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Abstract

We present a quantitative analysis of Selberg’s trace formula viewed as an exact version of Gut-
zwiller’s periodic—orbit theory for the quantization of classically chaotic systems. Two main applica-
tions of the trace formula are discussed in detail: i) The periodic—orbit sum rules giving a smoothing
of the quantal energy-level density, ii) The Selberg zeta function as a prototype of a dynamical zeta
function defined as an Euler product over the classical periodic orbits and its analytic continuation
across the entropy barrier by means of a Dirichlet series. It is shown how the long periodic orbits can
be effectively taken into account by a universal remainder term which is explicitly given as an integral
over an “orbit-selection function”. Numerical results are presented for two Riemann surfaces which
demonstrate clearly the crucial role played by the long periodic orbits. A general rule for quantiz-
ing chaos is given for such systems where the Dirichlet series representing the Selberg zeta function
converges on the critical line. Explicit formulas are given for the computation of the abscissas of
absolute and conditional convergence, respectively, of these dynamical Dirichlet series. For the two

Riemann surfaces considered, it turns out that one can cross the entropy barrier, but that the critical

line cannot be reached by a convergent Dirichlet series. This seems to be the main reason why the
recently conjectured Riemann-Siegel lookalike formula does not work in the case of these strongly
chaotic systems.
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I Introduction

In this paper we shall discuss two different applications of Gutzwiller’s periodic—orbit theory [1,2]
considered as a semiclassical method to quantize classically chaotic systems for which quantization
conditions like the WKB method fail. (Here only chaotic systems with a discrete energy spectrum are
considered.)

On the one hand, periodic-orbit sum rules [3,4,5,6] are comsidered which allow in principle the
determination of the energy levels of a given quantum mechanical system in terms of the lengths of
the periodic orbits of the classical counterpart. These sumn rules are smoothed versions of Gutzwiller’s
original trace formula [1] for the trace of the resolvent which possesses bad convergence properties {5].
The smoothing replaces the poles of the resolvent at the energy levels by regular maxima, a process
which improves the convergence properties. The positions of the maxima yield then approximations
to the energy levels.

On the other hand, functions like the Selberg zeta function |7,8,9] are considered allowing the
determination of the quantal energies by searching for the non—trivial zeros. The periodic-orbit
theory can be used to express such functions as Euler products over the classical periodic orbits.
However, as in the case of the periodic—orbit sum rules, these expressions are in general not absolutely
convergent in the region where the non-trivial zeros lie, and a careful discussion is needed. Berry
and Keating [10] (see also [11)) have suggested a semiclassical quantization condition based on a
Riemann-Siegel lookalike formula in analogy with the Riemann-~Siegel formula for the zeros of the
Riemann zeta function. A different Riemann—Siegel formula has been proposed by Bogomolny [12].
Recently, the Riemann—Siegel lookalike formula [10,11] has been tested [13] in the case of the hyperbola
billiard [6]. The results for the energy levels are in good agreement with the energies abtained by a
direct numerical solution of the Schrédinger equation. A detailed investigation [13] of the convergence
properties shows, however, that the relevant series converges for the hyperbola billiard on the critical
line and thus any reasonable truncation taking into account only a finite number of periodic orbits will
yield good results. A similar result has been obtained [14] for Artin’s billiard where the quantization
condition is even exact since it has been derived from a Selberg trace formula.

In this paper the two ways of employing the periodic-orbit theory as a quantization condition
for chaotic systems are discussed in detail in the example of the free motion of a point particle on a
compact Riemann surface with constant negative curvature. This system is conservative and strongly
chaotic (K-system). (An introduction to this field can be found in [2,15] and in our previous papers
[3,4,17,18].) Here we deal with the simplest possible realization of compact Riemann surfaces with
constant negative curvature having genus ¢ = 2. Such surfaces correspond topologically to spheres
with two handles, i.e.double tori. For this class of systems the periodic—orbit theory is exact as
Gutzwiller [16] was the first to realize, because it can be expressed by Selberg’s trace formula [7]
which reads

Area(F) [> . = !
h(pn) = —_— [ dpptanh(mp)h(p) + D ) ——p-9(kly) . (1)
{%;} 4z jim {%‘:}g 2sinh &la

Here the 1. h.s.is purely quantum mechanical. It is a sum over the energy spectrum {E,} expressed
by the momenta p, via E, = 1 + pZ, and h(p) is an even function which:is holomorphic in the strip
{Imp | < 3 +¢e,& > 0 and vanishes asymptotically for |p| — oo faster than 51}-. The r.h.s.is of
classical nature consisting of the so-called zerc length term proportional to Area(F) = 47(g— 1), and
the periodic—orbit sum over the length spectrum {I.}. g(z) denotes the Fourier transform of h(p).
The exact trace formula (1) lies at the foundation of our discussion of the periodic—orbit theory.
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II An exact expression for the remainder term

In general it is impossible to carry out the summation over the length spectrum analytically. Therefore,
one is forced to a numerical evaluation of the trace formula. In the case of the regular hyperbolic
octagon [17] we were able to compute the complete length spectrum [21] for the first 1500 different
lengths which enclose approximately 4 million primitive periodic orbits because of a high degeneracy
gn due to the syminetry of this special system [4,17]. The shortest length is I; = 3.057..., the length
of the 1500th length is Iy509 = 18.092.... Even those first 4 million primitive periodic orblts are not
sufficient to determine the energy spectrum by a simple evaluation of the trace formula because it
leads to a sharp cut—off at /1500 in the summation over the length spectrum. This cut—off causes strong
energy—dependent oscillations which are much more pronounced than the peaks corresponding to the
energies of the system. To determine the energies, it is thus necessary to smooth the sharp cut—off by
taking into account a remainder term which has to be computed analytically as follows.

If the length spectrum of the primitive periodic orhits is cut off at I, = L, we obtain from (1)
(9=2)

E h(pa) dp p tanh(wp) h(p) + Z an g(kl,) + R(L) , (2)
{pa} j {in}  B=! Zs I].h

kin<L

where the remainder term is given exactly by

Z Z 2smh——ll Z /Isfn(llll (%) : (3)

k=1
{In} Ela>L

Here the last integral is to be understood as a Riemann-Stieltjes integral, while N () denotes the exact
staircase function which counts the number of primitive periodic orbits whose length [, is shorter than
or equal to! (N(l)=0forl <l;). Eq.(3) can be rewritten

L) =3 1 % 7 Lo(1) AN (;) , 4)

k=1 m=1 L

|

where r({) is called the “orbit—selection function” and is defined by
) = &gty = oo [ dpelirh ) (5)
T J=-o

If there are no small eigenvalues (0 < E, < 1), the following asymptotic behaviour has been shown
to hold for any Fuchsian group of the first kind [19]

el 3
dN(I):le+O(;)dl, > . (6)

Here the leading term is known as Huber’s law [20] and describes the average proliferation of the
number of primitive periodic orbits very well as can be seen from figs.2 and 3 of ref.[21]. Such an
exponential law is characteristic for chaotic systems in general and leads to the notorious problems
in the computation of the periodic—orbit sums for this class of systems. Since eq.(6) is valid for
every compact Riemann surface of constant negative curvature X = —1 with genus 2 (having no

‘small eigenvalues), this implies that the following approximation based on (6) contains no detailed

information about the energy spectrum of the considered regular hyperbolic octagon, keeping in mind
that all Riemann surfaces possess distinct energy spectra.




It follows from egs.(4) and (6) that the leading behaviour of the remainder R(L}) is given exactly
by

R(L) = By(L) [1+0(e ] o
where '

Ry(L):= f; dir(l) . (8)

The simple universal expression (8) for the rest term depends only on the orbit—selection function
(5) which measures the average contribution to the periodic—orbit sum rule (2) as a function of the
continuous length-parameter {. For a large enough cut-off length L, the length spectrum is for
I > L so dense that the continuous approximation (8) should yield an excellent approximation to
the remainder. Ry(L) corresponds to an effective resummation of orbits with long periods. It follows
from eq.(5) that

Llim R(L) = lim Ry(L) =0 , (9)

— o0 L—oo

if the function h(p) in (2) satisfies the conditions stated after eq.(1), which is consistent with the
fact that the integral and all series in eq.(1) converge absolutely under these conditions. In this case
the long periodic orbits are exponentially suppressed. An example of such an absolutely convergent
periodic—orbit sum rule will be discussed in the next section.

IIT An absolutely convergent periodic—orbit sum rule

In ref.[3] we have introduced the Gaussian smoothing
py')? "2
hp) = e E 4o HES (10)

which fulfils obviously all the conditions stated after eq.(1). The Selberg trace formula (1) reads in
this case

- —Pn 2 Fa 2 P D
Z [e_(p : ) N e_£1°+e ) ] _ ] dp;pt ta.nh(vrp [ TL l_";g_)_
n=0

2
ka Je THB) 4 Ri(L,p) +...(11)

+

ZZ

S]Il
k=1
{I"} klp<L

k_n.
2

This sum rule is absolutely convergent for any € > 0 and permits for L — oo an arbitrarily accurate
determination of the energies of the quantum mechanical system from the lengths of the periodic
orbits of the classical system. Every periodic orbit contributes to the sum with a “cosine-wave”, and
the greater the length of the orbit the shorter the “wavelength”. This shows clearly that the long
periodic orbits determine the fine structure of the energy spectrum, whereas the short orbits describe
only the coarse structure. Therefore, an evaluation of the trace formula with a finite number of orbits
cannot yield the exact energies, and the cut—off length L determines the energy resolution.

The remainder term reads in this case (the dependence on the momentum p is explicitly denoted)

[= o] &0 '2
R((L,p) := /; dir(l) = %-/; dl cos(pl)e“;"fz"'%‘

.2 . el 1
o5 +iL Re [erfc(p) epze"'zpb] with  pi= -~ ot f . (12)
The real part of the energy—dependent term in brackets gives ldrge oscillations which are needed to

cancel the corresponding ones coming from the truncated periodic—orbit sum.
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Figure 1: a) The orbit—selection function r(!) for Gaussian smoothing is shown for ¢ = 0.15 and
E = 10. b) The evaluation of the Gaussian sum rule with a sharp cut—off at L = 18.092 shows strong
oscillations (dashed curve) in disagreement with the curve computed directly from the energy levels
(solid curve). ¢),d) If the remainder term Ry(L, p) is added, the large oscillations caused by the sharp
cut—off are canceled, leaving nice peaks at the correct quantal energies.

Now the trace formula can be evaluated by computing the periodic—orbit sum truncated at the
cut—off length L using the known length spectrum {l,}. Then the contribution of the omitted peri-
odic orbits has to be taken into account by (12), This approach may fail because (12) contains no
information about the fine structure of the energy spectrum.

We have studied the question whether this approach yields reasonable results in the case of the
regular hyperbolic octagon where the length spectrum {l,} is completely known [21] until L = ly500 =
18.092.... This L-value determines the shortest wavelength and thereby the resolution. Let us
assume that the resolution is limited by the distance Ap = 7 between two zeros of the cosine-wave.
Demanding that the Gaussian curve of a given encrgy level is as small as e 2 = 0.135... at the location
of the neighbouring level, one obtains Ap = +/2¢ and therefore ¢ = T;T ~ 0.12. In the following
computation we choose ¢ = 0.15 which allows the resolution of the energy levels with E, < 10.

Figure 1a shows the orbit—selection function r(!) for € = 0.15 at the energy £ = 10. It is frightening
to see that the periodic orbits of length I = % ~ 44 yield the largest contribution to the periodic-

orbit sum. If one would try to sum all terms up to L = 60 one has to deal with roughly 2 x 1024

periodic orbits according Huber’s law. Apart from the overwhelming storage problem, the computer
time is utopian. Assuming 100 floating point operations for a single summand, a supercomputer with
1 GFlops would need 6 x 10° years for the evaluation of the periodic—orbit sum at a single energy
value! Furthermore, fig. 1a shows that the periodic orbits up to L = 18.092 contribute scarcely to the
periodic—orbit sum. In figure 1b the evaluation of the periodic—orbit sum truncated at L = 18.092 is
shown (dashed curve). One recognizes large oscillations caused by the cut-off to be compared with the
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Figure 2: The orbit-selection function r(l) for the Breit-Wigner smoothing is shown for the three
cases & = 1.2 (dotted curve), a = 1 {solid curve) and a = 0.3 (dashed curve).

peaks of the energy levels represented by the solid curve computed directly form the energies (1. h.s.of
(11)). Of course, this bad result comes at no surprise after the above discussion. More astonishing
is, however, the remarkably good result, which is obtained if the remainder term (12) is taken into
account, as figures 1c,d show. Here the dashed curves are computed by evaluating the periodic—orbit
sum up to L = 18.092 and adding the remainder term (12), whereas the solid curves are computed
from the energies directly. All energy levels with E,, < 10 are resolved with the correct degeneracy d,
[4] (E; = 3.838(d; = 3), E; = 5.353(d; = 4) and E3 = 8.249(d; = 2)), and even the coarse structure
up to E = 200 is correctly reproduced. This demonstrates that the remainder term, which contains
no information about the fine structure of the energy levels, describes the collective behaviour of the
very long periodic orbits correctly.

IV A divergent periodic—orbit sum rule and its analytical contin-
uation across the entropy barrier

In contrast to the last section, where the remainder term was well defined, we want to discuss in this
section a periodic—orbit sum rule which is not absolutely convergent. Such sum rules were used very
often in the past without having control over the remainder. Therefore, the following discussion is to
a large extent historically motivated, because absolutely convergent periodic—orbit surn rules like the
Gaussian smoothing are now available. Instead of considering the trace of the Green’s function, we
want to study the Breit—-Wigner smoothing which we have already discussed in [4]. With the choice

2
" = o B N
Selberg’s trace formula (1) leads to
= o’E 1 :
= —20VEIm¥(-+A4_-iA
g(n—ﬂn)uaw aVE Im ¥(3 +4- —idy) +
avE &, leA-kn
—— A [Aycos(A kL) + A_sin(Aykl,))  (14)
4(A? + A%) %kz::l sinh &= *
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Figure 3: The Breit-Wigner smoothing is shown for ¢ = 0.3 computed directly from the energy
spectrum (solid curves) and computed from the periodic—orbit sum including the remainder term (15)
(dashed curves).

with 44 = 2_1/2{\/(1']' - 124 o?E + E ¥ 1}V/? and ¥(z) = I'(2)/T(z). Thel.kh.s.is a sum over
Breit-Wigner resonances with width I’ = 20+ E. In the limit « — 0 the resonances would become ever
sharper and an arbitrarily accurate energy resolution would be possible. However, the periodic—orbit
sum on the r.h. s.is absolutely convergent only for a > 1 which is too large to resolve even the first
excited state. Therefore, this sum rule does not seem to be suitable for a determination of the energy
levels from the length spectrum {I.}.

To illustrate the bad behaviour of the Breit—Wigner smoothed periodic—orbit sum for o < 1, we
present in figure 2 the orbit—selection function r(!) for the three cases = 1.2, « = 1 and a = 0.3,
respectively. Only for a > 1 a sufficiently large cut—off length L would give a reasonable result. In
the desired case of a < 1, an increasing cut—off length L leads to exponentially increasing oscillations
of the periodic-orbit sum as figure 2 suggests, and no reasonable result is expected.

Let us now compute the remainder term assuming a > 1, where the following integral exists

because A_ > % fora>1:

oo a\/E o _ 1 i
Ri(L,E) = fL drll) = ger T /L dl e A-=30 [ 4, cos(A,]) + A_sin(A4]) ]
a‘/E e_(A-_%)L

C2(A2 +4%) A2 +(A_-1)?
A

[ (Az—+ - a\/f) cos(AL L) + (T +E- i) sin(A+L)] for a>1.(15)
Adding this remainder term to the truncated periodic-orbit sum, gives for a > 1 a good description
as in the case of the Gaussian smoothing. This was to be expected, since By(L,E) - 0 fora > 1
and I — co. However, while the integral in (15) would diverge for a < 1, the resulting function
obtained by integration keeping @ > 1, is well defined for 0 < a < 1. Thus we are led to define the
remainder term for & < 1 by the analytic continuation of the result given in (15). Note, however, that
Ry(L,E) — oo for L — oo since A_ < 3 for @ < 1. But on the other hand Ry(L,E) — 0 for fixed
cut—off L in the semiclassical limit E — co. The numerical evaluation of this approximation (dashed
curve) is in good agreement with the “true” curve computed directly from the energy levels (solid
curve) even for values of a as small as 0.3, see figure 3. This result indicates, that this approximation,
which was originally derived only for a > 1, yields indeed a meaningful analytical continuation of the
periodic-orbit sum across the critical point a = 1 (“entropy barrier”).

In [4] we have already presented an evaluation of the Breit—Wigner sum rule using a length spectrum
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which was derived by a code (see [17]). The Breit—-Wigner sum rule was shown for « = 0.3 and the
remarkably good result was somewhat miraculous. However, the length spectrum used in [4] was
not complete for larger lengths and showed a smooth decrease in the number of periodic orbits with
increasing length. It seems to be a general feature that an algorithm based on a code produces for a
fixed code length periodic orbits whose lengths are Gaussian distributed (see e.g. [6]). The evaluation
of the periodic—orhit sum with such a length spectrum has no trouble with a sharp cut—off. In the
case of our length spectrum which is complete up to ljs500, one can mimic such a behaviour with a
wrong “Huber’s law” like

Fy = }e-"z;fzﬁ (16)

where v and £ are fit parameters. These can be determined by the requirements Ngy(L) = N (L) and
4 Ng(1)|L = % N(1)| where L is the cut—off length and N (I) is the correct Huber’s law. The width o
in {16) should be chosen as large as possible. For (16) it is again possible to compute a remainder term
Ri(L, E) which is valid for a > 0. We have checked that this ansatz yields a comparably good result
as (15) which shows that it is indeed not necessary to deal with the correct Huber’s law. The result
obtained is nearly identical to the one shown in figure 3 except for small energies E < 2, because the
value o2 = 50 which was used is not able to cancel the strong oscillations in that range. Notice that
the wavelength of the oscillations of r(!) is the longer the smaller the energy and therefore the limit
o — oc is required for E -+ 3 which causes numerical troubles. Nevertheless, this demonstrates that
an evaluation of a not absolutely convergent trace formula can lead to reasonable results if a length

spectrum is used which is computed by a code yielding a “soft™ cut—off.

V The Selberg zeta function and a rule for quantizing chaos

The Selberg zeta function is defined [7] as the Euler product (s = % —ip, E=3(1-3s))

Z(s) = H ﬁ (l—e_(”‘k)l“) , Res>1 . (17)

{la} k=0

It can be shown with the aid of the Selberg trace formula (1) (see e.g.[4,9]) that the logarithmic
derivative of Z(s) has after analytical continuation non-trivial poles located at s, = %:I: ipy, and hence
Z(s) has its non-trivial zeros exactly at the quantal energies given by E,, = i + 2.

Unfortunately, the Euler product (17) cannot be used directly for the determination of the energy
Jevels because it converges only for Re s > 1. In general, a periodic-orbit sum converges absolutely if
5] Imp > 71— % (R = 1), where 7 denotes the topological entropy and A the metric entropy. This
result carries over to the convergence of a zeta—function like {17). In the case of the Riemann surfaces
considered here one has 7 = A = 1 and thus Im p > % to ensure the absolute convergence of the Euler
product according to the condition Re s > 1. This “entropy barrier” is therefore at a distance of %
from the critical line Res = % which is very large in comparison with the mean distance 2lp between
the zeros on the critical line. Already at the very low energy p = 1, i.e. £ = 1.25, the mean distance
between the zeros is equal to the distance from the critical line. There are other systems where this
distance is much smaller which facilitates the calculation of the zeros of the zeta function.

The well-known functional equation for Z(s) gives on the critical line, s = % +ip, the exact relation

(E>1)

1. —2miN(E) () : Y B 1
Z(5 +ip) = ¢ (3 -ip) with N(E)= 1/4dEtanh TE -] . (18)

which implies that both sides of the following equation are real
1 . i 1 ¥ -1,
Z(5+1p)e N(E) - Z(;-ip)e N(E) (19)
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We are thus led to define for real values of p the real function [13,14]
1 .
Ep) = Re { 2G5 +ip) D] (20)

whose only zeros are located exactly at the quantal momenta p = p, = /E,, — %. The condition

£p) =0 (21)

constitutes an exact rule for quantizing the chaos on the compact Riemann surfaces considered in this
paper.

In order to make use of the quantization condition (21), we need an analytic continuation of Z(s)
to be inserted in eq.(20). To this end we transform the Euler product (17) into a Dirichlet series.
Following [8,10] we rewrite the product over k in (17) with the help of Euler’s identity [22]

;l:[o(l—yxk) =1+ Y Ty , lel<1 , yecC , (22)
= m=1 =

into a sum which reads

_ (-1)m E_;_m(m_l)!"'

o= Gmn . '
= {zH}(” ZIN—;) with oma = gy wmd Nasmeh o (29)

Expanding the product over the periodic orbits, we arrive with the definitions

Ay = H“mm.‘ 5 Na:= IIN,’::" (24)

1

at a Dirichlet series over “pseudo orbits” with lengths L, :=3_; mly,

A
Z(S):1+Z-ﬁ% ) Res>1 . (25)
o =4

Let us assume for a moment that the Dirichlet series (25) converges on the critical line Res = 1
(A detailed discussion of the convergence properties will be given in section VI.) It is then justified to
insert the series (25) into (20), and one obtains the explicit series expansion {13,14]

£(p) = cos{TN(E)} + 3 j;r_ cos{aN(E)—-plaN,} . (26)

Here the first term generates already zeros according to Weyl’s law, i.e.leads to approximations to
the energy levels with the correct mean level density, while the sum over the pseudo orbits describes
the fluctuation properties of the energy levels. In case of convergence one expects to obtain a good
‘approximation to the function £(p), if the series (26) is truncated at a sufficiently long pseudo—length
L. In ref.[13,14] it has been shown that such a truncation yields indeed good approximations to the
energy levels for the hyperbola billiard and Artin’s billiard, respectively. It is natural to assume that
the optimal truncation is obtained by choosing for the cut—off L = L*, where L* is determined by the
condition that the last term taken into account in the series (26) is locally stationary as a function of
the energy E, i.e.is given by

% {(xN'(E) — pLa} = 0 . (27)

(This condition has already been imposed by Berry and Keating [10] in their discussion of the
Riemann-Siegel lookalike formula which will be discussed in section VIL) Using (18) we are thus
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Figure 4: The abscissas of convergence of the Dirichlet series (25} are shown for the regular octagon
a) and the asymmetric one b}).

led to the energy-dependent cut~off pseudo-length L* = 27rptanh(xp) and finally to the following
rule for quantizing chaos
cos{:r)\f )+ Z Ag e Lal? cos{nN(E})-pL,} =0 . (28)
LaglL®

We expect that the quantization condition (28) generates good semiclassical approximations to the
energy levels for those compact Riemann surfaces (and chaotic systems, in general) for which the
Dirichlet series (25) converges conditionally on the critical line. A satisfactory test of (28) has already
been carried out for the hyperbola billiard in ref.[13]. It is worthwhile to notice that (28) is - apart
from an overall normalization factor of 2 — identical to the Riemann-Siegel lookalike formula of [10],
see eq.(34) below. But in contrast to the arguments given in {10], we have not required any conjecture
concerning the resummation of the long orbits. The derivation of the quantization rule (28) is mainly
based on the functional equation and on the convergence of the Dirichlet series on the critical line.

In the next section we shall show for two compact Riemann surfaces that the corresponding Dirich-
let series (25) do not converge on the critical line. In this case the quantization condition (28) looses
its justification. Indeed, the numerical results to be presented in section VII seem to indicate that the
condition (28) fails for these systems.

VI Convergence of the Dirichlet series
The discussion in the preceding section has shown that the question of convergence of the Dirichlet

series (25) is of crucial importance for the application of the quantization condition (28). For Dirichlet
series of the type (25) one has the following formulas for the abscissa of absolute convergence o,

. 1 = '
= lim sup,,_, . In a;l | Ag | (29)
and for the abscissa of (conditional) convergence . < 0,
1 ' n
= I o o In Ag | .
M SUPn e T | agl ] (30)

In ref.[23] we have shown that the number Np(L) of pseudo—orbits with length L, smaller than or
equal to L is asymptotically given by

e’ + ... , L o0 | (31)
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Figure 5: The product (32) is shown for different distances from the critical line o = 3. The lowest
curve helongs to o = } revealing all zeros, while the remaining curves belong to & = 0.55,0.6,...,1

in ascending order.

where Z'(1) > 0 since the zeta function (17) has a simple zero at s = 1. For the regular Riemann
surface discussed before one obtains [23] Z(2)/Z'(1) = 0.3930, while for the asymmetric Riemann
surface discussed below one gets Z(2)/2'(1) = 0.4277.

Fig.4a,b indicate that g, = 1, i. e. the Dirichlet series (25) is absolutely convergent for Res > 1, as
expected. The crucial question is whether o, < 1, i.e. whether the entropy barrier at Res = 1 can be
crossed by means of the Dirichlet series. Figure 4a,b show the sequences a,(n) and a.(n), respectively,
whose limits for n — oo determine the abscissas o, and o, according to eqs.(29) and (30). The upper
curves belong to o, and the lower ones to .. The dotted curves represent the upper limits of o.(n).
For the regular octagon (fig.4a) and for the asymmetric octagon (fig.4b) one obtains o, ~ 0.78 and
o. ~ 0.64, respectively, at the largest n-value. One can speculate that o, is the smaller the lesser
symmetries the system possesses and that a completely desymmetrized system has ¢, = 0.5 (or o, = 0
for systems whose critical line is at Res = 0) allowing the computation of the zeta—function on the
critical line. As already mentioned, it has been shown recently that this is indeed the case for the
desymmetrized hyperbola billiard [13] and for Artin’s billiard [14].

For the systems considered in this paper, the important fact is that one has with the Dirichlet
series (25) a representation in terms of classical orbits for the zeta—function which is valid beyond the
entropy barrier at Re s = 1. However, in our case the computation of the energy levels with the
Dirichlet series is still impossible, because of the large distance from the critical line ¢ = %. This is

illustrated in figure 5, where the expression

eYile-1) 11 [ (1 + %1_)) e~ 3(a—1)/Exn ] } with s=c+ip, E=s(l-8) and E,=n
(32)

is shown which is the modulus of a function whose zeros ar exactly at s = i+ i};n — 1. The curves
belong to ¢ = 0.5,0.55,0.60,...,1 in ascending order. To resolve the first zero E; = 1 it suffices to

use @ = 0.6; for the second at Fy = 2, already o = 0.55 is necessary. With increasing energy, the

required value for o has to approach the critical value & = 0.5 ever faster. Thus the periodic—orbit

sum rules seem to be more useful until a more effective representation of the zeta function in terms of
the classical orbits is found. At present one can use the zeta function approach for the determination
of energy levels only in the case of those systems, where the Dirichlet series (25) already allows the

computation of the zeta function on the critical line.
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VII Test of the Riemann—-Siegel lookalike formula

Recently, Berry and Keating [10] have conjectured a quantization rule in analogy with the Riemann-
Siegel formula for the Riemann zeta function. As already mentioned, this rule is identical to our rule
(28), but it has been conjectured in {10] that this rule is generally valid, not only if the Dirichlet series
is convergent on the critical line as has been assumed in our derivation of (28). We briefly repeat the
arguments given in [10].

Without worrying about convergence problems, one obtains from (25)

1 . i i Aq e —
Z(§+1p)e N(E) = gmN(E) 4 ZTE( N(E)-plaNa) (33)

o

Splitting this series over pseudo—orbits appropriately into two parts corresponding to Lo € L* and
L, > L*, respectively, the authors conjecture that the second divergent series over the long pseudo—
orbits is approximately equal to the complex conjugate of the first term on the r.h.s.of eq.(33) and
of the first series over the short pseudo—orbits and they thus arrive at

Z(%H-p) NE) ~ 2 cos(rN(E)) + 2 Y. Aqete/? cos(xN(E)—pLa) .  (34)
. LQSLt

For the cut—off L* the condition (27) is imposed. Eq.(34) is called the Riemann-Siegel lookalike
formula. Notice that in Berry and Keating’s approach the first term in eq.(34) corresponding to
Weyl’s law requires already the conjecture concerning the resummation of long orbits and could not
be derived. '

We want to check the conjecture (34) in the case of two extreme examples of Riemann surfaces.
The first is the regular Riemann surface which was used as a studying object in the preceding chapters.
This surface is ill suited for a test of the conjecture {34) because the lengths possess extremely high
degeneracies. In [17] we have shown that the mean degeneracy § increases exponentially as g ~ 8v2 #
which is a consequence of the high symmetry the system possesses. This causes serious problems
because (34) is expected to give only the leading term, and as in the case of the classical Riemann-
Siegel formula there should be correction terms which smooth the discontinuities caused by (27). These
discontinuities are extremely large in the case of the regular Riemann surface, because the truncation
condition (27) leads with increasing energy to large jumps proportional to g.

The other case is an asymmetric Riemann surface which is nearly optimally suited for a test of (34)
because the lengths are at most fourfold degenerated. A twofold degeneracy is due the time-reversal
the system obeys, and a further twofold degeneracy is possible because of the parity symmetry which
even the asymmetric Riemann surfaces possess. Therefore the unknown correction terms should be
smaller-in the asymmetric case. In our earlier study of energy-level statistics we have computed the
lower part of the energy spectra for 40 different asymmetric Riemann surfaces [18]. Among these
Riemann surfaces we now choose one which avoids near—degeneracy between the first 7 energy levels.
The levels of the chosen surface obey E,4q1 — E, > 0.6 for n < 7, where the mean level spacing is
unity. This means that the leading term cos{rN(E)} in (34) already yields good approximations
for the spacings between the levels E,, so that the truncated sum should only give relatively small
corrections. Thus this Riemann surface is ideally suited for a test of (34).

In figure 6a we display the conjecture (34) for the regular octagon using the complete pseudo—
length spectrum up to L = 18,092 allowing an evaluation up to E = 8.54. The dots represent the
location of the energy levels as obtained from our finite-element computations [4]. These energy levels
are degenerated. The curve shown in fig.6a is strongly fluctuating which prevents a determination of
the desired zeros. This is a special effect due to the already discussed high symmetry of this system.
The fluctuations are much more modest in the more generic case of the asymmetric octagon as shown
in figure 6b. However, the zeros do not agree with the energy levels known from our finite—element
computation. Furthermore, one recognizes in the case of the asymmetric octagon that the leading
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Figure 6: The Berry-Keating conjecture (34) is tested for the regular octagon a) and for an asymmetric
octagon b).

term 2 cos(#N(E)) is completely surmounted by the orbit sum leading to amplitudes of order 20,
i.e.ten times the contribution of the “leading” term. The asymmetric case allows the evaluation of
the conjecture only up to E = 5.94 because the length spectrum is known only up to L = 15.

Thus the results presented in figure 6a,b do not support the conjecture. Rather they indicate that
the good results obtained in refs.[13,14] are a consequence of the convergence of the corresponding
Dirichlet series on the critical line, while in the present case there is no convergence on the critical
line, and therefore, the conjecture breaks down.

VIII A smoothed version of the Riemann—Siegel lookalike formula

The large fluctuations seen in fig.6a in the case of the regular octagon are due to the exponentially
growing degeneracies of the lengths of the pseudo-orbits, as already mentioned. Now we “derive” a
smoothed version of the conjecture (34) based on-a formal manipulation in analogy to [11].

The starting point is the functional equation (19) on the critical line, where we insert the Dirichlet
series (25). The unity in (25) is taken into account by the choice Ag = Ny = 1. Then one obtains the
formal functional equation

eIV (E) Z——A;ae"su = ™V(E) E——A;ra_e-is“ with S, =plnN, . (35)

Applying the operation

_E?
f T (36)

to this formal functional equation leads to

. . z Ji L] 2
e~ i V(E) 3 A;a ePInNa o~ (e-nd(E)+180a )" _ (37)

=N (E Ax _iplaN. -5 (2+7d(E)-120a)
Nl )Z"’Jﬁe plnNa o= )

where the expansions
InN,
2p

have been used. As discussed in [11] this manipulations are only of a formal nature and therefore
constitute no proof of the relation (37). The first point is that one starts with the functional equation

N(E') ~ N(E)+d(E)(E'-E) and S.(E') ~ plnN,+ (E' - E)
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Figure 7: a) The conjectured approximation {39) is shown for ¢ = 10 (solid curve) and for ¢ = 15
(dotted curve). b) The orbit—selection function (40) is presented for ¢ = 10 at E = 4 (solid), £ = 6
(dotted) and E = 8 (dashed). The vertical line at L = 18.092 marks the length up to which the
pseudo—length spectrum is completely known. \ T

of the zeta—function, where one has inserted a representation which does not converge on the critical
line in general. The sécond flaw is the interchange of integration and summation in the “derlva.tmn
of (37) which is only valid if the sum is absolutely convergent.

Now (37} is integrated over & from zero to infinity yielding-

e~ (B) Z wlan e?fc_:(T;z;_(IlPNg_,z"r?‘;(E))) =y

eiTV(E) Z P Na orpe (—:/__P(IRN 27’PJ(E) )) .

With erfe(—z) =2 — erfc(z) one artives at

m.lV(E)
Z( - X w \/_ V/22p

This relation represents a smoothed version of the conjecture (34). In the limit ¢ — oc the original
conjecture is recovered because of lim,_, ., erfe(2) = 0 and lim,_,_o erfc(2) = 2, i.e. pseundo—orbits
with lengths L, = In N, > 27pd(E) are suppressed whereas their contribution is taken into account
by the pseudo-orbits of length L, < 2rpd(E). The limit ¢ — 0 yields the representation which one
would have obtained if the Dirichlet series would have been at least conditionally convergent on the
critical line. The crucial point is that the intermediate range of o corresponds to a soft cut~off in the
conjecture resulting in a formula without any discontinuities. Following the philosophy in [10], one
expects that the correction terms which should smooth this discontinuities should be much smaller.

In figure 7a an evaluation of (39) is shown in the case of the regular octagon for ¢ = 10 and o = 15,
respectively. The large fluctuations are now absent. Larger values of o lead to increasing fluctuations
tending towards the result shown in figure 6. Remarkably, the zeros seem to occur roughly at the
right places. However, only the first zero at E = 3.83, which is threefold degenerated, is correct. The
curve at ¢ = 10 shows a slight tendency towards a threefold zero and at ¢ = 15 three adjacent zeros
occur. The next zeros are of the wrong order, because the zero at E = 5.35 should be fourfold and
the one at E = 8.25 twofold, whereas the figure reveals an odd order of the zeros.

To be sure, that the smoothed cut—off does not demand pseudo-orbits of length L, > 18.092,
which are not-taken into account, one can compute an analogue of the orbit-selection function (5) for

cos( wN(E) p].nN exfe (--—— In N, — 2rpd(E) )) (39) |
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(39). Because of NP(L) ~ el and \/J}V‘q = e~L=/2 ope is led by replacing A, cos(7N(E) — pln N,) by
1to

r(L) := el/? erfe (\/_%ZP(L—Zvrpd(E') )) : (40)

For o = 10 function (40) is shown in figure 7b for the energies E = 4,6 and 8. Only for £ ~ 8
pseudo—orbits of length L > 18.092 are necessary, so that missing pseudo-orbits cannot be the cause
of the failure a* least at the fourfold zero at E = 5.35.

Therefore, we conclude that there must be other correction terms in addition to the suggested
ones which should smooth the discontinuities, if the conjecture is correct at all, One possibility is that
(34) or (39) are only correct for systems having Dirichlet series representing the zeta—function which
are conditionally convergent on the critical line. The other possibility is that the semiclassical limit js
reached unusually late in this case. It is possible that the resummed tail possesses lengths and altered
Dirichlet coefficients which are too distinct from the original ones to be simply replaced by the head.
Nevertheless, it may be that the approximation is useful in the semiclassical limit. It is therefore too
early to decide on the validity of the conjecture at this stage.

IX Summary and Discussion

In this paper we have addressed the question of how to obtain quantal energies from the classical
periodic orbits for systems whose classical limit is strongly chaotic. The general framework has been
Gutzwiller’s periodic orbit theory. But in order to avoid the problems connected with possible cor-
rections of higher order in %, we have considered the motion of a particle sliding freely on a compact
Riemann surface with genus two. In this case Gutzwiller’s trace formula is exact, since it is identical
to the Sélberg trace formula. Since the mathematical problems encountered, in particular the prob-
lems of convergence, are certainly not caused by the fact that the Selberg trace formula is exact, we
can conclude that these problems will show up in the same manner in the treatment of more gen-
eral systems for which the trace formula is only semiclassically valid. All attempts which have been
discussed in this paper to determine the quantal energies had to fight against the entropy barrier as
the main obstruction hiding the critical line. Two main roads for approaching the critical line have
been discussed. In the first case one deals with smoothed versions of the trace formula leading to the
so—called periodic—orbit sum rules [3,4]. In the second case one deals directly with the Selberg zeta
function.

In the first part of this paper we have discussed in detail the evaluation of two periodic-orbit sum
rules using a length spectrum which is completely known up to a certain cut-off length. The remarkable
point is that the sum over the long periodic orbits can be well approximated by a universal remainder
(8) which is determined by the orbit-selection function, eq.(5), and which takes into account the leading
asymptotic proliferation of the length spectrum (Huber’s law). Since Huber’s law is responsible for
the entropy barrier at Re s = 1, inclusion of the remainder (8) is already sufficient for crossing the
entropy barrier. This becomes especially clear in the case of the Breit—Wigner smearing which is
absolutely convergent only for @ > 1. But if the rest term (15), calculated for @ < 1 by analytic

continuation, is added, the sum rule involves in the semiclassical limit the Selberg zeta function along

the line Re s = 4% j e.in the case @ = 0.3 shown in fig.3 along the line Re s = 0.65 which is well
behind the entropy barrier. Nevertheless it appears that the Gaussian smoothing (11) is the most
favourable choice since it is absolutely convergent for any finite smearing ¢ > 0.

Until recently the main problem with the Selberg zeta function was that the Euler product (17)
is undefined for Re s < 1 and thus useless for a direct analytic continuation. The situation changes,

however, drastically if instead of (17) the Dirichlet series (25) is used. With the help of (30) it is

possible in principle to check for a given problem whether ¢, < ¢, = 1 and thus whether the entropy
barrier can be crossed. As shown in fig.4a,b this is indeed the case for the two Riemann surfaces
discussed in this paper. However, in both cases one obtains % < 0, < 1, which implies that the critical
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line is still beyond reach. For systems where the Dirichlet series converge on the critical line, we have
derived the quantum condition {28) which has been successfully tested in [13,14]. For the two Riemann
surfaces we have shown that the quantization rule (28) or the Riemann-Siegel lookalike formula (34)
do not reproduce the correct eigenvalues, This was expected in the case of (28} since its derivation
breaks down for o, > -15 Concerning the Riemann-Siegel lookalike formula (34) our results do not give
support to the Berry—Keating conjecture [10,11]. In sect. VIII we have discussed a smoothed version of
the Riemann-Siegel lookalike formula and have checked it in the case of the regular octagon. Although
the large fluctuations of the original formula are now absent, the result does not yield the zeros with
the correct degeneracies. We cannot exclude, however, that the conjecture becomes only true in the
semiclassical limit, even though there are several independent results which indicate that semiclassical
laws like Weyl’s law are valid in the mean down to the ground state. At present we are inclined
to believe that eq.(28) is the correct much sought-after rule for quantizing chaos for those chaotic
systems whose Dirichlet series converge on the critical line, but that the Berry—Keating conjecture, to
be applied in the general case, still needs a better foundation.
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