
             

Decontamination of persistent 
organic pollutants in fishmeal 

and fish oil 
Process optimization and modeling 

Åge Oterhals 

 

Dissertation for the degree philosophiae doctor (PhD)  

at the University of Bergen 

 

2011 



 

 

1 

Dissertation date: March 9, 2011 



 

 

2 

Scientific environment  

The research activity presented in this thesis has been performed at the Norwegian 

Institute of Food, Fisheries and Aquaculture Research (Nofima) Department Bergen 

under the supervision of Prof. Bjørn Kvamme at the University of Bergen, 

Department of Physics and Technology, and Prof. Ragnar Nortvedt, Department of 

Biology as a co-supervisor. Collaboration with NIFES has been established on the 

analysis of persistent organic pollutants (POPs) and minor components in fish oil. 

Other parts of the analytical work have been done at Nofima Department Bergen. The 

analytical laboratories at NIFES and Nofima are accredited according to ISO 17025. 

Experimental work on short-path distillation was performed in the pilot plant facility 

at UIC GmbH (Alzenau, Germany).    

Financial support has been received through two research projects:  

1) Innovation Norway project “Reduction of dioxins in fish oil” coordinated by 

Director Henrik Stenwig at the Norwegian Seafood Federation (FHL). The project 

received additional financial support from the Fishery and Aquaculture Industry 

Research Fund (FHF, Oslo, Norway), the Norwegian Fish Meal and Oil Industry 

(Oslo, Norway) and the Norwegian Fishermen’s Sales Organization (Norges 

Sildesalgslag, Bergen, Norway).  

2) Norwegian Research Council project 178969/S40 “Decontamination of persistent 

organic pollutants in fishmeal and fish oil”. This knowledge-building project with 

user involvement (KMB) has received financial support from Pronova BioPharma 

(Sandefjord, Norway), Egersund Sildoljefabrikk (Egersund, Norway) and Marine 

Harvest (Bergen, Norway). 



 

 

3 

Acknowledgements 

Many people deserve thanks for their contribution to my progress in this research 

area and accomplishment of the PhD thesis. First of all I want to thank my principal 

supervisor Prof. Bjørn Kvamme for his encouraging and always positive feedback. 

Together with PhD student Bjørnar Jensen and Prof. Tatyana Kuznetsova at Dep. of 

Physics and Technology, he is also thanked for introducing me to the application of 

molecular dynamics simulations in the study of adsorption mechanisms. My co-

supervisor Prof. Ragnar Nortvedt gave me important support in the early phase of this 

period when the struggle for financial support was the greatest hindrance for further 

progress. The collaboration with NIFES through Dr. Marc H. G. Berntssen has been 

an important factor for the accomplishment of this research activity. My former 

colleagues, Einar Nygård and Marianne Solvang, are both thanked for their help in 

planning and carryout of experimental work. All the above mentioned persons are 

also thanked for their valuable contributions as co- or main authors. 

I also want to acknowledge the technical assistance from Joachim Kleinostendarp 

(UiC, Germany) during the short-path distillation trials. Oddvar Dahl (Nofima) has 

been of great help with drawing of process flowsheets used in papers, presentations 

and this thesis. The laboratory staffs at NIFES and Nofima are thanked for their 

skilful work. Special thanks to Dr. Svein Mjøs (Nofima and University of Bergen) for 

his comments and valuable help in the understanding of multivariate analysis. 

Discussions with Dr. Ingrid Måge (Nofima) and Dr. Martin Høy (Nofima) have also 

been of great help in the understanding of statistical methods.    

One person deserves the warmest thanks. My wife, Britt Skadberg, was the person 

who encouraged me to take the challenge and start on the road towards a PhD degree. 

Her valuable support, encouragement and patience during these years have been 

essential.  

Finally, I want to express my gratitude to Nofima for giving me the additional 

financial support and time needed to explore the complex and fascinating world of 

persistent organic pollutants. 



 

 

4 

Abstract 

Persistent organic pollutants (POPs) are fat soluble chemical substances that persist in 

the environment and bioaccumulate in the food chain. Through long-range environ-

mental transportation by air, water and migratory species they are transferred to new 

locations distant from the source of release and might cause adverse effects to human 

health and to the environment. POPs comprise pesticides, industrial chemicals and 

unwanted by-products. The European Commission has implemented food and feed 

legislations concerning maximum permitted levels (MPLs) of polychlorinated 

dibenzo-p-dioxins and furans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-

PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides 

(OCPs). Fish and consequently fishmeal and fish oil has been identified as one of the 

most important contributors to the level of dioxins and DL-PCBs in food and feed 

products. Fish caught in some of the North-European fishing areas contain high 

dioxin and PCB levels resulting in fishmeal and oil with WHO-PCDD/F-PCB-TEQ 

levels above the maximum permitted. To meet the new industrial and social-

economic challenges there is a need for development of cost-effective 

decontamination technologies.  

Efficiency and limitations of alternative decontamination technologies to reduce the 

level of PCDD/Fs, DL-PCBs and polybrominated diphenyl ether flame retardants 

(PBDEs) in fishmeal (i.e., mechanical fat separation, organic solvent extraction and 

oil leaching) and fish oil (i.e., activated carbon (AC) adsorption and short-path 

distillation (SPD)) have been studied in this thesis. Factorial design experiments, 

response surface methodology and quantitative structure property relationships 

(QSPRs) have been utilized to model and optimize the fish oil decontamination 

alternatives. The trapping mechanisms for non- and mono-ortho PCBs on AC have 

been studied by use of molecular dynamics simulations. 

Optimization of the existing mechanical fat separation steps in the fishmeal process is 

expected to be the most cost-effective way to reduce the POPs content. However, the 

obtainable effects are limited (estimated to maximum 20-30%) and have to be 
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combined with organic solvent extraction if high decontamination rates are needed. 

The feasible use of a new oil leaching process has been studied and found to give 

effects comparable to hexane and isopropanol extraction of fishmeal (i.e., > 75%). 

AC adsorption of PCDD/Fs is highly effective with obtainable WHO-TEQ-reduction 

of 99%. Adsorption of DL-PCBs is less effective and dependent on ortho-

substitution, i.e., non-ortho-PCBs are adsorbed more effectively than mono-ortho-

PCBs, with maximum obtained levels of 87% and 21%, respectively. Compliance 

with present feed and food WHO-PCDD/F-PCB-TEQ legislations in fish oil can be 

achieved based on AC adsorption. The adsorption process had no effect on PBDEs. 

The selectivity can be explained based on dispersive electron interaction affected by 

sorbate planarity and steric effects and presence of electrostatic forces.   

Within each of the studied homologue groups, the volatility and reduction after SPD 

of the individual congeners is linearly dependent on the number of chlorine or 

bromine substitutions and ortho-substitution. The QSPRs were combined with 

process parameters to establish decontamination models for each homologue group of 

POPs. High decontamination efficiency (> 90%) can be obtained by choice of 

favorable process conditions giving residual levels considerable below MPLs in feed 

and food.  

AC and SPD did not have any negative effects on fish oil oxidation level. Oxidative 

stability of the oil after SPD was affected both negative and positive depending on 

processing conditions. SPD did not affect the level of polyunsaturated fatty acids 

(PUFA) nor induce geometrical isomerization. 

Some co-evaporation and loss of vitamins, cholesterol and unsaponifiables can not be 

avoided during SPD. The retention level will depend on the applied process 

conditions and the concentration ratio and difference in vapor pressure between free 

and ester forms of the respective compounds. A high retention level (>80%) of 

volatile nutrients after SPD could be obtained by choice of process conditions giving 

residual WHO-TEQ-levels in accordance with present feed and food legislations and 

the voluntary industrial monograph of GOED. 
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1. Introduction 

The research, surveillance and legislation focus on the existence and control of toxic 

organic pollutants in the environment and food chain goes back several decades but 

has been given increased attention after 1999 due to several severe contamination 

episodes (SCAN, 2000; SCF, 2000; Huwe, 2002; Burkow and Weber, 2003). My first 

encounter with the industrial challenges related to high content of dioxins and 

polychlorinated biphenyls (PCBs) in fish oil was during a research project exploring 

the extraction, refining and stabilization of herring and capelin oil for use in food 

products. The project was run at the Norwegian Herring Oil and Meal Industry 

Research Institute (SSF) over several years from 1986 to 1996. Levels of concern 

were observed in oil produced from herring with lower levels in capelin oil (Oterhals, 

1990; Opstvedt et al., 1996). Also large seasonal variations were recognized linked to 

the fat content of the raw material. Initial processing studies also revealed that the 

polychlorinated dibenzo-p-dioxin and dibenzofuran level (PCDD/F) were only to a 

minor extent (10%) removed by steam deodorization at 180 °C. However, significant 

reduction of non dioxin-like PCB (NDL-PCB) (78%), DDT (72%) and toxaphene 

(51%) levels were obtained (Opstvedt et al., 1996). The possible combined use of 

activated carbon (AC) adsorption and deodorization to reduce the level of PCDD/Fs 

was identified based on literature search. Although the need for more processing 

studies related to decontamination technology was acknowledged, such research 

activity was not initiated at that time. Meanwhile, high level of dioxins found in cod 

liver oil put pressure on producers to evaluate the inclusion of a decontamination step 

in the refining process, either by use of AC adsorption, deodorization or SPD (Brevik 

et al., 1990). 

After contamination of animal feeds with PCBs and dioxins in Belgium spring 1999 

(Ashraf, 1999; Bernard et al., 1999) the European Commission asked the Scientific 

Committee on Animal Nutrition (SCAN) and the Scientific Committee on Food 

(SCF) to assess the level in animal feed and food products, including population 

intake and health risks. The systematization of existing data during autumn 1999 
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revealed a lack of quantitative data and an urgent need for initiation of surveillance 

programs. The International Fishmeal and Fish Oil Organization (IFFO) published in 

September 1999 an overview of existing data retrieved from different members of the 

organization (Anon, 1999). The overview clearly showed that levels in South East 

Pacific were lower than those found in European waters and North West Atlantic. 

The report was followed up by IFFO through a patent and literature search to identify 

available decontamination technology that could be used by the fishmeal and oil 

industry to reduce the levels. Being a member of the IFFO Scientific Committee, I 

attended a meeting September 6-8, 1999 in Hong Kong were the existing knowledge 

was presented and the dioxin issue discussed. The patent and literature search 

confirmed the limited availability of scientific information addressing the new 

industrial challenges. Identified public information on dioxin removal was limited to 

the use of extreme deodorization conditions (i.e., 250 °C, 10 hours; Mounts et al., 

1976), AC adsorption (Mounts et al., 1976), and extraction using a perfluorocarbon 

fluid (Carr, 1998). Chlorinated pesticides and PCBs could be removed by 

commercially used deodorization conditions (process details not stated)  or SPD (260 

°C, 0.67 mbar) (Joseph, 1989), PCBs by supercritical fluid extraction (Krukonis, 

1989) and polycyclic aromatic hydrocarbons (PAHs) by adsorption to coconut 

charcoal (Stalling et al., 1977). Among the listed alternatives, AC adsorption was 

identified as most cost effective and feasible technology. However, available 

information regarding type, process conditions and needed amount of AC to achieve 

target levels was limited. The efficiency related to PCB reduction was also 

questioned. The industry officials acknowledged the need for more information but 

could not agree to establish a joint research project addressing these issues. The 

industry also acknowledged the lack of any economical viable technology for 

decontamination of fishmeal (Joas et al., 2001). 

December 2002 I was contacted by Director Øyvind Lie at NIFES regarding an 

inquiry from the Fishery and Aquaculture Industry Research Fund (FHF) on defining 

of a research project exploring alternative technologies for decontamination of fish 

oil. The submitted project proposal was funded and initiated spring 2003 in 

collaboration with NIFES. Later also fishmeal decontamination technology was 
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included. The FHF project “Reduction of dioxins in fish oil” and follow up 

Norwegian Research Council project “Decontamination of persistent organic 

pollutants in fishmeal and fish oil” gave me the financial support to develop the 

knowledge presented in this PhD thesis. It is my hope that the included papers and 

others in preparation can be used by authorities and the processing industry to better 

understand the possibilities and limitations of alternative fishmeal and fish oil 

decontamination technologies and be of help in future decision making.       

1.1 Objectives and thesis outline 

The main objective of the research activity was to optimize and quantify the 

efficiency of alternative process technologies on reduction of POPs in fishmeal and 

fish oil, and to assess any negative effects on product quality. Studied technologies 

for fishmeal include increased fat separation, organic solvent extraction and oil 

leaching, and for fish oil AC adsorption and SPD.  

Sub-goals: 

� To study the effect of increased fat separation and organic solvent extraction on 

removal of POPs in fishmeal. 

� To study the feasible use of a oil leaching process for removal of POPs in 

fishmeal. 

� To optimize and model an AC adsorption process for reduction of PCDD/Fs, 

PCBs and PBDEs in fish oil. 

� To optimize and model a SPD process for reduction of PCDD/Fs, PCBs and 

PBDEs in fish oil. 

� To assess any negative effects on fishmeal and fish oil composition and quality 

after decontamination. 

POPs are a diverse group of chemical compounds and it has been outside the scope of 

my research to study all. The papers included in this thesis primarily focus on the 

reduction of PCDD/Fs, dioxin-like PCBs (DL-PCBs) and polybrominated diphenyl 

ethers (PBDEs). However, some of the main effects described in the papers can be 
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generalized based on similarities and differences in physical and chemical properties 

and therefore included in the discussion part, e.g. NDL-PCBs, organochlorine 

pesticides (OCPs) and PAHs. Other POP groups are also mentioned in the back-

ground information and general discussion if appropriate to give the reader a broader 

picture of the complexity of the respective areas. Throughout the thesis the term 

dioxins are used as a synonym for PCDD/Fs. All referred PCDD/F decontamination 

rates are based on WHO1998 TEF values if not otherwise stated. 
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2. Background 

2.1 The Geneva and Stockholm Conventions 

POPs comprise a complex group of aromatic, fluorinated, chlorinated and brominated 

compounds with different physical and chemical properties. The term were originally 

defined by the Stockholm Convention on POPs (UNEP, 2001) based on a set of 

criteria (given in gray box on next page) including persistence, bio-accumulation, 

potential for long-range environmental transport, and adverse effects to human health 

or to the environment. The Stockholm Convention was adopted in 2001 and entered 

into force in 2004. Hitherto, 151 countries have signed the treaty, but several of these, 

including USA and the Soviet Union, have still not ratified the text. The document 

defines a set of 12 POPs (“dirty dozen” or “legacy POPs”): The organochlorine 

pesticides aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, mirex, toxaphene; the 

industrial chemicals hexachlorbenzene (HCB) and PCBs; and the unwanted 

byproducts, PCDDs and PCDFs (Table 1).  

Challenges related to long-range transportation of air pollution was already addressed 

on a political level in the 1970s related to the acidification of lakes in the 

Scandinavian by SOx and NOx released from Central Europe. The negotiation 

agreements were expressed in the 1979 Geneva Convention on Long-range 

Transboundary Air Pollution (http://www.unece.org/env/lrtap/lrtap_h1.htm). The 

Convention went into force in 1983 and has been extended by 8 specific protocols, 

including one addressing discharge, emission and losses of POPs, referred to as the 

1998 Aarhus Protocol on POPs (UNECE, 1998), which went into force in 2003. In 

addition to the 12 POPs included in the Stockholm Convention, chlordane, hexa-

chlorocyclohexane (HCH), hexabromobiphenyl, and PAHs are included (Table 1). 

The Stockholm Convention and Aarhus Protocol on POPs are administrated through 

the United Nations Environmental Program (UNEP; http://www.unep.org/) and the 

United Nations Economic Council for Europe (UNECE; http://www.unece.org/), 

respectively. Both agreements include mechanisms for adding new substances or 

groups of substances if certain criteria are met. The Aarhus Protocol was amended in 



 

 

18 

the Aarhus Protocol also covers hexachlorocyclohexane (HCH), chlordecone, also 

Stockholm Convention criteria for POPs (annex D of UNEP, 2001) 

Persistence: 

(i) Evidence that the half-life of the chemical in water is greater than two 
months, or that its half-life in soil is greater than six months, or that its 
half-life in sediment is greater than six months; or 

(ii) Evidence that the chemical is otherwise sufficiently persistent to justify its 
consideration within the scope of this Convention; 

Bio-accumulation: 

(i) Evidence that the bio-concentration factor or bio-accumulation factor in 
aquatic species for the chemical is greater than 5,000 or, in the absence of 
such data, that the log Kow is greater than 5; 

(ii) Evidence that a chemical presents other reasons for concern, such as high 
bio-accumulation in other species, high toxicity or ecotoxicity; or 

(iii) Monitoring data in biota indicating that the bio-accumulation potential of 
the chemical is sufficient to justify its consideration within the scope of 
this Convention; 

Potential for long-range environmental transport: 

(i) Measured levels of the chemical in locations distant from the sources of its 
release that are of potential concern; 

(ii) Monitoring data showing that long-range environmental transport of the 
chemical, with the potential for transfer to a receiving environment, may 
have occurred via air, water or migratory species; or 

(iii) Environmental fate properties and/or model results that demonstrate that 
the chemical has a potential for long-range environmental transport 
through air, water or migratory species, with the potential for transfer to a 
receiving environment in locations distant from the sources of its release. 
For a chemical that migrates significantly through the air, its half-life in 
air should be greater than two days; and 

Adverse effects: 

(i) Evidence of adverse effects to human health or to the environment that 
justifies consideration of the chemical within the scope of this 
Convention; or 

(ii) Toxicity or ecotoxicity data that indicate the potential for damage to 
human health or to the environment. 
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2009 to include seven new substances: hexachlorobutadiene, octabromodiphenyl 

ether, pentachlorobenzene, pentabromodiphenyl ether, perfluorooctane sulfonates 

(PFOS), polychlorinated naphthalenes (PCNs) and short-chain chlorinated paraffins. 

However, these amendments have not yet entered into force for the parties that 

adopted them. Accordingly, the Stockholm Convention was amended in 2009 to 

include the following additional chemicals (UNEP, 2009): α-HCH, β-HCH, 

chlordecone, hexabromobiphenyl, hexa- and heptabromodiphenyl ether, lindane, 

pentachlorobenzene, perfluorooctane sulfonic acid, its salts and perfluorooctane 

sulfonyl fluoride, and tetra- and pentabromodiphenyl ether. These amendments went 

into force on August 26, 2010. The ongoing evaluation of compounds for POP-like 

behavior can be expected to reveal new candidates to be added to future revised POP 

lists (Burkow and Weber, 2002; Lohmann et al., 2007). I addition to UNEP and 

UNECE such evaluation activity is carried out by the United States Environmental 

Protection Agency (USEPA), Environment Canada and the European Chemicals 

Agency (ECHA)  

2.2 Production, emission and environmental fate of POPs 

POPs can be grouped into industrial products, by-products and pesticides. The first 

group includes chemicals used in a variety of industrial and commercial applications 

including flame retardants, dielectric fluids, heat exchange fluids, paint additives, 

lubricants, textile impregnation, cosmetics etc. By-products are chemicals non-

intentionally produced during the manufacturing of other industrial products, during 

incineration of wastes or from combustion processes (Kulkarni et al., 2008). 

Pesticides are substances intended for preventing, destroying, repelling, or mitigating 

any pest. Depending on use they can be divided into herbicides, fungicides, 

bactericides, insecticide, rodenticides (http://www.epa.gov/pesticides/about/-

index.htm). Finally, incidents of large accidental release of dioxins have taken place, 

e.g. the explosion of a reactor in an herbicide production plant in Seveso, Italy 

(Pesatori et al., 2009) and the application of the dioxin contaminated defoliating 
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“Agent Orange” during the Vietnam war (Stellman et al., 2003). Forest fires and 

volcanoes can also be included in this category.   

The main objective of the Stockholm convention is to establish international binding 

measures to eliminate or reduce the release of POPs into the environment. 

Compounds belonging to the 12 “legacy POPs” (Table 1) are either no longer 

produced or annual emission significantly reduced as a result of stringent emission 

standards and increased use of remediation technology (Kulkarni et al., 2008). Exact 

emission data is, however, in many cases difficult to obtain and the overview given in 

Table 1 is based on best available estimates. Once emitted to the environment, the 

further long range transportation and fate of the individual POPs depend on physical 

and chemical properties (Wania 2003, 2006; Lohmann et al., 2007), degradation half-

live times (Sinkkonen and Paasivirta, 2000, Wania, 2006) and mass fluxes in the 

chemosphere, hydrosphere, geosphere and biosphere (Scheringer, 2009; Lohmann et 

al., 2007). Especially the long range transportation of POPs to the Artic region has 

been given much attention (Burkow and Weber, 2002; Wania, 2003). Different 

transportation modes of POPs based on volatility and partitioning between air and 

water (KAW) and octanol and air (KOA) has been proposed to model their Artic 

Contamination Potential (ACP) (Wania, 2003). Volatile chemicals (“flyers”, e.g., 

polyfluoro alchohols, cyclic siloxanes) are transported quickly and in high amounts 

via the air. Their high volatility also causes a very limited deposition in Artic 

latitudes because of reduced temperature (“cold trap effect”). Chemical with a low 

Henry’s law constant or KAW and persistency high enough to be transported by ocean 

currents are called “swimmers” (e.g., HCHs and perfluorinated compounds). Multiple 

hoppers are chemicals that are transported over a certain distance, deposited to the 

ground and re-volatilized during high summer temperatures so that another “hop” or 

long range transportation can take place. The classical POPs with known occurrence 

in the Artic belong to this group, e.g., HCB, PCBs, chlordane and DDT. “Single hop” 

chemicals (e.g., PBDEs and PCBs) have such a high KOA that they bind irreversible 

on particles which they are deposited and almost no re-volatilization take place. 
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Degradation of POPs in the environment is controlled by hydrolysis, biodegradation 

and photolysis (Sinkkonen and Paasivirta, 2000). The first mechanism is very slow at 

environmental conditions. Photodegradation in air is dominated by OH radical 

reactions and is proposed as the major degradation pathway (Sinkkonen and 

Paasivirta, 2000; Lohmann et al., 2007). In soil this mechanism is restricted to the top 

1 mm layer and in water down to 2 m depth by the penetration ability of UV light. 

Atmospheric half-lives for POPs are in the range of years (Sinkkonen and Paasivirta, 

2000). Biodegradation is the most important mechanism in soil, water and sediment 

compartments. However, reported values are very variable and range from days to 

years (Aronson et al., 2006).     

Organic carbon plays a key role in the binding, transportation and cycling of POPs in 

water columns and soils (Cornelissen et al., 2005; Lohmann et al., 2007), and air 

(Götz et al., 2007). The interaction is linked to the content and adsorption to 

condensed, rigid, and aromatic structures typically found in unburned coal, kerogen, 

coke, cenosphere, and soot and charcoal (the remnants of incomplete burning, 

commonly termed “black carbon”). Two modes of POP fixation to black carbon have 

been proposed: Physical occlusion during black carbon formation and reversible 

adsorption on exterior and pore structures surfaces after black carbon formation 

(Koelmans et al., 2006). Particles containing black carbon are reported to be able to 

bind PCDD/Fs, PCBs, PBDEs, PAHs, chlorobenzenes and pesticides (Cornelissen et 

al., 2005). Adsorption to black carbon will also reduce the freely dissolved water 

concentration of these compounds and thereby also the biodegradation rate and 

uptake of POPs by living organisms. On a global scale the binding to black carbon 

has been proposed as key vectors for transport and partitioning of POPs in soil and 

marine environments (Cousins et al., 1999; Lohmann et al., 2007). Settling of black 

carbon containing particles in the ocean and deep lakes will contribute to remove the 

POPs from the environment but it is still unclear whether such deposition in 

sediments represents a permanent sink or not (Lohmann et al., 2007).  

Once taken up in the biota POPs will accumulate in the food chain, representing a 

possible risk to human health. The congener specific bioaccumulation pattern differs 

between organisms. Only the 2,3,7,8-substituted PCDD/F congeners are retained in 
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the body of most species including fish, birds, monkey and humans. In guinea pig, 

crustaceans and mussels also otherwise substituted congeners are found (Oehme et 

al., 1989; Van den Berg et al., 1994).  
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3. Agro-industrial implications 

3.1 Level of POPs in fish from North European oceans 

One of the main objectives of the SCAN report (SCAN 2000) was to evaluate the 

level and contribution of different raw materials used in the agro industry as a source 

for the carry-over and bio-accumulation of PCDD/Fs and DL-PCBs in the food chain. 

POPs can in variable amounts be found in most feedingstuffs used in feed for 

domestic animals, poultry and fish. However, the SCAN report identified fishmeal 

and fish oil as the most heavily contaminated feed materials with products of 

European fish stocks more heavily contaminated than those from South Pacific 

stocks. Animal fat was next in order of dioxins concentration. All other feed materials 

of plant (roughages, cereals, legume seeds) and animal (milk by-products, meat and 

bone meal) origin were evaluated to contain low levels. To reduce the impact of the 

most contaminated feed materials, e.g. fishmeal and fish oil from Europe, on overall 

diet contamination they recommended substituting such materials by lesser 

contaminated sources, use of decontamination techniques to reduce their intrinsic 

level or replacement by none (less) contaminated alternatives. I case of fishmeal and 

fish oil this means increased use of products of South-American origin or plant and 

single cell alternatives.   

High levels of PCDD/Fs and PCBs have been found in several fish species and 

consequently in fishmeal and fish oil produced from industrial fish and by-products 

(Anon, 1999; SCAN, 2000; Joas et al., 2001). The fish stocks of concern for the 

Northern European industry is sprat (Sprattus sprattus) and herring (Clupea 

harengus) in the Baltic Sea and herring, sprat, sand eel (Ammodytes tobianus and A. 

marinus) and blue whiting (Micromesistius poutassou) in the North Sea (Joas et al., 

2001; Mundell et al., 2003). Lower levels have been observed in the Norwegian Sea 

and Barents Sea (Mundell et al., 2003; Julshavn et al., 2004). Especially high levels 

have been found in herring caught in the Baltic Sea with a continuous increase of the 

dioxin concentration from west to east (Karl and Ruoff, 2007). In Norway the 

ongoing surveillance program on POPs in seafood is administrated by NIFES and the 



 

 

27 

main results available on a searchable seafood database (http://www.nifes.no/index.-

php?page_id=137&lang_id=2).  

3.2 Factors influencing the level of POPs in fishmeal and 
fish oil 

The observed contamination levels in different fish and seafood products are mainly 

reflecting the general pollution level in the respective fishing areas (Anon, 1999; 

Julshavn et al., 2004; Karl and Ruoff, 2007). The levels are normally reported on a 

wet weight basis. This is most relevant related to seafood products as it enables the 

assessment of population dioxin intake based on consumption, but less informative 

for assessment of the expected level in fish oil and fishmeal. POPs are lipophilic 

compounds and will accumulate in the lipid phases (i.e., cell membranes, liver and 

adipose tissue) of the fish. Large seasonal variation in the total fat content, linked to 

feed intake and spawning, can be observed for many fish species (Mundell et al., 

2003; Oterhals, 1995). Typically, the lowest fat level is observed early spring after 

spawning and the highest in fish caught late summer. This seasonal variation will 

give the highest POP levels on fat basis early spring as demonstrated for capelin 

during the winter 2000 season in Figure 1. In addition, age give rice to increased 

levels of POPs due to bioaccumulation (Mundell et al., 2003; Parmanne et al., 2006). 

A higher raw material fat content will dilute the POP concentrations in the lipid phase 

and give rice to reduced levels in fishmeal and fish oil. Fishmeal contains approx. 

10% fat based on Soxhlet extraction. Consequently, a raw material containing <10% 

fat on wet weight basis will after fat separation and dewatering result in a fishmeal 

with a comparable higher dioxin level. Opposite, a raw material with >10% fat gives 

rice to a fishmeal with a lower dioxin level. In both cases the fish oil dioxin level will 

be higher and inversely proportional to the raw material fat content. A consequence 

of these relationships is the existence of low fat fish acceptable for food applications 

but above the maximum permitted levels (MPLs) if processed to fishmeal and fish oil 

(Paper I).   

 



 

 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Variation in capelin oil PCDD/F-TEQ level during winter season 2000 

depending on the raw material fat content (Oterhals, unpublished results). Fat level 

(i.e., ethyl acetate extractable lipids) based on the week average of capelin catches 

delivered to the Norwegian fishmeal and oil industry in the studied period.  

Although only a minor part of the produced fish oil and fishmeal has a content of 

undesirable organic pollutants above the MPLs, the need for decontamination of the 

products to comply with the legislations will disfavor producers based on such raw 

material on a world basis. Approximately 20% of the industrial fish caught in EU 

waters might give fishmeal and fish oil dioxin levels above the MPLs and can not be 

used for feed without decontamination (Joas et al., 2001). The referred EU report was 

based on several assumptions including "comparable contamination level" if lack of 
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species specific data. However, a simple and effective action reducing the fraction of 

concern would be a change in fishing practice aiming at harvest of the conflict fish 

resources in periods of high fat content.  

3.3 Toxicity and toxic equivalent factor 

PCDD/Fs and DL-PCBs are highly toxic compounds and have been shown to be a 

risk factor in humans for a large range of clinical disorders, including cancer, immune 

deficiency, reproductive and developmental abnormalities, central and peripheral 

nervous system pathology etc. (Schecter et al., 2006) (http://www.who.int/media-

centre/factsheets/fs225/en/). The toxic effect is mediated through high-affinity 

binding to the aryl hydrocarbon receptor (AhR), an intracellular ligand-activated 

transcription factor involved in regulation of the expression of a large number of 

genes (Schecter et al., 2006; Van den Berg et al., 2006). 

The toxicity and persistency in humans of PCDD/Fs and DL-PCBs are linked to a 

lateral chlorine substitution in the 2, 3, 7 and 8 positions (Schecter et al., 2006). 

Although 75 different PCDD and 135 different PCDF congeners are possible, only 17 

of these are considered toxic. Of the 209 possible PCBs only 12 have any dioxin-like 

toxicity.  The structure and numbering of PCDD, PCDF and DL-PCB congeners are 

given in Figure 2.  

The difference in toxicity of the 29 possible 2, 3, 7, 8-chlorine substituted congeners 

spans five orders of magnitude. The toxic equivalency (TEQ) concept was developed 

to establish a common basis for quantification of the toxicity of all possible mixtures 

of PCDD/Fs and DL-PCBs. The concept is based on the assignment of a toxic 

equivalency factor (TEF) to each of the 29 congeners relative to the most toxic 

congener TCDD (Table 2). The TEF value is multiplied with the chemical 

concentration of the individual congeners to give a TEQ value or a weighted toxicity 

relative to pure TCDD. All TEQ contributions in a given sample are summed to give 

a total TEQ value expressing the toxicity as if the sample were pure TCDD:  

 TEQ = � �� �
�

n

1i
ii TEFC          (1)                                          
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Where Ci expresses the concentration of a congener i = 1,...,n, and its associated TEFi 

value. A prerequisite for the use of this concept is that the combined effect of the 

different congeners are dose or concentration additive (Van den Berg et al., 1998).    

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Numbering of the ring structure of PCDDs, PCDFs, PCBs and PBDEs. 

 

The TEQ concept has been evaluated several times (Huwe, 2002). After a World 

Health Organization (WHO) expert meeting in Stockholm June 1997, the prior used 

TEF values were harmonized in a set of WHO1998 TEF values (TEFWHO98; Table 2) 

(Van den Berg et al., 1998). The WHO TEF values were reevaluated during a WHO 

International Program on Chemical Safety expert meeting in Geneva June 2005 (Van 

den Berg et al., 2006). The new WHO2005 TEF (TEFWHO05) values are given in Table 

2.  

The Geneva expert panel concluded that PBDEs did not have AhR agonist properties 

and should not be included in the TEF concept (Van den Berg et al., 2006). However, 

commercial mixtures of PBDEs can contain polybrominated dibenzo-p-dioxin 

(PBDDs) and polybrominated dibenzofurans (PBDFs), both shown to possess dioxin- 
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Table 2.  Change in WHO toxicity equivalency factors (TEFWHO98 and TEFWHO05) 

between assessments in 1998 and in 2005 with changes in bold.  

Compound  TEFWHO98  TEFWHO05  Compound  TEFWHO98  TEFWHO05  
Chlorinated dibenzo-p-dioxins  Non-ortho substituted PCBs  
2,3,7,8-TCDD  1  1  3,3’,4,4’-TCB (#77)  0.0001  0.0001  
1,2,3,7,8-PeCDD  1  1  3,4,4’,5-TCB (#81)  0.0001  0.0003  
1,2,3,4,7,8-HxCDD  0.1  0.1  3,3’,4,4’,5-PeCB (#126)  0.1  0.1  
1,2,3,6,7,8-HxCDD  0.1  0.1  3,3’,4,4’,5,5’-HxCB (#169)  0.01  0.03  
1,2,3,7,8,9-HxCDD  0.1  0.1     
1,2,3,4,6,7,8-HpCDD  0.01  0.01    
OCDD  0.0001  0.0003    
Chlorinated dibenzofurans  Mono-ortho substituted PCBs  
2,3,7,8-TCDF  0.1  0.1  2,3,3’,4,4’-PeCB (#105)  0.0001  0.00003  
1,2,3,7,8-PeCDF  0.05  0.03  2,3,4,4’,5-PeCB (#114)  0.0005  0.00003  
2,3,4,7,8-PeCDF  0.5  0.3  2,3’,4,4’,5-PeCB (#118)  0.0001  0.00003  
1,2,3,4,7,8-HxCDF  0.1  0.1  2’,3,4,4’,5-PeCB (#123)  0.0001  0.00003  
1,2,3,6,7,8-HxCDF  0.1  0.1  2,3,3’,4,4’,5-HeCB (#156)  0.0005  0.00003  
1,2,3,7,8,9-HxCDF  0.1  0.1  2,3,3’,4,4’,5’-HeCB (#157)  0.0005  0.00003  
2,3,4,6,7,8-HxCDF  0.1  0.1  2,3’,4,4’,5,5’-HeCB (#167)  0.00001  0.00003  
1,2,3,4,6,7,8-HpCDF  0.01  0.01  2,3,3’,4,4’,5,5’-HpCB (#189)  0.0001  0.00003  
1,2,3,4,7,8,9-HpCDF  0.01  0.01    
OCDF  0.0001 0.0003    
 

like properties. Several other compounds were discussed for possible inclusion in the 

TEF scheme: PCB 37, mixed halogenated dibenzo-p-dioxin (PXCDDs) and 

dibenzofurans (PXCDFs), HCB, PCNs, polybrominated naphtalenes (PBNs) and 

polybrominated biphenyls (PBBs) (Van den Berg et al., 2006).  

With few exception of minor importance the WHO1998 TEF values have been reduced 

after the 2005 revision (Table 2). The effect on the level of TEQ in different feed and 

food groups is an overall reduction of 14% (EFSA, 2010). However, the degree of 

reduction varies greatly depending of the type of product due to major differences in 

congener composition. The reduction is mainly due to changes in TEFs for mono-

ortho PCB and furan congeners with minor changes for dioxin and non-ortho PCB 

congeners (Table 2). Comparing the TEQ levels using TEFWHO98 and TEFWHO05 in 

marine oils for food and fish oil for feed applications, the mean level was reduced by 

16% and 13%, respectively (EFSA, 2010). In feed for fur animals, pets and fish the 

reduction was 14%. The levels are in agreement with van den Berg et al. (2006) and 

calculations based on the fish oil used in Paper II, IV and V. Care should, however, 

be given in generalization of these values as the samples in most cases reflect targeted 

monitoring and not random selection (EFSA, 2010).   
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3.4 Population exposure and maximum permitted TEQ 
levels in food and feed 

The Scientific Committee on Food (SCF) established in its risk assessment report 

November 2000 (SCF, 2000) a temporary tolerable weekly intake (t-TWI) of 7 

WHO-PCDD/F-PCB-TEQ/kg body weight (bw). Based on new scientific information 

on the toxicity of dioxins and uncertainty factors this level was increased to 14 WHO-

PCDD/F-PCB-TEQ/kg bw in an update report May 2001 (SCF, 2001). The 

Commission acknowledged at the same time that a considerable proportion of the 

European population has a dietary intake in excess of the tolerable intake 

(Commission Recommendation 2002/201/EC). Introduction of the new WHO2005 

TEF values will also contribute to reduce the population fraction exceeding the TWI 

(VKM, 2007).  

The average dietary intake of PCDD/Fs and DL-PCBs in the EU is in the range of 

1.2-3 pg WHO-TEQ/kg bw and day (SCF, 2001). However, compared to a TWI of 7-

14 pg/kg bw the level indicates that a considerable part of the European population 

exceeds recommended exposure levels. A positive trend has been observed the last 

decades and the dietary intake of dioxins in some European countries has decreased 

since the end of the 1980s by approximately 50% (SCF, 2000). More than 90% of the 

exposure derives from food products, with products of animal origin and fish giving 

the greatest contributions (SCF, 2000; Liem et al., 2000). Food consumption habits 

vary between countries and large differences in the relative contributions of different 

food groups to the total TEQ exposure can be expected. In a compilation of data from 

ten European countries (Belgium, Denmark, Finland, France, Germany, Italy, 

Netherlands, Norway, Sweden and United Kingdom) the following contribution 

ranges for different food groups were observed: milk and dairy products (16-39%), 

meat and meat products (6-32%), fish and fish products (2-63%) and other products, 

mainly of plant origin such as vegetables, cereals (6-45%) (SCOOP, 2000). The EU 

strategy is to reduce the average population intake to below 2 pg WHO-TEQ/kg bw 

and day (SCF, 2001).  
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To reduce the population exposure the European Union has developed an integrated 

approach to reduce the levels throughout the food chain, that is, from feed materials 

through food-producing animals to humans. An overview of the MPLs in selected 

products intended for animal feed is given in Table 3. All values are given on a 12% 

moisture basis to standardize the legislation levels across different types of products. 

Commission directive 2006/13/EC also gives a set of somewhat lower action levels, 

separate for PCDD/Fs and DL-PCBs since the sources are different. If exceeded the 

source of contamination shall be identified and appropriate measures taken to reduce 

or eliminate it. The EU legislations are based on the concept of “upper-bound” 

concentrations, i.e. if the concentration of a congener is below the limit of 

quantification (LOQ) the concentration is assumed to be equal to the LOQ and the 

TEQ contribution based on that value. Opposite, the concept of “lower-bound” 

requires using zero for the contribution of each non-quantified congener. A 

comparison of upper- and lower-bound results have shown that the former on average 

is 4% and 13% higher in food and feed samples, respectively, with large variations 

between groups (EFSA, 2010).  

MPLs of PCDD/Fs and DL-PCBs in foodstuffs are given in Commission Regulation 

(EC) No 1881/2006 (Table 4). The TEQ levels are either given in pg/g fat or on a wet 

weight basis. A preferred fat extraction protocol is not given but has to be stated with 

the analytical results. In Norway ethyl acetate extraction is used (Amund Måge, 

NIFES, Bergen, Norway; personal comm.). A comparison of four commercially used 

extraction techniques (i.e., ethyl acetate, Bl&D, EC-method and Soxhlet) are given in 

Paper I. The tested fat extraction methods gave a systematic ranking of Bl&D > EC > 

Soxhlet. Ethyl acetate extraction showed a less systematic picture but was always 

below Bl&D extraction. The choice of fat extraction technique will especially have 

implications for low fat products where the MPLs are given on fat basis (Table 4). As 

for products intended for animal feed a set of action levels are also developed for 

foodstuffs (Commission Recommendation 2006/88/EC). 
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Members of the Global Organization of EPA and DHA Omega-3 (GOED; 

http://www.goedomega3.com/) have developed a voluntary monograph quality 

standard for EPA and DHA oils (GOED, 2006). The standards sets significant lower 

specifications for the PCDD/F- and DL-PCB-TEQ level in fish oils for food 

applications compared to present EU legislations (Table 4), i.e., maximum 2 pg 

WHO-PCDD/F-TEQ/g and 3 pg WHO-PCB-TEQ/g. In addition, a maximum level of 

0.09 mg/kg is given for the sum of the seven indicator PCBs with IUPAC number 28, 

52, 101, 118, 138, 153 and 180. The level includes PCB 118 which is a DL-PCB and 

not included in the proposed EU NDL-PCB legislations (Table 3 and 4). The sum 

WHO-PCDD/F-PCB-TEQ level of GOED (5 pg/g) is in accordance with present 

Norwegian national law for the maximum level in marine oils (FOR 2002-09-27 nr 

1028). 

New EU regulations are proposed amending the current PCDD/F and PCB WHO-

TEQ levels in feed and food (Table 3 and 4). The reduced levels in the proposed 

regulations are a combined numeric effect of the introduction of the lower WHO2005 

TEF values (Van den Berg et al., 2006) and a real reduction of the maximum 

permitted level in the respective products. Especially for marine feed and food 

products the TEQ-levels have been considerable reduced to be more in accordance 

with the plant and animal products. 

3.5 Impacts on Atlantic salmon feed formulation 

Retention of DL-PCBs in Atlantic salmon feeding trials has been found to be higher 

than PCDD/Fs, 84% and 49%, respectively (Isosaari et al., 2004; Lundebye et al., 

2004). Even higher retention values (95%) have been observed for PBDEs (Isosaari 

et al., 2005). The Science article of Hites et al. (2004a) on the content of dioxins and 

PCBs in farmed vs. wild salmon and follow up article on PBDEs (Hites et al., 2004b) 

resulted in an increased focus on the POPs level in fish. Also the health benefit of 

eating farmed salmon was questioned (Hites et al., 2004a; Hamilton et al., 2005). 

However, others have concluded that the benefits of fish intake exceed the potential 

risks (Mozaffarian and Rimm, 2006).   
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Three strategies can be used by the feed manufacturing industry to comply with the 

present MPLs in fish feed (Berntssen et al., 2005 and 2006): (i) Use of marine 

ingredients with intrinsic low levels of POPs. (ii) Use of decontaminated fish oil and 

fishmeal. (iii) Use on non-marine feed ingredients. The first option implies preferred 

use of fishmeal and fish oil from the southern hemisphere. Exchange of fishmeal and 

fish oil in the diet with plant protein and lipid sources have been shown to 

significantly lower the final flesh level (Berntssen et al., 2005; Berntssen et al., 

2010a). This research area has also been given increased focus due to the continuous 

optimization of commercial feeds based on least cost formulation. However, 

challenges related to the content of anti-nutritional factors (Francis et al., 2001) and 

the unavoidable influence on the fatty acid composition of the final edible product 

have so far partly limited the industrial utilization of such feed ingredients. The 

salmon farming industry should aim at production of an edible product with n-3 

PUFAs comparable to wild salmon to ensure that similar human health benefits will 

accrue from the consumption of farmed fish. If fish oil in the feed pellet is replaced 

with vegetable oil a significant reduction in EPA and DHA content of edible parts is 

observed (Torstensen et al., 2004).  

Global production of fishmeal and fish oil is dependent on the sustainability of 

captured fisheries (FAO, 2009). Annual fish oil production has stabilized between 1 

and 1.2 million tones, and global decrease of the available fish stocks require 

increased focus on improved utilization of by-products from the fishery and 

aquaculture industry (Blanco et al., 2007), and other major marine resources like 

Antarctic krill. The situation emphasizes the importance of utilization of all available 

marine resources including fishmeal and oil parcels above MPLs through use of 

decontamination processes. For decontaminated fish oil parcels the feed 

manufacturing and fish farming industry have requested documentation on possible 

removal of nutrients of importance for growth rate and feed utilization. Quantification 

of such process effects after SPD is reported in paper V. No negative effects have 

been documented in an 11 weeks Atlantic salmon feeding trial based on a diet 

containing commercial available fish oil decontaminated with the combined use of 

AC adsorption and thin film deodorization (Sprague et al., 2010). Berntssen et al. 
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(2010b) have reported an 18 month feeding trial based on fish oil from the same 

producer (Fiskernes Fiskeindustri, Skagen, Denmark) and found a reduction (3%) of 

very long chain n-3 fatty acids after the decontamination process. This was also 

expressed in a minor reduction (4-7%) of EPA + DHA in the salmon flesh compared 

to the control diet. Such effects were not observed in a 10 weeks feeding trial 

reported by Pratoomyot et al. (2008) based on oil from the same producer. In this 

study, however, a significant lower digestibility of crude protein, fat, dry matter and 

most fatty acids was observed for feed containing docontaminated oil. In all the 

above studies a highly significant reduction of PCDD/Fs and DL-PCBs was 

documented in the decontaminated fish oil and consequently Atlantic salmon flesh. 

Equivalent main conclusions have been obtained in a 16 months Atlantic salmon 

feeding trial based on fish oil decontaminated by SPD (Olli et al., 2010). In this study 

also indications of positive effects of the decontamination process on growth, feed 

utilization efficiency and product quality criteria was observed.  

In the above referred feeding trials only the type of decontamination technology is 

stated without any detailed information regarding applied process conditions given 

under materials and methods. The reported differencies in biological response based 

on combined AC and deodorization can therefore not be evaluated based on possible 

differences in the applied process conditions. Regretfully, this also makes it difficult 

to generalize the main process technology conclusions or relate the observations to 

the process optimization studies presented in paper II, IV and V. The limited 

information also makes it difficult to develop guidelines for good manufacturing 

decontamination practices within the industry based on the given studies. 

3.6 Impacts on refining of fish oil for human consumption 

Fish oil for human consumption in the form of cod liver oil, fish oil capsules or as 

fortification in formulated food products are normally refined, bleached and 

deodorized to remove free fatty acids, pigments, trace metals and oxidation products. 

Steam deodorization will to some extent remove POPs (Hilbert et al., 1998; 

Carbonnelle et al., 2006) and additional steps comprising use of AC in the bleaching 
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step (Paper II) and SPD (Paper IV) can be included to increase the efficiency. 

Decontamination practices were introduced by the cod liver oil refining industry in 

Norway end 1980ies after increased focus on high levels of dioxins in the crude oil 

(Brevik et al., 1990). Although details regarding applied technology are not revealed 

by the fish oil refining industry, the present industry practice is probably based on 

either the combined used of AC adsorption and deodorization (Carbonnelle et al., 

2006) or SPD (Breivik and Thorstad, 2005). In Norwegian monitoring programs the 

mean level of WHO-PCDD/F-PCB-TEQ in cod liver oil for human consumption has 

been found to be 2.0 pg/g compared to 32 pg/g in cod liver (Alexander et al., 2006). 

Crude oil extracted from such cod liver will have a TEQ level around twice the level 

observed on wet weight basis and underlines the need for use of refining technology 

including an efficient decontamination step to comply with legislation levels (Table 

4). However, recent published results from a Spanish monitoring of the POPs level in 

fish oil supplements has revealed products on the market with TEQ levels above 

present EU legislations (Marti et al., 2010). Such monitoring findings document the 

existence of commercial actors in the international fish oil refining industry still using 

inadequate decontamination technology.  
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4. Alternative decontamination technologies 

4.1 Fishmeal 

POPs are hydrophobic compounds with a log KOW >5 (UNEP, 2001; Wania, 2003) 

and will accumulate in the fatty tissue of living organism. In the fishmeal and fish oil 

process they will follow the fat phase and the final fishmeal level controlled by the 

partitioning of fat in the process (Paper I). The fishmeal POPs level is directly 

proportional to the fishmeal fat level. Consequently, any process optimization 

addressing reduced fat content will lower the final fishmeal POPs level.  

4.1.1 Improved mechanical fat separation 

Fat separation steps in the fishmeal and oil process are performed based on 

mechanical pressing and centrifugation (Anon, 1986; Søbstad, 1992). Høstmark 

(1987) has studied the effect of a gentle, low temperature (60 °C) coagulation 

procedure on fat separation in the fishmeal process. On average, a 40% reduction of 

the fishmeal fat level was obtained with herring and mackerel raw material compared 

to a more harsh coagulation procedure (7.2% and 12.0% Soxhlet fat on a dry matter 

basis, respectively) aimed to simulate large scale industrial conditions. Attempts in 

1995 to upscale the process failed, but part of the same improved fat separation effect 

has been obtained in large scale operation by use of hot press or decanter liquid in 

return to the cooker (Øistein Høstmark, Nofima, pers. comm.). The obtainable effect 

in large scale operation is, however, also dependent on raw material type and quality 

and the specific equipment used in the processing plant. Moll et al. (1996) used high 

temperature short time treatment (100-150 °C, 15-40 seconds) to split emulsions and 

coagulate protein before fat separation from the press liquid in the fishmeal process. 

The treatment gave improved separation of suspended particles and reduced fat 

content in the stickwater. 

Generally most of the polar lipids will be membrane bound and remain in the solid 

phase after wet rendering. The phosphorous level in fish oil is in the range 5-100 ppm 

(Young, 1986) corresponding to a phospholipids level around 150-3000 ppm. The 
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water washing or polishing step used in the final fish oil separation will remove some 

of these phospholipids and can be compared to the water degumming step used in the 

vegetable oil industry. Improved fat separation has also been reported based on 

protease treatment of non-coagulated fish by-products (Dumay et al., 2009; Linder et 

al., 2005), partly attributed to increased release of phospholipids. However, 

substantial amount of phospholipids was also found emulsified in the water fraction 

after centrifugation. The possible use of membrane filtration has been proposed to 

separate the emulsified lipid phase but not experimentally demonstrated (Dumay et 

al., 2009).     

Marmon et al. (2009) have studied the use of pH-shift processes to reduce the level of 

dioxins and PCBs in protein isolates from herring. Compared to herring mince the 

tested processing conditions gave protein isolates with 70-80% reduced fat content 

(based on combined n-hexane-acetone and n-hexane-diethyl ether extraction) and a 

WHO-PCDD/F-PCB-TEQ reduction highly correlated to the fat reduction. However, 

on a dry matter basis the fat content (10-11%) was on a level comparable to 

commercial fishmeal. Use of 5% ethanol during processing of alkali-made isolates 

further reduced the fat level to 5.2%.  

Baron et al. (2007) has demonstrated a 20-30% transfer of the fishmeal fat content 

(based on analysis of the fatty acid profile) to the water phase after protease 

(Alcalase) treatment at pH 9 followed by readjustment to pH 6 and centrifugation. 

However, the used experimental protocol did not demonstrate the separation of fat 

from the extracted water phase and the overall effect after adding back the water 

soluble protein fraction.     

The effects of protease (Alcalase) and heat treatment on increased fat separation in 

press cake and stickwater concentrate is reported in Paper I. Effect on press cake fat 

level was negligible. The fat level (based on Bl&D extraction) in stickwater 

concentrate was significantly reduced, on average by 64%, corresponding to a 13% 

reduction of the fat level in the final experimental fishmeal. However, the effect 



 

 

42 

could be attributed the applied laboratory scale centrifugation conditions after 

treatment and not the studied experimental variables.  

4.1.2 Organic solvent extraction 

A large range of tested alternatives for solvent extraction of oilseeds are reported in 

the literature (Johnsen and Lusas, 1983). Only few of theses are, however, acceptable 

for food and feed applications, i.e., methanol, ethanol, isopropanol, ethyl acetate, 

acetone, methyl ethyl ketone and hexane. Hexane (i.e., commercial petroleum 

fractions consisting of 45-90% n-hexane and other branched and cyclic hexane 

isomers) is the main solvent alternative used for edible oil extraction (Wan and 

Wakelyn, 1997) and has also been utilized in Norway in the 1960 and 70ies to 

produce a special quality low fat fishmeal (Norsamin®) to be used in domestic animal 

feed (Opstvedt and Hansen, 1977). A new fishmeal decontamination plant based on 

hexane extraction was put in operation in 2005 at the fishmeal factory TripleNine 

Fish Protein in Esbjerg, Denmark. However, I am not aware of any published 

information on decontamination efficiency or residual fat content in the fishmeal after 

the hexane extraction.  

Hexane is an apolar solvent with limited ability to extract phospholipids from a 

matrix. In laboratory setup based on reflux of hot hexane (i.e., Soxhlet apparatus) a 

large difference in total extracted lipids compared to chloroform-methanol (Bl&D) 

extraction (Bligh and Dyer, 1959) has been reported. The difference is mainly 

attributed a reduced extraction of phospholipids. Based on this assumption hot hexane 

is able to extract 40-60% of the phospholipids in anchovy and red eye fish meal and 

54% in hake fish meal (de Koning et al., 1985). Roschke et al. (1978) reported that 

petroleum ether (petroleum fraction with boiling point 40-60 °C) was able to extract 

only 65% of the Bl&D extractable lipids in krill meal. This was explained by a low 

extraction rate of phospholipids.  

Hexane is a highly flammable and toxic solvent and isopropanol has been studied as a 

more environmental friendly alternative. The main drawbacks of isopropanol, 
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compared to hexane have been the lower apparent solvency for oil and higher energy 

consumption in the recovery process (Lusas et al., 1994).  

Effect on fat reduction (based on Bl&D fat) in fishmeal after hexane (79%) and 

isopropanol (88%) extraction was documented in Paper I. The higher effect of 

isopropanol was attributed to its higher polarity. Comparable results are reported by 

Baron et al. (2007). Opstvedt and Hansen (1977) reported the residual fat content in 

commercial hexane extracted fishmeal samples to be in the 3.4-6% range based on 

residual Bl&D fat, confirming its less efficient extraction effect on polar lipids.     

4.1.3 Sub- and supercritical fluid extraction 

Carbon dioxide (critical point 31 °C and 74 bars) is the most widely used alternative 

in supercritical fluid extraction (SFE), being the cheapest and most environmental 

friendly alternative (King, 1997). Examples of utilization of SFE technology in the 

food industry are removal of caffeine, extraction of fat, cholesterol, essential oils and 

antioxidants, and fractionation of lipids (Herrero et al., 2006, Sahena et al., 2009). 

The main advantages of SFE is relative low extraction temperature, inert conditions 

avoiding molecular alterations, high extraction rate (low viscosity and high diffusion 

rate), and simple removal of solvent by evaporation. Addition of about 5-10% of 

ethanol to CO2 is reported as necessary to achieve extraction of phospholipids in egg 

yolk, canola, meat, soybean flakes, sunflower seed and corn germ (Boselli and 

Caboni, 2000). However, by utilization of high pressure (517 bars, 40 °C) these 

authors have obtained extraction yields comparable to conventional Bl&D extraction.  

Pederssetti et al., 2011 have compared the efficiency of compressed propane and 

supercritical CO2 extraction for extraction of canola seeds. Comparable yields and oil 

qualities were obtained, but extraction with propane was much faster making this 

technology an interesting alternative.  

4.1.4 Oil leaching 

The principle behind the oil leaching process was first presented to the fishmeal and 

fish feed industry in 2002 (Oral presentation I). The decontamination technology is 
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based on contacting the fishmeal intermediate products, press cake and decanter 

solids, by  low-dioxin triglyceride oil (i.e., vegetable or fish oil) with subsequent 

separation steps to reduce the fat content back to normal level (Figure 4) (Paper I). 

During the extracting step the lipid phase and POPs embedded in the solid matrix will 

be transferred to the continuous oil phase where it subsequently can be removed by 

use of oil decontamination technology. The extraction principle can be utilized both 

on wet press cake (Paper I) and dried fishmeal (Baron et al., 2007; Oterhals, 

unpublished results). Oil leaching of press cake has been shown to be as effective as 

hexane or isopropanol extraction of fishmeal (Paper I). Compared to organic solvent 

extraction the process alternative offers several advantages including easy 

implementation in an existing fishmeal processing plant and use of a safe and 

nonflammable extraction medium.      

4.2 Fish oil  

4.2.1 Activated carbon adsorption 

AC is produced from coals, peat, wood, and a wide range of organic byproducts of 

industry and agriculture by two standard activation methods: gas and chemical (Yang, 

2003). Gas activation is performed  by pyrolysis of the carbonaceous raw material at 

400-500 °C followed by partial gasification at 800-1000 °C in the present of a mild 

oxidizing gas such as CO2 and steam, to develop the porosity and surface area. 

Chemical activation is performed by direct reaction between the raw material and an 

activator such as phosphoric acid and zinc chloride at 500-900 °C. The pore size 

distribution, available surface area and surface properties are dependent on the 

starting material and manufacturing procedure. The pore size distribution can be 

divided into micro-, meso- and macropores with effective radii of <2, 2–50 and 50 

nm, respectively. AC consists of a heterogenic twisted network of defective 

hexagonal carbon layer planes, cross-linked by aliphatic bridging groups between 

which slit-like crevices are formed (Barton et al., 1999). The most widely used 

commercial products have surface area of about 800 to 1500 m2/g with micropore 

contribution of about 95% (Bansal and Goyal, 2005). The macropore surface area 
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normally contributes less than 0.5 m2/g and this pore structure functions mainly as 

transportation channels.  

AC adsorption has been used in edible oil refining operations for several decades to 

remove PAHs from coconut oil (Biernoth and Rost, 1967) and in recent years also 

from olive pomace oil (Leon-Camacho et al., 2003). The use of AC treatment to 

remove dioxins was first reported in 1976 (Mounts et al., 1976). AC treatment has 

proven very efficient for removal PCDD/Fs from fish oil but is less effective for 

removal of DL-PCBs (Maes et al., 2005; Paper II). Ortho-substituted PCBs are less 

adsorbed compared to non-ortho substituted. No effect of AC on PBDEs removal was 

observed in study reported in Paper II. However, Ortiz et al. (2011) have obtained up 

to 9% reduction based on 2.5% AC at 80 °C and 38 min adsorption time. They also 

reported adsorption of NDL-PCBs (11%), HCB (70%) and DDT (27%) at these 

conditions. The discrimination between PCDD/Fs and DL-PCBs has been confirmed 

by many studies (Cornelissen et al. 2005; Maes et al., 2005; Paper II). The trapping 

mechanisms of adsorption onto AC are still only partly understood. However, planar 

conformation or in case of PCBs and PBDEs, steric hindrance imposed by ortho-

substitution and energy barriers for the formation of coplanar structures with the 

ability to form π-electron interactions with the hexagonal carbon layer and 

electrostatic forces plays an important role (Paper II and III).  

No negative effects of AC adsorption have been observed on tested oil quality 

parameters, i.e., fatty acid composition (Maes et al., 2005; Usydus et al., 2009; Ortiz 

et al., 2011) and oxidation level and retinol retention (Maes et al., 2005; Paper II).      

4.2.2 Miscellaneous sorbent and complexation systems 

Ordinary acid activated bleaching earth used to remove color compounds and polar 

oxidation products in edible oil refining has no effect on PCDD/F and DL-PCB 

removal (Maes et al., 2005; Mounts et al., 1976; Ortiz et al., 2011; Paper II). Also, no 

effect of silica treatment (0.5%) and filter aid (diatomaceous earth, 0.5%) has been 

documented (Eppe et al., 2005; Ortiz et al., 2011). Phosphoric acid activated AC with 

an acid pH reaction is less effective compared to steam activated AC with a basic pH 
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(De Meulenaer et al., 2003). Yang et al. (1999) have developed a sorbent screening 

technique for dioxin removal based on the study of desorption activation energy. The 

high efficiency of AC could be explained by a much higher bond energy compared to 

clays, pillared clays, γ-Al2O3 and zeolites. Carbon nanotubes have nearly three times 

higher activation energy for dioxin desorption compared to AC and superior for 

dioxin removal (Long and Yang, 2001).     

Mono-, di- and tri-chlorobiphenyls in insulation oil has been efficiently removed by 

inclusion complexing into channel-type γ-cyclodextrin assemblies (Kida et al., 2008). 

However, 3,3’,5,5’-TeCB was scarcely removed and the adsorption capability of the 

tested channel-type γ-cyclodextrin is therefore not suited for reduction of the TEQ 

level in feed and edible oils. According to the authors optimization of the preparation 

condition for the channel-type γ-cyclodextrin is needed and further studies in 

progress. 

4.2.3 Supercritical CO2 extraction 

High efficiency of supercritical CO2 extraction on reduction of the TEQ level in fish 

oil has been obtained. The extraction efficiency is negatively correlated to the degree 

of chlorine substitution or molecular weight and effective removal could only be 

achieved of congeners with MW below 400. Obtained TEQ reduction ranged from 

86% for TCDD/Fs to 14% for OCDD/Fs, and from 92% for TCBs to 69% for HpCBs 

(Kawashima et al., 2006). Use of counter-current compared to semi-batch type 

extraction reduced the consumption of CO2, but still with a low refined oil yield of 

only 65% (Kawashima et al., 2009). Extracted oil increases with increasing CO2/oil 

ratio (Jakobsson et al., 1994) and pressure (Kawashima et al., 2009). To reduce the 

PCDD/F-TEQ level below 90% the subsequent use of AC has been proposed 

(Kawashima et al. 2006 and 2009).        

4.2.4 Steam deodorization 

Deodorization is a steam stripping process where superheated steam is contacted with 

the oil at elevated temperature and a pressure of 3 mbar or lower. Amount of 
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stripping steam depends on temperature and pressure conditions and target quality 

parameters. Deodorization is used in the edible oil processing industry to remove 

undesirable volatile off-flavor compounds and free fatty acids, and thermal 

decomposition of hydroperoxides and pigments. Several types of commercial 

deodorizer designs exist based on batch, semicontinuous and continuous technology 

(De Greyt and Kellens, 2005). Deodorization of most vegetable oils is performed at 

temperature levels between 230 and 260 °C. Fish oils, however, are susceptible to 

thermal induced polymerization and geometrical isomerization (i.e., formation of 

trans isomers) at temperature levels above 180 °C and demands special attention on 

heat load to avoid such negative effects (Mjøs and Solvang, 2006; Fournier et al., 

2006).  

The steam stripping process will also remove other volatile substances including 

tocopherol, sterols and POPs. Pesticides used during cultivation and storage of oil 

seeds, fruits and kernels are removed from the extracted oil to below detection level 

at commercial refining and deodorization conditions (230-240 °C for 45-70 min and a 

steam dosing of 8 m3/kg oil) (van Duijn, 2008). More gentle deodorization conditions 

(180 °C for 2 hours and 7% steam relative to oil mass) were able to reduce the level 

of the most volatile compounds (i.e., α-HCH, lindane, HCB) found in fish oil to 

below detection level (Hilbert et al., 1998). Less volatile organochlorine pesticides 

(i.e., dieldrin, p,p’-DDE and p,p’-DDD) and PCBs were reduced by about 50%. Low 

molecular weight PAHs are efficiently removed in commercial deodorization of 

soybean oil (Larsson et al., 1987). However, heavy PAHs were reduced to a limited 

extent with observed residual benzo[a]pyrene levels up to 1 μg/kg. Carbonnelle et al., 

2006 have compared the use of packed column and cross-flow stripping of PCDD/Fs- 

and DL-PCBs in fish oil at different operation conditions. PCDD/Fs were more 

difficult to remove compared to DL-PCBs. Temperature levels between 210 and 220 

°C were needed to reduce the WHO-PCDD/F-PCB-TEQ level below the present 

MPL (10 pg/g). A combination of AC adsorption and steam deodorization was used 

to improve the total decontamination rate.   
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4.2.5 Short-path distillation 

SPD is characterized by the combination of very short residence time in the 

evaporator (1–10 s), low pressure (< 1 Pa), short distance between the evaporator and 

condenser (10–50 mm) and approximately collision free mass transfer of molecules 

in the distillation space (Lutisan and Cvengros, 1995). The short residence time is 

achieved by formation of a thin liquid film on a vertical cylinder (falling film 

evaporator, Figure 3) or on a rotating surface (centrifugal film evaporator). In the 

literature molecular and SPD is often used as synonyms, the first terminology 

referring to an apparatus with a gap between the evaporator and condenser equal or 

less than the mean free path of the molecules evaporated (collision free diffusion).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Cross-section of a short-path evaporator (after UIC GMbH, with 

permission). 
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SPD is established as a good manufacturing practice in the lipid processing industry 

to separate heat labile substances (Xu, 2005). However, few studies pertaining use of 

the technology to reduce POPs in edible oils are published. Bills and Sloan (1967) 

studied the removal of chlorinated insecticides in milk fat and achieved a reduction of 

95–99% at evaporator temperature of 200 °C and 0.7 x 10-3 mbar. Julshamn et al. 

(1973) reported 70% removal of DDT in cod liver oil at operation conditions 200–

228 °C and 21–23 x 10-3 mbar. The use of the technology in the fish oil refining 

industry is also reported by Brevik et al., 1990. They obtained 95% reduction of the 

N-PCDD/F-TEQ (based on Nordic TEF model) level in fish oil, but with only a 

rough indication of the applied process conditions, i.e., 180-220 °C, <100 Pa. Breivik 

and Thorstad (2005) reported >90% reduction of PCDD/Fs, DL-PCBs, PBDEs and 

OCPs in fish oil based on SPD and the improvement of the process by addition of 3-

6% of a volatile “working fluid” consisting of fatty acid ethyl esters. Details 

regarding preferred process conditions are given in the corresponding patent (Breivik 

and Thorstad, 2004 ), i.e., pressure between 0.1 and 0.001 mbar, temperature 180-200 

°C. Similar improvement of process efficiency has been obtained by flushing the 

inner condenser with a ‘‘washing liquid” (Albers and Graverholt, 2006; Albers and 

Schardt, 2007). Response surface methodology has been used in Paper IV to study 

the effects of evaporator temperature, flow rate and addition of “working fluid” on 

the removal of PCDD/Fs, DL-PCBs and PBDEs. The WHO-PCDD/F-PCB-TEQ 

level could be reduced up to 98% based on the best experimental settings. 

Temperature levels up to 228 °C were used without loss of polyunsaturated fatty 

acids (PUFAs) or formation of trans-isomers (Paper IV). Retention of vitamins and 

cholesterol in the fish oil was substantially higher compared to the reduction of 

WHO-PCDD/F-PCB-TEQ. Generally, no adverse negative effects on the nutritional 

quality of the fish oil could be documented. Residual WHO-PCDD/F-PCB-TEQ level 

in accordance with the voluntary industrial monograph of GOED could be achieved 

on the basis of operation conditions giving <20% loss of vitamins (Paper V). 
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5. Experimental and analytical approaches 

5.1 Presscake and fish oil production 

 The annual world fishmeal production is around 5 million metric tons with Peru, 

Chile, Thailand, U.S.A, Japan, Denmark, China, Norway, Mexico and Iceland as the 

main producing countries in descending 2009 order (Shepherd, 2010). Fishmeal is 

produced by use of heat coagulation of the raw material followed by a mechanical fat 

separation and thermal dewatering process (Anon, 1986; Søbstad, 1992). The 

processing equipment is fairly standardized worldwide and product quality is mainly 

dependent on raw material type and quality (Opstvedt et al., 2000) together with 

drying conditions (Opstvedt et al., 2003). A general outline of the fishmeal and fish 

oil process unit operations is included in Figure 4 (Paper I).  

The crude fish oil used in Paper II, IV and V was purchased directly from a 

Scandinavian fishmeal and oil producer. The oil was of commercial quality with a 

free fatty acid (FFA) level of 46 g/kg and mainly produced from sprat (Sprattus 

sprattus) caught in the North Sea region.  

The press cake used in Paper I was produced from herring (Clupea harengus) caught 

in Skagerrak. The fish was of food quality and delivered in frozen blocks. After 

thawing overnight it was processed in the pilot plant facilities of Nofima in Bergen. 

Details regarding processing conditions are given in Paper I. After heat treatment (80-

90 °C) of the fish raw material it is run over a strainer (not shown in Figure 4) to 

remove free water and oil phase before entering the screw press. The fish material 

entering the press (Figure 5A) is transported by counter-rotating screws of reducing 

height. The compression ratio, normally 1:3.5-4 in a fish press, causes fish oil and 

water to be squeezed out of the coagulated material and through the sieve plates. The 

water and oil together with solubles and fine particles are collected in the bottom of 

the press and mixed with water phase removed over the strainer. The liquid process 

stream is heated and run over a Jesma sieve or decanter centrifuge to remove 

suspended solids before oil separation by a disc centrifuge (Figure 4). The press cake 
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exiting the screw press is compacted in large lumps (Figure 5B) and need to be 

disintegrated before further use in the experimental laboratory protocols addressing 

increased fat separation, solvent extraction and oil leaching (Paper I). Figure 5C 

shows a picture of disintegrated press cake with a scale to indicate the particle size. 

The separated liquid phase (stickwater) is concentrated in a 4-stage falling film 

evaporator before mixed with press cake and decanter solids and dried to a fishmeal 

(Figure 4) with final moisture content of 6-10%. The fish oil is normally polished 

over a second disc centrifuge to remove residual sludge and water before pumped to 

storage tanks.  

 

Figure 4. Simplified process flow diagram representing the standard fishmeal and oil 

process and a new integrated decontamination process based on oil leaching of 

intermediate products (press cake and decanter solids). New unit operations are 

marked with shading (Paper I). 
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Figure 5. Cooked herring at the inlet (A) and outlet (B) of a double-screw 

mechanical press (screw diameter 13 cm), and (C) press cake after disintegration.    

5 mm5 mm
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5.2 Increased fat separation in the fishmeal process 

5.2.1 Mechanical separation 

Improved fat separation in the fishmeal process has been studied extensively through 

several research projects at the Norwegian Herring Oil and Meal Industry Research 

Institute (SSF) and recommendations implemented in the industry. By experience, 

further improvements based on mechanical separation are difficult to obtain without 

high investments. In Paper I a two-factorial design experiment was performed to test 

the effect of heat (121 °C) and protease (EC 3.4.21.62) treatment on improved fat 

separation from press cake/jesma solids and stickwater concentrate. The design was 

based on the following industrial practices and principles: (i) A second pressing step 

(so-called double pressing) has been applied by the fishmeal industry to reduce the fat 

content of decanter solids. (ii) Alcalase 2.4L (Novozymes AS, Bagsvaerd, Denmark) 

treatment is used to lower the viscosity of stickwater concentrate and thereby improve 

the concentration rate. Recommended conditions are 1 g Alcalase per kg dry matter 

and temperature below 60 °C. (iii) High temperature treatment has been reported to 

improve the fat separation from decanter liquid.  

Improved fat separation after the treatment protocols was measured by centrifugation 

of the samples. The upper oil/water layer was collected after freezing of the sample 

and separated oil quantified by extraction of this subsample using tetrachloro-

methane. The protocol reflects the maximum released fat possible to separate by use 

of a decanter centrifuge in case of press cake and a disc centrifuge in case of 

stickwater. 

5.2.2 Solvent extraction 

Two industrial relevant organic solvents, hexane and isopropanol, were compared in 

Paper I. Extraction of different seeds (soy, rape/canola, flax, sunflower, cotton etc.) to 

produce edible oils is performed in large scale operations worldwide primarily based 

on hexane extraction. It has earlier also been used in industrial scale for defatting of 

fishmeal (Opstvedt and Hansen, 1977) and at present in Denmark for 
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decontamination of fishmeal. Isopropanol has been studied extensively as a more 

environmental friendly alternative. Hexane is a nonpolar solvent which mainly 

extract neutral lipids, i.e. triglycerides. Isopropanol is more polar with a higher ability 

to extract phospholipids and other polar lipid compounds. 

Excess solvent and temperature close to the boiling point of commercial hexane (i.e., 

petroleum fraction consisting of 45-90% n-hexane with a boiling point in the range 

65-70 °C) used in the oilseed extraction industry was chosen as test conditions. The 

dry fishmeal was extracted twice with a sample to solvent ration of 1:5 at 58 °C. 

Residual fat, PCDD/F and DL-PCB levels were used as responses. The fat level was 

measured based on four laboratory extraction protocols normally used to quantify fat 

in food and feed products: Ethyl acetate extracting, light petroleum (boiling range 40-

60 °C) Soxhlet extraction, light petroleum (boiling range 40-60 °C) Soxhlet 

extraction with acid hydrolysis (EC method), and monophasic chloroform-methanol-

water (Bl&D) extraction. The extraction protocols represent solvent systems with 

different polarity and ability to extract polar lipids in the matrix.    

5.3 Presscake oil leaching 

The oil leaching process was tested to explore more environmental friendly 

alternatives to organic solvent extraction. Soybean oil was chosen as a leaching agent 

to enable measurement of the interchange of both POPs and fatty acids between the 

lipid phase embedded in the solid matrix and the continuous lipid phase. The press 

cake used in this study was produced from herring raw material based on the wet 

rendering process described under 5.1. Press cake extruded from the screw press 

consists of large lumps (Figure 5B) and was grinded to obtain a more homogenous 

material (Figure 5C). The leaching process was performed in a batch system utilizing 

the combination of high temperature (88 °C) and long contact time (60 min) under 

continuous mixing to explore the feasible use of the technology, followed by two-step 

water washing of the press cake to remove excess oil (Paper I). The protocol was 

established based on initial tests and conditions chosen to be relevant for later 

implementation in the fishmeal process. A schematic presentation of the used 
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processing steps showing the possible implementation in a fishmeal processing plant 

is given as shaded boxes in Figure 4.  

5.4 Activated carbon adsorption 

Among the adsorbents used in edible oil refining AC was the only known to be able 

to remove PCDD/Fs and PCBs. It is also used by the industry to remove PAHs. 

Several commercial producers were contacted to gather non-published knowledge 

and evaluate candidate products. AC adsorption was performed using a 5 L jacketed 

glass reactor equipped with temperature control, stirrer and vacuum pump (Paper II). 

The adsorption process was performed under vacuum (<20 mbar) and AC removed 

by use of a Büchner filter. Process conditions were chosen based on earlier 

experience in fish oil bleaching and general industrial practice. A 0.5% addition of a 

powder quality AC (Norit SA4 PAH) was used in the optimization trials. General  

Table 5. General properties of Norit SA 4 PAH used in the AC adsorption trials. 

(Analyses provided by Norit, Amersfoort, The Netherlands) 

Parameter Level 

Moisture 2% 

Ash content 8% 

pH Alkaline 

Particle size D10 3 µm 

Particle size D50 20 µm 

Particle size D90 140 µm 

Total surface area (BET)* 1075 m2/g 

Total pore volume*  0.58 ml/g 

- micro (<1 nm)* 0.45 ml/g 

- meso (1-25 nm)* 0.13 ml/g 

Average pore diameter* 2.6 nm 

Iodine number* 1035 mg/g 

*) Analyzed in the used lot# 2053.4. 
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properties of the AC quality are given in Table 5. The effect of temperature (32-88 

°C) and contact time (14-56 min) on the removal of PDDD/Fs, DL-PCBs and PBDEs 

was studied based on a central composite design (CCD) experiment (Figure 7).  

5.5 Short-path distillation 

Two volatilization technologies are used in the edible oil industry: steam 

deodorization and SPD. Based on my earlier experience steam deodorization was 

known to be less effective for removal of PCDD/Fs (Opstvedt et al., 1996) and give 

limitations regarding maximum temperature level and overall heat load. SPD is 

established as a good manufacturing practice in the edible oil industry to separate 

heat labile compounds and was evaluated to be the most efficient and gentle 

technology. 

SPD trials were performed on a stainless steel KD6 pilot plant at UIC GmbH 

(Alzenhau-Hörsteiner, Germany). A simplified process flow diagram is given in 

Figure 6 (Paper IV). The feedstock was heated to 123-136 °C in a heat exchanger 

before degassing at 0.3 mbar to remove dissolved gasses and low boiling compounds 

before entering the short-path evaporator. Effect of evaporator temperature (172-228 

°C), feed rate (2.30-7.83 kg/h) and addition of working fluid (WF; 0-4%) was tested 

based on factorial design experiments. The WF consisted of a fatty acid ethyl ester 

fraction obtained as a distillation by-product during concentration of EPA and DHA 

from fish oil. 

The evaporator was a falling film system (surface area = 0.06 m2) equipped with a 

roller wiper (400 rpm) and a vacuum system consisting of a cold trap (-25 °C), oil 

diffusion and rotary vane pump in series. The internal condenser temperature was 60 

°C. The residue was collected in a residue cup (160 °C) and pumped through a cooler 

before sampling under nitrogen cover.   

At ideal conditions the molar flux of volatile compounds (j = mol/(m2·s) in a SPD 

unit can be described by the Langmuir-Knudsen equation (Lutisan and Cvengros, 

1995; Salez-Cruz and Gani, 2006): 
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ji = γixi Pi (T) 

TRM2
1

i�
        (2) 

γi is the activity coefficient, xi the mol fraction, Pi (T) the saturation vapor pressure in 

Pa at absolute temperature T in kelvin, R the gas constant and Mi the molecular 

weight. As the feed runs down the evaporator it will be depleted for any volatile POP 

with resulting reduced congener specific molar flux. At increasing flow rate and 

temperature (i.e. reduced viscosity) the reduced residence time at the evaporator 

surface will be an additional limiting factor for the obtainable decontamination rate. 

Co-evaporation of other volatile compounds (i.e. vitamins, cholesterol, WF) in the 

feedstock and splashing (i.e., transfer of small droplets from the evaporator to the 

condenser) will influence the resulting concentration and thereby the re-evaporation 

rate in the opposite direction of the individual POPs from the condenser surface. The 

maximum obtainable decontamination rate will depend on the net molar flux of the 

individual POPs from the evaporator and condenser surfaces at the specified 

operation conditions and have a theoretical limit characterized by equilibrium 

between the two fluxes. 

The vapor pressure of low volatile compounds like PCDD/Fs and PCBs are difficult 

to measure. Values of physical and chemical properties are published in several 

studies (Mackay et al., 2006) but might vary over several orders of magnitude (Åberg 

et al., 2008). Additionally, the majority of values have been reported at 298 K and 

there is a lack of data at the high temperature levels used in SPD. The PCDD/Fs, DL-

PCBs and PBDEs studied in this thesis forms homologous series with linear 

relationship between vapor pressure and degree of chlorine or bromine substitution 

(Li et al., 2005; Nakajoh et al., 2005; Åberg et al., 2008; Wong et al., 2001). In 

addition, the number of ortho-substitutions will influence the vapor pressure of PCBs 

(Nakajoh et al., 2005) and PBDEs (Wong et al., 2001). In the model building in Paper 

IV these quantitative structure properties relationships (QSPRs) were combined with 

process variables to establish general models for each of the homologous series.   
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Figure 5. Simplified flow sheet of the short-path distillation (SPD) process. 
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5.6 Analyses of POPs 

PCDD/F and DL-PCB analyses were performed by high-resolution gas 

chromatography/high-resolution mass spectrometry (HRGC/HRMS) according to US 

EPA methods (US EPA: Method 1613 and 1668). The congeners analyzed included 

the 17 PCDD/Fs and 12 DL-PCBs for which WHO has established TEFs for human 

risk assessment (Table 2; Van Den Berg et al., 1998). Analyses of PBDEs (-28, -47, -

99, -100, -153, -154) were performed by gas chromatography with negative chemical 

ionization (GC-NCI) with methane as reagent gas, as previously described (de Boer 

et al., 2001; Bethune et al., 2005). The analytical laboratory (NIFES, Bergen, 

Norway) is accredited according to ISO 17025. Expanded measurement of 

uncertainty (k = 2; i.e. level of confidence of approximately 95%) was in the low 

concentration range (i.e., <1 ng/kg for PCDD/Fs and DL-PCBs and < 500 ng/kg for 

PBDEs) approximately 40% for PCDD/Fs and DL-PCBs and 25% for PBDEs. At 

higher concentrations (i.e. >4 ng/kg for PCDD/Fs and DL-PCBs and >500 ng/kg for 

PBDEs) the maximum measurement uncertainty was approximately 25% or less.  

5.7 Fishmeal and oil composition and quality assessment 

The following analytical methods have been applied to assess composition and 

quality of materials and processed samples studied in the respective papers: 

Analytical method Reference Paper 

FFA AOCS method Ca 5-40 II, IV 

Moisture content ISO 6496 I 

Fat content – ethyl acetate NS 9402 I 

Fat content – Soxhlet AOCS method Ba 3-38 I 

Fat content - EC   Commission Directive 98/64/EC I 

Fat content – Bl&D Bligh and Dyer, 1959 I 

Fat content – tetrachloromethane NS 4752 I 

Fatty acid composition AOCS method Ce 1b-89; Jordal et al., 2007 I, V 

Fatty acid isomers Mjøs and Solvang, 2006  V 

Lipid classes – HPTLC Bell et al. 1993; Jordal et al., 2007 V 
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Lipid classes- HPLC-CAD Paper IV IV 

Unsaponifiable matter AOCS method Ca 6b-53 V 

Peroxide value AOCS method Cd 8b-90 II, V 

Anisidine value AOCS method Cd 18-90 II, V 

Conjugated double bounds DGF method C-IV 6(a) (57) II, V 

Oxidative stability - weight gain Olcott and Einset, 1958 V 

Vitamin A Nôll, 1996 V 

Vitamin D Horvli et al., 1994  V 

Vitamin E Lie et al., 1994 V 

Vitamin K Schurgers et al., 1999 V 

 

5.8 Statistical experimental design and process modeling 

Optimization of industrial processes often involves measuring of the effect of several 

independent variables on the process performance or several product quality 

characteristics (responses). In many cases the costs and efforts needed per experiment 

is high and limits the number of variable settings possible to test within given budget 

frames. To enable cost effective experimental work several strategies or experimental 

designs are described in the literature based on statistical methods (Leardi, 2009; 

Lundstedt et al., 1998; Myers and Montgomery, 2002). Factorial and central 

composite designs (CCD) have been applied in this thesis combined with model 

development based on ordinary multiple linear regression (MLR) and partial least 

squares regression (PLSR). A brief introduction to these methods is given below.    

5.8.1 Factorial and central composite design  

A 2k factorial design is the simplest form of experimental design. It requires 2k 

experiments where k is the number of variables studied. Each variable is studied at 

two levels, coded -1 and +1, and can be either quantitative (e.g., temperature, 

pressure, amount of ingredient) or qualitative (e.g., type of catalyst, sequence of 

operations). A 22 factorial design is embedded in Figure 7 as the cube points and the 

response can be described based on the following mathematical model: 
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y = β0 + β1X1 + β2X2 + β12X1X2 + ε      (3)                                          

The parameters βj, j = 0, 1,…., k are the regression coefficients and ε the error or 

residual. This first-order response model assumes linearity in the factor effects. It is 

capable of representing some curvature in the response function by twisting of the 

plane induced by the interaction term β12X1X2. However, there are situations where 

the curvature in the response function is not adequately modeled by Equation 3 and 

this is solved by introducing squared effects, i.e., a complete second-order response 

surface model. 

y = β0 + β1X1 + β2X2 + β12X1X2 + β11X1
2 + β22X2

2 + ε    (4)                         

 

 

 

 

 

 

 

 

 

Figure 7. Graphical presentation of the two variable central composite design (CCD). 

Replication of the centre point (normally 3-5 times) allows for an independent 

estimate of the experimental error to be obtained. A 22 design including centre points 

only has five distinct experimental settings and can not be used to estimate the 

unknown square effect parameters (β11 and β22). There must be at least as many 

distinct design points as parameters in the model and at least three levels for each 
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design variable. To solve this problem the 22 design need to be augmented with 

additional experimental points. The most common way of doing this is to add axial or 

star points. In the rotatable CCD the star points are situated a distance from the center 

point equal to: 

α =  4 F                 (5)      

where F is the number of factorial points (F = 2k if it is a full factorial design). This 

gives a design with 2k + 2k experimental points that are equidistance from the design 

center (Figure 7).    

5.8.2 Multivariate regression techniques 

The above regression models can be written in the following matrix notation: 

 y = Xb          (6) 

where y is the response variables, X the x-variables and b the regression coefficients 

vector, respectively. Ordinary multiple linear regression (MLR) are normally applied 

to find the regression coefficients in response surface methodology (Myers and 

Montgomery, 2002). The regression coefficients are estimated based on the following 

equation: 

b = (XTX)-1 XTy           (7) 

Estimation of the unknown parameters (the β’s) assumes that: (i) The number of 

terms in the model is less than the number of independent experimental runs. (ii) The 

values of the predictor variables are exact so all random variation are contained in the 

measured response. (iii) The residuals are uncorrelated and normal distributed 

(Kvalheim, 1990). In cases where covariance between the studied variables exists or 

the used experimental settings can not be rigorously controlled at the preselected 

levels, MLR may lead to poor estimation of b because the matrix (XTX) is rank 

deficient or ill-conditioned. This can be solved by projecting the original variables to 

a set of orthogonal latent variables and perform the MLR on the score vectors 

(Martens and Martens, 2001). In principal component regression (PCR) the X-matrix 
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is first decomposed by principal component analyses (PCA) and the MLR is then 

based on the PCA score vectors. In partial least squares regression (PLSR) the 

algorithm extracts latent variables that explain as much as possible of the common 

variance between the X-matrix and the y-vector. The structure of the data matrix can 

also be revealed by use of PCA and correlation loading plots used to assess the 

covariance among the studied experimental and response variables. PCA score plots 

can be used to show similarities and differences in a measured response based on the 

applied combinations of process conditions. 

The response models obtained based on MLR or PLSR might contain insignificant or 

unreliable variables. Different variable reduction techniques can be used to simplify 

the model by selection of a subset of significant predictor variables (Andersen and 

Bro, 2010). The reduced model is less complex, simpler to interpretate, and normally 

improves the prediction ability of the model. In ordinary MLR models (Paper II, IV, 

V) variable selection have been based on backward elimination. The algorithm starts 

with a model including all candidate regressors. Then the partial F-statistic is 

computed for each regression coefficient as if it was the last variable to enter the 

model. The smallest of these partial F-statistics is compared with a pre-selected 

cutoff value, FOUT (or F-to-remove), and if smaller the corresponding regressor is 

removed from the model (Myers and Montgomery, 2002). The algorithm is continued 

until all partial F-statistics are higher than FOUT. 

Prediction ability of the MLR models was validated based on the prediction error sum 

of squares (PRESS) (Myers and Montgomery, 2002). The PRESS statistics is 

calculated by leaving out one observation at a time and fit the regression model to the 

remaining n-1 observation (leave-one-out cross-validation). The new model is used to 

predict the withheld observation yi and the procedure repeated for each observation i 

= 1,2,…, n, producing a set of n PRESS residuals (ei = yi – ŷi). The PRESS statistics 

is defined as the sum of squares of the n PRESS residuals: 

PRESS = �
�

n

i
ie

1

2  =  	 
�
�

�
n

i
ii yy

1
ˆ

2
       (8) 
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PRESS can be used to compute an approximate R2 for prediction (Q2): 

  
TSS

PRESSQ ��12          (9) 

where SST is the total sum of squares. In chemistry values of Q2 ≥ 0.5 is considered 

acceptable and > 0.8 excellent (Lundstedt et al., 1998).  

In PLSR models (Paper IV) the variable reduction was based on cross-validation of 

the response models. Cross-validation of a model is performed by dividing the 

observations into random segments. The algorithm uses one segment as test set while 

the remaining observations are used for training and this is continued until all 

segments have been used as test set once. A new model is generated for each of the 

training sets and used to obtain an estimate of the standard deviation of the predicted 

regression coefficients ( )ˆ(ˆ bs ). The uncertainty of the regression coefficients is tested 

based on a t-test of the expression )ˆ(ˆ/ˆ bsb and used for backward elimination of 

unreliable regressors similar to the MLR algorithm described above (Martens and 

Martens, 2001).  

Prediction ability of the PLSR models was validated based on the root mean square 

error of prediction (RMSEP(Y)) defined by 

 RMSEP(Y) = � ��
�

�
N

1i

2ˆ1
ii yy

N
           (10) 

where N is the number of observations, yi the ith response and ŷi the corresponding 

predicted value based on the regression model estimated without the segment 

including the ith response. The optimal number of principal components (PCs) used 

in the models were defined based on the RMSEP(Y) vs. number of PCs curve. Outlier 

observations were identified by use of normal probability plots of studentized y-

residuals and influence (residuals vs. leverage) plots.       
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5.9 Molecular modeling 

Molecular modeling can be a powerful tool in terms of exploring possible 

mechanisms for selective adsorption of POPs on different types of solid sorbents with 

promising properties and possible use in decontamination of fish oil. It can also 

provide valuable information of surfaces thermodynamics as well as transport 

properties related to the adsorption processes. As a first step in the direction of more 

extensive use of molecular modeling as a complementary tool to experimental efforts 

a graphite model was used in Paper III to modeling of the trapping mechanisms and 

selective adsorption of non- and mono-ortho PCB molecules to a AC surface. The 

molecular dynamics (MD) (Jensen, 2007) approach is based on following the 

trajectories of all molecules in an assemble under the influence of the intermolecular 

potentials. The molecular assemble can be defined by a 6N-dimensional space, where 

N is the number of particles. 3N of these dimensions are due to position of the 

particles, and 3N is due to the momentum. The initial arrangement of molecules or 

phase space holds all possible positions and momentums. PCB 77 (non-ortho) and 

PCB 118 (mono-ortho) were chosen as model compounds with triolein representing 

the solvent (i.e., fish oil). A graphite model with slit pores of 20 Å was used to 

represent the AC surface.   

Optimized Potentials for Liquid Simulation (OPLS) force field (Jorgensen et al., 

1996) was primarily used to parameterize the model. In OPLS the energy 

contributions are split into bonded and non-bonded contributions. Bonded 

contributions consist of bond stretching, angle bending and twisting of dihedral 

angles, while non-bonded contributions are van der Waals forces and electrostatic 

forces modeled by Lennard-Jones 12-6 potential and Columb’s law, respectively 

(Paper III).  

Molecular force fields employed in the simulations combined short-range parameters 

from the OPLS with partial atomic charges obtained via quantum chemical 

calculations using DFT/B3LYP/6-31**G+ and Solvation Model 6. The dihedral angle 

potential between the PCB aromatic rings was modified and the required force field 
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constants evaluated by use of Schrødinger's Jaguar package. The molecular dynamics 

software MDynaMix v. 5.1 (Lyubartsev et al., 2000) was used in the simulation 

setup. The dimensions of the system was 80 x 78 x 1100 Å after initial compression 

to target density of 915 kg/m3 and consisted of an AC block of 31.232 carbon atoms, 

252 triolein molecules of 167 atoms, and 51 molecules of both PCB congeners 77 and 

188, each comprising 22 atoms. The total number of atoms was 75.560. The time step 

was set to 1.0 fentoseconds and temperature 330 K (e.g., centre point used in 

experimental design Paper II). Total run time on the Cray XT4 supercomputer at 

Bergen Centre for Computational Sciences was 5 months, with the simulation 

extending to just over 4 nanoseconds.     
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6. Summary and discussion of experimental work 

6.1 Reduction of fishmeal fat content (Paper I) 

The PCDD/F, DL-PCB, fat, and dry matter partitioning during fishmeal production 

was studied in pilot scale. Fat partitioning was assessed based on four frequently 

applied analytical extraction protocols to cover methods used in the fishmeal and oil 

industry  and research activity: (i) ethyl acetate extraction, (ii) light petroleum 

Soxhlet extraction, (iii) light petroleum Soxhlet extraction with acid hydrolysis (EC 

method), and (iv) chloroform-methanol extraction (Bl&D extraction). The ranking 

Bl&D > EC > Soxhlet was systematic for all samples and in agreement with earlier 

studies on fishmeal extraction. Ethyl acetate extraction gave a less systematic picture 

difficult to explain and render this extraction protocol less suitable to follow the fat 

partitioning in the fishmeal process. Most of the dry matter and lipid content in the 

fishmeal could be ascribed to the press cake intermediate product with contribution 

from stickwater around 18% and in the 15-25% range, respectively. POPs are 

lipophilic compounds and will preferentially partition in the lipid phase during 

processing of fish raw material to fishmeal and fish oil. This was reflected by the 

observed PCDD/F and DL-PCB partitioning data. Consequently, any actions on fat 

reduction directed on press cake and decanter solids will have a higher fishmeal 

decontamination potential compared to the stickwater concentrate fraction. 

A factorial design experiment based on protease and heat treatment (121 °C) of the 

press cake gave negligible effects on the fat content (mean 1.2% fat reduction) with 

no practical interest in the fishmeal production. Stickwater concentrate treated based 

on the same protocol showed no main effects but the used centrifugation conditions 

reduced the Bl&D fat content by 64%, corresponding to a fishmeal decontamination 

effect of 13%. Alcalase treatment is used by the fishmeal industry to reduce the 

viscosity and improve the dry matter concentration obtainable in falling film 

evaporators. Such treatment might also improve the fat separation of the stickwater 

concentrate. In general, improvement of the existing fat separation unit operations 

used in the fishmeal process is expected to be the most cost effective way to reduce 
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the TEQ-level in fishmeal. However, the effect obtainable based on mechanical 

separation technology is limited. Although effects up to 40% have been obtained in 

other reported pilot scale studies, this has only partly been possible to transfer to 

industrial scale operation.  

Optionally, organic solvent extraction can be utilized to reduce the fat and WHO-

TEQ level in fishmeal. Both hexane and isopropanol extraction were able to 

substantially reduce the fat level with residual Bl&D fat of 31 and 17 g/kg of dry 

matter, respectively, corresponding to 79% and 88% fat reduction. The levels were in 

good agreement with the WHO-PCDD/F-PCB-TEQ reductions of 75% and 88%, 

respectively. The difference can be explained by the higher Bl&D fat content after 

hexane extraction. 

Comparison of the ratio between the WHO-PCDD/F-PCB-TEQ and fat reduction 

after organic solvent extraction showed large differences based on the tested 

laboratory fat extraction protocols. Bl&D extraction gave an overall ratio closest to 

unity and demonstrates that this extraction protocol can be utilized to estimate the 

WHO-PCDD/F-PCB-TEQ reduction effect of improved fat separation in the fishmeal 

process or after organic solvent extraction.  

6.2 The oil leaching process (Paper I) 

Initial tests where performed to test a novel oil leaching process for reduction of 

POPs in fishmeal. The leaching process is based on contacting the wet intermediate 

products, presscake and decanter solids, with a feed compatible low-dioxin 

triglyceride oil, e.g., plant or fish oil. During the leaching operation the POPs are 

partitioned in the available fat phases and can be removed by a subsequent separation 

step aimed to remove excess fat and normalize the fat on dry matter level. A 

simplified process flow sheet is given in Figure 4. The process was tested by 

contacting wet press cake/Jesma solids with excess soybean oil for 60 min at 88 °C 

under continuous mixing. The oil leaching process was able to reduce the WHO-

PCDD/F-PCB-TEQ level in the presscake/Jesma solids by 97%. Combined with fat 
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separation of the stickwater concentrate, the applied process conditions were able to 

give a fishmeal decontamination rate comparable to hexane and isopropanol 

extraction of the fishmeal.  

Use of soybean oil as a leaching agent made it possible to also assess exchange of 

fatty acids between the solid matrix and continuous oil phase. Exchange of 56-72% of 

the lipids in the press cake/Jesma solids with soybean oil could be estimated based on 

fatty acids typical for fish oil (EPA and DHA) and soybean oil (linoleic and α-

linolenic acid). The level is lower than the decontamination effect and possible 

caused by less mobility of the more polyunsaturated phospholipids embedded in 

membrane structures in the solid matrix. If desirable, the change of fatty acids 

composition can be minimized by use of fish oil instead of a vegetable oil in the 

leaching process.  

6.3 Activated carbon adsorption (Paper II) 

The effect of AC adsorption on the reduction of POPs in fish oil was studied based on 

response surface methodology at a 5 g/kg AC inclusion level. The oil was alkali 

refined and bleached to remove FFA and other constituents that might compete with 

the studied POPs for adsorption sites on the AC surface. The pre-treatment increased 

the POP levels proportional to the level of removed FFA, probably due to partitioning 

of the lipophilic compounds in the continuous lipid phase during removal of the 

soapstock and water washing steps during alkali refining. 

The tested process variables (contact time 14-56 min and temperature 32-88 °C) 

affected the AC adsorption rate and significant first- and second-order response 

models could be established. PCDD/Fs showed very rapid adsorption behavior and 

the concentration and WHO-TEQ level could be reduced by 99%. Even at the least 

favorable processing conditions tested the PCDD concentration could be reduced by 

98%. Adsorption of DL-PCBs was less effective and depended on ortho substitution, 

i.e., non-ortho PCBs were adsorbed more effectively than mono-ortho PCBs with a 

maximum of 87 and 21% reduction, respectively, corresponding to a WHO-PCB-
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TEQ reduction of 73%. A common optimum for both PCDD/F and DL-PCB 

adsorption could not be identified. However, only marginal improvement of 

PCDD/Fs adsorption was obtained by increasing the contact time and temperature 

above 80 °C and 15 min, respectively. PCB adsorption could to some extent be 

improved by use of higher temperature and longer contact time. Mono-ortho PCBs 

contributed to only 12.7% of the WHO-TEQ level in the feedstock. Due to low 

adsorption it plays, however, a key role with respect to the total residual WHO-TEQ 

level after AC treatment of the oil. Introduction of the new WHO2005 TEF values 

(Table 2) will lower this contribution and improve the limitations of AC adsorption 

caused by this group of compounds.   

AC treatment had no effect on the level of PBDE flame retardants. The differences in 

adsorption patterns may be explained based on molecular conformation. PCDD/Fs 

form coplanar molecular structures that can interact with the AC through π-electron 

interaction. PCBs have a twisted conformation with an energy barrier of rotation into 

coplanar conformation for non- and mono-ortho PCBs of 8.3-9.8 and 28.5-34.9 

kJ/mol, respectively. The PCDD/F adsorption selectivity was also to some extent 

positively correlated to the number of Cl substitutions. In contrast, a negative 

correlation was observed between average congener reduction rate and number of Cl 

substitutions for non-ortho PCBs.     

The feedstock contained 8.7 ng WHO-PCDD/F-TEQ/kg and 11.8 ng WHO-PCB-

TEQ/kg. This could be reduced to 0.2 and 4.1 ng WHO-TEQ/kg, respectively, after 

15 min AC treatment at 80 °C. Compliance with present PCDD/F and DL-PCB EC 

legislation levels in fish oil for food and feed applications can be achieved based on 

AC adsorption. However, the GOED specification of maximum 3 ng WHO-PCB-

TEQ/kg could not be met based on the tested conditions. 

Quality assessment of the fish oil revealed no change in the PV and a small reduction 

of the AV based on mean values after AC treatment compared to feedstock. 

Conjugated double bounds were reduced after the alkali refining and bleaching 
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process, but increased after AC treatment. However, the mean level was still below 

the crude oil. 

6.4 Molecular Dynamics modeling (Paper III) 

The selectivity of PCB adsorption from fish oil onto AC was investigated by means 

of molecular dynamics to determine the importance of molecular planarity. PCB 

congeners 77 (non-ortho) and 118 (mono-ortho) were selected for comparison 

purposes due to pronounced differences in mean adsorption efficiency and molecular 

geometry. Triolein, a triacylglycerol of oleic acid (C18:1), was used to represent fish 

oil. A graphitic carbon structure with pore diameter 20 Å was set up to serve as AC 

model. The complete system comprised a number of PCB molecules dissolved in 

triacylglycerol that overlaid and filled the pores of an AC structure. 

At the start of the simulation only seven PCB molecules was situated within the pores 

of the AC. After the production run (4 nanoseconds) no new PCB molecules entered 

the pores, nor did any of the initial seven molecules leave. Due to the partial atomic 

charge at the pore edge, the triolein molecules tended to orient their polar heads 

towards the edges (Figure 2 Paper III) with the non-polar tails pointing outwards. The 

PCB molecules tended to accumulate in this non-polar region of the system instead of 

entering the pores. Inside the pores the large hydrocarbon tails of the triolein 

molecules tended to block the movement of the PCB molecules against the wall. This 

system behavior had a detrimental effect on the simulation and emphasizes the need 

for a more thorough investigation based on an improved assignment of the partial 

charges for the AC.  

The majority of PCB molecules trapped in pores were attached via Cl-AC "bonding", 

leaving the main part of the PCB molecule free to interact with triolein. In this 

orientation a chlorine atom can move in-between the negatively charged AC surface 

and interact with the positively charged second row of carbon atoms. At the same 

time the molecule will have most of its surface available to interact with triolein. The 

Cl-AC adsorption energy was found to surpass the energy criteria conventionally 



 

 

72 

used for hydrogen bonds (-10 kJ mol-1). Planar orientation to the AC surface was only 

observed for a PCB 77 molecule positioned on top of the graphite sheet (Figure 3 

Paper 3). This position gives an energetically favorable π-cloud overlap.  

Due to the lack of interchange of PCB molecules between pore and bulk phase, the 

simulation did not support any selectivity for adsorption of non- and mono-ortho 

PCBs to AC. Both pores in the model had a width of 20 Å, slightly exceeding the 

micro-pore range. A smaller pore width below 7.5 Å might increase the selectivity as 

this will impose rotational restrictions for PCB 118 with a resulting entropy penalty. 

In addition, introduction of wall defects with some negative outer carbons removed 

and inner positive ones exposed, may result in electrostatic interactions becoming 

more favorable for the planar conformation. 

6.5 Short-path distillation (Paper IV) 

A factorial experimental design based on temperature (172-228 °C), feed rate (2.3-7.8 

kg/h) and addition of WF (0-4%; fatty acid ethyl esters) was used to model a SPD 

process applied for removal of PCDD/Fs, DL-PCBs and PBDEs in fish oil. The 

average reduction in chemical concentration of the individual congeners was linearly 

dependent on the number of chlorine or bromine substitutions within each homologue 

group. DL-PCB congeners could also be separated based on ortho-substitution. The 

pattern is consistent with reported values for saturation vapor pressures of the studied 

POPs, i.e., linearly correlated to the degree of chlorine or bromine substitution. In 

addition, the number of ortho-substitutions will influence the vapor pressure of PCBs 

and PBDEs. The analyzed PBDEs included mono-, di- and tri-ortho-substituted 

congeners that could not be separated in the correlation plot due to few observations. 

By including the number of Cl/Br- and ortho-Cl/Br substitutions of the individual 

congeners as new predictor variables, it was possible to develop response models 

representing all congeners within each homologous group based on PLSR. WF 

addition was highly correlated to amount of distillate and was exchanged with the 

latter variable to establish a more mechanistic model according to the Langmuir-
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Knudsen equation. This modeling approach also makes it easier to compare the 

response to the optional direct addition of a “washing liquid” to the condenser.  

The response models show a comparative large positive effect of the process 

variables temperature and amount of distillate and a negative effect of feed rate. The 

decrease in saturated vapor pressure and molar flux with increasing Cl/Br-substitution 

and molecular weight is expressed by the negative effect of the number of Cl/Br-

substitutions. For DL-PCBs and PBDEs also a positive effect of the number of ortho-

chlorine/bromine substitutions were observed. Cross validated predictive ability of 

the models was in the 4–9% range. 

It will not be possible to define optimum operation conditions for POPs reduction in 

fish oil by SPD due to the large variance in vapor pressures for the multi component 

mixture of organic compounds. Both individual congener levels and the ratio between 

PCDD/Fs and DL-PCBs will influence the reduction in WHO-TEQ at specific 

operation conditions. Generally high temperature, low feed rate and WF addition 

improved the decontamination efficiency.  

The feedstock WHO-TEQ-distribution showed that the dominant congeners belonged 

to the more volatile tetra- and penta-chlorinated groups, i.e., the relative distribution, 

volatility and toxicity of the dominating congeners was favorable with respect to SPD 

decontamination. WHO-TEQ-reduction > 90% could easily be achieved in the SPD 

process bringing the residual levels down to < 2.1 ng WHO-PCDD/F-PCB-TEQ/kg, 

i.e., considerably below present maximum permitted levels in European food and 

feed legislations.  

6.6 Oil quality assessment after refining and short-path 
distillation (Paper V) 

SPD is established as the most effective industrial process to remove POPs in fish oil. 

However, the technology involves heating of the oil to high temperature levels (>200 

°C) that possibly give unwanted heat-induced side reactions and co-evaporation of 

minor compounds of importance for the nutritional quality of the oil. The effects on 



 

 

74 

retention of vitamins, cholesterol, and unsaponifiable compounds, geometrical 

isomerization, loss of PUFA, oxidation level, and oxidative stability was studied on 

the basis of experiments designed to optimize and model the effect of process 

conditions on the reduction of POPs (Paper IV). Loss of volatile nutrients was 

observed, but the extent will depend on the process conditions needed to obtain target 

decontamination level, as well as the ratio and difference in vapor pressure between 

free and ester forms of the studied compounds. Analysis of the ratio between free and 

ester forms was outside the scope of this study. However, based on reported SPD 

elimination curves most of vitamin A and D in cod liver oil exist in ester form 

resulting in a high retention relative to the TEQ-reduction at the used experimental 

conditions. Vitamin A was quantitatively removed by the used bleaching step but 

retention after SPD somewhat lower than vitamin D can be expected depending on 

the composition of the fatty acid moiety. Vitamin E exists in free form and retention 

after SPD down to 36% was observed. Vitamin K is a mixture of phylloquinone 

(vitamin K1) and menaquinones (vitamins MK-n) and the degree of retention relative 

to the TEQ-reduction was reflected by the molecular weight: K1 < MK-4 < MK-7 < 

MK-8. Cholesterol was only found in free form and to a small extent reduced (16%) 

after the alkali refining and bleaching step, probably as a result of incorporation into 

micelles transferred to the soapstock. Retention after SPD was at lowest down to 

31%. Unsaponifiables were highly correlated to cholesterol (R2 = 0.84), but showed a 

somewhat higher degree of retention (down to 54%). 

Some reduction in oxidation level (measured based on PV and AV) was observed 

after alkali refining and bleaching, and further after SPD. The PUFA level was 

conserved with no detectable thermally induced trans isomerization of EPA and 

DHA. The oxidative stability was reduced after alkali refining and bleaching. After 

SPD both further reduction and improvement of the stability was observed depending 

on the applied process conditions. The pattern could to some extent be attributed the 

degree of tocopherol retention and reduction of PV. Addition of 150 ppm BHT to the 

fish oil after SPD improved the oxidative stability to a level above the initial crude.  
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Optimal process conditions were modeled that ensure removal of POPs to within 

legislation levels while retaining most of the vitamin levels in fish oil. A 76% 

reduction of the WHO-PCDD/F-PCB-TEQ level in the used feedstock was needed to 

be in accordance with the voluntary industrial monograph of GOED. This could be 

achieved on the basis of operation conditions giving <20% loss of vitamins. A 90% 

decontamination rate gave vitamin retentions in the 60-90% range. Any need for 

fortification of the oil to meet target final product specifications will depending on 

the specific food or feed application.  
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7. Conclusions 

The papers included in this thesis have improved the fundamental understanding of 

the possibilities and limitations of alternative process technologies aimed to reduce 

the level of persistent organic pollutants in fishmeal (i.e., mechanical fat separation, 

organic solvent extraction and oil leaching) and fish oil (i.e., AC adsorption and 

SPD). The main conclusions are summarized in the following: 

� Chloroform-methanol extraction (Bl&D extraction) or equivalent is the best 

protocol to estimate POPs partitioning and reduction based on improved fat 

separation in the fish meal process. 

� Optimization of the existing fat separation steps is expected to be the most 

cost-effective way to reduce the POPs content in fishmeal. However, the 

obtainable effects are limited and have to be combined with organic solvent 

extraction or oil leaching if a high decontamination rate (estimated to above 

20-30%) is needed. Protease and high temperature (121 °C) treatment of press 

cake and stickwater concentrate have marginal effects. However, reduced 

viscosity of the stickwater after protease treatment might improve the fat 

separation if performed before the final concentration step. The efficiency of 

the proposed oil leaching process is comparable to hexane and isopropanol 

extraction of fishmeal.  

� The level of PCDD/F, DL-PCBs and PBDEs in fish oil increase after alkali 

refining and bleaching. The effect is proportional to the free fatty acid level 

and can be attributed to the partitioning of lipophilic compounds in the 

continuous lipid phase during soapstock separation and water washing steps.  

� Acivated carbon adsorption of PCDD/Fs is highly effective with obtainable 

WHO-TEQ-reduction of 99%. Adsorption of DL-PCBs is less effective and 

dependent on ortho-substitution, i.e., non-ortho-PCBs are adsorbed more 

effectively than mono-ortho-PCBs. The maximum obtained non-ortho and 

mono-ortho WHO-PCB-TEQ reduction in this study was 87% and 21%, 
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respectively, corresponding to a total WHO-PCB-TEQ reduction of 73%. 

Compliance with present feed and food EC WHO-PCDD/F-PCB-TEQ 

legislations in fish oil can be achieved based on AC adsorption. The voluntary 

GOED specification of maximum 3 ng WHO-PCB-TEQ/kg could not be met 

based on the tested conditions. 

� The level of mono-, di-, and tri-ortho PBDEs could not be reduced by use of 

AC adsorption. The selectivity between the studied POPs can be explained 

based on dispersive electron interaction affected by sorbate planarity and steric 

effects. MD simulation of the adsorption mechanisms revealed that planar 

adsorption of PCB molecules will be heavily favored by short range 

interactions and hindered by presence of electrostatic forces. This selectivity 

will be further promoted in case of AC with neutral rather than substantial 

partial charges like in our model. In addition a pore size below the gyration 

radius of mono-ortho PCBs will favor the adsorption of the more co-planar 

non-ortho PCB congeners.   

� The reduction after SPD of the individual PCDD, PCDF, DL-PCB and PBDE 

congeners is linearly dependent on the number of chlorine or bromine 

substitutions within each homologue group. In addition, DL-PCB and PBDE 

congeners can be separated based on ortho-substitution. The quantitative 

structure property relationships (QSPR) were combined with process 

parameters to establish decontamination models for each homologue congener 

group with cross validated RMSEP in the 4-9% range. 

� The efficiency of SPD is mainly dependent on the volatility of the respective 

compounds and, compared to AC adsorption, less influenced by the 

conformation and chemical nature of the POPs to be removed. High 

decontamination efficiency (> 90%) can be obtained by choice of favorable 

process conditions (i.e., high temperature, low flow rate and adequate distillate 

flow) giving residual levels considerable below MPLs in feed and food.  
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� AC adsorption and SPD did not have any negative effects on fish oil oxidation 

level within the tested operation ranges. The applied high temperature short 

time SPD conditions did not affect PUFA level nor induce geometrical 

isomerization. Oxidative stability of the oil after SPD was affected both 

negative and positive depending on processing conditions. 

� Some co-evaporation and loss of vitamins, cholesterol and unsaponifiables can 

not be avoided during SPD. The retention level will depend on the applied 

process conditions needed to obtain target decontamination level, as well as 

the concentration ratio and difference in vapor pressure between free and ester 

forms of the respective compounds.  

� A high retention level (>80%) of volatile nutrients after SPD can be obtained 

by chose of process conditions giving residual WHO-PCDD/F-PCB-TEQ 

levels in accordance with present EC feed and food legislations and the 

voluntary industrial monograph of GOED. 
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8. Future outlooks 

The levels of PCDD/Fs and DL-PCBs in several regions of the world can be expected 

to be of environmental and health concern for several decades to come. Although the 

control of main emission sources have improved and observed levels in the biota 

reduced the last decades, the levels of new emerging POPs create additional 

challenges. Development and optimization of cost-effective decontamination 

technologies will be one of many necessary actions needed to reduce and minimize 

the impact on population health.   

The proposed oil leaching process for fishmeal decontamination requires further 

optimization, but has several advantages compared to organic solvent extraction. 

These include easy implementation in an existing fishmeal processing line, use of a 

safe and non-flammable extraction medium, and possible lower investment and 

operation costs. Needed studies include effects of presscake pretreatment and 

optimization of the oil leaching conditions. Also subsequent reduction of the fat level 

should be studied to obtain a final fishmeal with acceptable physical and chemical 

properties.   

The selective sorption of PCDD/Fs vs. non- and mono-ortho PCBs to AC have been 

elucidated in this thesis. Improved understanding of the trapping mechanisms 

involved should be further pursued based on molecular dynamics simulation. Such 

knowledge might also unveil new possibilities in tailor making of novel sorbents with 

improved adsorption properties for different groups of POPs. Simulation studies 

should be followed up experimentally to validate the findings and quantify the 

adsorption capacity and kinetics of alternative adsorbents.  

Further studies are needed to optimize and model the effect of alternative 

volatilization and partition based technologies on the removal of different POPs. 

Especially the needed process conditions for removal of new substances included in 

the amended Aarhus Protocol and Stockholm Convention should be studied. Both 

experimental based empirical modeling approaches and process simulation models 
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based on physical and chemical properties and computational engineering should be 

explored. Currently, also the large variation in reported physical data limits the 

possible simultaneous modeling of existing and new POPs candidates. 

The reduction of persistent organic pollutants in fishmeal and fish oil will introduce 

additional processing costs. At present, this is mainly covered by the fishmeal and oil 

producers processing fish raw material caught in polluted ocean areas. An economical 

comparison of alternative decontamination strategies is needed to elucidate the 

investment and production costs involved, and to identify the most cost-effective 

technology. Recent reports on the possible combined negative effects of low levels of 

POPs in feed on fish growth and health might, together with the general population 

concern on POPs content in seafood, initiate the development of a new voluntary feed 

monograph specifying maximum levels below the official MPLs, corresponding to 

the existing GOED fish oil monograph. This might in the future also even out the 

economical burden on all the industrial actors in the value chain from feed ingredient 

manufacturing to fish farming.    
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Errata 
Paper I: Ranking of the fat levels reported in Table 1 relative to the applied 

extraction protocols is wrongly stated in the last paragraph on page 2015. The correct 

ranking is Bl&D > EC > Soxhlet. 

 

 




