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Abstract

The interaction of a scalar quantum field with gravity is investigated in the semiclas-
sical context where the space-time is treated classically. It is essentially understood as a
self-interaction of the quantum field , mediated by its own states. The relevant states here
are not arbitrary but are selected by the principle of equivalence which is incorporated in
form of specific nonlinear constraint equations. The quantum field is then subjected to a
state dependent {nonlinear) field equation. Concluding, we comment on some problems
concerninig the consistency of the scheme employed.



1 Introduction

Since Hawking’s orginal discovery of black hole radiation a great deal of work has been
done on the foundation of "the semiclassical model of selfconsistent dynamics” describing
the interaction of linear quantum fields with gravity. The general framework adopted in
this model may be indicated as follows: One starts by considering a quantum field obeying a
linear covariant dynamical equation and the standard commutation relations on a fixed global
space-time, the latter understood classically in the sense of the general theory of relativity.
The central assumption is that the back reaction of the quantum field to gravity can be
described in a selfconsistent manner via the Einstein-equations coupled to the renormalized
expectation value of the energy momentum tensor operator of the quantum field in some
appropriately chosen state, viz.

G_u_y: —K < 1141; Zren. - (1)

In its underlying structure this model originates, of course, from striving for a semiclassical
approach to quantum gravity. But, for this purpose its basic assumptions have turned out
to be very restrictive. Looking, for example, at the technical side there 1s a complete lack
of success in dealing with the problem of how to define the right hand side of (1). Indeed,
despite several attemps, e.g. [1]-[10], no truly satisfactory procedure for renormalization of
< T, > has been developed. 7

At the present time there is a feeling around that the conventional approach based on this
model is not even consistent to serve as a basis for a semiclassical quantum gravity. But
outside that model no attempts at a formulation of a selfconsistent semiclassical scheme have
been made.

It may be, of course, that the incorporation of gravity into the quantum field theory could be
accomplished only at the level of the fully quantized theory of gravity. At present one radical
school of thought shares this conviction and maintains that the principles of the semiclassi-
cal quantum gravity ultimately will not define a theory. There are, however, other aspects.
Nobody knows today the principles of the fully quantized theory of gravity. Granted this
ignorance the semiclassical approach remains the natural one towards the incorporation of
gravity into the quantum field theory.

In any case, there is the desire to understand the inherent objective weaknesses of the con-
ventional semiclassical approach. Concerning this task we have to take seriously the many
conceptual difficulties surrounding the nature of its underlying assumptions. The history of
science teaches us that such an investigation may help to establish the guiding line along
which the future theory should be formulated. In this context it is important to realize,
first, that the conventional framework indicated is based on the inadmissible notion of a ngid
global background metric.This introduces, of course, necessarily a nonlocal element in the
theory and degenerates the characteristic feature of general theory of relativity, in which the
space-time becomes a dynamical object and all physical laws are strict local. Conceptually
this feature of general theory of relativity must be preserved in any theory incorporating
the gravitational interaction. In order to have an example of the kind of the difficulty one
encounters consider the problem of the general covariance. It is obvious that the notion of
a rigid global background metric implies the existence of a priori causal relations between
observables of different space-time regions. On the other hand, since the group of all local
diffeomorphisms does not leave the causal relations unchanged, so the latter should not be a
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priori given if the former 1s regarded as the symmetry group.

Another unsatisfactory aspect of the conventional frame concerns the nature of the dynamical
laws. It i1s by no means clear that a model based on linear covariant dynamical equations for
the quantum field could fit into the essentially nonlinear gravitational interaction. On the
contrary, we expect that the incorporation of gravity into the quantum field theory can only
be provided by a nonlinear theory.

Our main goal in the present paper i1s to investigate how we can improve our understanding
of the conceptual frame of the semiclassical approach to quantum gravity. We shall study
in particular how the semiclassical theory can be formulated without referring to any rigid
global background metric. In arriving at dynamical laws our guiding principle will be the
principle of equivalence. We demonstrate a possibility of incorporating that principle into
the quantum field theory.

Our discussion will be mainly based on the algebraic approach to generally covariant quantum
field theory, presented by Fredenhagen and Haag [11'. in which the principle of locality is
advanced in its most stringent form as employed by Einstein in the formulation of the general
theory of relativity. Their work seems to clarify considerably the question of how the general
covariance and the strict locality can be incorporated into the quantum field theory.

To begin with let us quickly sketch the algebraic framework which we shall adopt.

At the most basic level we consider a four dimensional manifold M, not vet equipped with a
metric, and associate to each open set O C M an involutive algebra A(O). The selfadjoint
elements of A{() are interpreted as observation procedures which are pure descriptions of
laboratory measurements in (0. There should not be any a prion relations between procedu-
res associated with different space-time reglons with other words the algebra A = |J.A(O)
has to be flexable.

This interpretation allows us to implement the principle of the general covariance by consi-
dering the group of all local diffeomorphisms of the manifold as acting by antomorphisms on
A, 1.e. each local diffeomorphism y is represented by an automorphism o, of A such that

a\(A(Q)) = A(x(O)). (2)

In the construction of the algebra of observables from the algebra of procedures the concept of
“physical state” emerges. Any physical state w corresponds to some positive linear functional
on A and generates via the GNS-construction a representation 7, of A by an operator algebra
m a Hilbert space H,,. Once the representation m, is given, one can select a family of related
states on 4 (the so called folium of w). namely those represented by vectors and density
matrices of ‘H,.
Having specified a physical state w on .4, one can consider in each subalgebra A{Q) the
equivalence relation '

A~ B, = Ww(A-B)y=0Vuw'c F,. {3)

Here F,, denotes the folium of the state w. The set of such equivalence relations generates a
two sided ideal 7(O) in A(Q). The construction of the algebra of observables A, ((?) from
the algebra of procedures is then accomplished by taking the quotient

Aas(O) = A(O)/ T{O). (4)

This standpoint in the treatment of local observables is essential for our approach to semn-
calssical quantum gravity. Clearly, in this setting the emphasis in the specification of the
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physical laws, i.e. the relations between local observables, is placed on the characterization
of the admissible folia of physical states. If there are superselection rules there exist several
folia (sectors) of physical states on A which correspond to different unitary inequivalent re-
presentations of A. '
To approach the problem of specification of the admissible folia of physical states we shall
make the basic assumption that the relevant states (and the associated folia) are everywhere
primary (the von Neumann algebras resulting from the GNS-representation of such states
have only trivial center for a sufhiciently small neighbourhood of a point). Each primary
folium of local physical states provides us with a realization of the principle of local defini-
teness in the sense of the work [12], where a fixed gravitational background was assumed.
The characteristic change here is that, unlike the situation in that work, for each sufficiently
small neighbourhood of a point there will be now different primary folia of local states. This
fact can be understood on the basis of our interpretation of the local algebras as the algebras
of procedures.
Our main objective is, first. the question of how to specify the primary folia of local physical
states.
We can formulate now one general criterion selecting the primary folia of physical interest.
Let us comment first on the physical background. The axioms of quantum field theory in
Minkowski space exclude the existence of observables at a single point. In that theory, due
to the exact Lorentz-invariance, the observables in space like complement of a single point
generates the total algebra. It is not hard to see that this statement ignores the existence of
the Planck length, I, = (kx/c)'/? 21072 cm (& is the gravitational constant), as the smallst
possible length scale that can even in principle be measured by experiments. In reality the
above statement need not hold in the gravitational case. The best we can do is to require the
validity of that statement in the Minkowskian limit x — 0 where the Planck length tends to
zero. Therefore in the hmit x — 0 the algebra .4,,,(0) has to move into the commutant of
the total algebra as (O contracts to a single point. Thinking in terms of states this requires
that, if we ignore the Planck regime, two states in the same primary folium should become
indistinguishable in a sufficiently small neighbourhood of a point. Clearly, this statement
converts the ignorance of the Planck regime into the requirement of a common leading short
distance singularity (ultraviolet tail) of different states in the same primary folium. The full
significance of the primary folia exhibiting this property will become evident in the light of
our considerations in this work.
The required features of the local algebras are incorporated in a simple model, the so called
tensor algebra over the space of scalar test functions on the space-time manifold. The mono-
mials of the local algebra A(Q) in this model are smooth functions f : M x .. x M - C
with support in O. The algebraic product is the tensor product of functions:

f{ﬂ)xq(m) = h‘n-’—m) ) h(n+m)(p17 ey Prtm) = f(n)(pla «+1 Pn )g(m)(pn+11 -or Pt ). (5)
The involution is the complex conjugation together with the inversion of the sequence of
argunients. A diffeomorphism sending the point p to xp acts as the automorphism a, on A

!One should note, however. that the whole information about the physical laws contained in the algebra
of observables can bhe expressed by direct specification of the two sided ideals in the algebra of procedures as
well. This second alternative is widely used in the traditional treatments of quantum field theory. But for
the treatment of gravity in quantum field theory it appears as inevitable to convert the physical laws into
appropriate malhematical constraints on states rather than observables.
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according to
(x NP1y ) = F 1y -0 X 1 B0)- (6)

A state w on A(O) is given by a hierarchy of distributions (the n-point functions) w{® ¢
DO % .. x @). w™(f™) is the expectation value of the monomials f1™) in the state w. In
the present work we shall take this model as the kinematical model for the local algebras of a
scalar field. It must be emphasized that this intepretation departs from the similar Borchers
interpretation of the ordinary Wightman field theory, [13], in an essential feature. We do not
admit, namely, any a priori relations between observables. In order to work with the more
fanmiliar notion of a covariant”quantum field ¢” we shall write for the degree 1 elements of the
algebra ¢(f!)) instead of f*). Heuristically we may pass from ¢( ") in each chart = p(p)
to ¢(x) according to

#(f0) = [ d'eola)fVa). (7)

Correspondingly we may pass from U (f) to W™ (xq, .., 2,), where W™ (&, ... &, ) is re-
ferred to as the n-point function of the state. ‘

Depending on the specific theory in mind we also need concern ourselves in the following with
the hierarchy of truncated n-point functions, W}N), in terms of which the hierarchy W) is
obtained by standard formulas.

The formalism described so far does not initially include any notion of space-time geometry.
Therefore the central problem i1s how one can transform it in a semiclassical theory. We
address ourselves now to this problem.

2 The local structure of physical states

The concept of space-time metric is naturally tied to the subjective ignorance of the Planck
regime. On the other hand, as was already indicated, that ignorance requires a common
leading short distance singularity of different states in the same primary folium. This raises
the question of whether we can in some sense combine these two aspects.

In this section we want to exhibit the precise correspondence between the space-time metric
and the local structure of states in one primary folium. So we shall, first, ignore the Planck
regiine and consider its effect later.

On general grounds we expect that the two point function plays the domunant role in the
theory. Specifically, the space-timme metric should be encoded basically in the local structure
of that function. Therefore, in this work our attention will be focused on the specification of
the local structure of the two point function, leaving the specification of higher functions to
future work.

Let us now consider a "sufficiently small” contractible neighbourhood @, of a point p € M
and a primary folium, denoted by Fp,. of local states on A{O,). We set in some chart
v ={z"} = o(p)

dor = SUpzico, ‘I{"’u — ﬂ‘ml .

For a given state w € Fp, we shall assume that there exists at least one smooth scalar function
F®:0,x 0, = R, so that B! = F”](m.a")ﬂ'}”(r,m’) 15 bounded as a function of ' 1n
O, and the limit

Ir) = lim  suppeco, FCH e YW ('), (8)

dor —0
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exists and is nonvanishing. Here W,}z) is the truncated two point function of the state w. For
practical reasons the quantity arising from the above limit is assumed to be dimensionless®.
One might think of the function F? as describing the structure of the leading short distance
singularity of the two point function of the state involved. Since the structure of this sin-
gularity should be common for all states in the same primary folium?® in what follows the
function F(®) is taken to be universal, i.e. independent on the individual states. Concerning
the specification of that function we shall assume that the limit
lim do suppreo, | F(z,2')]
do,—0
exists and is nonvanishing. Expanding now the function F{?(z,z') in the coordinate differen-

ces {¥ = 2’ — x#, the above condition asserts that the leading term in this expansion must
be of second order, viz.

th)(r'-ﬂ:,) = gu(T)E4E" + ... (9)
The dimensionless quantity g,,(z) that arises from this expansion transforms like a tensor
and is determined by the above assumption up to a conformal factor (note that & does

not transform in general like a vector). In view of this fact one is led to conclude that the
macroscopic metric g,,.(z) is obtained from g,.(z) by a conformal transformation, viz.

guw(®) = X7} (2) (). (10)

This timportant observation may be regarded as the quantum version of the classical result
that the knowledge of the null cone at each point of the space-time enables one to measure
the metric at this point up to a conformal factor, see [14]. We can use this analogy further to
give the function F®(z, ') an intrinsic geometrical meaning by requiring that the equation
F(z,2") = 0 define the null cone at point z. Therefore by this requirement F*)(z,z’)
can be identified up to the conformal factor 27*(z) with the square of the geodesic distance
o(z,r') between the points r and z', viz.

oz, z') = Q Yz)F Pz, 2"). (11)

We may determine the conformal factor in the last equation by normalizing ||7{?|| in (8) to
one which results in F(®)(z,z') coinciding with o(z,z').

Having introduced the notion of local macroscopic metric, we now take on the problem of
writing down an expansion determining the local structure of the two point function of the
state considered. At this point there are several ways to proceed. The most convenient way
consists in applying the techniques of covariant Taylor expansion, developed in [15] and [2].
We shall base our analysis on an expansion for the symmetric part of the truncated two point
function I’Vg}; of the form '

W}?};(m,m'} = o M1 + a,o™ 4 ay0te” + L), (12)

Here a,,,a,,, .. are (smooth) tensors at point z and the semicolon denotes covariant derivatives
with respect to the symmetric affine connection defined by the metric.

#We shall adopt in our discussion the natural units in which ¢ = h = 1. Accordingly the field ¢ will have
the dimension of an inverse length.

®In the notation of the work [11] this statement corresponds to the well established fact that the scaling limit
coincides for all states in one primary folium.
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It should be noted that this is not to say that such an expansion could not include additional
singular terms which respect the norm condition (8). For example we could allow W}g(w, z')
to involve an additional logarithmic singularity, such as in the case of Hadamard expansion.
But, in that expansion the logarithmic singularity occurs because the equations governing
the dynamics of the quantum field are supposed to be linear. As already mentioned in
the introduction we are not satisfied with this idea. Generally there is no real justification
for regarding such additional singularities as fundamental. We therefore adopt the view that
additional singularities are not present. It is quite likely that at some future time we may have
the occasion for improving the expansion (12), e.g. by a return to an additional singularity.
But at this stage we must adhere to the prinéiple of simplicity. In this sense the expansion
is the simplest thing that one can write.

Another point is that in general there would be states in one primary folium whose behaviour
do differ from that given by (12). We assert to have in (12) only a condition singling out
the subclass of "smooth states”. These are such that the amount of the energy momentum
dencity produced by them is finit. This point will be illustrated in section 5.

Now, for a reason which is apparant from mathematics we shall refer to the expansion (12),
when terminated at some order, as the jet class associated with this order. For example the
jet class of order two is determined by -the tensors a, and a,,,. This terminology will help us
to avoid confusion.

One important point should be noted about the expansion (12). In reality we must always
confine ourselves in (12} to a separation of the points  and 2’ of scales greater than Planck
length, as we are dealing with semiclassical quantum gravity. Further, we must always avoid
the possibility that the separation of the points z and z' becomes too large, as we have in
(12) a local expansion. In actual situations there would be always a domain of many order
of magnitude on which the expansion (12) can be valid.

Thus, if we want to develop the theory with the expansion (12) that part of the (symmetric)
truncated two point function which corresponds to a separation of the points z and z' of
scales comparable with the Planck length remains unspecified, Basically, one is dealing here
with a lack of determinacy. There are, however, important indications that the theory should
become finite at scales below the Planck length. Once this assumption is made the Planck
length would act as natural cut-off in the semiclassical theory and hence wherever we use the
expansion (12) to make some calculations the end results must be replaced by their average
value over the Planck regime as ' -+ z. In this way one gets a theory in which no singularity
occurs. _ '

We shall adopt this point of view in our discussion. It will be used in the form that the
average of 67! over the Planck regime gets replaced by the inverse value of the gravitational
constant, k~'. We then have in the theory a sort of a general principle which asserts that
the effect of gravity should always be included in the local structure of states. We shall refer
to this principle as Planck structure hypothesis. This hypothesis reduces the occurence of
singularities to a peculiarity of the Minkowskian hmit x — 0.

The discussion so far has led to a semiclassical interpretation of the theory, i.e. disregarding
the Planck-regime, the local macroscopic geometry arises as a common intrinsic property of
a primary folium of local physicél states. The next central question concerns the physical
significance of jet classes and the problem of their specification. At this stage we need the
notion of dynamical laws in order to proceed.
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3 The local laws

The problem of specifying the jet classes in the present context is closely related to what one
calls in the conventional approach the problem of renormalization of the energy momentum
tensor operator. First we note that if we wish to have a theory based on differential equations
the actual construction of the jet classes must be subjected to a certain "maximal set” of
differential equations relating them to the macroscopic geometry defined by the primary
folium employed. There is an objective criterion telling us what kind of equations one should
incorporate in a semiclassical theory. Indeed, following the intuitive idea that the admissible
physical states should carry a finite inertial and gravitational mass the equations employed
have to provide us with a realization of the principle of equivalence (equality of inertial
and gravitational mass). Thus the problem becomes one of how to convert this idea into
appropriate mathematical constraint equations on states.

As a first concrete step towards this goal let us assume that among all local observables of a
bounded region O there is a specified observable, called @), whose expectation value vanishes
in each "smooth” state belonging to a primary folium Fp of local physical states, viz.

<Q>,=0,VweF,. (13)

where F,, denotes the class of smooth states as a subset of Fp. One may think of Q as
being for each state sensitive to a deviation of the inertial mass from the gravitational mass.
Viewed in this way the condition (13) is an essential constraint to which the relevant states
must be subjected. Therefore we shall try to present the theory directly in terms of some
postulates about Q.

In the present work we are primarely concerned with only one feature of @, its scaling
behaviour at a point p € M. On the heuristic level we shall assume here that as O contracts
to a single point p the scaling behaviour of @ is controlled in each chart z = p(p) by a
symimnetric tensor operator @, (z). Heuristically we may then replace the equation (13) by
the following equations at a single point

Now, as we are dealing with the principle of equivalence we would expect that the operator
Q. 1nvolves the field operator ¢ in a nonlinear manner.

It should be emphasized that the condition (14) need not hold for all states in one primary
folium. Rather, we would expect that there are local states for which the right hand side
of (14) differes from zero, leading to a state dependent residual quantity. But, it is quite
reasonable to think of such states as either describing irreversible processes, the residual
quantity corresponding to the local entropy production. or not being at all "well behaved”.
In this sense we shall interprete (14) as a condition characterizing "the local equilibrium
states”?. '

It should be clearly understood that the behaviour of the ¢-field established by (14) does not
happen in the ordinary Minkowski-theories. It is an entirely new feature emerging in theories
including the gravitational interaction. Therefore we are led to formulate a correspondence
principle. According to this principle the physical effect of the equations (14) should disappear

"To explain the extent to which the equations (14) are the defining characteristic of local equilibrium, and
to esablish their structural connection with some local stability group remains to be explored.
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in the nongravitational limit x — 0 where the space-time metric should become globally
the Minkowski metric. We may establish this fact by requiring that the expectation value
< Qo >, 1n every state of one primary folium should satisfies the asymptotic condition

2 Qe uS KT (15)

where G, is the Einstein tensor corresponding to the macroscopic metric defined by the
folium of local states considered. This ensures, indeed, that in the limit &k — 0 the rquirement
(14) 1s no longer a constraint on the states but is reduced to the identity G, = 0, as already
satisfied in the Minkowski-theories.

We may also expect here a close relationship between the equations (14) and the semiclassical
Einstein equations. In the next section we shall establish this relationship in more specific
terms. Notice now that by (15) the whole of @, must have the dimension of a length to the
power -4,

To construct @,,. in terms of the field operator ¢ we may start from the statement that the
equations (14), as local equilibrium condition, need not hold for an arbitrary field cofiguration
but only for fields which satisfy the dynamical laws. Thus the question arises of how to
supplement them by a field equation. Here we are, of course, greatly hampered by the
absence of a natural approach. But, tentatively, we may write the field equation in the form

Cé+ ko Q. = 0. (16)

where O is the invariant d’Alemberian depending on the local primary folium emploved.
Notice now that as a consequence of (15} and (16) in the nongravitational limit x — 0 the
theory becomes one of a scalar massless field propagating in Minkowski space-tine.

In view of (16) we would expect now that the operator @, involves the derivatives of the
field ¢ up to first order (otherwise we would obtain certain pathologies}. Further, because of
complete homogeneity of space-time under equilibrium condition we would expect that Q.
can not explicitly contain the field operator ¢ and hence must be expressible only in terms
of derivatives of ¢.

The simplest candidat for @, incorporating all the expected features will be

Q;w - qu‘bw- . (1?)

The hypothesis that we want to advance is that the nescessary dynamucal informations for
the semiclassical quantum gravity situation are always contained in the equations (14), (18}
and (17).

4 The Einstein equations

In this section we study more closely the kind of restrictions which the constraint equations
(14) impose upon the structure of jet classes. Before entering into the discussion we want to
collect some technical facts. First, in the standard notations of the point separation method,
see (2], the equation (14) may be expressed as®

4 Qu wu=2lim g W (2.2') = 0. (18)

o=z

®In the following expression a symmetrization with respect to the indices y and v musi be done so that Q.
becomes symmetric. For simplicity we shall make the symmetrization only at the end.
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Here W_E(;z), is the symmetric part of two point function of w, and gzl 1s the bivector of the
parallel transport (here and in what follows the unprimed indices refer to tensors in tangent
space at z while the primed indices refer to tensor in tangent space at z').

An important feature of this equation is that it restricts only the structure of the jet class
of order four. We refer for the discussion of the analogous situation in the frame of the
conventional approach to the publications [2],{3], where atiention was directed to the problem
of renormalizing the energy momentum tensor operator and singularities arising from the
Hadamard expansion of the two point function.

Now, let us write down explicitly the expansion that would determine the local stucture of
the symmetric part of the truncated two point function, W}?';, corresponding to the jet class
of order four

W'g(«_zg-(x,r') = —6 071+ a,0™ + a0t e” +

a‘""éawawgé + auvéﬁ_.ff:uff:ug:‘sgﬂ) (19)

which is similar to (12) °. The requirement of symmetry determines the tensors a, and a
to

b

a, =0 (20)

1
a,uvé = -;ayu;é' (21)

The simple proof may be found by looking at the symmetric covariant Taylor series, see [10].
We are now prepared to give the calculational results concerning the local behaviour of the
expectation value < @,, >,. Using the expansion (19) and the formula (18) we find after
collecting terms in like powers of &

< Q;_w S =< " >3uarh'c 4o Qm/ >qwuad'raﬁc 4o pr ;_S (22)
where
< Quu >E,-m”hc: —12}?:110'?2(“20_]a:u0‘:v - g;w) (23)
< Qu > = —12lim {07 (~2aqg0 0 0, ) +
1
-2 o i
o [(ERWIM@ + guuaad)g “ ("’3 -+

H H -1
20,,0%, + 2a,,0"0,] — 20

“uv} (24)

< Qu >0= W’:L”T’V:(V” — 12 im {0 "% 20,835,000 0V 0,0,) +

r'—ir
_aqp 1 T 1 o
a 2[(4_0R,_mu;3;6~, + %RayﬁRﬂ‘vv -+ [T BTN + éRuuvﬁaéw )J'QJ'B(J"(HJ"‘ +
(_';'(IQARA Bub T+ Gagsy + 40,085 )o_:ao,:ﬁo_:éo_w +

1 ) o B
(gﬂ‘AaR gue + 4ayaps)0 000 ] +

a_](—24a“""5 o 30-,.“)0;;3 - 3a'puﬁ;a)a;aa;ﬁ}. (

2
ot

SFor technical reasons we have separated off the factor -6. _
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Here is W) the one point function. In writing the above expressions we have supressed
direction-dependent terms involving odd powers of o'®, since such terms may be eliminated
by averaging over a separation of the point z in the ¢** direction and one in the —¢*® direction.
There remains still a difficulty concerning direction-dependent terms involving even powers
of . To get rid of direction-dependence of such terms, that is, in order for < @, >, to
be a true tensor at point z, one has to average over all directions using a suitable measure.
Following the work of Adler,Lieberman,Ng [3] in what follows we use the elementary averaging
procedure which consists in making the replacements

oot 1crg b

u

o ohato 0 29™9" + 979" + g7 ¢")

1
T 0"60'60' N 5_0_3{9.#11(9&!395’]’_1_9069)5’?+go"yg.56)
999" + ¢"°¢"" + ¢ ¢™)
gp.,@(guagﬁ'y + gué a’y+gu'y ab)
g (gyagﬁ7+guﬁ ary _|_ gV') BO‘)
¢

9" (""" + 9%¢%* + ¢"g"")}. (26)

In consequence of this averaging the term < Q,, >%°""¢ vanishes identically. For the second
term in (22) we find

< Qu >T = _ lim 67 (R, — 8au + 29,.0,°%)- (27)

zl—ax

Notice here that < Q,, >™%% inyolves the tensor a,, through the trace less expression
—8a,, + 20,0,

Now, according to our Planck structure hypothesis, stated in section 3, we have to replace
the expression (27) by

< qu >$uadratic: —K-_l(R,Lw _ 8ﬂ,_,w + nguflaa)- (28)

Turning now to the evaluation of the last term in (22) we find after averaging

< Qu >o=WIWD 47, + H, (29)
where
' T = 196 a,un A 36g,.a," )‘A {30)
and
1
Huv - O(DR“,+R :E+RHAUE;E;J\) -
T

Tao B *Ree® + R R E 4+ R oueRELY) -

1
30 R + 2R, pvaa™™) +
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(a_u)\R}m uy + aa)«RAVua + a'uARAP) -

(aAa RA& [ +'a')aRA‘_wa + a'),uRly) +

Why Wi

A A A A
+2ap).R aua — 4((1va a,ua + aaAR yy& + a'aAR “ uv) -

2(0,*)\,,,;“ + 2a,, A;u) + 18a,.; )‘;P. (31)

Now putting all these results together and lbgbng back at (18) we find

< Qu 2o= —K (R — 8au, + 2g,a7) + WHWD 4
+H,, + 7., =0. (32)

We may use at this point the correspondence principle (15) to obtain

1
G,HU = ER‘_W- (33)

This determines the jet class of order two. Consequently, the equations (32) take the form *

G = —£Suy{w} (34)

 where
Swdw = WIWN + B + 7. (35)

In (34) we have a set of 10 equations to which the actual construction of the allowed jet class
of order four has to be subjected. These equations relate the one- and the two point function
and correspond to the standard form of the semiclassical Einstein equations, the quantum
source of the gravity being S, {w}.

Let us now look at the tensor 7,,. We immediately see a connection between that tensor and
the amount of energy momentum contained in local part of the two point function. Actually,
the tensor 7, is the basic dynamical variable occuring in the theory and one should always
imagmme different states in one primary folium to differ in the behaviour of 7,,.. Only in this
way we get a theory which is basically in accord with the standard ideas of general relativity.
Now, from the standpoint of Cauchy-problem the equations (34) alone do not provide a
deterrmnate mathematical problem. We need, namely, a equation by which the quantum
source of gravity can be computed independently. This gap is now filled by taking into account
the field equation (16). Indeed, using the point separation method we may derive from (16)
the following equations that would determine the one point function and the symmetric part
of the two point function

ODWU(z) = -2 x lim lim ¢ WO (2,2’ 2") (36)

= " —a! !
DW{Z) N — _.4 ' li 1i a” {4) ;0" wo_nr ~
s (z,z") £ lim Lim g% W . % (z,,2", ", z'). (37)

where WE) respectively W% is the three point function (symmetrized in 2’ and z") respecti-
vely the four point function (symmetrized in each of the pair of points z,z' and 2", 2").
There is just a technical problem if we try to treat the Cauchy problem, because of the term

Tin the following the round around the indices denotes the symmetric part of a tensor
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H,, in (35). That term involves, namely, the fourth order derivatives of the metric and terms
which are quadratic in curvature. -

Now, if we adhere to the idea that the constraint equations (19) correspond to local statisti-
cal equilibrium, the effect of H,. might appear as small in comparison with other terms in
(34) and hence one could put the theory in a more sensible form by neglecting that tensor.
But, one can not get a reasonable mterpretation of equations by adopting this picture. It
is, namely, quite likely that the tensor H,,, even if it is small, would lead to inappropriate
stability properties of solutions.

Fortunately, there is one further possibility. It may be, of course, that H,, could be compen-
sated entirely by a corresponding counter term in the expression of 7,,. But before one moves
to this topic much care is needed to the local structure of higher functions of the states.

5 Conclusion ant Outlook

We hope to have demonstrated a new possibility of thinking about semiclassical quantum
gravity. Let us summarize once again the basic steps.

Starting from the principle of equivalence we have attributed the corresponding nonlinear
constraint equations (14) to quantum gravitation. The basic input here was the assumption
that the relevant local states belong to one primary folium exhibiting a specific universal short
distance structure. The latter property was essential in introducing the notion of macros-
copic space-time metric. This acts as a superselection quantity seperating different folia of
local states. To answer the question which folium of local states is actually realized we have
to solve the nonlinear field equation (16) together with the constraint equations (14), (17)
subject to appropriate boundary conditions. In this sense different folia of local states are
connected by dynamical laws.

The nature of the dynamics in this scenario is, however, at this stage of development obscure,
e. g. 1t 1s still not clear whether the Cauchy development respects the local structure of the
truncated two point function assumed in (19), on which the results of this work are based.
But, to this problem some understanding of the local behaviour of the higher functions seems
to be an essential prerequisite. We feel confidence that a rigorous justification of this scenario
can be given . -

Concerning the thermodynamic aspects of the theory there is the problem of a deeper un-
derestanding of constraint equations which we have called condition of local equilibrium.
There must also be some change'introduced into these equations in order to include the effect
of local entropy production.

The other important question remains to be answered concerns the relation of our approach
to a "Lagrangian” and its corresponding energy momentum tensor. From the conceptual
point of view it is, of course, entirely open whether investigations in quantum gravity should
follow the orthodox picture of Lagrangian formalism. Here we merely note that it is perhaps
possible that the basic nature of the macroscopic metric to be essentially a state dependent
quantity limits the effectiveness of such a picture.

In conclusion, let us point out that we have concentrated in this paper on the broed line of
the development of a "possible theory”, rather thar on any attemps at a rigorous justification
of our assumptions. It is our belief that a rigorous formulation of & theory along the line
suggested will have a beneficial effect upon our understanding of quantum gravity.
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