,σ2,r . σ2rM
(
I + II

)
.

(The case i = 2) We assume subsequently that λr > λr+1, because otherwise
III = ∞ and the result follows with (8.27). We proceed similar to the case i = 1
above, but with k0,2 := ∞ and the auxiliary integer

k∗2 := argmax
k∈N

{
(λ2

r − λ2
r+1)∆̃k −∆k ≥ 1

2
(λ2

r − λ2
r+1)∆̃k

}
,

where k∗2 := 0 if this relation never holds. The sum

∑

k<k0,2

E
(
0 ∨

(
W 0

k,2 − Ωk,2

))
≤
∑

k∈N

E
(
0 ∨

(
W 0

k,2 − (λ2
r − λ2

r+1)∆̃k

))

can be treated analogously to the case i = 1, with λ2
r−λ2

r+1 in place of λ2
r . Similarly

to (8.26), k > k∗2 implies

cσλ1∆̃
1/2
k

√
r(M − r) > ∆̃k(λ

2
r − λ2

r+1)/2.

Since E(0∨W 0
k,2) ≤ ∆k, the representation for the tail of the geometric series yields,

as above,

∑

k>k∗

2

E
(
0 ∨W 0

k,2

)
.

∑

k>k∗

2

∆̃
1/2
k σλ1

√
r(M − r) . σ2rM

λ2
1

λ2
r − λ2

r+1

.

Combining case (i) and (ii) yields the proof of the Theorem. �

9. Proof of Theorem 6.2. Recall the definition ∆̃k := 2−k+2r, k ∈ N. Since
‖πs(Id − π̃s)‖2S2

= ‖(Id − πs)π̃s‖2S2
and πs − π̃s = (Id − πs)π̃s − πs(Id − π̃s) is an

orthogonal decomposition, observe first that

‖πsCα,s‖2S2
− ‖π̃sCα,s‖2S2

= α2
(
‖πs‖2S2

− ‖π̃sπs‖2S2

)

= α2‖(Id− π̃s)πs‖2S2

= α2‖π̃s(Id− πs)‖2S2
=

α2

2
‖π̃s − πs‖2S2

,
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that is,

E‖πs(Cα,s+E)‖2S2
−E‖π̃s(Cα,s+E)‖2S2

∈ (α2∆̃k+1, α
2∆̃k] ⇔ ‖π̃s−πs‖2S2

∈ (2∆̃k+1, 2∆̃k].

Recall the definition

GM,s(δ, C) =
{
π̃s ∈ SM,s : ‖πsC‖2S2

− ‖π̃sC‖2S2
≤ δ
}
.

Note at this point that with C̄α,M−s := αU(Id − Ids)V
′, we have π̃r ∈

GM,r(δ, Cα,r) ⇔ (Id− π̃r) ∈ GM,M−r(δ, C̄α,M−r). Define

k∗∗ := argmax
k∈N

{
α2∆̃k ≥ dσ2s(M − s)

}

for some d > 0 to be specified later, and let

Ds(α) := GM,s

(
α2∆̃k∗∗+1, Cα,s

)
as well as D̄s(α) := GM,s

(
α2∆̃k∗∗+1, C̄α,s

)
.

Note that k∗∗ → ∞ as α → ∞. It holds that

E

(
sup

π̃s∈SM,s

wwπ̃s(Cα,s + E)
ww2

S2
−
wwπs(Cα,s + E)

ww2

S2

)

≥ E

(
sup

π̃s∈Ds(α)

wwπ̃sE
ww2

S2
−
wwπsE

ww2

S2
+ 2α tr

(
E′(π̃s − πs)πs

)
− ds(M − s)σ2

)

≥ E

(
sup

π̃s∈Ds(α)

2α tr
(
E′(π̃s − πs)πs

)
− ds(M − s)σ2

)

− E

(
sup

π̃s∈Ds(α)

wwπsE
ww2

S2
−
wwπ̃sE

ww2

S2

)
.

Because of lim sup
α→∞

E

(
sup

π̃s∈Ds(α)

wwπsE
ww2

S2
−
wwπ̃sE

ww2

S2

)
= 0, it remains to prove

that

lim inf
α→∞

max
s∈{r,M−r}

E

(
sup

π̃s∈Ds(α)

2α tr
(
E′(π̃s − πs)πs

)
− ds(M − s)σ2

)

= σ2 lim inf
α→∞

max
s∈{r,M−r}

E

(
sup

π̃s∈Ds(α)

2(α/σ) tr
(
(E/σ)′π̃sπs

)
− ds(M − s)

)
(9.1)

& σ2r(M − r).

First, we have

E sup
π̃s∈Ds(α)

tr
(
(E/σ)′π̃sπs

)

= E sup
π̃s∈Ds(α)

tr
(
(E/σ)′(Id− π̃s)πs

)

= E sup
π̃s∈Ds(α)

(
tr
(
(E/σ)′π̃s

)
− tr

(
(E/σ)′π̃s(Id− πs)

))
,
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which implies

E sup
π̃s∈Ds(α)

tr
(
(E/σ)′(Id− π̃s)πs

)
+ E sup

π̃s∈Ds(α)

tr
(
(E/σ)′π̃s(Id− πs)

)
(9.2)

≥ E sup
π̃s∈Ds(α)

tr
(
(E/σ)′π̃s

)
.

In case M ∈ 2N and s = M/2, since ‖πs − π̃s‖2S2
= ‖(Id − πs) − (Id − π̃s)‖2S2

,
both expectations on the LHS in the inequality (9.2) are identical for reasons of
symmetry, which leads to

E sup
π̃s∈Ds(α)

tr
(
(E/σ)′π̃sπs

)
≥ 1

2
E sup

π̃s∈Ds(α)

tr
(
(E/σ)′π̃s

)
in case s = M/2.

Although the polar decomposition of (Id − π̃s)πs and π̃s(Id − πs), respectively,
suggests a similar symmetry argument, we do not have a rigorous treatment of an
argument of this type yet, and remain therefore with the inequality

max
s∈{r,M−r}

E sup
π̃s∈Ds(α)

tr
(
(E/σ)′(Id− π̃s)πs

)
≥ 1

2
E sup

π̃r∈Dr(α)

tr
(
(E/σ)′π̃r

)

only. Note at this point that

E sup
π̃r∈Dr(α)

tr
(
(E/σ)′π̃r

)
= E sup

π̃M−r∈D̄M−r(α)

tr
(
(E/σ)′π̃M−r

)

= E sup
π̃M−r∈DM−r(α)

tr
(
(E/σ)′π̃M−r

)
,

where the second equality follows from invariance of the above expression under or-
thogonal transformation. By Sudakov’s minoration and the bound (8.13) of Lemma
8.2,

E

(
sup

π̃s∈Ds(α)

tr
(
(E/σ)′π̃s

)
)

& δ
√

logN
(
Dr(α), dS2

, δ
)

≥ δ
√
r(M − r)

√

log
(c∆̃1/2

k∗∗√
2δ

)

for any arbitrary 0 < δ < c∆̃
1/2
k∗∗/

√
2, s ∈ {r,M − r}, where we used that

E

(
sup

π̃r∈Dr(α)

tr
(
(E/σ)′(Id− π̃r)

)
)

= E

(
sup

π̃r∈Dr(α)

tr
(
(E/σ)′π̃r

)
)

and

N
(
Dr(α), dS2

, δ
)

≥
(
c∆̃

1/2
k∗∗√
2δ

)r(M−r)

with the constant c of Lemma 8.2. The choice δ = c∆̃
1/2
k∗∗/8 yields finally

(9.3) E

(
sup

π̃r∈Dr(α)

tr
(
(E/σ)′π̃r

)
)

≥ K∆̃
1/2
k∗∗

√
r(M − r)
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for some constant K > 0 which does not depend on σ, M and α. Thus,

(9.1) = σ2 lim inf
α→∞

max
s∈{r,M−r}

E

(
sup

π̃s∈Ds(α)

2(α/σ) tr
(
(E/σ)′π̃sπs

)
− dr(M − r)

)

≥ σ2 lim inf
α→∞

E

(
sup

π̃r∈Dr(α)

(α/σ) tr
(
(E/σ)′π̃r

)
− dr(M − r)

)
.(9.4)

Choosing now d in the definition of k∗∗ largest possible such thatK
√
d−d ≥ K

√
d/2

and plugging the lower bound (9.3) into (9.4) proves the Theorem. �
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