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ABSTRACT: In 1679, Leibniz wrote nine manuscripts on three different arithmetical models of Aristotelian lo-
gic. This was a part of his project of a “calculus universalis”. First we show the precise relations of  these three models
to  each other by presenting three criteria which serve the purpose of classifiying models of Aristotelian logic. This fa-
cilitates the understanding of Leibniz’  constructions. Our method is of special value for the sophisticated third model,
the domain of which consists of pairs of natural numbers. We present a simple approach to Leibniz’  definitions which
on first sight appear complicated. We show that it is possible to deduce, from the “universal positive” relation  a ( =
“All ...”), the other three “Aristotelian relations” i, o, and e. – It has always been difficult to understand the exact nature
of Leibniz’  characteristic numbers because of his misleading nomenclature, since he utilized the signs + and – in order
to designate the “positive” and “negative” part of a characteristic number pair.  We  present a new interpretation of
Leibniz’  symbolism, showing that the number pairs should be interpreted as numerator and denominator of a rational
number. Thus we can identify the last model as the natural extension of the first and second one, showing the continu-
ity in Leibniz’  different attempts towards an arithmetization of logic. – We close our paper by discussing two well
known problematic aspects of Leibniz’  characteristic numbers, formulating two open questions concerning the formal
structure of the system.

ZUSAMMENFASSUNG: Im Rahmen seines Projektes eines „calculus universalis“ entwarf Leibniz Anfang 1679
in neun Texten drei unterschiedliche Modelle der aristotelischen Logik mit Hilfe von Zahlen. Durch diese von ihm er-
fundenen „charakteristischen Zahlen“ wollte Leibniz die Schlussweisen der aristotelischen  Logik auf rein  arithme-
tische Rechnungen reduzieren. In der vorliegenden Arbeit zeigen wir genau, wie die drei Modelle untereinander zu-
sammenhängen bzw. aufeinander aufbauen. Zu diesem Zweck geben wir drei Kriterien an, mit Hilfe derer sich Modelle
der aristotelischen Logik klassifizieren lassen. Zum einen können wir dadurch die Leibnizschen Definitionen leicht
nachvollziehen sowie auch die Stärken und Schwächen der einzelnen Modelle präzise beschreiben. Besonders für das
ausgefeilte  letzte Modell,  dessen Grundbereich aus Paaren natürlicher Zahlen besteht,  liefert  unsere Methode einen
ganz natürlichen  Zugang  zu den Leibnizschen  Definitionen,  die im Original  recht  sperrig  wirken.  Wir zeigen ins-
besondere – was Leibniz nicht herausgestellt hat - , dass allein aus der universell- positiven alle anderen drei „aristo-
telischen Relationen“ herleitbar sind. Ein Grund für manche Schwierigkeiten mit dem Verständnis der Leibnizschen
charakteristischen Zahlen ist die von ihm verwendete Nomenklatur. Der problematischen Schreibweise mit Vorzeichen
+ und - , die in der Vergangenheit manchen Kommentator auf die falsche Fährte gelockt hat, geben wir eine neue Deu-
tung: Dadurch entpuppt sich das letzte Modell als ganz natürliche Erweiterung des vorangehenden vom Grundbereich
der  natürlichen  in  den  Bereich  der  positiven  rationalen  Zahlen.  – Mit  der  vorliegenden  Arbeit  hoffen  wir,  der
Verwendung  charakteristischer  Zahlen  als  theoretisches  Instrument  für die  Untersuchung  der  aristotelischen  Logik
einen neuen Impuls geben zu können. Deshalb diskutieren wir am Schluss der Arbeit noch die aus der Literatur be-
kannten Stärken und  Schwächen des Leibnizschen Modells und formulieren zwei offene Fragen zu diesem Komplex.
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1. Introduction

In a small number of unpublished manuscripts1 from the spring of the year 1679, Leibniz
invented a new method of arithmetization of Aristotelian logic. These texts belong to his gi-
gantic project of a calculus universalis, which he described as follows:

If one could find characters or signs, apt to express all our thoughts as purely and clearly as
arithmetic expresses numbers or analytic geometry expresses lines, one could perform in all
subject matters, as far as they are liable to rational thought, what can be done in arithmetic and
geometry. 2

In order to establish a general calculus one has to find characters for arbitrary terms, by which,
once they have been connected, the truth of the sentences composed by these expressions can be
realized. I found that numbers are the most convenient characters. They are easy to work with
and adapt themselves to all subjects, furthermore, they provide certainty. 3 

This quotation reveals that Leibniz is the progenitor of some of the main fantasies of our
computer age! But this is not the subject here. Instead we will rather examine a particular meth-
od which Leibniz invented hoping that it would give him the key to replacing rational reasoning
by algorithms based on numbers.

In the context of his arithmetization of Aristotelian logic, Leibniz employs an  intensional
approach4 which means that his characteristic numbers stand for terms, denoting concepts (and
not for sets of individuals, as in extensional logics). He considers the following types of propos-
itions (propositiones) between terms (we are going to use Leibniz’ notation5):

U.A. propositio Universalis Affirmativa, („All x are y“, Axy)

P.A. propositio Particularis Affirmativa, („Some x are y“, Ixy)

P.N. propositio Particularis Negativa, („Some x are not y“, Oxy)

U.N. propositio Universalis Negativa, (“No x are y”, Exy).

Leibniz is interested in the construction of a concrete model of Aristotelian logic which
consists of numbers. These numbers, belonging to a fixed domain, are substitutes of the abstract
terminal symbols x, y, .... .On this domain, four concrete arithmetical relations a, i, o, and e will
assume the role of the logical symbols A, I, O, and I of Aristotelian logic, respectively6.

The main question is: Which domain of numbers – together with which quadruple of rela-
tions – qualifies as a model for Aristotelian logic? After answering this question in Section 2, we
shall be able to understand and classify Leibniz’  different systems of characteristic numbers in
Section 3

In his nine manuscripts on the subject of characteristic numbers, Leibniz does not deliver a
recipe for the construction of suitable models but simply presents three which differ with respect
to the underlying domain of numbers and the definition of the “Aristotelian relations”.

1 Leibniz: „Sämtliche Schriften und Briefe“, Akademie- Ausgabe, 6.  Reihe, 4. Band, Teil A, Berlin 1999, which we
shall quote as A. The important manuscripts on the subject of the present paper are N. 56 to N. 64. We will also refer to
the following translations: FS (N. 56 -  N. 61, N. 63), P (N. 57, N. 63)  and AG (N.  60, N. 62 and N.  64).
2 A, N. 1, „La vraie methode“, p. 6; FS, p.90.
3 A, N. 59, p. 217; FS, p. 203.
4 For a detailed discussion of the intensional and extensional aspects of Leibniz’  logic see Kauppi 1960. Leibniz him-
self made some unequivocal remarks that he designed his characteristic numbers in the framework of an intensional
interpretation of Aristotelian logic. In other parts of his works on logic he uses extensional concepts as well.
5 The four different propositiones correspond to the Aristotelian predications which are classically denoted by A, I, O,
and E.
6 The relevancy of the notation A / a, I / i, O / o, and E / e  will be made clear in Section 2.
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Thus, within his first two models, he utilizes the domain of natural numbers, and he chooses
the usual relation of divisibility as interpretation of the U.A.-  propositio:

U.A.: Si Propositio Universalis Affirmativa est vera, necesse
est ut numerus subjecti dividi possit exacte seu sine residuo,
per numerum praedicati.7

The idea of this definition is that the relation of divisibility between numbers mirrors the re-
lation between  genus and  species8: Genus (the  predicate of a proposition) corresponds to the
part, while species ( the subject) corresponds to the whole. Accordingly, to the “higher” concept
there belongs the smaller number which divides the larger number corresponding to the “lower”
concept (the whole) 9. Here we recognise clearly that Leibniz was aiming at a pure intensional
calculus!

The remaining three  propositiones are also reduced to the divisibility relation – we shall
specify this in Section 3. 

In order to illustrate his idea, Leibniz, in his first paper on this subject10, presents the fol-
lowing example:

Exempli causa, si fingeretur terminus animalis exprimi per nu-
merum aliquem 2 (vel generalis a) terminus rationalis per numer-
um 3 ( vel generalis r ) terminus hominus exprimetur per numerum
2⋅3, id est 6, seu productum ex multiplicatis in vicem 2 et 3
( vel generalius per numerum a⋅r ).11

The first two models which we shall denote by A1 and A2 respectively, have as underlying
domain the set of natural numbers12; they differ in their respective definitions of the P.A. – and
U.N.-  propositiones.  Leibniz’  third and last  model (often called  the model of  characteristic
numbers) will be denoted by  Model B in this paper. Its underlying domain is a certain set of
pairs of numbers13.

In this way we will obtain a first rough classification of the three number models by means
of the type of the underlying number domain. However, there is a finer classification by funda-
mental properties of the four “Aristotelian relations”. We shall present three criteria to be ful-
filled by the relations  a, i, o, and  e  in order to qualify as Aristotelian relations. These criteria
mirror the following three well known properties of classical Aristotelian logic:

Criterion 1: validity of the central classical syllogism, Barbara.

Criterion 2 : formalization of Aritotle’s method of reasoning by ecthesis.

Criterion 3: contradiction, a main part of the square of oppositions.

7 A, N. 56, S. 182. „It is necessary for the universal positive proposition to be true, that the subject number can be di-
vided exactly without remainder by the predicate number“.
8 A, N. 57, p. 199 –200.
9 „... ita ut generis notio sit pars, speciei notio sit totum, componitur enim ex
genere et differentia.“ (A, N. 57, 11, p. 199).
10 N 56, 17,  p. 182.
11 „If, for example, we assume that the item ‚animal’  is expressed by means of the number 2 (or, in general, by a), and
the item ‚rational’  by means of the number 3 ( or, in general, by r), then ‚man’  is expressed by 2⋅3, i.e. 6, as the result
of the product of 2 by 3 ( or, in general, by the number a⋅r)“. 
12 Here we do not include zero in the set of natural numbers. 
13 In Section 3 we shall see that we could as well say: The underlying domain of model B consists of the set of all ra-
tional numbers. As neither Leibniz nor any of his later commentators was aware of or mentioned this observation, we
continue to talk about number pairs. Later we shall elucidate the connection of Leibniz’  Model B with the set of ra-
tional numbers. 
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We will  also discuss another  method of  justification  of  these three criteria,  referring to
modern  model  theory  of  Aristotelian  logic14.  This  is  not  surprising,  because  Leibniz’
manuscripts deal with quite concrete models of Aristotelian logic, and it is just model theory
which allows us to examine the relation between models (semantics) and syntax of a logical
theory. In Section 2, we will show that the three criteria mentioned above are quite natural as-
sumptions in the framwork of model theory15.

Both approaches to Leibniz’  system lead to the same classification scheme16  which we re-
sume in Table 1:

Table 1

This table does not show which of the three criteria is not satisfied in Model A1, neither
does it reveal why Leibniz enhanced Model A2 in spite of its compliance to all criteria. In Sec-
tion 3 we will see that though A2 is formally qualified as a model of Aristotelian logic it is not
comprehensive enough to be of any practical use.

By means of  this paper we aim to disclose the exact  formal structure of Leibniz’  three
number models and also to elucidate the precise relation of these models to each other17. We
shall see that A1 and A2 differ fundamentally in that only A2 complies with the “canonical”
property of ecthesis which links the universal positive (a) to the particular positive proposition i.

Aristotle employs  εκθεσις (ecthesis) as a method of proof  for some syllogisms (Baroco,
Bocardo18) as well as for the proof of  the e -  conversion19. One can also use ecthesis as an al-
ternative to a proof by  reductio ad absurdum in certain formal reconstructions of Aristotelian
logic20.

14 This modern theory of Aristotelian logic by means of systems of natural deduction – not being based on predicate
calculus -  was founded by Corcoran, 1973 and, independently, by Smiley, 1973.  
15 There exist alternatives to our way of proceeding, in particular with respect to our emphasis on ecthesis  (e.g.
Lukasiewicz ,1951). But it is not our aim to discuss all possible kinds of formalization  of Aristotelian logic, but just to
develop a special set of instruments for the purpose of understanding and classifying  Leibniz’  research on character-
istic numbers.
16 Readers who are not interested in modern model theory may skip the somewhat formal Section 2 without missing a
central point of our classification and interpretation of Leibniz’  number models. 
17 At first sight N. 61 seems to contain an additional „transitional model“ of type A2/B, where Leibniz took the  U.A.-
and P.A. propositiones from Model A2, and the remaining propositiones from Model B. However, this is not possible
by pure formal reasons, as the basic number domains of A2 and B are different (cf. Table 1). The whole matter is clari-
fied by commentaries in the Akademie edition, p. 228 and p. 233.
18 An. Pr. 30a6- 14.
19 „Now, if A belongs to none of the Bs, then neither will B belong to any of the As. For if it does belong to some (for
instance to C), it will not be true that A belongs to none of the Bs, since C is one of the Bs.” (An. Pr. 25a15- 19; transl.
by R. Smith, 1989). Here C denotes the term constructed by exposition (ecthesis) which appears neither in the premises
nor in the conclusion of the proposition.  – Since its invention by Aristotle, this method led to considerable confusion
which arose mainly regarding the question of „ontological status“ of the „exposed“ term C: Does C denote an indi-
vidual or a concept? Meanwhile, there are diverse proper formalizations  of this method (cf. Smith, 1982). – Burkhardt,
1980 writes: „Die Ekthese als Beweis eines Syllogismus findet sich bei Leibniz nicht (Ecthesis as means of proof for
syllogisms cannot be found in Leibniz’  works)“. But we shall see that Leibniz explicitly refers to ecthesis in his con-
struction of  the P.A. propositio, even he does not mention the name of the method.
20 Robin Smith, 1982.

Name
of model

Reference to
Leibniz’ papers

Basic number
domain

Criteria
satisfied?

A1 N. 56 natural numbers no
A2 N. 57, 58, 59 natural numbers yes
B N. 60 -  64 pairs of natural

numbers
yes
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In Model A2, the  a – relation and the  i – relation are connected via ecthesis (contrary to
Modell A1). Therefore A2 fulfills all conditions of a model in the sense of modern model theory
of Aristotelian logic21; we will present the details in Section 2.

Concerning model B we will show that Criteria 1 to 3 imply that only one of the four pro-
positiones, the U.A.-  propositio, can be chosen independently whilst the others are subordin-
ated. This is of some advantage, as the U.A. – proposition, representing exactly Leibniz’  idea of
employing divisibility, is the simplest one22.

 We shall also attempt to make clear that Leibniz’  notation +s-σ for his number pairs in
model B is not a good choice as it induces misleading associations with pairs of positive and
negative numbers. In opposition to that we will show in Section 4 that the correct way of inter-
pretating the characteristic numbers of model B is to regard them as positive rational numbers
s/σ. 

It is well known that Leibniz ceased to work on the subject of characteristic numbers after
having written the manuscript A, N. 64.  As far as I know, he did not give reasons for abandon-
ing this project. Whereas it has sometimes been said that the system is faulty23, we know on the
contrary, since the work of Lukasiewicz24,  that model B is, in a certain sense, even perfect: It is
a model in which exactly25 the syllogistic deductions of classical Aristotelian logic hold true.

Thus there exist no internal formal errors which are responsible for Leibniz’  abandoning of
his efforts on the project of characteristic numbers26. But there is evidence that Leibniz, trying to
incorporate negative concepts into his formalism reached a point of research where, as we shall
see, there was no chance for him to succeed. We also show that, in his last lines concerning this
subject, he may even have got muddled by his own plus- minus- notation, struggling hard with a
task which he could not resolve within his system. This may indeed have been the reason for his
abrupt stop in working on the characteristic numbers – we don’t  know. In the last part of our
paper we formulate an open question regarding this point of including “negative concepts” into
the system of characteristic numbers.

Finally, we will point to an important open problem in the context of the theory of charac-
teristic numbers: Leibniz never attacked the question of how to assign numbers to terms. While
he presented some very small examples, he did not even mention the fact that one would need
an algorithm for the computation of  characteristic numbers in order to realize his dream of re-
placing thinking by computing. We will  formulate this basic problem hoping to stimulate fur-
ther research on this subject of the “Gödelization of Aristotelian logic”!

In the following Section 2 we give a short introduction into the basics of model theory ap-
plied to Aristotelian logic. Its purpose is to show why just the three criteria presented above are
the important ones for any model of Aristotelian logic. The reader who is not interested in ab-
stract  model theory may skip the whole section without risk of not understanding the other parts
of the present paper.

21 Leibniz described A1 as his first model but abandoned it in favour of A2 from N.57 on without further comment.
22 It is easy to see that within Model B the definition of the  U.A. – propositio generates the definition of the P.N. –
propositio by negation. In the same manner the definitions of the P.A. – propositio and the U.N. – propositio are re-
lated to each other. This choice of Leibniz conforms to the classical approach (c.f. our Criterion 3). However, our ob-
servation that one can even derive the P.A.- propositio (i) from the definition of the U.A.- propositio (a) is new.
23 This view is due to Couturat, 1903 and since then has cut the surface from time to time. Thiel, 1980, correctly poin-
ted out that this view is unfounded; cf. Henrich, 2002, concerning the history of reception of Leibniz’  characteristic
numbers.
24 Lukasiewicz, 1951.
25 The complicated part is to prove that, within B, there exist no additional valid syllogisms compared to Aristotelian
logic; this is a deep result of Slupecki, a pupil of Lukasiewicz. 
26 Therefore also the work of Sotirov, 1999, leads in the wrong direction: He „corrects“ model A2 with the result that,
in his model, only finitely many numbers are of importance. This was not Leibniz’  aim who constructed only systems
with infinitely many numbers.
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2. Models of Aristotelian logic

We will introduce only those basic facts about modern model theory, invented by Tarski,
which are needed to speak precisely about syntactic and semantic aspects of Aristotelian logic27.
First, one has to distinguish very precisely syntax and semantics as two completely different
layers. In a second step one connects these concepts by suitable maps in order to obtain a com-
pleteness theorem28, thus showing the equivalence of syntactic and semantic reasoning29.

The whole theory of characteristic numbers belongs to the sphere of  semantics of Aris-
totelian logic.  This distinguishes Leibniz’  theory from those earlier theories which are merely
concerned with syntactical matters, as well as from the work of others which, like Aristotle30,
preferred to alternate continuously between syntactical and semantical argumentation31.

With respect to Aristotelian logic, Corcoran32 and, independently, Smiley33 invented a cal-
culus of natural deduction in 1973 and proved a completeness theorem. In continuation of these
works, Martin34 published a very general model theory of Aristotelian logic, presenting a com-
pleteness theorem which corresponds to Gödel’s work on completeness of first order predicate
logic.

Fortunately it is not necessary to step into the subtleties of a special calculus in order to un-
derstand Leibniz’  work35. For our present purpose it is of more importance to  understand the
principal structure of such calculi in order to draw the proper consequences with respect to the
semantic domain of Leibniz constructions.

Any calculus of this type has a fixed set of term constants (non logical constants) x, y, z, ...
as basic objects which, in Aristotelian logic, denote concepts. In addition there are four copula
(logical constants) A, I, O, and E which, together with two terminal symbols, are the compounds
of Aristotelian propositions Axy, Ixy etc. The well formed formulas (wff’s) of Aristotelian logic
are expressions of type  Uvw where v and w stand for term constants, and U is one of the four
copula.

Now a calculus -  such as  the aforementioned one by Martin36 -  contains a certain number
of rules which, starting from a given set ? of  wff’s (propositions), allow to derive new wffs’s.
For example, any such calculus will contain a rule allowing the derivation of the new wff Axz,
given that Axy and Ayz already belong to Σ (Barbara –syllogism of Aristotelian logic37).

27 We treat only the basic ideas and the terminology of model theory, not any theoretical results. This model theoretic
view on Leibniz’  characteristic numbers was used by Thiel, 1980 in order to correct wrong interpretations of Leibniz
logic. Thiel did not explicitly mention model theory but argued from its standpoint.
28 It is well known that in 1929 Gödel proved a completeness theorem for the first order predicate logic.
29 Exactly this split between syntax and semantics is Tarski’s  great achievement. Although there exist alternatives to
Tarski’s  approach, we emphasize that his theoretical framework is particularly well suited for the context of Leibniz’
arithmetical models. 
30 Aristotle seems to have been perfect in mastering the syntax -  semantics – game: „Aristotle is well aware of a dis-
tinction between syntax and semantics, indeed, in a way familiar to Church, Tarski and other modern logicians“ (Boger
1998, p.195).
31 This kind of change of frames is quite normal and formal correct in case that one has a completeness theorem for the
calculus under consideration.
32 Corcoran, 1972.
33 Smiley, 1973.
34 Martin, 1997.
35 There exists different systems of syntax which try to capture Aristotle’s formal logic of the Analytica priora, cf.
Thom, 1981.
36 Martin, 1997.
37 Lukasiewicz was the first to present a sound formalization of Aristotelian logic without reference and in sharp con-
trast to the „modern“ extensional view on Aristotle of the 19th century. His method differed from the one employed by
Corcoran in that he did not regard syllogisms as rules of deductions but as conditional sentences used as axioms of his
theory. -  Today we know that the interpretation of Aristotelian logic as a logic of relations of classes of individuals is
not correct, even if it appears in almost all modern textbooks. In his famous book on Aristotelian logic, Lukasiewicz
tried to convince his readers that this extensional interpretation does not comply with Aristotle’s  aims, but not even a
renowned logician like him succeeded in eliminating the misinterpretation of the early ages of modern logic. It seems
that Leibniz was closer to Aristotelian logic than the protagonists of the modern class-  and predicate – calculus of the
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By A(Σ) we denote the “Aristotelian closure” of  ?:  A(Σ) contains  all those propositions
which one can deduce syntactically from ? by iteratively applying the rules of the given sys-
tem38. 

Concerning semantics, we start with a nonempty set  S, the basic domain (in Leibniz’  two
models of type A, S is the set of natural numbers). There are four two- place relations defined on
S which we will denote by a, i, e, and o. Now it is very important to distinguish these concrete
relations from the symbols A, I, E and O which appear at the syntactical level! This distinction is
a prerequisite for the possibility to argument in terms of models. While the copula are fixed
constituents of the syntactic calculus, a, i, e, and o denote relations on a given set S39. Of course,
these relations will have to possess certain properties relative to Aristotelian logic,  a subject
which we will discuss subsequently.

First we shall see how the relationship between the syntactic and the semantic domain will
be established. The important concept is that of an interpretation: Let there be given a function
R, assigning to each terminal constant x a certain element ?=R(x) of the basic domain S. Each
proposition will get automatically, via this function R, a truth value by means of the following
construction: A proposition  (wff) of type Axy gets the truth value  true or false, depending on
whether the relation a holds true for the elements R(x), R(y)40. Analogously one defines the in-
terpretation of the other propositions Ixy, Oxy, and Exy, employing the relations  i, o and e, re-
spectively. 

Let there be given a set ? of propositions and a basic domain S, together with four concrete
relations a, i, o und e on S. Then (S,R,a,i,o,e) will be called a model of ?, if all propositions of ?
become true by means of the interpretation specified above.41 42

Now we turn to the core problem: Which kind of properties of the relations a, i, o and  e
have to be true in order that S, together with these relations, qualifies as a possible domain for
Aristotelian logic?  That these relation cannot be defined in complete independence of each oth-
er may be seen by the following reasoning:

The explicit aim of model theory is to construct a certain consonance between syntax and
semantics. Now, on the syntactic level, where one constructs the Aristotelian closure A(?)  of  a
set ? of propositions, everything is fixed by the rules of the calculus. These rules, however, do
not enter into the definition of the basic domain S and of the four relations on S. Thus, in order
to make such a consonance of syntax and semantics possible (which, if it holds true, will be ex-
pressed by the completeness theorem), one has to impose certain conditions on the relational
structure which mirror the main properties of the syntactic calculus.

In an important paper from 1997, Martin presented a general framework into which he was
able  to  embed  Corcoran’s  calculus  of  natural  deduction.  Generalising  also  Corcoran’s  se-
mantics, he further showed very convincingly  that the “natural” structure for a semantic domain

19th century. He always emphasized the difference between intensional and extensional logic and used the former ex-
plicitly in the framework of his arithmetical calculus. Couturat as well as Russell, criticising  Leibniz for his utilization
of intensional logic, did not realise that Leibniz had made his choice on this subject deliberately and out of good reas-
ons.
38 For our present purpose these are the sole elements which are needed to understand of the syntax of Aristotelian lo-
gic: the structure of wff’s  representing propositions and the concept of Aristotelian closure A(?) of a given set  ?  of
wff’s  (propositions). We do not go into the details of how a certain calculus enables us to construct the Aristotelian
closure A(?), i.e. the set of all consequences of given propositions ? by means of the rules of Aristotelian logic. Com-
pletely different realisations   have been given by Lukasiewicz (1951), Corcoran (1973), Brillowski (1992). 
39 In order to be quite precise, we should index the relations by the symbol S but we don’t  want to overdo it. From the
mathematical standpoint, two place relations on S are subsets of S×S.
40 The interpretation R(A(x,y)) of the proposition Axy is the truth value of a(R(x),R(y)); we have R(A(x,y))=true if and
only if (R(x),R(y))∈ a.
41 A completeness theorem for a certain calculus is equivalent to the statement that ? and A(?) possess exactly the same
models.
42 An example: Let ?={Axy,Ayz} and S = N (set of natural numbers), where a  denotes the usual order relation on N.
We obtain a model of ? by assigning to x, y, and z the numbers 1, 2, and 3, respectively.
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of Aristotelian logic is a special type of partial ordered set, a so called “meet semi- lattice”43. In
the following, we shall refer his construction, as it  leads to a clear understanding of the se-
mantics of Aristotelian logic, allowing to connect modern formal considerations with classical
results. 

As we just mentioned, Martin considers „order theoretic interpretations“ (in contrast to the
„set theoretic interpretation“ of Corcoran), where S is a partial ordered set and where the given
partial order relation on S is the natural candidate for the a- relation. As any partial order satis-
fies the axiom of transitivity we are now able to state the first criterion to be satisfied for the a –
relation on S:

1. Transitivity:  a has to be a transitive relation; i.e., given  ?,  ?,  ? in  S such
that a(?, ?) as well as a(?, ?) hold true, then it follows that a(?, ? ) is also
valid44.

The transitivity of the relation  a  guarantees that  the central syllogism of Aristotelian logic,
Barbara, has its correlating counterpart in semantics45.

The second criterion refers to the “particularly positive” relation i:

2. Ecthesis46:  a and  i are linked by the following property: For any two ele-
ments ?, ? of S the relation i(?,?) holds if and only if there exists a further
element ? such that a(?,?) as well as a(?,?) holds true47.

The third condition refers to the connection of the relations o and e to a and i,  respectively:
In the calculus of Corcoran / Martin, o is defined as the negation of a, and e is the negation of i:

3. Contradiction:    For every  λ, µ ∈ S : 

o(λ,µ)  if and only if  not a(λ,µ);   e(λ,µ)  if and only if  not i(λ,µ).

We emphasise that the partial order  a is the central relation which allows us to define the
other three Aristotelian relations. i is uniquely defined by condition 2, and then o and e are de-
termined by means of condition 3 by a and i, respectively48.

In the following section we will check which of the three criteria are fulfilled for Leibniz’
models. One of our results will be that Criteria 1 and 3 will be satisfied in all cases. Therefore
we shall focus on Criterion 2, ecthesis, which will help us to create a precise classification of all
models.

43 A meet semilattice is a partial ordered set with a meet operator ∧ , where x ∧ y denotes the infimum of x and y. Mar-
tin requires S to be a partial ordered set with a smallest element, denoted by 0. In order to adjust our setting to Martin’s
formal requirements, we have to define an „artificial“ smallest element.
44 For our classification of Leibniz’  models we need only the transitivity of the partial order relation, not the other de-
fining properties, reflexivity and antisymmetry. Corcoran as well as Martin do not use reflexivity, because there is no
evidence that Aristotle employed tautologies of type a(? ?,) . – One may enforce antisymmetry (a(?,?) and  a(?, ?)  to-
gether imply ?=? ) by constructing suitable equivalence classes of elements of S. This will guarantee that there are no
“loop” with the genus – species – relation.
45 At first sight it seems astonishing that Barbara is the only syllogism to be introduced explicitly into the axiomatics
of the semantic domain – all the more as one can prove that, in such a partial ordered domain, all syllogistic conclu-
sions are valid! However, in the present paper we refrain from going into the details of syllogistic theory in order not to
inflate it. 
46 Cf. Footnote 20, concerning the role of ecthesis in Aristotelian logic. In Section 3 we shall elucidate the role of ec-
thesis in Leibniz’  arithmetical logic. 

47 This connection between a and i  corresponds to Martin’s definition as follows: The proposition Ixy obtains the
value “true” in a model domain, if and only if R(x) ∧ R(y) ≠ 0. Here λ∧µ denotes the greatest lower bound of λ and µ,
i.e. the element in which λ und µ «meet  below» (in the sense of the partial order); λ∧µ≠0 signifies that there exists a
ξ≠0 such that ξ≤λ and ξ≤µ, which corresponds exactly to our Criterion 2.-  Lorenzen, 1995, expressed this connection
between a and i  very elegantly in the form of the equation i=aâ; here â  is converse to a:  â(η,ϕ):=a(ϕ,η).

48 This corresponds to Kant’s  view that the whole logic of Aristotle is based on the principle nota notae est
nota rei ipsius; repugnans rei ipsi  (Kant, Logic: §63).
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3. Two models of type A

Leibniz’  first two models A1 and A2 ( cf. Table 1) belong to one group, because they are
both based on the domain of natural numbers. This is in contrast to the third and final model B
where Leibniz employed the idea of using pairs of numbers. In this respect, both models of type
A are relatively simple, and are therefore suitable for demonstrating Leibniz’  principal aims.
But the major reason for going into the details of type A – models is our observation, the details
of which we will discuss in Section 4, that the “perfect” but more complicated model B is an
extension of A2. This observation saves us some troublesome calculations which would be ne-
cessary without a general theory putting the final model into a continuity with the preceding
simpler models49.

The first model, A1, appears at the beginning of Leibniz’  first paper on characteristic num-
bers50. Then,  from the following paper on, Leibniz replaces his definition of the i-  proposition
in A1 without indicating any motive for this change. This leads to the second model, A2. – We
will now examine A1 as well as A2.

Leibniz basic idea was to assign to each “simple” concept a prime number and to each
“composed” concept the product of prime numbers.51. This idea leads directly to his definition of
the „U.A. propositio“ to which we referred in the Introduction. Written in formal terms:

U.A.  propositio (Definition  of  relation  a):   Let  s  and  p denote  positive  integers.  Then
(s,p) ∈ a   if and only if  p s52.

Instead of “(s,p) ∈ a “ we will write a(s,p), keeping in mind that the expression a(s,p) has
the value “true” or “false” depending on whether p divides s or not. -  The divisibility relation is
well known to be transitive: if m divides p and p divides s, then m divides s. This implies that –
for A1 as well as for A2 – the first Criterion of Section 2 (transitivity) applies to both models.
As Leibniz’  always took care that Criterion 3 was met by all his models53, the decisive test will
be Criterion 2.

In the following we present the two different definitions which Leibniz gave for the “P.A.
propositio” (i-  relation) in A1 and A2, respectively.

Model A1. Definition54 of relation i1: i1(λ,µ) holds, if and only if  λ divides µ or µ divides λ.

Model A2. Definition55 of relation  i2: i2(λ,µ) holds if and only if there are numbers  n, m
such that n⋅λ = m⋅µ.

49 The somewhat technical features of Leibniz’  definitions which, without theoretical framework, look a bit complic-
ated,  may be responsible for the fact that, after Lukasiewicz and his pupil Slupecki, no one dealt with the formal as-
pects of the system of characteristic numbers on a general level.
50 N. 56 p. 182 / 183 and p. 187.
51 There exists clues (cf. Kauppi, 1960), that Leibniz’  intended to restrict his number domain to the subset of so called
squarefree numbers in which every prime factor appears only once (f.i., 18=2⋅3⋅3 is not squarefree because the prime
factor 3 appears twice). As this distinction is of no relevancy for our present intentions, we will not employ this re-
striction of squarefreeness.-  This remark applies also to the final model B discussed in the next section. 
52 p s denotes the fact that p is an integer divisor of s (i.e., p divides s without remainder).
53 This is quite natural if one takes into account the classical „square of oppositions“ which includes the contradictions
a/o and i/e. 
54 “Si  propositio  Particularis  Affirmativa  est  vera,  sufficit  ut  vel  numerus
praedicati exacte dividi possit per numerum subjecti, vel numerus subjecti per
numerum  praedicati.”  (N.  56,  p.  183)  and “Sit  propositio  particularis  affirmativa
quodd. A est H (vel qu. H est A), ergo vel H/A aequ. r vel A/H aequ. t fiet H
aequ. rA vel A aequ. tH.“ N. 56, p. 184 (12).
55 “P.A. Qu. A est H, ergo rA aequ. vH”. N. 59, p. 220.
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These two definitions do indeed lead to different results: i1(3,5) does not hold true while i2

(3,5) does (just choose n=5, m=3). i2 is an extension of i1 as from the validity of i1(λ,µ) we can
deduce the validity of i2(λ,µ) (choosing n=1 or m=1), but not vice versa.

The important observation is that  i2 conforms to Criterion 2: If there exist numbers  n, m
such that n⋅λ = m⋅µ, then it suffices to define ξ = n⋅λ (= m⋅µ) which gives us the number sought
in the formulation of Criterion 2 (ecthesis). Reversely, let there exist an “ecthesis  number” ξ.
By definition of a we have ξ λ as well as  ξ µ. Hence, there exist numbers n , m such that λ =
n⋅ξ and µ= m⋅ξ. By multiplying the first of these equations by m and the second by n, the equa-
tion n λ = m⋅µ, requested in the definition of i2, follows.

As i2 satisfies Criterion 2 this cannot be the case for i1 , because  i is uniquely determined by
Criterion 2 by the basic relation a.

Exactly this connection between the U.A.-  and the P.A. propositio is the reason why Leib-
niz replaced the Model A1 with A2:

 Sed in propositione  affirmativa particulari non es necesse ut
praedicatum in subjecto per se et absolute spectato insit, seu
ut notio subjecti per se praedicati notionem contineat, sed suf-
ficit  praedicatum  in  aliqua  specie  subjecti  contineri  seu
notionem  alicujus  exempli  seu  speciei  subjecti  continere
notionem praedicati; licet qualisnam ea species sit, non exprim-
atur.56

Later, in connection with the „Propositio particularis affirmativa“ he writes:

 Sin  species  subjecti  praedicatum  continet  ut  partem,
praedicatum  erit  genus  speciei  subjecti  per  art.  11.  Itaque
praedicatum et subjectum erunt duo genera ejusdem speciei.57

and at the end of his three manuscripts on model A2, in N. 59, p. 200 he presents the precise
definition of the P.A. Propositio which we gave above.

Let us sum up: Leibniz tried to realize his idea of using natural numbers for modelling Ar-
istotelian logic by means of two different models, A1 and A2 respectively. Both models comply
with Criterion 1 (transitivity of a) and Criterion 3 (definition of o and e in contradiction to a and
i). The models differ in that A1 does not fulfill Criterion 2 (ecthesis), and Leibniz constructed
A2 deliberately in such a manner that relation  i (propositio particularis affirmativa) satisfies the
condition of ecthesis, Criterion 2.

Now that we have told the good news about Model A2, which, from a theoretical point of
view, has all the features that are required to model Aristotelian logic, we have to explain why
A2 is nevertheless useless:

By construction of the propositio particularis affirmativa  i2,  it follows immediately that for
any two arbitrary chosen numbers λ and µ, i2(λ,µ) holds true -  choose simply n = µ and m = λ!
This is a clear disadvantage of the model, all the more because there is a consequence of this
fact for the propositio universalis negativa (i.e., the e- relation) which is due to the definition of
e as negation of i (Criterion 3): There are no numbers φ, γ  at all for which  e(φ,γ) holds true58. It
is clear that such a model is useless for the purpose of modelling Aristotelian logic, and we un-

56 N. 57, 18, p. 203: “It is not necessary that in the particular positive proposition the predicate is per se and absolute in
the subject, but it suffices that the predicate is contained in any species of the subject or that the notion of any example
or a species of the subject contains the predicate.”Cf. also FS, p. 188/189.
57 N. 57, 20, p. 204: But if a species of the subject contains the predicate as a part, then the predicate will be the genus
of the species of the subject ... . Therefore, the predicate and the subject will be two genera of the same species. Cf.
also FS, p. 190.
58 This has already been mentioned by Couturat, 1903; cf. Kauppi , 1960.
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derstand that Leibniz searched for more sophisticated, „richer“ models. This will be the subject
of the next section.

4. Characteristic number pairs

What are the possibilities of constructing a “better” model? If  one adheres to the basic do-
main of natural numbers and to the definition of the U.A. propositio by divisibility, as well as to
the fulfilment of the three aforementioned criteria, then there exists  no model exept for A259.
The only remaining possibility is to enlarge the basic domain of the characteristic numbers.
Thus one may hope to obtain a “richer” model, retaining all the positive properties of A2. This
is the idea Leibniz pursued successfully.

Today we are well aware that there are two different standard possibilities of extending the
realm of natural numbers. One may embed these numbers 

-  into the set of integers (positive and negative numbers) or

-  into the set of positive rational numbers.

The basic method is identical in both cases: One constructs a new domain by introducing
pairs of natural numbers, whereas the difference lies in the kind of operation  one is focussed
on: addition or multiplication. If the aim is to construct a domain where addition will be fully
invertable, the solution is to enlarge the basic domain by negative numbers, thus arriving at the
set of integers. If one aims at the possibility of unrestricted inversion of multiplication, then the
construction will lead to rational numbers60. 

At first Leibniz speculated on amending the simple Model A2 by employing negative num-
bers, but he quickly rejected this idea.  What he finally worked out was the second possibility,
but he did not mention that his construction of characteristic numbers is connected to rational
numbers, inasmuch as he used a notation which obscures this idea61 for his readers if not for
himself.

4.1 Negative numbers

Leibniz’  experiment with negative numbers62 is connected to an interesting logical  aspect,
namely, to Leibniz’  hope to be able to model „negative concepts using negative numbers: If the
positive number m corresponds  to the concept „man“, then one would like to have –m to denote
„non- man“63. If such a construction were possible without contradiction, this would at once lead
to an alternative for the definition of the critical e – proposition of model A2: In this case one
could, as in classical logic, define

e(λ,µ): = a(λ, - µ),

a possibility which Leibniz was aware of64.  But he rejected this on account of the following
consideration: Let a term, having the characteristic number m, be composed of two other terms

59 Because Criteria 2 and 3, a defines  i, o and e uniquely.
60 From a mathematical standpoint both cases are examples of the construction of a group out of a semigroup without
divisors of zero.  In the first case the semigroup is the set of natural numbers (zero included) with addition,  in the
second case it is the set of non- zero natural numbers with multiplication. 
61 With the wisdom of hindsight it is easy to conjecture that the second possibility is the most promising one, because
in A2 the basic relation a  is defined by properties of multiplication/division, not of addition/negation. 
62 N. 59, p. 220, 10.
63 Aristoteles did not use such negative terms, but later this construction belonged to the basic canon of classical logic.
64N. 58, p. 215, 16: “Nullum cuprum est aurum, id est non quoddam cuprum est aurum, os-
tendamus ergo tantum hanc propositionem falsam esse quoddam cuprum est aurum.
Item nullum est aurum. Ergo omne cuprum est non aurum.“
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with negative numbers  - λ and - µ, i.e.  m=(- λ)⋅(- µ). This would immediately imply m= λ⋅µ,
meaning that m is also composed of  λ and µ  -  which does not make sense!  Another point65

(not mentioned by Leibniz) is the fact that the basic law of contraposition of classical logic
would not be valid: The obviously true proposition  a(6,2) would, by contraposition, imply  a
(- 2,- 6) which is false, because –6 does not divide –2!

Thus Leibniz was right in not using negative numbers for his models. It may, however, be
that his experiments led him directly to his final Model B66 which we are going to discuss in the
following.

4.2  Rational numbers

Leibniz introduced the notation

+s - σ

for pairs of positive integers s,  σ. This notation is problematic because, in Leibniz’  theory of
characteristic numbers, the tokens + as well as –  never have the function of indicating a signed
(positive or negative) number in the sense of mathematics! These  „Notae67“ fulfill the sole pur-
pose of  fixing the order of the two parts of an ordered pair of numbers. Today we would simply
write 

(s,σ).

Certainly, Leibniz’  notation is not wrong and it may be used unscrupulously as long as one
is always aware of the fact that   +s - σ  is just another way of denoting a pair of numbers. But it
must be admitted that the notation did cause some misunderstandings, concealing  the formal
structure of Leibniz’ ideas68.

One of Leibniz’ few examples is the following:

sapiens: +20 –21 = +s - σ

pius: +10  - 3 = +p - π

Neither in this example nor in any other did Leibniz give any clue how to calculate the
characteristic numbers69. He took them for granted  and assumed that they possess the following
property70: Only those “apt” (lt.  apti) pairs are allowed, where s and  σ are relative prime, i.e.
where these numbers do not possess a proper common divisor. This definition gives us the clue
that these „apt“ number pairs may be looked upon as rational numbers:

Each apt pair of numbers corresponds to exactly one rational number if one associates s/σ
with (s,σ). But the reverse of this proposition is also true: Given a rational number as a quotient

65  We mention this fact because later on we are going to argue with respect to B, accordingly.
66 Leibniz’  remarks concerning negative numbers appear at the end of  N. 59, the last manuscript in which models of
type A are discussed. 
67 “Si qua offeratur propositio, tunc pro quolibet ejus Termino, subjecto scilicet
vel praedicato, scribantur numeri duo, unus affectus Nota, +, seu plus, alter
Nota, -, seu minus.” N. 63, p. 243. 
68 Lukasiewicz is one of the few scholars who employed Leibniz’  characteristic numbers for his own research into the
depths of Aristotelian logic. He had a totally correct understanding of the significance of the „Notae“ + and –, which
may be inferred from the fact that he ignored them completely. This fact  motivated Marshall in 1977 to comment
Lukasiewicz’  work as follows: „The interpretation that Lukasiewicz gives is not Leibniz’  but a slightly modified vari-
ant. He drops the requirement that one of the numbers assigned by a term is negative.“ This remark in Marshall, 1977,
Footnote on p. 239, shows that the author of those lines did in fact misapprehend Leibniz’  idea.
69 We will return to this point in our final Section 5.
70 ‚Cavendum tantum ut duo numeri ejusdem Termini nullum habeant communem diviso-
rum, nam si verbi gratia numeri pro sapiente essent +6-9, qui ambo dividi pos-
sunt per 3, nullo modo essent apti.’ N. 62, p. 237, 6.
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r/ρ, one cancels  common factors of the denominator and the numerator (which does not alter
the rational number), until in the final representation s/σ there are no common factors left.  Then
(s,σ) is an apt pair of numbers, being independent of the initial representation of the given ra-
tional number71.

While it is  possible to interpret the characteristic numbers of Model B in this manner as
positive rational numbers, there is, of course, no absolute necessity to do so. It will depend on
the special task at hand, whether one will really use this interpretation. If one had to choose
between one of the following notations: 

+s- σ,

(s,σ), and

s/σ

One would possibly use the first one for historical purposes, the second one in the context of
philosophical logic and the last one   in connection with theoretical investigations regarding the
system of characteristic numbers. In this paper we will use all three notions in the appropriate
context.

It is astonishing that Leibniz did not, to my knowledge, give an interpretation of his pairs of
numbers as positive rational numbers. He came, however, very close to it: In N. 58, before con-
structing the number pairs, he experimented with quotients of terms, where the numerator de-
notes terms which are not contained in a another term: 

Given any fraction w/s, it can be said that w/s is the negation of any species of this s or a num-
ber divisible by s or of zs, or that it is the same as ‘no s’. 72

This sounds like a preparation for the introduction of a calculus where concepts are represented
by rational numbers. However, Leibniz did not accomplish this last step. He resumed the basic
idea of “term division” at different places of his work, but it is difficult to understand why he
did not relate his important achievement, his system of pairs of characteristic numbers of Model
B, to the operation of division and to rational numbers73. 

We now proceed to discuss Leibniz’ interpretation of the four „Aristotelian relations“ which
he defined in his basic domain, the set of  the apt pairs of natural numbers: 

U.A.  a((s,σ), (p,π))  if and only if:    p divides s  and  π  divides σ.

P.A.  i((s,σ), (p,π))   if and only if: s and π  as well as  σ  and p are relatively prime.

It is not necessary to write down the definitions for the negative propositions U.N. (e – rela-
tion) and P.N. (o – relation) because they are just negations of P.A (i – relation) and U.A. (a –
relation)  as required in Criterion 3. But we can say much more on the connection between the
four relations: a and i are connected via Criterion 2 (ecthesis)74! In other words: If one defines
the  a – relation like Leibniz did, then the definition of i follows automatically. Thus the defini-

71 Thus one obtains, f.i., always exactly the same apt number pair +2- 5,  independently whether one starts from 2/5,
4/10, 16/40 or any other representations of the rational number 0.4. Another possibility of expressing this fact is: To
each rational point of the positive semi- axes of the real number line there corresponds a unique apt pair of numbers,
i.e. exactly one of the characteristic numbers of Model B. 
72 „Data quacumque fractione w/s dici potest w/s esse negationem cujuscumque spe-
ciei ipsius s sive numeri per s divisibilis sive ipsius zs seu idem esse quod
nullum s.”  We shall soon see that this can be expressed by the fact that +w- s stands in relation e to  +zs- 1. 
73 In a paper written much later in the context of his work on the algebra of logic he writes: “Thus I uncovered this
secret on which, some years ago, I brooded in vane.” (A, N. 165; FS, p. 285; C, p.386: “Ita arcanum illud de-
texi, cui ante aliquot annos frustra incubueram”.) Then he defines his propositiones as follows:
UA: A=AB; UN: A=A/B; PA: A≠A/B; PN: A≠AB. But he stops at this point and does not try to connect these formulas
with his characteristic numbers.

74 This cannot be realised by just looking at the definitions! We prove this fact in the Appendix of this paper.
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tion of a, together with the Criteria 2 and 3 fixes the whole model uniquely. For sake of lucidity
we are going to summarize these considerations in the following theorem, the proof of which is
banished to the Appendix. 

Theorem 1. Leibniz Model B of Aristotelian logic, based on apt pairs of natural numbers,
fulfills all model criteria: Criterion 1 (transitivity), 2 (ecthesis), and 3 (contradiction). It is the
unique model built on the basic domain which can be constructed using Leibniz’  definition of
the U.A. propositio a.

This implies that any other model must differ from Leibniz’  Model B either by the basic
domain or by the definition of the a – relation. 

Now we are going to clarify the relation of Model B to the simpler Model A2: It is possible
to embed A2 into B or, as one could reformulate this assertion, Model B is an extension of A2.
Concerning the basic domain, this is quite clear, as the set of natural numbers (the domain of
A2) is a subset of the set of rational numbers. The embedding is the usual one: just assign, to
each natural number, the rational number s/1. In terms of number pairs: assign to s the apt pair
(s,1) or, in Leibniz’  notation, the characteristic number +s–175. We have, however, still to prove
that by this assignment all the Aristotelian relations defined on B turn out to be extensions of the
corresponding relations on A2. This is quite clear for the central  a  – relation: If two pairs of
numbers, (s,1) and (p,1) are related by a, then, by definition, p divides s. This is in turn equival-
ent to the fact that s and p are related by a also in Model A276. Now, according to the results on
A2 in Section 3 and by Theorem 1, the other three relations are defined by a and Criteria 2, 3 in
both models correspondingly. This proves the following77

Theorem 2. Model B is the unique extension of Model A2 into the set of rational numbers
provided that a is defined as Leibniz suggested in his U.A propositio.

The „big“ Model B has inherited all the positive properties of the smaller Model A2 (Cri-
teria 1, 2, and 3), and -  in contrast to the smaller model – it is also comprehensive enough78.  Let
us mention that in B all valid syllogisms of classical Aristotelian logic are also true79. In addi-
tion, syllogistic „figures“ which are  not valid in classical theory do not hold true in model B.
This is an important result of Lukasiewicz80.

In view of all this positive result concerning Leibniz’  characteristic numbers, it is not obvi-
ous why Leibniz abandoned his work on his numbers so abruptly after having written his frag-
ment N. 64. Anyhow, it is not true that he stopped working on this matter because he had detec-
ted an error in his considerations81.

However, it may well be that Leibniz was dissatisfied with his construction regarding the
topic  of  term  negation.  There  is  no  doubt  that  he  struggled  with  this  problem  in  his  last
manuscript on the subject, but we may only speculate on whether this led to his capitulation, in
view of the difficulties he encountered. In the last section we will go into the details of this

75 Due to the equation s=s/1, our way of denoting characteristic numbers by quotients of natural numbers is of special
advantage, as the imbedding of A2 into B becomes obvious. 
76 We refrain from using different signs for the U.A. propositio in A2 and B, respectively.
77 There are easy direct proofs for the relations i, e, o, too. Using the definition of Leibniz’  P.A.  propositio,  i( (s,1),
(p,1)) does not restrict s or p in any way (as 1 does not possess proper divisors). But this is just the (problematic) prop-
erty of the i – relation in Model A2: i(s,p) is true for all s and p. Thus, from i( (s,1),(p,1)) in B it follows that i(s,p) in
A2. The corrresponding result for e and o follow by negation.
78 In opposition to A2, there is an infinity of number (s,σ) and (p,π) in B which stand in the e – relation to each other:
this is true for all pairs(s,σ) and (p,π)  for which s and p  or σ and π are not relatively prime, f.i., e((6,35),(11,14)) holds
because 6 and 14 posses the common divisor 2.
79 We will not go into the details of this fact because, in this paper, we want to concentrate on the structure of Leibniz’
model and not on the theory of syllogisms.
80 One could also prove this result by providing a counterexample for each non valid syllogism in the way Thiel, 1980,
did it for the “AOO form of the third figure”.
81 Cf.  Henrich, 2002, who discusses the history of  this wrong view on Leibniz’  motives.
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question, and we will discuss another problem related to the chance of success of his whole am-
bitious program.  

5. Two Open questions

Since its publication at the beginning of the past century, Leibniz’  arithmetic calculus has
been the subject of a few philosophical- historical investigations. However, with the exception
of Lukasiewicz’  detailed study, it has been never used as an instrument of logical research. This
is surprising, because Leibniz’  arithmetic method is, after all, the direct predecessor of Gödel’s
arithmetization of  first order predicate logic. With the following notes we attempt to stimulate
the utilization of characteristic numbers as a tool for further research on in formal logic.

We will describe two problem areas in which open questions arise. Both questions have
already been addressed in relevant literature; our goal is to formulate these problems in a pre-
cisely defined formal way so that their answer can be tackled independently of historical invest-
igations. 

The first question is directly linked to the conclusions of the preceding section. It concerns
the problem of modelling negative terms in the context of model B. Leibniz had already  exper-
imented with term negation in connection with Model A2, and in Section 3 we saw why he
could not succeed within this framework. 

Within the context of the extended model B, Leibniz tried to model term negation as fol-
lows: Let

(s,σ)

or,  in Leibniz notation,  +s- σ,   denote the characteristic number pair of a  certain term (f.i.,
“man”). Then it is tempting to let

(σ,s)

(or,  +σ- s ) denote the „negative“ of the corresponding term, “non- man”.  Unfortunately,  this
simple idea cannot be successful, as one realises by means of the following consideration82. For sake
of formal purposes, let us define a “negation operator” N by

N(s,σ) := (σ,s).

We assume that,  for two characteristic numbers  S=(s,σ) and  P=(p,π) the relation  a(S,P)
holds true. Assuming the validity of the classical Law of Contraposition, this is equivalent to  a
(N(P),N(S)).  Now, a(S,P) is, by definition, equivalent to

p s  and π σ,

whereas a(N(P),N(S)) is equivalent to

σ  π  und s  p.

Of course, these divisibility conditions are not equivalent! Therefore, as even the funda-
mental Law of Contraposition does not hold, this way of modelling term negation fails.

Leibniz seems to have realised this problem83. However, at the end of his investigations on
characteristic numbers he experimented with the negation of terms again. The corresponding
lines in his last manuscript give the impression that he did not have a clear notion of how to
proceed with this subject. He writes84:

82 Cf. Kauppi, 1960, who gives a slightly more complicated argument. 
83 N. 63, p. 249, 9:  “De conversione per contrapositione hic non loquor. Ea enim novum
terminum assumit.” Here Leibniz refers to „negative terms”, which he tries to avoid at this place.
84 N. 64, p. 253.
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Nullus homo est lapis

seu Omnis homo est non lapis.

Sit +h- c  1  - cd

debet h dividi per1, et c dividi per cd.

We interprete this lines as follows: With homo, the characteristic number pair +h –c is as-
sociated, and with non lapis the characteristic number +1- cd. Employing term negation in the
way explained above, to  lapis there belongs the characteristic number  +cd – 1. Now one sees
that Leibniz constructed this example in such a manner that „propositio universalis negativa“
(Nullus homo est lapis) holds. For c is, of course, a proper divisor of cd85. However, „Nullus
homo est lapis“ is logically equivalent to „Omnis homo est non- lapis“ which would, by defini-
tion of the U.A.  propositio, imply that cd divides c – but this is certainly impossible86! The last
line of the manuscript ( „debet .... c dividi per cd“) points very clearly to this contradiction, and
Leibniz did not make any further attempt to attack this problem.

Let us stress again: All this is not a sign of a faulty system but merely indicates a certain
limit of Model B in which the obvious way of coping with term negation does not work. Since,
for Leibniz, term negation has always been an important subject, it is not inconceivable that he
abolished the whole project of characteristic numbers because he could not successfully include
this topic of negative terms into his theory. 

Problem 1.  Is it possible to modify Leibniz’  system of characteristic numbers (Model B) in
s such a way that  term negation can be included87?

The second question we want to raise at the end of this paper concerns an important prac-
tical aspect of Leibniz’  idea. At different passages of his manuscripts, Leibniz quotes very small
examples, assigning numbers or pairs of numbers to terms. However, he never raises the ques-
tion how to perform this assignment in general. Let us illustrate the corresponding problem with
a simple example.

We consider a small number of propositions with four term constants w, x, y, and z: A(x,w),
A(y,x), O(z,x),  and I(z,w). The question is, how to find characteristic number pairs (or, rational
numbers) m, n, p, and q corresponding to the four terms, so that the relations a(n,m), a(p,n),  o
(q,n), and i(q,m) hold? – This example – though larger than all the others which Leibniz and his
commentators have discussed up to now – is nevertheless so small that one can find a solution
just by trial and error. But up to now there is no general method for the task of assigning char-
acteristic numbers to terms.  Therefore we pose

 Problem 2. Is it possible to construct an algorithm which, for any non contradictory set of
propositions, computes a set of corresponding characteristic numbers? 

We do not suggest that Leibniz abandoned his project of characteristic numbers because he
did not know how to compute these numbers88, but we maintain that this is a central problem. A
positive answer to the question would have been a pre- requisite for the success of Leibniz’
whole project. 

85 Which implies that the i – relation does not hold and thus the e – relation is valid.
86 Parts of the same fragment are confused. Leibniz seems to struggle hard;  he even experiments with expressions of
the form - σ+s as well as - σ - s, which do not comply with his formalism of characteristic numbers. Here his own
notation seems to lead him into formally problematic direction. 
87 It seems impossible to achieve this goal by just inventing a new kind of “negation of number pairs” which is differ-
ent from the operator N defined above.
88 There has been a controversial discussion on this subject, cf. Kauppi 1960, Henrich 2002.
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5. Final remarks

The arithmetic calculus belongs to Leibniz’  most important as well as most misunderstood
achievements in the framework of his formal logic. With this paper, we are hoping to stimulate
further  work on this subject.  While it  is of  course indispensable that  philologically oriented
philosophers deal with Leibniz’  manuscripts, it would be a pity if the ideas of this ingenious
formal logician did not also find entrance into the standard literature of formal logic89. Even if it
is clear today that Leibniz grandiose idea of a calculus universalis will never be realisable, the
results  of  Lukasiewicz nevertheless  show clearly  that  the characteristic  numbers  represent a
powerful instrument for the analysis of Aristotelic logic. 

6.  Appendix: Proof of Theorem 1

Theorem 1. Leibniz Model B of Aristotelian logic, based on apt pairs of natural numbers,
fulfills all model criteria: Criterion 1 (transitivity), 2 (ecthesis), and 3 (contradiction). It is the
unique model on the basic domain which can be constructed using Leibniz’  definition of the
U.A.- propositio a.

Proof. We have only to show that Criteria 1, 2, and 3 are fulfilled in Model B. As Criteria 2
and 3 define the relations  i, o und e uniquely by means of relation a, everything will be proved.
Now, Criterion 1 (transitivity) and Criterion 3 (contradiction) are fulfilled for  all models con-
structed by Leibniz, it suffices to deal with Criterion 2 (ecthesis). Here we have to show that,
defining i by ecthesis, we will arrive exactly at  Leibniz’  definition of the „P.A. propositio“, and
vice versa.

 Thus, let us assume that, for any two pairs of characteristic numbers (s,σ) and (p,π),  i is
connected to the fundamental relation a by ecthesis:

i( (s,σ), (p,π) ) if and only if there exists (z,ζ) so that

a( (z,ζ), (s,σ) )  and  a( (z,ζ), (p,π) ).

Here we take for granted that all number pairs are apt i.e., they consist of components which do
not have a proper common divisor.

From a( (z,ζ), (s,σ) ) we deduce the existence of two numbers m, µ such that

z = m s and ζ= µ σ, (*)

and from a( (z,ζ), (p,π) ) there follows the existence of two numbers n, ν with

z = n p and ζ= ν π. (**)

We have to prove, corresponding to the condition in Leibniz’  definition of the  P.A. pro-
positio, that s and π as well as σ and p are relatively prime, respectively. Let us assume to the
contrary that this is not true for s and π90! Then there is a number  q ≥ 2 so that  

89 Even if the objectives of Gödel’s investigations on the arithmetization of first order predicate logic were completely
different, there is a strong relation of Gödel’s and Leibniz’  basic method. Thus one should not speak about the concept
of Gödelization of predicate logic without mentioning the method of Leibnitisation of Aristotelian logic. Incidentally,
Gödel admired Leibniz for his logical work which he knew quite well. 
90 For reasons of symmetry we must only consider this case.
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s = e q and π = d q 91.

Thus, because of the first part of (*),

z = m e q,

and because of the second equation of (**),

ζ = ν d q.

Therefore, in contradiction to the assumption, z und ζ are not relatively prime, i.e. the number
pair (z,ζ) is not apt. This finishes our proof  by contradiction.

Concerning the reverse direction, we start from the definition of  the P.A. propositio (i – re-
lation) and deduce the ecthesis condition appearing in Criterion 2. Let i( (s,σ), (p,π) ) hold true
if and only if s and π as well as σ und p possess no proper common divisors, repectively (Leib-
niz’  definition the P.A. – propositio). We are going to show that this fact implies that, for (s,σ)
and (p,π), the condition of ecthesis (Criterion 2) holds. We shall accomplish this by explicitly
constructing a pair (z,ζ) required in this Criterion as follows:

z = s p    and   ζ = σ π.

By construction, (z, ζ) fulfills  a( (z,ζ), (s,σ) ) and  a( (z,ζ), (p,π) ). Thus it remains to be shown
that (z, ζ) is an apt pair of numbers; i.e. that z and ζ have no proper common divisor. Let us as-
sume to the contrary that d is a prime number dividing z as well as ζ. Then, by definition of z, d
is a divisor of s or p. Let us assume, without restriction of generality, that  d divides s. Now, by
definition, d divides ζ too, i.e. it divides σ or π. But d cannot divide σ because  otherwise s and
σ have a proper  common divisor – which is impossible as (s,  σ) is an  apt pair of numbers.
Therefore, d divides π – in contradiction to the assumption (definition of  the P.A. propositio).
This contradiction proves the assertion.
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