
ar
X

iv
:1

41
1.

03
93

v2
  [

st
at

.M
E

] 
 2

7 
N

ov
 2

01
4

Heteroscedastic semiparametric

transformation models: estimation and

testing for validity

Natalie Neumeyer∗ Hohsuk Noh† Ingrid Van Keilegom
‡

December 1, 2014

Abstract

In this paper we consider a heteroscedastic transformation model of the form

Λϑ(Y ) = m(X) + σ(X)ε, where Λϑ belongs to a parametric family of monotone

transformations, m(·) and σ(·) are unknown but smooth functions, ε is independent

of the d-dimensional vector of covariates X, E(ε) = 0 and Var(ε) = 0. In this model,

we first consider the estimation of the unknown components of the model, namely

ϑ, m(·), σ(·) and the distribution of ε, and we show the asymptotic normality of the

proposed estimators. Second, we propose tests for the validity of the model, and

establish the limiting distribution of the test statistics under the null hypothesis.

A bootstrap procedure is proposed to approximate the critical values of the tests.

Finally, we carry out a simulation study to verify the small sample behavior of the

proposed estimators and tests.
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1 Introduction

Assume we observe independent copies of a random vector (X, Y ), where X represents

a d-dimensional covariate and Y is a univariate response. One possibility is to analyze

these data by fitting a non- or semiparametric regression model, i. e.

Y = m(X) + ε, where E[ε | X ] = 0. (1.1)

Doing so, often the conditional error distribution, given the covariate, still depends on X ,

which means that the dependency of the response Y on the covariate X goes beyond the

first moment. If only the second moment is dependent on X one can fit a nonparametric

location-scale model of the form

Y = m(X) + σ(X)ε, where ε ⊥ X with E[ε] = 0,Var(ε) = 1. (1.2)

Here and throughout the paper Z ⊥ X means that Z and X are stochastically indepen-

dent. Such nonparametric location-scale models have been widely used, see e. g. Akritas

and Van Keilegom (2001), Dette, von Lieres und Wilkau and Sperlich (2005) or Hušková

and Meintanis (2010), among many others. Note that the conditional normal distribu-

tion is always a special case because from Y |X = x ∼ N(m(x), σ2(x)) it follows that

ε ∼ N(0, 1) does not depend on X . The general location-scale model (1.2) has several

advantages over the unstructured model (1.1). First, the asymptotic analysis of statis-

tical procedures often simplifies a lot. Further, the model allows to estimate the error

distribution with a parametric
√
n-rate, see Akritas and Van Keilegom (2001). There-

fore the estimation of the conditional distribution of Y given X is much more efficient.

Goodness-of-fit as well as other specification tests have been developed that specifically

use the location-scale structure, see Section 2.4 in the recent review by González-Manteiga

and Crujeiras (2013). When data (X, Y1, Y2) have been observed and one’s interest lies

in the dependence between Y1 and Y2, given X , under the location-scale structure the

conditional copula of (Y1, Y2), given X , can not only be estimated with
√
n-rate, but also

as precisely as if the errors would be known, see Gijbels, Omelka and Veraverbeke (2013).

The construction of valid resampling procedures is essential for most hypothesis tests

in nonparametric regression. It is known that in heteroscedastic regression models simple

residual bootstrap methods generally do not lead to valid procedures. Thus mostly wild

bootstrap is used, see Härdle and Mammen (1993) and Stute, González Manteiga and

Presedo Quindimil (1998). However, Zhu, Fujikoshi and Naito (2001) show that wild

bootstrap may fail if the conditional 4th moment of the error distribution depends on the
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covariate, while for the procedure considered there it works in the location-scale context.

There are other cases where wild bootstrap even fails in the location-scale model (1.2), see

e. g. Neumeyer and Sperlich (2006). A (smooth or not smooth) heteroscedastic residual

bootstrap often can be an alternative, see Neumeyer (2009a), and explicitly makes use of

the location-scale structure.

Before application of model (1.2) a specification test should be conducted, i. e. a test for

independence of ε and X . Such tests have been suggested by Einmahl and Van Keilegom

(2008), Neumeyer (2009b), and Hlávka, Hušková and Meintanis (2011). However, if those

tests reject the null hypothesis a remedy might be to transform the response Y by a

suitable transformation Λ before fitting the location-scale model to the data (X, Y ).

It is very common in practice to transform the response variable before fitting a re-

gression model to the data. The aim of the transformation is to reduce skewness or

heteroscedasticity, or to induce normality. Often the transformation is chosen from a

parametric class such as the famous class of Box-Cox power transformations introduced

by Box and Cox (1964). Generalizations of this class were suggested by Bickel and Doksum

(1981) and Yeo and Johnson (2000), among others. The parameter of the transforma-

tion in the class can be chosen data dependently by a profile likelihood approach, for

instance. There is a huge literature on parametric transformation models and we refer to

the monograph by Carroll and Ruppert (1988); see also the references in Fan and Fine

(2013). Nonparametric estimation of the transformation in the context of parametric

regression models has been considered by Horowitz (1996) and Zhou, Lin and Johnson

(2008), among others. Horowitz (2009) reviews estimation in transformation models with

parametric regression in the cases where either the transformation or the error distribu-

tion or both are modeled nonparametrically. Linton, Sperlich and Van Keilegom (2008)

consider a parametric class of transformations, while the error distribution is estimated

nonparametrically and the regression function is assumed to be additive. The aim of

the transformation is to induce independence of the covariate and the error. Asymptotic

normality of a profile likelihood estimator for the transformation parameter is proved.

Heuchenne, Samb and Van Keilegom (2014) consider a residual based empirical distribu-

tion function in the same model in order to estimate the error distribution.

The aim of our paper is twofold. On one hand we generalize the results of Linton et al.

(2008) by allowing heteroscedasticity. To this end in a parametric class of transformations

we seek the one that leads to a nonparametric location-scale model of the form

Λ(Y ) = m(X) + σ(X)ε, where ε ⊥ X with E[ε] = 0,Var(ε) = 1, (1.3)
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where Λ denotes the transformation. The regression function m and variance function

σ2 are modeled fully nonparametrically, but analogous results can be obtained for semi-

parametric modeling. We estimate the transformation parameter by a profile-likelihood

approach and prove asymptotic normality of the estimator. We investigate the perfor-

mance of the estimator in a simulation study. Note that in the context of parametric

regression, Zhou et al. (2009) and Khan et al. (2011) considered heteroscedastic trans-

formation models.

On the other hand for the first time in the literature a test for model validity in the

context of transformation models with parametric class of transformations and non- (or

semi-)parametric regression function is proposed. Mu and He (2007) consider estimation

procedures in a transformation model with linear quantile regression function and also

suggest a test for model validity. In the general heteroscedastic case we suggest tests

for the hypothesis of existence of some transformation Λ in the considered parametric

class such that the data fulfill model (1.3). The results can readily be modified to test

whether such a model can hold with σ ≡ 1, i. e. a homoscedastic transformation model.

Our test statistics are based on the difference between the estimated joint distribution

of covariables and errors and the product of the marginal distributions. A similar ap-

proach was used to test for validity of a location-scale model (without transformation)

by Einmahl and Van Keilegom (2008). However, the estimation of the unknown transfor-

mation vastly complicates the theoretical derivations. We show weak convergence of the

estimated empirical process to a centered Gaussian process under the null hypothesis of

model validity. As a by-product we obtain an expansion for the residual-based empirical

distribution function that generalizes results by Heuchenne et al. (2014). Moreover, we

discuss consistency of the proposed tests and demonstrate the finite sample properties of

a bootstrap version of Kolmogorov-Smirnov and Cramér von Mises tests in a simulation

study.

The rest of the paper is organized as follows. In Section 2 we define the profile

likelihood estimator for the transformation parameter and show asymptotic normality.

We further discuss estimation of the regression and variance function by local polynomial

estimators, and the estimation of the error distribution. In Section 3 we consider the

problem of testing for existence of a transformation in the considered class that leads to

a location-scale model. We derive an expansion for the estimator of the joint distribution

of covariates and errors. Under the null hypothesis we show weak convergence of the

process given by the difference of the estimated joint distribution and the product of the
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marginals. Consistency of the testing procedures and modifications for the homoscedastic

model are discussed. Additionally, we describe bootstrap versions of the hypothesis tests.

In Section 4, we also present simulations to demonstrate finite sample properties of the

profile likelihood estimator for the transformation parameter as well as the hypothesis

tests. All regularity conditions and proofs are collected in Appendices A, B and C.

2 Estimation of the model

Let L = {Λϑ | ϑ ∈ Θ} be some parametric class of differentiable and strictly increasing

transformations, and let Θ be some nonempty subset of Rk. In this section we assume

that there exists some unique ϑ0 ∈ Θ such that

Λϑ0
(Y )−E[Λϑ0

(Y )|X ]

(Var(Λϑ0
(Y )|X))1/2

⊥ X.

Then the covariate and transformed response can be modeled by a nonparametric location-

scale model, i. e.

Λϑ0
(Y ) = m(X) + σ(X)ε, ε ⊥ X, (2.1)

where m(x) = E[Λϑ0
(Y )|X = x] and σ2(x) = Var(Λϑ0

(Y )|X = x).

2.1 Estimation of the transformation parameter

To estimate the transformation parameter ϑ0 we will use a profile likelihood approach.

This type of approach has also been used by Linton et al. (2008) in the context of ho-

moscedastic transformation models. We will extend their method to the current setup

with heteroscedastic errors.

For ϑ ∈ Θ, let mϑ(x) = E[Λϑ(Y )|X = x], σ2
ϑ(x) = Var[Λϑ(Y )|X = x], and

ε(ϑ) =
Λϑ(Y )−mϑ(X)

σϑ(X)
.

Also, let Fε(ϑ)(y) = P (ε(ϑ) ≤ y) denote the marginal distribution function of the errors

and let fε(ϑ)(y) be the corresponding probability density function. We use the abbreviated

notations Λ = Λϑ0
, ε = ε(ϑ0), m = mϑ0

, σ2 = σ2
ϑ0
, Fε = Fε(ϑ0) and fε = fε(ϑ0).

Then, the conditional distribution FY |X(·|x) of Y given X = x can be written as

FY |X(y|x) = Fε

(Λ(y)−m(x)

σ(x)

)
,
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and hence the conditional density fY |X(·|x) of Y given X = x equals

fY |X(y|x) = fε

(Λ(y)−m(x)

σ(x)

)Λ′(y)

σ(x)
.

Assume we have independent observations (Xi, Yi), i = 1, . . . , n, from the same dis-

tribution as (X, Y ) and let εi = εi(ϑ0), i = 1, . . . , n. Then, for an arbitrary value ϑ ∈ Θ,

the log-likelihood can be written as

Lϑ =
n∑

i=1

{
log fε(ϑ)

(Λϑ(Yi)−mϑ(Xi)

σϑ(Xi)

)
+ log Λ′

ϑ(Yi)− log σϑ(Xi)
}
. (2.2)

In order to maximize this log-likelihood with respect to ϑ, we first need to replace the

unknown functions fε(ϑ), mϑ and σϑ by suitable estimators. For each ϑ ∈ Θ we estimate

mϑ(x) by a local polynomial estimator based on (Xi,Λϑ(Yi)), i = 1, . . . , n. To this end

denote the components of Xi by (Xi1, . . . , Xid) (i = 1, . . . , n) and let x = (x1, . . . , xd).

Let m̂ϑ(x) = β̂0, where β̂0 is the first component of the vector β̂, which is the solution of

the local minimization problem

min
β

n∑

i=1

{
Λϑ(Yi)− Pi(β, x, p)

}2

Kh(Xi − x). (2.3)

Here, Pi(β, x, p) is a polynomial of order p built up with all 0 ≤ k ≤ p products of

factors of the form Xij − xj (j = 1, . . . , d). The vector β is the vector consisting of

all coefficients of this polynomial. Here, for u = (u1, . . . , ud) ∈ R
d, K(u) =

∏d
j=1 k(uj)

is a d-dimensional product kernel, k is a univariate kernel function, h = (h1, . . . , hd)

is a d-dimensional bandwidth vector converging to zero when n tends to infinity, and

Kh(u) =
∏d

j=1 k(uj/hj)/hj.

Analogously, for each ϑ ∈ Θ let ŝϑ denote a local polynomial estimator based on

(Xi,Λϑ(Yi)
2), i = 1, . . . , n, and define the variance function estimator as σ̂2

ϑ = ŝϑ − m̂2
ϑ.

Note that this estimator has similar properties as a local polynomial estimator based on

(Xi, (Λϑ(Yi)− m̂ϑ(Xi))
2), i = 1, . . . , n.

Finally, let ε̂i(ϑ) = (Λϑ(Yi)− m̂ϑ(Xi))/σ̂ϑ(Xi) and define

f̂ε̂(ϑ)(y) =
1

n

n∑

i=1

ℓg
(
ε̂i(ϑ)− y

)
,

where ℓ and g are a kernel function and a bandwidth sequence, possibly different from

the kernel k and the bandwidth h that were used to estimate the regression and variance

function.
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Next, we plug in the estimators m̂ϑ, σ̂ϑ and f̂ε̂(ϑ) into the log-likelihood given in (2.2)

and obtain the following profile likelihood estimator of ϑ:

ϑ̂ = argmaxϑ∈Θ

n∑

i=1

{
log f̂ε̂(ϑ)

(Λϑ(Yi)− m̂ϑ(Xi)

σ̂ϑ(Xi)

)
+ log Λ′

ϑ(Yi)− log σ̂ϑ(Xi)
}
. (2.4)

In order to obtain an asymptotic i.i.d. representation and the asymptotic normality

of the estimator ϑ̂, we need to introduce a number of notations. For any function hϑ we

denote by ḣϑ = ∇ϑhϑ the vector of partial derivatives of hϑ with respect to the components

of ϑ. Let

Gn(ϑ) =
1

n

n∑

i=1

gϑ(Xi, Yi)

be the derivative of the log-likelihood given in (2.2) (divided by n) with respect to ϑ,

where

gϑ(Xi, Yi) =
f ′
ε(ϑ)(εi(ϑ))

fε(ϑ)(εi(ϑ))

[Λ̇ϑ(Yi)− ṁϑ(Xi)

σϑ(Xi)
− {Λϑ(Yi)−mϑ(Xi)}

σ̇ϑ(Xi)

σ2
ϑ(Xi)

]

+
ḟε(ϑ)(εi(ϑ))

fε(ϑ)(εi(ϑ))
+

Λ̇′
ϑ(Yi)

Λ′
ϑ(Yi)

− σ̇ϑ(Xi)

σϑ(Xi)
.

Then Gn(ϑ) converges in probability to G(ϑ) = E[gϑ(X, Y )]. We assume that ϑ0 is

the unique zero of G (see assumption (a7) in appendix A). The next theorem states

the asymptotic normality of the estimator ϑ̂. The result shows that the variance of the

estimator is the same as in the case where the nonparametric functions mϑ(x), σϑ(x)

and fε(ϑ)(y) and their derivatives with respect to ϑ and y would be known, which is

quite remarkable. The regularity conditions under which this result is valid are given in

appendix A.

Theorem 2.1 Assume (a1)–(a7) in Appendix A. Then,

ϑ̂− ϑ0 = −Γ−1 1

n

n∑

i=1

gϑ0
(Xi, Yi) + oP (n

−1/2),

and

n1/2
(
ϑ̂− ϑ0

) d→ N
(
0,Σ

)
,

where Σ = Γ−1Var[gϑ0
(X, Y )]Γ−1 and Γ = ∇ϑG(ϑ)

⊤|ϑ=ϑ0
.

The proof of this result can be found in Appendix B.
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2.2 Estimation of regression and variance functions

Once the transformation parameter vector ϑ0 is estimated, we can go back to the estima-

tion of the regression function m(x) and the variance function σ2(x). Define

m̂(x) = m̂ϑ̂(x) and σ̂2(x) = σ̂2
ϑ̂
(x).

Under regularity conditions the estimation of ϑ0 has no influence on the asymptotic distri-

bution of the centered and scaled estimators (nhd)1/2(m̂(x)−E[m̂(x)]) and (nhd)1/2(σ̂2(x)−
E[σ̂2(x)]), since ϑ̂ has a parametric rate of convergence. Therefore, the estimators behave

asymptotically as if the true ϑ0 would be known. Note, however, that the pre-estimation

of ϑ0 influences the asymptotic distribution of the test statistic in Section 3 because the

integrals
∫
(m̂ϑ0

−m)/σ dFX and
∫
(m̂ϑ̂ − m̂ϑ0

)/σ dFX have the same n1/2-rate of conver-

gence (see terms Bn and Cn in the proof of Theorem 3.1) and a similar statement holds

for the variance estimator.

2.3 Estimation of the error distribution

The last unknown component of our heteroscedastic transformation model (2.1) is the

distribution Fε of the error term. Define the residuals as

ε̂i = ε̂i(ϑ̂) =
Λϑ̂(Yi)− m̂(Xi)

σ̂(Xi)
.

The error distribution Fε(y) can now be estimated by the empirical distribution func-

tion of the ε̂i’s:

F̂ε̂(y) =
1

n

n∑

i=1

I{ε̂i ≤ y},

where I denotes the indicator function. We postpone the study of the asymptotic proper-

ties of this estimator to the next section. In fact, in Section 3 we will study an estimator

of the joint distribution of X and ε, which includes the estimator F̂ε̂(y) as a special case.

3 Testing the validity of the model

In this section we develop tests for validity of a heteroscedastic semiparametric transfor-

mation model. Let again L = {Λϑ | ϑ ∈ Θ} be some parametric class of transformations,

Θ some nonempty subset of Rk. Our aim is to test the null hypothesis

H0 : ∃ϑ ∈ Θ such that
Λϑ(Y )− E[Λϑ(Y )|X ]

(Var(Λϑ(Y )|X))1/2
⊥ X. (3.1)
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If the null hypothesis is valid then there exists some transformation Λϑ0
∈ L with which

one obtains a nonparametric location-scale model as in (2.1). Note that we want to

test the appropriateness of the parametric family of transformations. So, our test is a

goodness-of-fit test for the chosen parametric family. We do not test whether data is

from a transformation model or not. If we reject H0 it could be that the data is from a

transformation model but that the true transformation does not belong to the family L

under our consideration.

3.1 The test statistics and asymptotic distributions under H0

Let ϑ̂ be some estimator for the true parameter ϑ0 under H0 such that a linear expansion

ϑ̂− ϑ0 =
1

n

n∑

i=1

gϑ0
(Xi, Yi) + oP

(
1√
n

)
(3.2)

is valid under H0, where E[gϑ0
(Xi, Yi)] = 0, E[‖gϑ0

(Xi, Yi)‖2] < ∞. We have shown in

Theorem 2.1 that such an expansion is valid for the profile likelihood estimator under

some regularity conditions. Now denote by F̂X,ε̂ the joint empirical distribution function

of covariates and residuals, i. e.

F̂X,ε̂(x, y) =
1

n

n∑

i=1

I{Xi ≤ x, ε̂i ≤ y},

where ≤ for vectors is meant componentwise. We consider test statistics based on the

estimated independence empirical process

Sn =
√
n(F̂X,ε̂ − F̂X F̂ε̂) (3.3)

where F̂X(x) = n−1
∑n

i=1 I{Xi ≤ x} and F̂ε̂(y) = n−1
∑n

i=1 I{ε̂i ≤ y}.

Theorem 3.1 Assume (a1), (a2) and (A1)–(A8) from appendix A. Then, under H0, we

have the asymptotic expansion:

F̂X,ε̂(x, y) =
1

n

n∑

i=1

(
I{Xi ≤ x}

(
I{εi ≤ y}+ fε(y)(εi +

y

2
(ε2i − 1))

)

+ E
[
∇ϑFε(ϑ)|X(y|X)|ϑ=ϑ0

I{X ≤ x}
]⊤
gϑ0

(Xi, Yi)
)
+ oP (n

−1/2)

uniformly with respect to x ∈ RX , y ∈ R.

The proof is given in appendix B. From the theorem one directly obtains the following

result for the residual based empirical distribution function defined in Section 2.3.
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Corollary 3.2 Under the assumptions of Theorem 3.1, we have the asymptotic expan-

sion:

F̂ε̂(y) =
1

n

n∑

i=1

(
I{εi ≤ y}+ fε(y)(εi +

y

2
(ε2i − 1))

)

+ E
[
∇ϑFε(ϑ)|X(y|X)|ϑ=ϑ0

]⊤
gϑ0

(Xi, Yi)
)
+ oP (n

−1/2)

uniformly with respect to y ∈ R. The process
√
n(F̂ε̂ − Fε) converges weakly in ℓ∞(R) to

a centered Gaussian process.

This corollary generalizes the main results by Heuchenne et al. (2014) who con-

sider estimation of the error distribution in a homoscedastic transformation model. The

asymptotic expansion directly follows from Theorem 3.1. The proof of weak convergence

is analogous to the proof of Corollary 3.3 below and thus omitted.

Using that the dominating term in this expansion has expectation Fε(y) and applying

that F̂X = FX +Op(n
−1/2) one straightforwardly obtains the following expansion for the

process Sn defined in (3.3):

Sn(x, y) =
1√
n

n∑

i=1

ψx,y,ϑ0
(Xi, Yi) + oP (1) (3.4)

uniformly with respect to x ∈ RX , y ∈ R, where

ψx,y,ϑ0
(Xi, Yi) =

(
I{Xi ≤ x} − FX(x)

)(
I{εi ≤ y} − Fε(y) + fε(y)(εi +

y

2
(ε2i − 1))

)

+ E
[
∇ϑFε(ϑ)|X(y|X)|ϑ=ϑ0

(
I{X ≤ x} − FX(x)

)]⊤
gϑ0

(Xi, Yi).

Corollary 3.3 Under the assumptions of Theorem 3.1, the process Sn converges weakly

in ℓ∞(RX × R) to a centered Gaussian process S with covariance Cov(S(x, y), S(u, z)) =

E[ψx,y,ϑ0
(X, Y )ψu,z,ϑ0

(X, Y )].

The proof is given in appendix B. Let Ψ denote some continuous functional from

ℓ∞(RX × R) to R, e. g. Ψ(s) = supx,y |s(x, y)| for a Kolmogorov-Smirnov test. Then we

reject H0 with nominal level α if Tn = Ψ(Sn) exceeds a critical value cα. A bootstrap

approximation of cα is given in Section 3.2.

3.2 Bootstrap approximation of the critical value

Since the asymptotic distributions of the test statistics depend in a complicated way on

unknown quantities, we suggest to apply a bootstrap procedure to approximate the critical
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values. To this end let η∗1, . . . , η
∗
n be drawn with replacement from standardized residuals

ε̃1, . . . , ε̃n, where

ε̃i =
ε̂i − n−1

∑n
k=1 ε̂k

(n−1
∑n

j=1(ε̂j − n−1
∑n

k=1 ε̂k))
1/2
, i = 1, . . . , n. (3.5)

Let further ξ1, . . . , ξn denote independent standard normally distributed random variables,

independent of the original sample Yn = {(X1, Y1), . . . , (Xn, Yn)}, and let an be some

positive smoothing parameter. Define bootstrap errors as ε∗i = η∗i + anξi. Note that

methods based on residual empirical processes require smoothing of the bootstrap errors,

cf. Neumeyer (2009b), among others. It is easily seen that, conditionally on Yn, ε
∗
i has a

smooth distribution function

F̃ε̂(y) =
1

n

n∑

j=1

Φ(
y − ε̃j
an

),

where Φ denotes the standard normal distribution function.

Now generate X∗
i from F̂X and define

Y ∗
i = Λ−1

ϑ̂
(Z∗

i ), where Z
∗
i = m̂(X∗

i ) + σ̂(X∗
i )ε

∗
i , i = 1, . . . , n. (3.6)

The bootstrap sample is (X∗
i , Y

∗
i ), i = 1, . . . , n, and fulfills H0 by construction. To see

this let E∗
n and Var∗n denote the expectation and variance with respect to the conditional

distribution P (· | Yn). Then E
∗
n[ε

∗
i | X∗

i ] ≡ 0 and Var∗n(ε
∗
i | X∗

i ) ≡ 1 + a2n and thus

Λϑ̂(Y
∗
i )− E∗

n[Λϑ̂(Y
∗
i )|X∗

i ]

(Var∗n(Λϑ̂(Y
∗
i )|X∗

i ))
1/2

=
ε∗i

(1 + a2n)
1/2

⊥ X∗
i

(given Yn). Let Tn denote the test statistic based on the original sample and let T ∗
n be

the one based on the bootstrap sample. Then H0 is rejected whenever Tn > cn,α, where

P (T ∗
n > cn,α | Yn) = 1− α. The critical value cn,α is estimated by the ⌊B(1− α)⌋-largest

bootstrap test statistic obtained from B replications of the bootstrap data generation.

3.3 Remarks on consistency of the proposed tests

We consider the hypothesis test developed in Section 3.1 when using the profile likelihood

estimator ϑ̂ suggested in Section 2.1. With the notations used before let

pϑ(y|x) = fε(ϑ)

(Λϑ(y)−mϑ(x)

σϑ(x)

)Λ′
ϑ(y)

σϑ(x)
.
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Note that pϑ is a conditional density, and a consistent estimator (under mild regularity

conditions) of the log-likelihood

Lϑ = log
( n∏

i=1

pϑ(Yi|Xi)
)

is maximized in order to obtain the profile likelihood estimator of the transformation

parameter ϑ ∈ Θ (see (2.2)). Now, consider the alternative H1, which states that there

exists no parameter ϑ ∈ Θ such that pϑ(·|x) is the conditional density of Y , given X = x.

Then Lϑ/n estimates the expectation

E[log pϑ(Yi|Xi)] =

∫ ∫
(log pϑ(y|x))fY |X(y|x) dydFX(x)

and thus ϑ̂ estimates the value ϑ1 ∈ Θ which minimizes the expected Kullback-Leibler

divergence of the conditional densities fY |X and pϑ, i. e.

∫ ∫ (
log

fY |X(y|x)
pϑ(y|x)

)
fY |X(y|x) dydFX(x).

Thus F̂X,ε̂ as defined in section 3.1 estimates the joint distribution of X and ε(ϑ1) =

(Λϑ1
(Y )−E[Λϑ1

(Y )|X ])/(Var(Λϑ1
(Y )|X))1/2. Since under H1 the distribution of ε(ϑ1) de-

pends onX , it follows that, e. g., a Kolmogorov-Smirnov test statistic Tn = supx,y |Sn(x, y)|
converges to infinity. Thus any test that rejects H0 whenever Tn exceeds some constant

cα is consistent.

3.4 The homoscedastic transformation model

Let independent copies of (X, Y ) be observed and a parametric class of transformations

{Λϑ | ϑ ∈ Θ} be given. Then tests for the null hypothesis

H0 : ∃ϑ ∈ Θ such that Λϑ(Y )− E[Λϑ(Y )|X ] ⊥ X (3.7)

are also of interest. The validity of the null hypothesis means that a nonparametric

location model

Λϑ0
(Y ) = m(X) + ε, ε ⊥ X

with m(x) = E[Λϑ0
(Y )|X = x] describes the data for some ϑ0 ∈ Θ. Tests for model

validity can be derived similarly as in the heteroscedastic case in an obvious manner.

An estimator for the transformation parameter analogous to Linton et al. (2008) can be

applied where the additive regression estimator is replaced by a purely nonparametric

12



local polynomial estimator. The residuals are then defined as ε̂ = Λϑ̂(Y )−m̂ϑ̂(X). Under

slightly weaker assumptions than those stated in Appendix A, similar asymptotic results

to those in Section 3.1 can be derived. Additionally, we can use the simplification of the

bootstrap in Section 3.2 to implement the test for the validity of (3.7) replacing ε̃i in (3.5)

with ε̃i = ε̂i − n−1
∑n

k=1 ε̂k, and Z
∗
i in (3.6) with Z∗

i = m̂(X∗
i ) + ε∗i .

4 Numerical simulations

In this section, we carry out three different simulation studies. Firstly, we illustrate the

finite sample performance of the estimator ϑ̂ of the transformation parameter in (2.4).

Secondly, we study the performance of the proposed test for checking homoscedasticity

under some transformation when it is implemented via the bootstrap described in Section

3.4. Finally, we verify how well the test in Section 3.1 is able to test the assumption of a

heteroscedastic transformation structure, when the true model gradually deviates from a

heteroscedastic transformation model.

Throughout all simulations, we consider the Yeo-Johnson family of transformations:

Λϑ(y) =





{(y + 1)ϑ − 1}/ϑ y ≥ 0, ϑ 6= 0

log(y + 1) y ≥ 0, ϑ = 0

−{(−y + 1)2−ϑ − 1}/(2− ϑ) y < 0, ϑ 6= 2

− log(−y + 1) y < 0, ϑ = 2

,

which was proposed by Yeo and Johnson (2000) as a generalization of the Box-Cox family

of transformations. Concerning the estimation of the transformation parameter, we use

the normal kernel whenever a kernel function is necessary. To estimate m(·) and σ(·), we
use the local linear estimator (p = 1) and the bandwidth is chosen by the direct plug-in

methodology described by Ruppert, Sheather and Wand (1995). For estimation of fε(ϑ)(·),
we use the bandwidth obtained from the method of Sheather and Jones (1991). With

regard to the test statistics, we consider the Kolmogorov-Smirnov and Cramér-von Mises

test statistics:

Tn,KS =
√
n sup

x,y
|F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y)|; (4.1)

Tn,CM = n

∫ ∫
(F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y))

2dF̂X(x)dF̂ε̂(y). (4.2)

To find the critical value for the proposed tests, we use 200 bootstrap replications for each

sample. For the smooth bootstrap described in Section 3.2, we set an to 0.5n−1/4 as in

Neumeyer (2009b).
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4.1 Estimation of heteroscedastic transformation parameter

To see how the estimator ϑ̂ in (2.4) works in practice, we generate data from the following

heteroscedastic transformation model:

Λϑ0=0(Yi) = m(Xi) + σ(Xi)εi, i = 1, · · · , n, (4.3)

where m(x) = exp(x) + 1.5, σ(x) = 1 + a(x − 1), X ∼ U [0, 1], ε ∼ N(0, 12) and X ⊥ ε.

For various values of a and n, we calculate ϑ̂ from 200 samples of size n = 100, 200 and

400, and compute

MEAN =
1

200

200∑

j=1

ϑ̂(j) and MSE =
1

200

200∑

j=1

(ϑ̂(j) − ϑ0)
2,

where ϑ̂(j) is the estimate of ϑ0 from the jth sample. The results are given in Table 1.

For various values of a, we observe that both the bias and the mean squared error of

the estimator decrease as the sample size increases, which suggests the consistency of the

estimator.

n = 100 n = 200 n = 400

MEAN MSE MEAN MSE MEAN MSE

a = 0.5 0.085 0.198 0.035 0.117 0.026 0.062

a = 0.75 0.077 0.200 0.048 0.090 0.008 0.053

a = 1 0.056 0.228 0.074 0.121 -0.009 0.066

Table 1: The bias and mean squared error of the estimator ϑ̂ for n = 100, 200 and 400.

4.2 Testing for homoscedastic transformation models

To verify the performance of the test proposed in Section 3.4 regarding the assumption

of a homoscedastic transformation model, we reuse model (4.3). Note that the degree of

heteroscedasticity decreases as the value of a gets closer to 0 and model (4.3) becomes

a homoscedastic transformation model when a = 0, which satisfies the null hypothesis

(3.7). We investigate how the test behaves as the value of a increases from 0 to 1.

Table 2 shows the results for the test implemented via the bootstrap described in

Section 3.4. We see that the size of the test is somewhat too low, but the power grows to

one as the parameter ameasuring the degree of heteroscedasticity gets larger. One notable
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feature of the results is that the power stays flat until the degree of heteroscedasticity

reaches a certain level and then suddenly starts to increase. To explain this peculiar

behavior, we show in Figure 1 four plots using data of size n = 200 from model (4.3).

These plots are given for two values of a, and compare the regression function based on

the true parameter ϑ0 with the one based on the estimator ϑ̂.
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Figure 1: Plot of Λϑ=ϑ0
(Yi) versus Xi (left panel), and Λϑ=ϑ̂(Yi) versus Xi (right panel),

when a = 0.5 (upper panel) and a = 1 (lower panel). The curves mϑ0
(·) (left) and mϑ̂(·)

(right) are indicated in red.

When a 6= 0, the estimator ϑ̂ is not consistent due to the misspecification of the

heteroscedastic error structure, and instead targets the pseudo-true parameter ϑ∗ 6= ϑ0
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which maximizes

PL(ϑ) = E(log fεϑ(Λϑ(Y )−mϑ(X)) + log Λ′
ϑ(Y )), (4.4)

where mϑ(x) = E(Λϑ(Y )|X = x) and εϑ = Λϑ(Y ) − mϑ(X). This pseudo-true pa-

rameter has the interpretation that the corresponding homoscedastic model is the best

approximation to the true heteroscedastic transformation model. So when the degree of

heteroscedasticity is moderate, it is possible that the data look like data coming from

a homoscedastic transformation model with transformation parameter ϑ̂ (see the upper

right panel of Figure 1). In this case, our test is not able to detect the violation of assump-

tion (3.7) well, and behaves almost as if the null hypothesis is true. However, when the

degree of heteroscedasticity becomes severe, the data cannot be considered anymore to

come from a homoscedastic transformation model, and it becomes possible to detect the

violation through the dependence between X and ε̂ (see the right lower panel of Figure

1). This feature is different from what was observed in testing for homoscedasticity in

regression settings without transformation, such as in Neumeyer (2009a).

n = 100 n = 200

α = 0.05 α = 0.1 α = 0.05 α = 0.1

KS CM KS CM KS CM KS CM

a = 0 0.025 0.025 0.060 0.065 0.035 0.020 0.075 0.075

a = 0.5 0.070 0.085 0.115 0.135 0.100 0.110 0.145 0.200

a = 0.75 0.260 0.345 0.345 0.420 0.400 0.485 0.545 0.580

a = 1 0.905 0.955 0.970 0.980 1.000 1.000 1.000 1.000

Table 2: The power of the test for verifying the validity of a homoscedastic transformation

structure. The power is calculated based on 200 samples. The null hypothesis is satisfied

for a = 0.

4.3 Testing for heteroscedastic transformation models

Finally, we illustrate how the test in Section 3.1 works to verify the assumption of a

heteroscedastic transformation structure. For this purpose, we define two new transfor-

mation models. Basically, they are the same model as the model (4.3), except that the

error distribution is defined by
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Model A

(ε|X = x) ∼
{
N(0, 12) if 0.5 < x ≤ 1;

(W − E(W ))/
√
V ar(W ), where W ∼ ST (0, 1, α, ν) if 0 ≤ x ≤ 0.5,

Model B

(ǫ|X = x) =

{
N(0, 12) if 0.5 < x ≤ 1;

(W − η)/
√
2η, where W ∼ χ2(η) if 0 ≤ x ≤ 0.5.

Here, ST (ξ,Ω, α, ν) is a skew-t distribution with parameters ξ,Ω, α and ν defined in

Azzalini (2005). The parameter α controls the skewness of the distribution and the

paramer ν controls kurtosis. Additionally, we set σ(x) = x (so a = 1). First, note that

as ν → ∞ and α → 0, Model A converges to model (4.3) with σ(x) = x, which satisfies

the assumption of a heteroscedastic transformation structure (the same thing happens as

η → ∞ in case of Model B). An additional remark regarding these models is that the

first and second moments of the conditional error distribution given X coincide with the

respective moments under model (4.3). The parameters α, ν and η determine how much

the model violates assumption (3.1). In our simulations, to see how the test performs

when the true model gradually deviates from the assumption under the null hypothesis,

we investigate the power function as ν changes from ∞ to 2.1 and then as α changes from

0 to 100 for Model A, and as η changes from ∞ to 2 for Model B. Here, ν should be

greater than 2 and η should be equal to or greater than 2 otherwise the distribution of

W cannot be standardized due to variance explosion.

Similarly to what was observed in the case of homoscedastic transformation models,

we observe from Tables 3 and 4 that there is a threshold of difference in two component

distributions in the error above which we can detect the violation of the assumption, and

the power starts to grow beyond the threshold. Further, we observe that compared to

Model B, the power of Model A is somewhat lower. The reason can be attributed to

the flexibility of the heteroscedastic transformation model. Since they are very flexible

models, unless the two component distributions in the error are strikingly different from

each other, the generated data look like data coming from a heteroscedastic transformation

model with appropriately chosen transformation parameter.

A Regularity conditions

For the asymptotic normality of the estimator ϑ̂, we need the following regularity condi-

tions:

17



n = 100 n = 200

α = 0.05 α = 0.1 α = 0.05 α = 0.1

KS CM KS CM KS CM KS CM

α = 100, ν = 2.1 0.370 0.445 0.505 0.590 0.710 0.770 0.795 0.850

α = 0, ν = 2.1 0.105 0.140 0.170 0.200 0.205 0.270 0.325 0.360

α = 0, ν = 5 0.075 0.060 0.105 0.085 0.060 0.060 0.130 0.095

α = 0, ν = ∞ 0.055 0.060 0.070 0.105 0.080 0.070 0.120 0.135

Table 3: The power of the test for verifying the validity of a heterocedastic transforma-

tion structure from Model A. The power is calculated based on 200 samples. The null

hypothesis is satisfied for α = 0 and ν = ∞.

n = 100 n = 200

α = 0.05 α = 0.1 α = 0.05 α = 0.1

KS CM KS CM KS CM KS CM

η = 2 0.215 0.220 0.285 0.310 0.325 0.355 0.455 0.440

η = 3 0.100 0.165 0.175 0.270 0.155 0.220 0.270 0.295

η = 5 0.090 0.095 0.140 0.150 0.120 0.125 0.190 0.200

η = 10 0.050 0.065 0.091 0.125 0.100 0.105 0.140 0.190

η = ∞ 0.065 0.060 0.105 0.115 0.045 0.055 0.100 0.100

Table 4: The power of the test for verifying the validity of a heterocedastic transforma-

tion structure from Model B. The power is calculated based on 200 samples. The null

hypothesis is satisfied for η = ∞.

(a1) k is a symmetric probability density function supported on [−1, 1], k is d+ 1 times

continuously differentiable, and k(j)(±1) = 0 for j = 0, . . . , d− 1.

(a2) hj (j = 1, . . . , d) satisfies hj/h → cj for some 0 < cj < ∞ and some baseline

bandwidth h satisfying nh2p+2 → 0 for some p ≥ 3, and nh3d+δ → ∞ for some small

δ > 0.

(a3) The kernel ℓ is a symmetric, twice continuously differentiable function supported on

[−1, 1],
∫
usℓ(u)du = 0 for s = 1, . . . , q− 1 and

∫
uqℓ(u)du 6= 0 for some q ≥ 4. The

bandwidth g satisfies ng6(log n)−2 → ∞ and ng2q → 0.

(a4) The support RX of the covariate X is a compact subset of Rd, the distribution
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function FX is 2d + 1-times continuously differentiable, infx∈RX
fX(x) > 0 and

infx∈RX
σ(x) > 0. Moreover, the functions mϑ(x), ṁϑ(x), σϑ(x) and σ̇ϑ(x) are p+2

times continuously differentiable with respect to the components of x on RX×N (ϑ0),

and all derivatives up to order p+2 are bounded uniformly in (x, ϑ) ∈ RX ×N (ϑ0),

where N (ϑ0) is a neighborhood of ϑ0.

(a5) The transformation Λϑ satisfies supϑ∈Θ,x∈RX
||E[Λ̇ϑ(Y )|X = x]|| < ∞,

supx∈RX
||E[Λ̇4

ϑ0
(Y )|X = x]|| < ∞, and the density function of (Λ̇ϑ(Y ), X) ex-

ists and is continuous for all ϑ ∈ Θ. In addition, Λϑ(y) is three times continuously

differentiable with respect to y and ϑ, and there exists a δ > 0 such that

E
[

sup
ϑ′:‖ϑ′−ϑ‖≤δ

∣∣∣ ∂j+r

∂yj∂ϑr11 . . . ∂ϑrkk
Λϑ′(Y )

∣∣∣
]
<∞,

for all ϑ ∈ Θ and all 0 ≤ j + r ≤ 3, where r =
∑k

i=1 ri.

(a6) The error term ε has finite sixth moment and is independent of X . Moreover, the

distribution Fε(ϑ)(y) is three times continuously differentiable with respect to y and

ϑ,

sup
y,ϑ

∣∣∣ ∂j+r

∂yj∂ϑr11 . . . ∂ϑrkk
Fε(ϑ)(y)

∣∣∣ <∞

for all 0 ≤ j+
∑k

i=1 ri ≤ 2, supy |yf ′
ε(y)| <∞, supy |yḟ ′

ε(y)| <∞ and supy |y2f ′′
ε (y)| <

∞. In addition, the conditional distribution Fε(ϑ)|X(y|x) is three times continuously

differentiable with respect to y and ϑ,

sup
y,x,ϑ

∣∣∣ ∂j+r

∂yj∂ϑr11 . . . ∂ϑrkk
Fε(ϑ)|X(y|x)

∣∣∣ <∞

for all 0 ≤ j +
∑k

i=1 ri ≤ 2, supy,x |yf ′
ε|X(y|x)| < ∞, supy,x |yḟ ′

ε|X(y|x)| < ∞ and

supy,x |y2f ′′
ε|X(y|x)| <∞.

(a7) For all η > 0, there exists ε(η) > 0 such that inf‖ϑ−ϑ0‖>η ‖G(ϑ)‖ ≥ ε(η) > 0.

Moreover, the matrix Γ defined in Theorem 2.1 is of full rank.

For the results of section 3, we will need assumptions (a1), (a2) and the following

conditions. Let ‖ · ‖ denote some vector or matrix norm, depending on the object.

(A1) All partial derivatives of FX up to order 2d+ 1 exist on the interior of its compact

support RX , they are uniformly continuous and inf
x∈RX

fX(x) > 0.
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(A2) All partial derivatives of m and σ up to order p+2 exist on the interior of RX , they

are uniformly continuous and inf
x∈RX

σ(x) > 0.

(A3) Fε is twice continuously differentiable, sup
y

|yfε(y)| < ∞, sup
y

|y2f ′
ε(y)| < ∞, and

E(ε6) <∞.

(A4) sup
y∈R

E
[∥∥∇ϑFε(ϑ)|X(y|X)|ϑ=ϑ0

∥∥] <∞

(A5) For the parameter estimator a linear expansion as in (3.2) is valid with E[gϑ0
(X, Y )] =

0, E[‖gϑ0
(X, Y )‖2] <∞.

(A6) Let FY |X(·|x) and fY |X(·|x) denote the conditional distribution and density function

of Y , given X = x, respectively. We assume existence of some η > 0 such that

sup
ϑ:‖ϑ−ϑ0‖≤η

sup
z∈R

∫ (
|f ′

Y |X(Vϑ(z)|u)|‖V̇ϑ(z)‖2 + fY |X(Vϑ(z)|u)‖V̈ϑ(z)‖
)
dFX(x) <∞.

Here we use the notation Vϑ = Λ−1
ϑ for the inverse of the transformation and V̇ϑ =

∇ϑVϑ and V̈ϑ = ( ∂2Vϑ

∂ϑiϑj
)i,j=1,...,k for the gradiant and Hessian matrix, respectively.

Further we assume that sup
y∈R,x∈RX

∥∥∥y
∂(fY |X(Vϑ0

(y)|x)V̇ϑ0
(y))

∂y

∥∥∥ <∞.

(A7) For some η > 0, E[supϑ:‖ϑ−ϑ0‖≤η ‖Λ̈ϑ(Y )‖] < ∞, E[supϑ:‖ϑ−ϑ0‖≤η ‖Λ̇ϑ(Y )‖2] < ∞
and E[supϑ:‖ϑ−ϑ0‖≤η ‖Λ̈ϑ(Y )Λϑ(Y )‖] <∞. Further,

E
[

sup
ϑ:‖ϑ−ϑ0‖≤η

‖Λϑ(Y )Λ̇ϑ(Y )‖
∣∣∣X = x

]
<∞

E
[

sup
ϑ:‖ϑ−ϑ0‖≤η

‖Λ̇ϑ(Y )‖
∣∣∣X = x

]
<∞

for almost all x ∈ RX .

(A8) Assumption (A2) holds with m replaced by E[∂Λϑ(Y )
∂ϑi

|ϑ=ϑ0
|X = ·] and σ replaced

by E[Λϑ0
(Y )∂Λϑ(Y )

∂ϑi
|ϑ=ϑ0

|X = ·], for i = 1, . . . , k. Further, E[‖Λ̇ϑ0
(Y )‖3] < ∞ and

E[‖Λϑ0
(Y )Λ̇ϑ0

(Y )‖3] <∞.

B Proof of main results

B.1 Proof of Theorem 2.1

We will follow the different steps of the proof of Theorem 4.1 in Linton et al. (2008), which

shows the asymptotic normality of ϑ̂ in the homoscedastic case. However, for reasons of
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brevity of exposition, we will focus on the differences with respect to that proof. The proof

in Linton et al. (2008) consists of 11 lemmas from which the result follows. The lemmas

that need closer attention are Lemmas A.1, A.2, A.3 and A.11. The other lemmas can be

extended to the heteroscedastic case in a straightforward way. We start with the extension

of Lemma A.1 to the heteroscedastic case. This lemma develops an i.i.d. expansion for

f̂ε̂(ϑ0)(y)− fε(ϑ0)(y). For this, first note that

m̂ϑ0
(x) =

1

nhd

n∑

i=1

Wx,n

(x−Xi

h

)
Λϑ0

(Yi), (B.1)

where Wx,n(u) = K∗(u)/fX(x)(1 + oP (1)) uniformly in u ∈ [−1, 1]d and x ∈ RX , and

(nhd)−1
∑n

i=1Wx,n((x − Xi)/h) = 1. The kernel K∗(·) is the so-called equivalent kernel

and is a linear combination of functions of the form
∏d

i=1 k(ui)u
ji
i with (j1, . . . , jd) ∈ N

d
0,

0 ≤ ∑d
i=1 ji ≤ p. This can be deduced from representation (3.25) in combination with

(3.30), (3.9) and (3.19) in Gu, Li and Yang (2014); see also Masry (1996a, 1996b) and

Fan and Gijbels (1996), p. 63–64, for the case d = 1. In a similar way we can also write

σ̂ϑ0
(x)− σϑ0

(x) =
1

2σϑ0
(x)

1

nhd

n∑

i=1

Wx,n

(x−Xi

h

)[
(Λϑ0

(Yi)−mϑ0
(x))2 − σ2

ϑ0
(x)
]

+oP (n
−1/2). (B.2)

It follows that we can write

f̂ε̂(ϑ0)(y)− fε(ϑ0)(y)

=
1

ng

n∑

i=1

ℓ′g(εi − y)(ε̂i(ϑ0)− εi) +
1

n

n∑

i=1

ℓg(εi − y)− fε(y) + oP (n
−1/2)

= − 1

ng

n∑

i=1

ℓ′g(εi − y)

σ(Xi)

{
[m̂ϑ0

(Xi)−mϑ0
(Xi)] + εi[σ̂ϑ0

(Xi)− σϑ0
(Xi)]

}

+
1

n

n∑

i=1

ℓg(εi − y)− fε(y) + oP (n
−1/2)

= (T1 + T2)(y) + oP (n
−1/2) (say).
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Using decompositions (B.1) and (B.2), we have that

T1(y) = − 1

ng

n∑

i=1

ℓ′g(εi − y)

σ(Xi)

1

nhd

n∑

j=1

WXi,n

(Xi −Xj

h

)
(Λϑ0

(Yj)−mϑ0
(Xi))

− 1

ng

n∑

i=1

ℓ′g(εi − y)

σ2(Xi)

εi
2nhd

n∑

j=1

WXi,n

(Xi −Xj

h

)(
(Λϑ0

(Yj)−mϑ0
(Xi))

2 − σ2
ϑ0
(Xi)

)

+oP (n
−1/2)

=
1

n2

n∑

i=1

n∑

j=1

Anij(εj +
εi
2
(ε2j − 1)) + oP (n

−1/2),

where Anij = −(ghd)−1ℓ′g(εi−y)WXi,n((Xi−Xj)/h). Using similar arguments as in Linton

et al. (2008) and Colling and Van Keilegom (2014), the last expression can be written as

f ′
ε(ϑ0)

(y)
1

n

n∑

i=1

εi +
(
yf ′

ε(ϑ0)
(y) + fε(ϑ0)(y)

) 1

2n

n∑

i=1

(ε2i − 1) + oP (n
−1/2).

In a similar way i.i.d. expansions for
˙̂
fε̂(ϑ0)(y)− ḟε(ϑ0)(y) and f̂

′
ε̂(ϑ0)

(y)− f ′
ε(ϑ0)

(y) can

be obtained, which then extend Lemmas A.2 and A.3 in Linton et al. (2008) to the

heteroscedastic case.

These three i.i.d. expansions all come together when we develop the i.i.d. expansion

for ϑ̂ − ϑ0. For the homoscedastic case this is done in Lemma A.11 in Linton et al.

(2008), and it is shown there that all terms that come from the estimation of m, ṁ, fε,

f ′
ε and ḟε cancel and one therefore obtains the same expansion as in the case where all

these functions would be known. In our heteroscedastic model a similar development can

be done by using the above expansions for f̂ε̂(ϑ0),
˙̂
fε̂(ϑ0) and f̂ ′

ε̂(ϑ0)
. We find in a similar

way as in the homoscedastic case that all these expansions cancel out, and hence we get

asymptotically the same i.i.d. expansion as in the case where these functions would be

known. This shows the first part of Theorem 2.1. The second part follows immediately

from the central limit theorem, together with the fact that E[gϑ0
(X, Y )] = G(ϑ0) = 0. �

B.2 Proof of Theorem 3.1

Let F̂X,ε denote the joint empirical distribution function of (Xi, εi), i = 1, . . . , n, under

H0. Let further

Rn(x, y) = E[I{X ≤ x}I{Λϑ̂(Y ) ≤ yσ̂(X) + m̂(X)} | Yn]− E[I{X ≤ x}I{ε ≤ y}],

where Yn = {(Xi, Yi) | i = 1, . . . , n}. Then we have the following Lemma.
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Lemma B.1 Under the assumptions of Theorem 3.1,

F̂X,ε̂(x, y) = F̂X,ε(x, y) +Rn(x, y) + oP (
1√
n
)

uniformly with respect to x ∈ RX , y ∈ R.

Proof of Lemma B.1 With the definition in Proposition C.1 we have

√
n(F̂X,ε̂(x, y)− F̂X,ε(x, y)− Rn(x, y)) = Gn(x, ϑ̂, (m̂−m)/σ, σ̂/σ, y),

where the empirical process

Gn(x, ϑ, g1, g2, y) =
1√
n

n∑

i=1

(
I{Xi ≤ x}ϕϑ,g1,g2,y(Xi, Yi)− E[I{X ≤ x}ϕϑ,g1,g2,y(X, Y )]

)

(indexed in x ∈ RX , ϑ ∈ Θ, g1 ∈ G1, g2 ∈ G2, y ∈ R) converges weakly to a Gaussian

process. This follows from Proposition C.1, the Donsker property of {I{X ≤ x} | x ∈ RX}
and because products of uniformly bounded Donsker classes are Donsker (see Example

2.10.8 in van der Vaart & Wellner, 1996, p. 192). Thus Gn is asymptotically stochastically

equicontinuous with respect to

ρ
(
(x, ϑ, g1, g2, y), (x

′, ϑ′, g′1, g
′
2, y

′))

=
(
Var
(
I{X ≤ x}ϕϑ,g1,g2,y(X, Y )− I{X ≤ x′}ϕϑ′,g′

1
,g′

2
,y′(X, Y )

))1/2

(see van der Vaart, 1998, p. 262/263). We have

ρ
(
(x, ϑ̂, (m̂−m)/σ, σ̂/σ, y), (x, ϑ0, 0, 1, y)

)
= oP (δn)

where δn ց 0 by Proposition C.3. Thus and because ϕϑ0,0,1,y ≡ 0 it follows that

P
(
sup
x,y

|√n(F̂X,ε̂(x, y)− F̂X,ε(x, y)−Rn(x, y))| > η
)

≤ P
(

sup
ρ((x,ϑ,g1,g2,y),(x′,ϑ′,g′

1
,g′

2
,y′))≤δn

|Gn(x, ϑ, g1, g2, y)−Gn(x
′, ϑ′, g′1, g

′
2, y

′)| > η
)

which converges to zero for n → ∞, for all η > 0. From this the assertion of Lemma B.1

follows. �

23



To finish the proof of Theorem 3.1 we decompose Rn = An +Bn + Cn, where

An(x, y) = E[I{X ≤ x}I{Λϑ̂(Y ) ≤ yσ̂(X) + m̂(X)} | Yn]

−E[I{X ≤ x}I{Λϑ0
(Y ) ≤ yσ̂(X) + m̂(X)} | Yn]

Bn(x, y) = E[I{X ≤ x}I{Λϑ0
(Y ) ≤ yσ̂ϑ̂(X) + m̂ϑ̂(X)} | Yn]

−E[I{X ≤ x}I{Λϑ0
(Y ) ≤ yσ̂ϑ0

(X) + m̂ϑ0
(X)} | Yn]

Cn(x, y) = E[I{X ≤ x}I{Λϑ0
(Y ) ≤ yσ̂ϑ0

(X) + m̂ϑ0
(X)} | Yn]

−E[I{X ≤ x}I{Λϑ0
(Y ) ≤ yσϑ0

(X) +mϑ0
(X)}].

For the ease of notation in the following let the parameter ϑ be one-dimensional. We use

the same notations as in assumption (A6). Then we have

An(x, y) =

∫ (
FY |X(Vϑ̂(yσ̂(u) + m̂(u))|u)− FY |X(Vϑ0

(yσ̂(u) + m̂(u))|u)
)
I{u ≤ x} dFX(u).

For the moment fix u and z = yσ̂(u)+m̂(u) and consider a second order Taylor expansion

of the map ϑ 7→ ψ(ϑ) = FY |X(Vϑ(z)|u), i. e.

ψ(ϑ̂)− ψ(ϑ0) = fY |X(Vϑ0
(z)|u)V̇ϑ0

(z)(ϑ̂− ϑ0)

+
1

2

(
f ′
Y |X(Vϑ∗(z)|u)(V̇ϑ∗(z))2 + fY |X(Vϑ∗(z)|u)V̈ϑ∗(z)

)
(ϑ̂− ϑ0)

2.

The value ϑ∗ may depend on u and z, but lies between ϑ̂ and ϑ0. Because for each η > 0,

|ϑ̂−ϑ0| ≤ η with probability converging to one, for the proof we may assume |ϑ∗−ϑ0| ≤ η

with η from assumption (A6). A Taylor expansion of ψ motivates the definition of

Ãn(x, y) =

∫
fY |X(Vϑ0

(yσ̂(u) + m̂(u))|u)V̇ϑ0
(yσ̂(u) + m̂(u))I{u ≤ x} dFX(u)(ϑ̂− ϑ0)

and yields that

sup
x,y

|An(x, y)− Ãn(x, y)|

≤ (ϑ̂− ϑ0)
21

2
sup

ϑ:|ϑ−ϑ0|≤η

sup
z∈R

∫ (
|(f ′

Y |X(Vϑ(z)|u)|(V̇ϑ(z))2 + fY |X(Vϑ(z)|u)|V̈ϑ(z)|
)
dFX(x)

= oP (
1√
n
)

by assumption (A6). Denote by Ān the same term as Ãn, but with the estimators σ̂

and m̂ replaced by the true functions σ and m, respectively. Note that from the proof
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of Proposition C.2 uniform convergence of |σ̂ − σ| and |m̂ − m| to zero in probability

follows and thus by the mean value theorem, the last part of assumption (A6), and

ϑ̂−ϑ0 = OP (n
−1/2) we obtain supx,y |Ãn(x, y)− Ān(x, y)| = oP (n

−1/2). Altogether for An

we have uniformly with respect to x ∈ RX , y ∈ R,

An(x, y) =

∫
fY |X(Vϑ0

(yσ(u) +m(u))|u)V̇ϑ0
(yσ(u) +m(u))I{u ≤ x} dFX(u)(ϑ̂− ϑ0)

+ oP (
1√
n
).

For Cn we obtain the following expansion uniformly with respect to x, y,

Cn(x, y) = E
[
I{X ≤ x}I

{
ε ≤ y

σ̂ϑ0
(X)

σ(X)
+
m̂ϑ0

(X)−m(X)

σ(X)

}
| Yn

]

− E[I{X ≤ x}I{ε ≤ y}]

=

∫ (
Fε

(
y
σ̂ϑ0

(u)

σ(u)
+
m̂ϑ0

(u)−m(u)

σ(u)

)
− Fε(y)

)
I{u ≤ x} dFX(u)

= fε(y)
(
y

∫
σ̂ϑ0

(u)− σ(u)

σ(u)
I{u ≤ x} dFX(u)

+

∫
m̂ϑ0

(u)−m(u)

σ(u)
I{u ≤ x} dFX(u)

)
+ oP (

1√
n
)

= fε(y)
1

n

n∑

i=1

(εi +
y

2
(ε2i − 1))

∫
1

h
K∗
(u−Xi

h

)
I{u ≤ x} du+ oP (

1√
n
).

The second but last equality follows by Taylor’s expansion, assumption (A3) and the fact

that
∫
(m̂ϑ0

−m)2/σ2 dFX = oP (n
−1/2),

∫
(σ̂ϑ0

− σ)2/σ2 dFX = oP (n
−1/2), see the proof of

Theorem 2.1 in Neumeyer and Van Keilegom (2010). The last equality follows from (B.1)

and (B.2), a combination of the proof of Lemma A.2 in Neumeyer and Van Keilegom

(2010), and the proof of Proposition 2 (p. 537) in Neumeyer and Van Keilegom (2009).

Now let either Zi = εi or Zi = ε2i − 1. Then exactly as in the last part of the proof of

Lemma B.1 in the supporting information to Birke and Neumeyer (2013) we have

sup
x∈RX

∣∣∣ 1
n

n∑

i=1

Zi

(∫ 1

hd
K∗
(u−Xi

h

)
I{u ≤ x} du− I{Xi ≤ x}

)∣∣∣ = oP (
1√
n
).

Altogether for Cn we have uniformly with respect to x ∈ RX , y ∈ R,

Cn(x, y) = fε(y)
1

n

n∑

i=1

(εi +
y

2
(ε2i − 1))I{Xi ≤ x}+ oP (

1√
n
).
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With Bn we proceed similarly to obtain

Bn(x, y) = fε(y)
(
y

∫
σ̂ϑ̂(u)− σ̂ϑ0

(u)

σ(u)
I{u ≤ x} dFX(u)

+

∫
m̂ϑ̂(u)− m̂ϑ0

(u)

σ(u)
I{u ≤ x} dFX(u)

)
+ oP (

1√
n
)

by assumption (A3) and the fact that supx |m̂ϑ̂(x)− m̂ϑ0
(x)| = OP (n

−1/2), supx |σ̂ϑ̂(x)−
σ̂ϑ0

(x)| = OP (n
−1/2) (see the proof of Proposition C.2). Now note that

m̂ϑ̂(u)− m̂ϑ0
(u) =

1

nhd

n∑

i=1

Wu,n

(u−Xi

h

)
(Λϑ̂(Yi)− Λϑ0

(Yi)) (B.3)

=
1

nhd

n∑

i=1

Wu,n

(u−Xi

h

)
Λ̇ϑ0

(Yi)(ϑ̂− ϑ0) + rn(u),

where
∫
rn(u)

σ(u)
I{u ≤ x} dFX(u)

≤ 1

2
(ϑ̂− ϑ0)

2

∫
1

nhd

n∑

i=1

∣∣∣Wu,n

(u−Xi

h

)∣∣∣ sup
ϑ:|ϑ−ϑ0|≤η

|Λ̈ϑ(Yi)|
I{u ≤ x}
σ(u)

dFX(u)

= oP (n
−1/2)

by assumptions (A5) and (A7). Proceeding similarly to the expansion of Cn we thus

obtain
∫
m̂ϑ̂(u)− m̂ϑ0

(u)

σ(u)
I{u ≤ x} dFX(u)

= (ϑ̂− ϑ0)
1

n

n∑

i=1

Λ̇ϑ0
(Yi)

∫
1

hd
K∗
(u−Xi

h

)I{u ≤ x}
σ(u)

dx+ oP (
1√
n
)

= (ϑ̂− ϑ0)E
[
Λ̇ϑ0

(Y )
I{X ≤ x}
σ(X)

]
+ oP (

1√
n
).
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Similarly for the variance we have σ̂ϑ̂− σ̂ϑ0
= (σ̂2

ϑ̂
− σ̂2

ϑ0
)/(σ̂ϑ̂+ σ̂ϑ0

) which yields (compare

to (B.3))
∫
σ̂ϑ̂(u)− σ̂ϑ0

(u)

σ(u)
I{u ≤ x} dFX(u)

=
1

2

∫
1

σ2(u)

1

nhd

n∑

i=1

Wu,n

(u−Xi

h

)
((Λϑ̂(Yi))

2 − (Λϑ0
(Yi))

2)I{u ≤ x} dFX(u)

+
1

2

∫
1

σ2(u)
(m̂ϑ0

(u)− m̂ϑ̂(u))(m̂ϑ0
(u) + m̂ϑ̂(u))I{u ≤ x} dFX(u) + oP (

1√
n
)

= (ϑ̂− ϑ0)

(
1

2n

n∑

i=1

∂(Λϑ(Yi))
2

∂ϑ

∣∣∣
ϑ=ϑ0

∫
1

hd
K∗
(u−Xi

h

)I{u ≤ x}
σ2(u)

du

− 1

2n

n∑

i=1

Λ̇ϑ0
(Yi)

∫
1

hd
K∗
(u−Xi

h

)I{u ≤ x}
σ2(u)

2m(u) du

)
+ oP (

1√
n
)

= (ϑ̂− ϑ0)
1

n

n∑

i=1

(
Λ̇ϑ0

(Yi)Λϑ0
(Yi)− Λ̇ϑ0

(Yi)m(Xi)
)I{Xi ≤ x}

σ2(Xi)
+ oP (

1√
n
)

= (ϑ̂− ϑ0)E
[(

Λ̇ϑ0
(Y )Λϑ0

(Y )− Λ̇ϑ0
(Y )m(X)

)I{X ≤ x}
σ2(X)

]
+ oP (

1√
n
).

Those expansions yield uniformly with respect to x and y,

Bn(x, y) = (ϑ̂− ϑ0)fε(y)E
[
Λ̇ϑ0

(Y )
(
σ(X) + yΛϑ0

(Y )− ym(X)
)I{X ≤ x}

σ2(X)

]

+ oP (
1√
n
).

The expansions derived for An, Bn and Cn now yield

Rn(x, y) = (ϑ̂− ϑ0)Hϑ0
(x, y) + fε(y)

1

n

n∑

i=1

(εi +
y

2
(ε2i − 1))I{Xi ≤ x} (B.4)

+ oP (
1√
n
)

with

Hϑ0
(x, y) = fε(y)E

[
Λ̇ϑ0

(Y )
(
σ(X) + yΛϑ0

(Y )− ym(X)
)I{X ≤ x}

σ2(X)

]

+

∫
fY |X(Vϑ0

(yσ(u) +m(u))|u)V̇ϑ0
(yσ(u) +m(u))I{u ≤ x} dFX(u)

= E
[ ∂
∂ϑ
Fε(ϑ)|X(y|X)

∣∣∣
ϑ=ϑ0

I{X ≤ x}
]
.

The last equality follows by some tedious but straightforward calculations. Now the

assertion of Theorem 3.1 follows by Lemma B.1, (B.4) and assumption (A5). �
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B.3 Proof of Corollary 3.3

From expansion (3.4) we have

Sn(x, y) = Gn

(
x, y, fε(y), yfε(y), hϑ0

(x, y)
)
+ oP (1)

uniformly, where

hϑ0
(x, y) = E

[
∇ϑFε(ϑ)|X(y|X)

∣∣∣
ϑ=ϑ0

(
I{X ≤ x} − FX(x)

)]

and where the process

Gn(x, y, z1, z2, z3)

=
1√
n

n∑

i=1

((
I{Xi ≤ x} − FX(x)

)(
I{εi ≤ y} − Fε(y) + z1εi +

z2
2
(ε2i − 1)

)

+ z3gϑ0
(Xi, Yi)

)
,

is indexed in F = {(x, y, z1, z2, z3) | x ∈ RX , y ∈ R, z1, z2, z3 ∈ [−K,K]} for some K such

that supy fε(y) ≤ K, supy |yfε(y)| ≤ K, supx,y |hϑ0
(x, y)| ≤ K (see assumptions (A3) and

(A4)). Weak convergence of Gn follows similarly to the proof of Theorem 2 in Neumeyer

and Van Keilegom (2009, p. 538). The key argument is that for the bracketing number

N[](η,F , L2(P )) an order O(η−7) can be derived from the L2(P )-norm

(
E
[((

I{Xi ≤ x} − FX(x)
)(
I{εi ≤ y} − Fε(y) + z1εi +

z2
2
(ε2i − 1)

)
+ z3gϑ0

(Xi, Yi)

−
(
I{Xi ≤ x′} − FX(x

′)
)(
I{εi ≤ y′} − Fε(y

′) + z′1εi +
z′2
2
(ε2i − 1)

)
− z′3gϑ0

(Xi, Yi)
)2])1/2

≤ C
(
|FX(x)− FX(x

′)|(1 +K2(1 + Var(ε2))) + |Fε(y)− Fε(y
′)|+ (z1 − z′1)

2

+(z2 − z′2)
2Var(ε2) + (z3 − z′3)

2E[g2ϑ0
(X, Y )]

)1/2

for some constant C. Weak convergence of Sn follows by consideration of the subclass of

F defined by z1 = fε(y), z2 = yfε(y), z3 = hϑ0
(x, y). �

C Auxiliary results

Let for k = (k1, . . . , kd) ∈ N
d
0, k. =

∑d
j=1 kj, D

k = ∂k./∂xk11 . . . ∂xkdd , and

‖f‖d+α = max
k.≤d

sup
x∈RX

|Dkf(x)|+max
k.=d

sup
x,x′∈RX

|Dkf(x)−Dkf(x′)|
‖x− x′‖α ,
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where ‖ · ‖ is the Euclidean norm on R
d. Let further G1 = Cd+α

1 (RX) be the class of d

times differentiable functions f defined on RX such that ‖f‖d+α ≤ 1, and G2 = C̃d+α
2 (RX)

be the class of d times differentiable functions f defined on RX such that ‖f‖d+α ≤ 2 and

infx∈RX
f(x) ≥ 1/2.

Proposition C.1 Let F = {ϕϑ,g1,g2,y | ϑ ∈ Θ, g1 ∈ G1, g2 ∈ G2, y ∈ R}, where

ϕϑ,g1,g2,y(X, Y ) = I
{Λϑ(Y )−m(X)

σ(X)
≤ yg2(X) + g1(X)

}
− I
{Λϑ0

(Y )−m(X)

σ(X)
≤ y

}

is a function from RX × R to R and G1, G2 are defined above. Then F is Donsker.

Proof of Proposition C.1 In Lemma 1 in Heuchenne et al. (2014) the special case

of univariate X and σ ≡ 1 (i. e. homoscedasticity) is considered. For the subclass of F
obtained by setting g2 ≡ 1 the assertion is proved. On the other hand Lemma A.3 in

Neumeyer and Van Keilegom (2010) shows the assertion for the function class defined

analogously to F , but replacing Λϑ by the identity (for multivariate X). A detailed proof

combines the arguments of both proofs but is omitted for the sake of brevity. �

Proposition C.2 For the estimators m̂ and σ̂ defined in section 2 and the function

classes G1, G2 defined above we have under the assumptions of Theorem 3.1 that P ((m̂−
m)/σ ∈ G1) → 1 and P (σ̂/σ ∈ G2) → 1 for n→ ∞.

Proof of Proposition C.2 Note that the assertion follows from ‖m̂ −m‖d+α = oP (1)

and ‖σ̂ − σ‖d+α = oP (1). Further note that

m̂−m = (m̂ϑ0
−m) + (m̂ϑ̂ − m̂ϑ0

), σ̂ − σ = (σ̂ϑ0
− σ) + (σ̂ϑ̂ − σ̂ϑ0

)

and that ‖m̂ϑ0
− m‖d+α = oP (1), ‖σ̂ϑ0

− σ‖d+α = oP (1) was shown in Lemma A.1 in

Neumeyer and Van Keilegom (2010) under assumptions (a1), (a2), (A1)–(A3). We will

apply Taylor expansions for the remainder terms. To this end due to ϑ̂ = ϑ0 + oP (1) (see

assumption (A5)) we may assume that ‖ϑ̂−ϑ0‖ ≤ η for η from assumption (A7). Denote

by ̂̃mϑ0
a local polynomial estimator defined analogously to m̂ϑ0

, but based on the sample

(Xi, Λ̇ϑ0
(Yi)), i = 1, . . . , n. Let, by slight abuse of notation,

dkVx,n(z) =
∂k.(Wx,n(

x−z
h
))

∂xk11 . . . ∂xkdd
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for k = (k1, . . . , kd) ∈ N
d
0, with Wx,n from (B.1). Then we obtain from (B.3) that

‖m̂ϑ̂ − m̂ϑ0
‖d+α

≤ ‖ϑ̂− ϑ0‖‖ ̂̃mϑ0
‖d+α (C.1)

+
1

2
‖ϑ̂− ϑ0‖2max

k.≤d

1

nhd

n∑

i=1

sup
x∈RX

|dkVx,n(Xi)| sup
‖ϑ−ϑ0‖≤η

‖Λ̈ϑ(Yi)‖ (C.2)

+
1

2
‖ϑ̂− ϑ0‖2max

k.=d

1

nhd

n∑

i=1

sup
x,x′∈RX

|dkVx,n(Xi)− dkVx′,n(Xi)|
‖x− x′‖α sup

‖ϑ−ϑ0‖≤η

‖Λ̈ϑ(Yi)‖. (C.3)

Under assumptions (a1), (a2), (A1) and (A8) we have that ‖ ̂̃mϑ0
‖d+α converges to ‖m̃ϑ0

‖d+α

in probability, where m̃ϑ0
(·) = E[Λ̇ϑ0

(Y )|X = ·]. Thus (C.1) is negligible since ‖ϑ̂ −
ϑ0‖ = OP (n

−1/2). Under assumptions (a1) and (a2), from the representations of the

multivariate local polynomial estimator in Masry (1996a, 1996b) one can deduce that

hd supx,z |dkVx,n(z)| is bounded (for k. ≤ d). Thus applying the law of large numbers

to sup‖ϑ−ϑ0‖≤η ‖Λ̈ϑ(Yi)‖ (compare to assumption (A7)) for (C.2) we obtain the order

OP (‖ϑ̂ − ϑ0‖2h−2d) = oP (1) by assumption (a2). Further, by considering the cases

‖x− x′‖ ≥ h and ‖x− x′‖ < h one obtains

sup
x,x′∈RX

|dkVx,n(Xi)− dkVx′,n(Xi)|
‖x− x′‖α ≤ 2 sup

x,z
|dkVx,n(z)|

1

hα
+

d∑

j=1

sup
x,z

∣∣∣∂d
kVx,n(z)

∂xj

∣∣∣h1−α.

All partial derivatives of order one of hd+1dkVx,n(z) in x-direction are bounded in x, z.

Thus for (C.3) one obtains the rate OP (‖ϑ̂ − ϑ0‖2(h−(2d+α) + h−(2d+1−(1−α))) = oP (1) by

assumption (a2). Similar arguments hold for σ̂ϑ̂ − σ̂ϑ0
. �

Proposition C.3 With the definitions in Proposition C.1 we have under the assumptions

of Theorem 3.1 that E[(ϕϑ̂,(m̂−m)/σ,σ̂/σ,y(X, Y )−ϕϑ0,0,1,y(X, Y ))
2 | Yn] = oP (δ

2
n) uniformly

with respect to y ∈ R with some δn ց 0 for n→ ∞, where Yn = {(Xi, Yi) : i = 1, . . . , n}.

Proof of Proposition C.3 Note that ϕϑ0,0,1,y ≡ 0. The expectation in the assertion can

be bounded by the sum

2E[(ϕϑ̂,(m̂−m)/σ,σ̂/σ,y(X, Y )− ϕϑ0,(m̂−m)/σ,σ̂/σ,y(X, Y ))2 | Yn] (C.4)

+ 2E[(ϕϑ0,(m̂−m)/σ,σ̂/σ,y(X, Y ))
2 | Yn]. (C.5)

We first consider (C.4) which equals

E[(I{Λϑ̂(Y ) ≤ yσ̂(X) + m̂(X)} − I{Λϑ0
(Y ) ≤ yσ̂(X) + m̂(X)})2 | Yn]

≤
∫

|FY |X(Vϑ̂(yσ̂(x) + m̂(x))|x)− FY |X(Vϑ0
(yσ̂(x) + m̂(x))|x)| dFX(x)
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with the notations from the proof of Theorem 3.1. Note that this term is very similar to

An in that proof, only that an absolute value is added inside the integral. With the same

methods as there the rate OP (n
−1/2) can be shown.

Next we consider (C.5) which equals

E
[(
I
{
ε ≤ y

σ̂(X)

σ(X)
+
m̂(X)−m(X)

σ(X)

}
− I{ε ≤ y}

)2
| Yn

]

≤
∫ ∣∣∣Fε

(
y
σ̂(x)

σ(x)
+
m̂(x)−m(x)

σ(x)

)
− Fε(y)

∣∣∣ dFX(x)

≤ sup
y∈R

|fε(ξn(y))|
∫ ∣∣∣m̂(x)−m(x)

σ(x)

∣∣∣ dFX(x) + sup
y∈R

|yfε(ξn(y))|
∫ ∣∣∣ σ̂(x)− σ(x)

σ(x)

∣∣∣ dFX(x)

where ξn(y) converges to y in probability. Hence the supremum terms are bounded

thanks to assumption (A3). Further using the decomposition m̂ − m = (m̂ϑ0
− m) +

(m̂ϑ̂ − m̂ϑ0
) as in the proof of Proposition C.2 (and similar for σ̂) one can show the rate

OP ((nh
d/ logn)−1/2) +OP (n

−1/2). This proves the assertion. �
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Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric re-

gression fits. Ann. Statist. 21, 1926–1947.

Heuchenne, C., Samb, R. and Van Keilegom, I. (2014). Estimating the residuals distribu-

tion in semiparametric transformation models. Technical report DP2014/11, Université
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