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Abstract

Considering the Selberg trace formula as an exact version of Gutzwiller's semiclassical periodic—
orhit theory in the case of the free motion on compact Riemann surfaces with constant negative
curvature (Hadamard-Gutzwiller model), we study two complementary basic problems in quantum
chaology:

o the computation of the classical staircase N (£}, the number of periodic orbits with length shorter
than £. in terms of the quantal energy spectrum {E,} .

» the computation of the spectral staircase A’( E), the number of quantal energies below the energy
E. in terms of the length spectrum {I,} of the classical periodic orbits.

A formulation of the periodic—orbit theory is presented which is intrinsically unsmeothed, but for
which an effective smoothing arises from the limited “input data”. i.e.from the limited knowledge
of the periodic orbits in the case of A(E) and the limited knowledge of quantal energies in the
case of N({). Based on the periodic-orbit formula for N{(E), we propose a new rule for quantizing
chaos, which simply states that the quantal energies are determined by the zeros of the function
£1(E) = cos(rN(E)). The formulas for N({) and N(E) as well as the new quantization condition
are tested numerically. Furthermore, it is shown that the staircase A’(E) computed from the length
spectrum vields (up to a constant) a good description of the spectral rigidity A3(L), being the first
numerical attempt to compute a statistical property of the quantal energy spectrum of a chaotic
system from classical periodie orbits.

'Supported by Deutsche Forschungsgemeinschaft under Contract No. DFG-8te 241/4-3



I Introduction

In this paper we discuss as an application of Gutzwiller’s semiclassical periodic—orbit theory [1,2] the
computation of discontinuous staircase functions and of the spectral rigidity. To this end we employ an
unsmoothed version of the periodic—orbit theory. Usually, the convergence of the periodic—orbit sums
is enforced by a suitable smoothing procedure. In the formulation given here no explicit smoothing
is needed. since the smoothing of the periodic—orbit theory arises automatically from the limited
knowledge of the “input data”..

The periodic—orbit theoryvis applied to the Hadamard—Gutzwiller model, a chaotic system which
consists of a point particle sliding freely on a compact Riemann surface of genus ¢ = 2 and with
constant negative curvarure. In this case Gutzwiller's periodic—orbit theory 1] is exact as Gutzwiller
recognized [3; by comparing his semiclassical theorv with the Selberg trace formula {4]. This system
is a conservative K-system and possesses only a discrete quantal energy spectrum {E,} (0 = Eq -
Ey < E; < ...). An introduction to this strongly chaotic model can be found in [2,5] or in some of
our previous papers 16,7.8 .

We discuss two complementary basic problems of quantum chaology. On the one hand the number

of primitive periodic orbits with lengths [, shorter than ¢ is computed from the quantal energy spec-
trum {E, }. According to Huber’s law {9} this number is exponentially growing, N({) ~ 5 for £ — oo,
as it is typical for chaotic systems. On the other hand the periodic-orbit theory allows the computation

of the number
N(E) := #{E.E, < E} (2)

of quantal energies E,, less than E from the length spectrum {!,} of the classical periodic orbits. In our
numerical applications we use the regular octagon for which the length spectrum {l,} is completely
known 110 up to n = 1500 (/3500 = 18.092...} and an asymmetric octagon for which the length
spectrum is nearly completely known up to 7 = 12. Here the number n counts only the periedic orbits
of different lengths. Indeed there are more than 4 million periodic orbits up to n = 1500 in the case
of the regular-octagon.

Based on the periodic—orbit formula for A(E) we formulate a new quantization rule for chaotic
svstems. A first successful test of this quantization condition is performed in the case of the two oc-
tagons. Finally, the spectral staircase is used to compute the spectral rlgldlty A3(L) from a knowledge
of the classical periodic orbits.

The starting point is Selberg’s trace formula {4]

Area( F) o .
{Z} h(p.) = 4_;/ dp p tanh(rp) h(p) + {,Z};; m glkly) . (3)
pﬂ n = -

where p,, = \/E,, — % are the momenta and A(p) is a {nearly) arbitrarv®even function which is holo-
morphic in the strip 'Imp < % + ¢. ¢ > 0. and vanishes asymptotically for |pi — oc faster than
L. The Lh.s.of (3) can be viewed as of purely quantum mechanical origin, whereas the r.h.s.is
of purely classical nature involving the so—called zero-length term prdportional to the area of the
octagons, Area(F) = 4x. and the periodic-orbit sum over the classma] length spectrum {{,}. The
Fourier transform of i(p) is denoted by g(z)

1 [
glr) = / dp cos{pz) h{p) . ' (4)
0
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IT The classical staircase N({)

In [7] we discussed the trace of the cosine-modulated heat kernel which is obtained from the Selberg
trace formula (3) by choosing

A 1
hip) = cos(pLy % . E= p +p* . (5)
The resulting sum rule reads
L = —Ent = - X
cosh 57 E cos(po L)~ 77° = 2¢7 3 dp p tanh{zp)cos(pLje™ ™"
n=] 0
-4 o z N 2
B S SPL A IE L E A
By wi “‘—:}::; sinh =2 [ J

which is absolutely convergent for anv ¢t > 0. The first term on the 1.h.s.of eq.(6) is due to the zero
ground state energy Ep = 0 (po = 3:;). while the second term represents a sum over all eigenvalues
E. . 3. (The octagons discussed in this paper possess no so-called “small” eigenvalues with 0 «
E, = %.) The last term on the r.h.s. of the sum rule (6) shows at fixed t > 0 as a function of the
real variable I Gaussian peaks of width AL ~ 2+/2¢ at the lengths [, of the classical periodic orbits.
In 7] we presented an evaluation of (6) for t = 0.01 resolving the periodic orbits of short lengths. (A
preliminarv evaluation has been presented already in [11].)

Here we are interested in the unsmoothed staircase function N (£) which can be obtained from {6}
as follows. Applving the operation

! 4 L

dL = sinh= , 0 < fg < 1, <& . -
o LSJ 5 0 1 = (

-]
e

where I is the length of the shortest periodic orbit. on both sides of eq.(6) and performing the limit
t — 0-+.in which the Gaussian peaks degenerate to Dirac é—functions, vields

W& k1 inh £ ¢ 4asinhfcoshl
S X [a () () -k = [ an =T
o ko e L sinh £J» t L
R i /‘f L 4sinh% cos(pn L) . /‘ JlL 4sinh% C?Shﬁl ()
= L t L 2sinh” 5
with &(£) := [ﬁ] The 1.h.s.of (8) ¢an be rewritten in terms of the classical staircase N(f)
#{£) oc ®(£) o m(£} .
1 ¢ 1 { 1 {
3 -kl = — - - = N N[} .
S X [ ek Z};Z@(k 1,,) f‘—«;-“(;-) (9)
k=1 =1 9 k=1 =1 k=1
If the r.h.s.of (8) is denoted by F({).
tdl o~ ¢ dL L ¢ dL L
F{{) := /[0 ya (c‘r‘ff_‘r‘) + 4 ,,Ez:] A T sinh-i cos(p, L} + 2]; T coth 5 - (10}
we arrive ad the basic relation
w(1)
1 {
YN () = o (i1)

,_
fl
—
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which counts the number of periodic orbits up to length { including multiple traversals {(k > 1)
weighted by 1. Eq.(11) can be solved for N(£) by using the M&bius inversion formula {12] yielding

p(k) {
N = Y 0 F(;) . (12)
where (k) is the Mébius function (p(1) = 1, (2) = -1, p(3) = —1,p(4) = 0, u(5) = -1, u{6) = 1,...).
Thus the classical staircase function N ({) can be expressed exactly by the function F(£), eq.(10), which
in turn is completely determined by the quantal energy spectrum.

Eqs.(10-12) are very similar to the prime number formulas involving x(z) published by Riemann
in his famous paper [13] in 1859 and proved by von Mangoldt [14] in 1895, where x{z) is the number
of prime numbers not exceeding r. Riemann obtained for the leading term for # — oc (prime number

theorem)
w(e) ~ L(x) . (13}

where the logarithmic integral is defined by the principal value integral -

ll(r):Pfol—nd% .o e >1 . ' {14)

The prime number theorem (13) was proved independently by Ha.damard [15] and de la Vallée Poussin
{16} in 1896. Notice that (13) is equivalent to

() ~ i , T — o0 . (15)

That (13) gives a good approximation, was already noticed empirically by Gaufl. Riemann was the
first to write down an explicit expression for the remainder. Riemann’s formula reads [13,17]

n(z) = Y B fl=4) (26)

il dt

flz) = li-(:c)—z li (2°°) + AT iveevile In2 . (17)

Here the sum over p, Tuns over all the nontrivial zeros of the Riemann zeta function.
To compare with our relations (10)—(12), we make a change of variables, z = €f, which yields

P/ a . Ei(¢) (18)

and the prime number theorem reads now

n(e!) ~ Ei(f) ~ S oo (19)

Using the definition {18), the function F({) in eq.(10) can be rewritten as

F(t) = + 3 Ei(snf) + 2In€ + O(1) (20)
{sn} : :

where the sum over s,, runs over all pairs of nontrivial zeros of the Selberg zeta function 4], i.e. s, =
% + 1Pn, Pn > 0 (see also section VII).

B e

RO N SR, G U S S S U S S S Y . -~ - - - -
R e e S BT S . S S Sy S . S S S S S S—

————— A m A e - -~ ~



The leading term of eq.(20) is given by

Fi6y ~ Ei(f¢y , [—oc (21)
which vields with (12} the asymptotic behaviour
Ny ~ Ei(fy . {— o . (22)

Eq.(22) shows the well-known exponential proliferation of periodic orbits typical for chaotic systems
in general, which was first derived by Huber |9]. (Huber also derived the corrections which are present
if there exist small eigenvalues 0 ~ E, < % The result is given by the second terin in eq.(20), where

the sum over s, runs over all real values 12 < s, < 1,E, = $,(1 — s,).) A comparison of eqs.(22)
and (19) shows that Huber's law (22) plays the role of a “generalized prime nummber theorem” for the
“generalized primes” p, (sometimes called pseudoprimes) defined by p. := norm(~y} = €, where 4

denotes a primitive hyperbolic element of the group I' associated with the chosen octagon. Here ['is a
discrete subgroup of PSL(2.R}, and [, is the length of the closed geodesic (= periodic orbit) uniquely
associated with a given hyperbolic elernent ¥. {Notice that the numbers {, = Inp. where p runs over
all primes, play the role of the lengths of fictitious periodic orbits in the case of (7).}

In ref.i6' we have presented the first computation of a length spectrum for a compact Riemann
surface. A complete enumeration of all periodic orbits not exceeding { = 18.092... has been given
in the case of the regular octagon in [10. In figures 2 and 3 of ref.[10] we have iliustrated that
Huber’s law {22) yields an excellent approximation to the true staircase function N{{} in the range
I, < £ < lysgg = 18.092 . ... These figures show that Ei{{) — N(£) has a great number of sign changes.
which often characterizes a good approximation. This is In contrast to the approximation (13} in the
case of prime numbers. where available tables |17} show that li(z)—=(z}is always positivefor # < 4.10%€
and increasing. Indeed, such a behaviour is suggested by eq.(16) which gives li(e) — m(z) ~ %li(\/'a_:),
if f(z)is approximated by the first term in eq.(17). Although nobody so far has found any specific
example of li(z) — =(z) < 0 [17]. Littlewood has shown [18! that li(2) — #(z) changes sign infinitely
often. (For a discussion of the properties of primes. we refer the reader to Riesel’s book [17] and to
the lecture by Zagier {19].)

If the Ei-function in the second term of eq.(20) is approximated by its leading term. see eq.(19).
we obtain (a, = arctan{2p,))

, et? = cos(p.l — a,
F({) = Ei(f) + 2— M _“’T—) e (23)
n=1 hY n
and thus from eq.(12)
etr2 ef’? . cos(pnf — an)
N{f)y = Eify— — -+ —E——+~—+ 24

This formula shows explicitly how the fine structure of the length spectrum of the classical periodic
orbits is determined by the quantal energies (“inverse quantum chaology”™). in the same way as the
distribution of primes is determined by the nontrivial Riemann zeros via eq.{17}. If the sum in eq.(24)
is approximated by taking into account all energies with E, < Ex, one should get a resolution of
Al ~ 7/VEn.i.e. Al ~ 0.22 for Ex = 200. If more and more quantal energies are included in the
sum. one expects a kind of Gibbs phenomernon in analogy with the well-known behaviour for classical
Fourier series. In ref.]20 a calculation of #(z) has been presented by using Riemann’s prime number
formulas (16), (17) and taking into account the first 29 Riemann zeros.

In figure 1 the exact staircase N{(f} of the regular octagon is shown for £ < 10 together with
the curve obtained from (12) and (10). where only the first 200 quantal energies have been used.
i.e.En = 201.4.... As the lower integration limit, {op = 1 has been chosen. Remarkably. the result
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Figure 1: The classical staircase N(f) is shown for the regular octagon in comparison with the result
obtained from (12} using (10) for {5 = 1 and Ex = 201.4.... The asymptotic formula (24) is
represented by the dotted curve.

should be independent of the choice of {y as long as 0 < {3 < I is fulfilled. Numerically one observes
a slight dependence on {; because of the truncation of the series over the quantal energies. This
truncation smoothes the discontinuities of the true N({}, and if £y is chosen too near to the shortest
length. the curve lies slightlv below the true one. This is obvious noticing that for {; < {y < I, the
first length !; = 3.057... would have been omitted in N({). Although (12) and (10) are unsmoothed,
the restricted knowledge of the quantal energies leads to a smoothing. Thus this smoothing is due
only to the limited “input data™ and not 1o an explicitly smmoothed formula.

III The spectral staircase A'(E)

In {7] we have already obtained a smoothed version for the spectral staircase N'(E)} stariing with the
Gaussian smoothed sum rule. For a given smoothing parameter ¢ > 0 we have derived the absolutely
convergent relation

4 o P U _ Jr2+ 2
NAE) = = dp" p" tanh xp" | dp' cosh PP -t
/' TE Jg 0 €?
oc . 3 | 2
L Ly yosinphln) (e (25)
I i ik sinh‘*‘%‘{—’L

Here we are interested in the limit ¢ -» 0, because of lim._o A,(E) = A(E). Performing the limit

one arrives at (p = \/IE - % > 0)

. P . >, si kl,
MNME)Y = 2 dp’ p’ tanh(wp') + 1 Zmﬁl . (26)
0 27 Yt k sinh =

At first sight the last relation. which is valid in the sense of distributions, seems to be useless
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for a numerical application, because for ¢ = 0 there is no suppression of the exponentially increasing
number N(£) of periodic orbits with increasing length £, and thus one expects numerical instabilities.

As in [21] let us assume that the length spectrum {I,} is completely known up to a given cut—off
length £ allowing an exact evaluation of the periodic—orbit sum up to £. Using Huber’s law [9],
eq.(22),

dN({) ef
~ — o 27
I (27)
the remaining sum can be approximated by the following integral (see also i21))
1 oG - ] 1 +1P” 1 —100 -t
Ry(L) i= — | dI= an(p - jf dr < ~ = Im ./‘ dt S . (28)
27 Jr I sinh{ 3 0 ™ —(L+ip)L t
The following integral over the integration path Cp along the quarter—circle from 1 = —1 R to R
parametnzed byt = Re'®, ¢ ¢ [ 7, 27r] vields
et w/2
m [ d— = / do e Be® cos(Rsinz) = - si(R) . (29)
Cr t 1]
which vanishes for R — oc because of limg_ o si(R} = 0. Thus one can add
1 - 1
= Im dtZ— + ~si(R) = 0 (30)
T Cr t T

to the last integral in {28). In the limit R — oo one can connect the two integration paths and arrives
at the integral representation for E,(z)
oo et -
= [Ta (31)

where it is assumed that the path of integration excludee the origin and does not cross the negative
real axis. We are thus led to (p > 0)

1 1
Ri(L) = - Tm E; (—(5-}-1'}3)5) (32)
and
= ki) 1 1
N(E) ~ 2/ dp' p’ tanh(7wp") + —Z Z sinlpk L) k! + — Im E; (—(——{—ip)ﬁ) . (33)
+— k sinh =® T 2
in} kin < £
The first term in eq.(33) gives for £ — o©
P —
2[ dp’ p' tanh(=p'} = E - é + O(\/Eefw‘/f) , (34)
0

which is (apart from the exponentially small terms) identical to Weyl’s law. In figure 2 and 3 we show
N (E) for the regular octagon in the energy range E < 20 and E < 200, respectively. The dotted line
corresponds to Wey]’s law and is seen to describe the average behaviour of MN{E) reasonably well. The
second and third term in eq.(33) are oscillating functions. For VE L — oc the third term behaves
asymptotically as '

1 1 1 b/t ,
; Im E] (—(5 + Zp)ﬁ) o~ E —E_ pCOS(pﬁ) - sm(p[:) . (35)

[N

Thus the energy resolution of the approximate formula (33) is determined by the cut—off length L,

6
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Figure 2: The spectral staircase A'(E) (solid curve) is shown for the reéular octagon together with
the curve obtained from (33) (dashed curve) for £ = 18.092. Weyl’s law N (E) ~ E — 1 is displayed
as the dotted line.

AE ~ 27vE/L, and is getting worse with increasing energy for a fixed value of £. In figure 2 and 3
we display as the dashed curve the evaluation of relation (33) for £ = 18.092..., which means that
more than 4 million periodic orbits have been taken into account in the periodic-orbit sum in (33).
One observes fluctuations around the staircase similar to the classical Gibbs phenomenon, and again
the limited “input data” leads to a smoothing.

Although formula (33) is not able to resolve the higher energy levels, it is seen from figure 3 that it
gives an important improvement of Weyl's law. In our evaluation we have used the rest term in eq.(33)
in its form given there, but we have checked that the asymptotic formula (35) yields a sufficiently good
approximation already for E > 6. Notice that this rest term is large in the energy range considered,
and that the good overall agreement seen in figure 2 and 3 would have been completely spoiled if this
rest term would have been omitted. While the rest term diverges for £ — oo, it decreases for fixed £
like \/_ in the semiclassical limit, £ — oo.

IV A rule for quantizing chaos

Recently, several authors [21,22,23,24,25,26] have proposed and / or numerically investigated various
quantization rules for chaotic systems. In all these papers the quantization rules make essential use
of the relevant dynamical zeta functions, which in the case of the octagons considered in the present
paper and in the case of Artin’s billiard are identical to the Selberg zeta function [21,25).

Here we would like to propose a new rule for quantizing chaos, which is not based on the dynamical
zeta function and thus does not require the validity of a functional equation as in the previous papers.
The new guantization rule applies to chaotic systems in general, but here we shall only illustrate it in
the case of the octagons.

Having derived the approximation (33) for the spectra.l staircase A(E (E), it is natural to define
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e~

e e

—— e



o
o
o2
=
o
o Ye!
e
o
- o
—
L Q
0
F
o
) o o o o
s B B S o)
o > L -

Figure 3: The same curves as in figure 2 are shown but in the larger energy range E ¢ |0, 200].
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approximate quantal energies E, as solutions of the equation

N(E,) = n + , n=0,1,2,... , . (36)

AR ]

or, equivalently, as zeros of the function
L(E) i= cos(z N(E)) (37)

where A’(E) denotes the expression on the r.h.s.of eq.(33). A look at figures 2 and 3 suggests that
the quantization condition (36) shonld yield reasonable approximations in those energy regions where
the function A(E) {the dashed curve in figures 2 and 3) does not show too large oscillations.

E, E, < En > relative error in % |
3.839 3.56 3.83 0.3
3.839 3.8] ! 3.83
3.839 4.11 3.83
5.354 5.01 5.40 0.9
5.354 5.31 ' 5.40
5.354 5.52 5.40
5.354 5.74 5.40
8.250 7.85 8.13 —1.5
£.250 8.40 8.13
14.726 14.24 14.55 -1.2
14.726 14.47 14.55
14.726 14.66 14.55
14.726 14.84 14.55
15.049 15.02 15.25 1.3
15.049 15.23 15.25
15.049 15.49 15.25
18.659 18.15 18.74 0.4
18.659 18.76 18.74
18.659 19.32 18.74

Table 1: The first 19 quantal energies E,, > 0 of the regular octagon. E, denotes the “true” eigenvalues
taken from [7], whereas E, denotes the approximations obtained from the quantization rule {36).
< E, > is defined in the text.

Table 1 gives the first quantal energies En.1 < n <19, of the regular octagon, obtained from the
quantizasion rule {36) in comparison with the quantal energies obtained by solving the Schrédinger
equation directly using the method of finite elements, see ref.[7]. (Only in the case n = 8 the solution
is not unique, and the value Ex = 7.85 has been selected as the obvious one, see figure 2.) The table
shows that the quantization condition (36) yields indeed reasonable approximations to the quantal
energies. As has been discussed in detail in our earlier papers [7,10], the regular octagon possesses a lot

of symmetries which are reflected by the twofold, threefold and fourfold degeneracies, respectively, of
the guantal energies, seen in the table and in ﬁgures 2 and 3. These degeneracies constitute a serious
difficulty for any quantization condition. In fact, this was one of the reasons why the Riemann-Siegel
lookalike formula r22j, which has been tested In ﬁgure 6a of ref.|21]. was not able to generate even
the first 9 EI]e]'g]G.'b 14 is seen from the table that the mean values < E., > calculated from the
approximate eigenvalues E, for those n—values for which the true eigenvalues are degenerate, are
excellent approximations to the true eigenvalues E,, the relative error being not larger than 1. 5%.
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Figure 4: For an asymmetric octagon cos{(wN(E) )} is shown where A'(E) is computed by (33) with
£ = 11.96242.... The locations of the quantal energies computed by the method of finite elements
are marked by bold dots.

We thus conclude that the quantization condition (36) works even in the very delicate situation of a
system possessing high symmetries.

As a second test of the quantization condition (36), we consider an asymmetric octagon which was
already discussed in our earlier papers [8,21], and which has the nice property that near-degeneracies
are avoided between the first 7 energy levels (E, 1 — E, > 0.6 for n < 7). In figure 6b of ref.[21] we
have shown an evaluation of the Riemann-Siegel lookalike formula for this octagon for £ < 6. Asin
the case of the regular octagon, the result was not satisfactory, since only two of 6 eigenvalues were
produced. In figure 4 we show an evaluation of the function & (£), eq.(37), for F < 14, using for the
cut—off length £ in eq.(33) £ = 11.96242.... (For this octagon the length spectrum is not completely
known for I, < £; but a comparison of the computed length spectrum with Huber’s law (22) indicates,
that only a few periodic orbits are missing. The length spectrum has been computed by using the
algorithm described in {6], where all “words” consisting of maximal 12 “letters” have been considered.)
The “true” quantal energies computed by the method of finite elements are shown as bold dots in
figure 4. It is seen that the zeros of the function £,(F) indeed constitute good approximations to
the true eigenvalues. Only in cases where two eigenvalues are very close to each other, the zeros of
£1(E) show a tendency to be separated by a somewhat Jarger amount, see for example near E = 10.5.
But since the energy resolution is proportional to 1/£, it is to be expected that the energy resolution
would improve il a length spectrum could be used having a larger cut—off £.

V  The spectral rigidity A;(L) for a toy model

Apart from the level-spacing statistics the spectral rigidity A3(L) introduced by Dyson and Mehta
[27] has played a major role in the study of statistical properties of quantal energy spectra for systems
whose classical counterparts are chaotic. The statistics of these systems seem to be in good agreement
with the predictions of random-matrix theory. The spectral rigidity is defined {27] as the average of

10



the mean square deviation of the staircase A'(E') from the best fitting straight line a + be:

L/2
As(L):= <1(:2,_1£If”2d6 J\fE+e)—ab£]> ) - (38)

where < > denotes a Jocal average. The constants a and b can be eliminated yielding the well-known
expression

1 _L;'3 PR 1 L/2 p | , 1 ; Lf2 2
Aﬂm_<zf;ﬁmk(EAJ-[E[QJMME?eq 12L2[wﬁﬁﬂwueﬂ>
(39)

In [28] Berry derived a semiclassical theory for A3{L) for integrable as well as for chaotic systems. This
theory predicts a saturation of Az(L) for L > L., and a behaviour consistent with random-matrix
theory below L ...

We have already discussed in [8] several statistics computed direct]y from the quantal energies for 40
different octagons. Here we want to test numerically whether the approximation to A{E) computed
by (33) is suited for a computation of Az{L). As shown in section II this approximation gives a
smoothed version of the “true” staircase and thus it is not obvious thal one will obtain reasonable
results for a statistics measuring discontinuous deviations from a best fitting straight line.

"To settle the question what distinguishes the spectral rigidity A3(L) of the true staircase from
the smoothed version, we first investigate a toy model spectrum which can be treated analvtically.
Consider the energy spectrumn £, := n+ %, n=0,1,2,... having the same leading term in Weyl’s law
as the spectra of our Riemann surfaces. The staircase A'(E) can then be expanded in a Fourier series

DR

If the Fourier series is truncated at IV, a sinoothed version of the true staircase A/( E) is obtained in
analogy to the staircase of section IIl. Inserting (40) into (39) all operations can be carried out leading
after a tedious but straightforward comnputation to 5

N . . 2
Z l;? - 4L2 Z [sm (wnL) + 3 {M —cos(ﬂ'nL)} ] ,  (41)

anl .

n

N(E) = sin(2nnE)} , E‘/_\-O . (40)

~1t~—‘

AF(L) =
with Limy .o AY (L) = A3(L). - )

In the limit L — oo the second series in {41) vanishes, and one.obtains the following exact
expressions for the saturation values AY and A, respectively:

N

, 1 1 ' ¢(2) 1
oA — R d Ay = 2 = — | 42
e 272 ﬂg‘; 122 an oo 2x2 12 _ (42)

Thus one immediately recognizes that the spectral rigidity A (L), i.e.the Nth approximation to the
true staircase, saturates as expecled but at a value which is smaller than the true saturation value
A by a constant amount given by

]\; 7 -

- 1 1 1

ot s - — = . 43
127 3 2 (43)

In the opposite limit, L — 0, the appr.oximation (41) can be expanded in L vielding (for fixed N)

= o 72 N(N4+1)(2N +1) .
. A?(L) ~ 90 6 S A L—:O . (44)
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Figure 5: The spectral rigidity Az(L) (solid curve) for the toy model spectrum E, = n + % is shown
in comparison with the approximation {41} for N = 2 (dotted curve). The dashed curve is obtained
by shifting the dotted curve by the constant C'* given in (43).

This contrasts with the exact linear behaviour A3(L} ~ TlgL, L — 0. The difference is caused by the
absence of discontinuities in the smoothed version of the staircase. If the limit N — oo is carried out
at fixed L, the coefficient of the L'-term diverges. On the other hand, one sees that (44) behaves for
large N as (NL)* . L, which shows that the correct behaviour for L — 0 is obtained if one considers
the “scaling limit” N — oo, L — 0, but keeping N L fixed. We thus obtain the approximation

As(L) = AF(L) + €V, | (45)

which should hold for L > %

In figure 5 the spectral rigidity Az(.L) is shown in comparison with the 2nd approximation (N = 2
in (41)) which is too low by a constant amount C% = 0.020... as derived from eq.(43). Shifting by
this constant corrects not only the saturation value but leads to a very good description of As(L) for
L= % Only for L < % the mentioned vanishing proportional to L causes an error in the description
of A3(L). In summary, one sees that a truncation of the Fourier series (40) leads only to a constant
shift of the spectral rigidity if one excludes a small region near L = 0.

VI The spectral rigidity A;(L) for two strongly chaotic systems

After the discussion of the toy model presented in the last section, let us now turn to the computation
of the spectral rigidity for two strongly chaotic systems defined by the two octagons already considered
in the previous sections. Inserting the approximation (33) for A’(E) into the general expression (39),
we obtain a (very long) formula, which will not be reproduced here, and which expresses the rigidity
in terms of the classical periodic orbits. Since the sum over the length spectrum has to be cut off at
a maximal length £, one cannot expect that the resulting rigidity reproduces exactly the true rigidity
calculated directly from the quantal energies. Rather one expects as in the case of the toy model, see

eq.(45), that for large L-values the rigidity is shifted by a constant which depends only on the cut-off
L.

12
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Figure 6: The solid curves represent Az L) obtained directly from the quantal energy specttum up to
E = 200 for the regular octagon a) and for the asymmetric octagon b). The open circles correspond
to the approximation (33). The full circles represent the theoretical prediction after adding a constant
as discussed in the text. The dashed curve in b) shows the prediction: of random-matrix theory for
the superposition of two independent GOE-spectra.

13

YR | SR N (S SR VOR—— TS G . S S N G

e v



The numerical evaluation of As{L) is shown in figure 6a for the regular octagon (using £ = 18.092)
and in figure 6b for the asymmetric octagon already discussed in section IV (using £ = 11.96242). The
solid curves represent the “true” rigidity computed directly from the quantal energies, while the open
circles are the approximations obtained from eq.(33). The larger values ohtained for Az(L) in case
of the regular octagon in comparison with the asymmetric octagon are caused by the high svmmetry
the regular octagon possesses. Indeed up to E = 200 there are only a few quantal energies which are
not degenerate and thus the spectral staircase N{E) has exceedingly large steps, as seen in figures
2 and 3. On the other hand. the asymmetric octagon has only parity svinmetrv and its spectrum
should therefore hehave as a superposition of two independent GOE-spectra (dashed curve in fig.6h)
according to the random-matrix theory. As expected. the approximation (33} vields for Az{L) values
which lie below the true rigidity. But shifting the open circles in figures 6a and 6b by a constant (1.004
in the case of the regular octagon; 0.385 for the asymmetric octagon). one ohserves that the result
represented by the full circles agrees nicely with the true rigidity for 10 < L < 150 (regular octagon)
and 50 < I < 150 (asymmetric octagon), respectively. For the latter system one gets agreement with
the true curve within 10% in the full range L > 15. As in the case of the toy model. the approximation
fails in a region near L = 0, which is caused by the fact that the sharp discontinuities in the spectral
staircase are smoothed. For both svstems the rigidity saturates non-universally at a finite value A
for L > 70 in agreement with the semiclassical theory of Berry [28]. Notice, however, that the theory
presented in [28] does not apply directly to the present case, since the two octagons have not been
desymumetrized. There remains the challenge to develop for the systems considered here a theory
which expresses the saturation value A, completely in terms of the periodic orbits. What is required
is a formula analogous to eq.(43) for the constant shift in dependence of the cut—off L.

VII Discussion

In this paper we have discussed several applications of the Selberg trace formula, eq.{3). which has for
the Hadamard-Gutzwiller model considered here exactly the same form as Gutzwiller's semiclassical
periodic-orbit theory [1,2,3]. It is this analogy between Gutzwiller’s and Selberg’s trace formula
which makes the motion on compact Riemann surfaces so interesting and gives these particular chaotic
systems the unique position as prototype models for the study of quantum chaology. We anticipate that
the results of this paper can be easily generalized to analogous semiclassical periodic-orbit formulas
for general chaotic systems.

Starting from the sum rule (6) for the trace of the cosine-modulated heat kernel, we derived in
section TI the explicit formulas (10) and (12) for the classical staircase N(f), which can be consid-
ered in analogy with Riemann’s prime number formulas (16) and (17) as “generalized primne number
formulas” for the “generalized primes” defined by e'». These formulas are interesting. because they
show explicitly the striking duality'which exists between the lengths of the classical periodic orbits
and the quantum mechanical spectrum. From these formulas we were able to derive immediately not
only Huber’s law (22), which plays the role of a “generalized prime number theorem™ in analogy with
the famous prime number theorem (19), but also an explicit formula for the remainder function Q(f}
defined by

N(£) = Ei(f) + Q) . (46)

By approximating Q{{) by the first 200 quantal energies, we obtained for the regular octagon the result
shown in figure 1, which reproduces nicely the main features of the periodic—orbit staircase function
in the short—length limit illustrating explicitly how the fine structure of the classical periodic—orbits is
determined by the quantal energies. This approach. which we have called “inverse quantum chaology™.
can be characterized by the gquestion “Can one hear the periodic orbits of a compact Riemann surface?”
in variation of the famous guestion posed by M. Kac [29].

14



Asymptotically the remainder Q({) is given by (see eq.(24))

el/? 2y cos(pnf — an) :
£/l = — |2 — T 1]+ ... . : 47
QY = — 2 B (47)
Since E, ~ n (pn ~ vn.a, — 5 ) for n — oo according to Weyl's Jaw, there are obviously some

serious questions about convergence here, which we have not discussed in this paper. By analogy with
the Riemann zeta function one would expect that Q(f) behaves as Q({) = O (6(1/2+E)[), since the
Riemann hypothesis is valid for the Selberg zeta function Z(s) defined by the Euler product

z(s) = [] ﬁ (1 et} | Res>1 . (48)
1.} k=1

{Notice that the nontrivial zeros of Z(s) are related to the quantal energies via s,, = 3+ ip,). Tt is not

difficult to ohtain the estimate Q{{) = O (eé‘f). but vet the best result known today is only of the

type Q{{) = O (‘i:a—) with @ = |30} and a = 1 {31). (Here we assume again that there are no small

eigenvalues.) We may add that our numerical results are consistent with Q({) = (%), but this is of
course no proof. ‘

In section III we have studied the periodic—orbit formula (26) for the spectral staircase A°(E).
Although eq.(26) is an exact relation which is valid in the sense of distributions, it is not obvious at all
that this relation can be used for an actual numerical calculation. If the integral term in (26) having
the meaning of a mean spectral staircase given asymptotically by Weyl's law, see eq.(34), is denoted
by A(E). relation (26) is equivalent to the exact formula

N(E) = N(E) + %arg Z (% + ip) ; (49)

where Z (% + ip) means here the analvtic continuation of the Selberg zeta function (48) to the eritical

line Res = 3. Thus our final equatijon (33) for N(E) is essentially an approximate formula for the
phase of the Selberg zeta function on the critical line. It is crucial for this formula te be numerically
meaningful that we have truncated the series over the periodic orbits at the cut—off £ and that we have
found a good estimate for the remainder. see eq.{32). Notice that this remainder involves actually a
“renormalization procedure” which has been carried out in the last step in (28). The numerical results
presented in figure 2 and 3 seem to indicate that the approximation (33) is indeed meaningful. There
arises again the difficult problem to find a good estimate similarly as for the remainder Q(£). If the
last term in eq.(49) is denoted by S(p), our numerical calculations are consistent with §(p} = O(1}),
which is far bevond the best estimate obtained rigorously up to now which gives S(p) = O (1}125)
[30]. (This estimate as well as the estimate for Q{£) was first proved by Selberg around 1950-52 in an
unpublished manuscript, see e.g.[32]. The result for Q({) with a = % was obhtained independently by
Huber {33].) :

The new rule for quantizing chaos proposed in section IV relies on the continuous approximation
(33) to the discontinuous spectral staircase A"(E) which takes positive half-integer values if E is close
to a quantal energy. Thus the zeros of the function (37) should yield good estimates for the quantal
energies. Our numerical evaluations presented in table 1 and figure 4 give strong support to this new
rule. Based on the exact functional equation for the Selberg zeta function we have recently proposed
[21] a different quantization rule *, which defines the quantal energies by the zeros of the function

&(p) := Re {F""ﬁ(‘g) Z ( El?- + z'p) } . (50)

"For related quantization rules see also [22,23,24,25,26],
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The evaluation of Z(s) on the critical line using a truncated Dirichlet series did not provide useful
results for £(p) in the case of the octagons, which could be explained by the fact that the Dirichlet
series was not even conditionally convergent on the critical line. (The quantization condition based
on {50) was, however, very successful in the case of the hyperbola billiard [24] and of Artin’s billiard
[25], where the corresponding Dirichlet series shows a better behaviour.) Thus it appears that the
new rule for quantizing chaos is superior to the quantization condition based on (50) since it works
even in cases where the Dirichlet series for Z(s) diverges on the critical line.

Finally, in section VI we have used the approximation (33) to calculate the spectral rigidity which
is an important measure of the fluctuations of the energy spectrum. The results presented in figure
6a and 6b show the expected saturation for large L. Adding a constant led to 2 good description of
the rigidity in the whole range above L = 15. Extrapolating from the toy model studied in section V
it is obvious that a calculation of the constant would require a resumnmation of the long orbits which
will be studied elsewhere. l

Acknowledgement

We would like to thank the Deutsche Forschungsgemeinschaft for financial support and the HLRZ
at Jiilich for the access to the CRAY Y-MP 832 computer.

References
[1] M. C. Gutzwiller, J. Math. Phys. 8(1967) 1979; 16(1969) 1004; 11(1970} 1791; 12(1971) 343.
[2] M. C.Gutzwiller, “Chaos in Classical and Quantum Mechanics”, Springer, New York (1990).
[3] M. C. Gutzwiller, Phys. Rev. Lett. 45(1980) 150; Physica Scripta T9(1985) 184.
[4] A.Selberg, J.Indian Math. Soc. 20(1956) 47.
[5] N.L.Balazs und A.Voros, Phys. Rep. 143(1986) 109.
[6] R.Aurich and F.Steiner, Physica D32(1988) 451.
(7] R.Aurich and F.Steiner, Physica D39(1989) 169.
[8] R.Aurich and F.Steiner, Physica D43(1990) 155.
'9) H.Huber, Math. Ann 138(1959) 1.
[10] R. Aurich, E. B. Bogomolny and F.Steiner, Physica D48(1991) 91.
[11] R. Aurich, M. Sieber and F. Steiner, Phys. Rev. Lett. 61(1988) 483.

[12] G.H.Hardy and E.M. Wright, “An Introduction to the Theory of Numbers™, 5th Ed., Oxford
Univ. Press, Oxford (1979).

[13] B.Riemann, Monatsber. Konigl. Preuss. Akad. Wiss. Berlin (1859) 671.
[14] H.von Mangoldt, J. Reine und Angew. Math. 114(1895) 255.

(15) J.Hadamard, Bull. Soc. Math. France 24(1896) 199.

[16] C.J.de la Vallée Poussin, Ann. Soc. Sci. Bruxelles 20{1896) 183,

[17] H.Riesel, “Prime Numbers and Computer Methods for Factorization”, Birkhauser, Boston-Basel-
Stuttgart (19853).

16



[18] J.E.Littlewood, C.R. Acad. Sci. Paris 158(1914) 1869.

[19] D. Zagier, Math. Intelligencer, Vol.0 (August 1977) 7.

[20]

f21]

i

22,

23]

[24]

H. Riesel and G. Gohl, Math. Comp. 24{1970) 969.

R. Aurich and F. Steiner, DESY-preprint DESY 91-044 (May 1991),
subinitted to Proc. Roy. Soc. London.

M. V.Berry and J. P. Keating. J. Phys. A23{1990) 4839; J. P. Keating, preprint March (1991).

E.B.Bogomolny, Comm. At. Mol. Phys. 25(1990) 67; Orsay preprint IPNO/TH91.

M. Sieber and F. Steiner, DESY-preprint DESY 91-017 (April 1991),
subinitted to Phvs. Rev. Lett.

C.Matthies and F. Steiner. DESY -preprint DESY 91-024 (April 1991).
submitted to Phys. Rev. Lett,

G. Tanner etal., preprint (1991).

| F.J.Dyson and M.L.Mehta , J.Math.Phyvs. 4(1963) 701.

] M.V.Berryv. Proc. R. Soc. Lond. A400(1985) 229.

M.Kac, Am. Math. Monthly 73. Part II (1966) 1.

D. A.Hejhal., The Selberg trace formula for PSL{2,R}, Vol.I and II. Springer Lecture Notes in
Math. 548(1976) and 1001 (1983).

| P.X. Gallagher, cited in: H.Iwaniec, J. Reine Angew.Math. 349(1984) 136.

A. Selberg, Proc.Int. Math. Congr. Stockholm (1962) 177.

H. Huber, Math. Ann. 142(1961) 385; ibid. 143(1961) 463.

17

B e TR GHY S S " S S R Sy S S s G e S N A = = S S A e e

PP



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

