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Abstract

We construct tree-decompositions of graphs that distinguish all their
k-blocks and tangles of order k, for any fixed integer k. We describe a
family of algorithms to construct such decompositions, seeking to maxi-
mize their diversity subject to the requirement that they commute with
graph isomorphisms. In particular, all the decompositions constructed are
invariant under the automorphisms of the graph.

1 Introduction

Given an integer k, a k-block X in a graph G is a maximal set of at least k vertices
no two of which can be separated in G by fewer than k other vertices; these
may or may not lie in X. Thus, k-blocks can be thought of as highly connected
pieces of a graph, but their connectivity is measured not in the subgraph they
induce but in the ambient graph.

Extending results of Tutte [9] and of Dunwoody and Krön [5], three of us
and Maya Stein showed that every finite graph G admits, for every integer k, a
tree-decomposition (T ,V) of adhesion < k that distinguishes all its k-blocks [3].
These decompositions are canonical in that the map G 7! (T ,V) commutes with
graph isomorphisms. In particular, the decomposition (T ,V) constructed for G
is invariant under the automorphisms of G.

Our next aim, then, was to find out more about the tree-decompositions
whose existence we had just proved. What can we say about their parts? Will
every part contain a k-block? Will those that do consist of just their k-block, or
might they also contain some ‘junk’? Such questions are not only natural; their
answers will also have an impact on the extent to which our tree-decompositions
can be used for an obvious potential application, to the graph isomorphism prob-
lem in complexity theory. See Grohe and Marx [6] for recent progress on this.

When we analysed our existence proof in view of these questions, we found
that even within the strict limitations imposed by canonicity we can make
choices that will have an impact on the answers. For example, we can obtain
di↵erent decompositions (all canonical) if we seek to, alternatively, minimize the
number of inessential parts, minimize the sizes of the parts, or just of the essen-
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tial parts, or achieve a reasonable balance between these properties. (A part is
called essential if it contains a k-block, and inessential otherwise.)

In this paper we describe a large family of algorithms1 that each produce
a canonical tree-decomposition for given G and k. Their parameters can be
tuned to optimize this tree-decomposition in terms of criteria such as those
above. In [1] we shall apply these results to specify algorithms from the family
described here for which we can give sharp bounds on the number of inessential
parts, or which under specified conditions ensure that some or all essential parts
consist only of the corresponding k-block.

The existence theorems which our algorithms imply will extend our results
from [3] in that the decompositions constructed will not only distinguish all the
k-blocks of a graph, but also its tangles of order k. (Tangles were introduced
by Robertson and Seymour [8] and can also be thought of as indicating highly
connected parts of a graph.) In order to treat blocks and tangles in a unified
way, we work with a common generalization called ‘profiles’. These appear to
be of interest in their own right, as a way of locating desirable local substruc-
tures in very general discrete structures. More about profiles, including further
generalizations of our existence theorems to such general structures (including
matroids), can be found in [7]. More on k-blocks, including di↵erent kinds of
examples and their relationship to tangles, can be found in [2].

All graphs in this paper will be finite, undirected and simple. Any graph-
theoretic terms not defined here are explained in [4]. Unless otherwise men-
tioned, G = (V,E) will denote an arbitrary finite graph.

2 Separation systems

A pair (A,B) of subsets of V such that A[B = V is called a separation of G if
there is no edge e = {x, y} in E with x 2 ArB and y 2 BrA. If (A,B) is a sep-
aration such that neither A ✓ B nor B ✓ A, then (A,B) is a proper separation
of G. A separation that is not proper is called improper. The order ord(A,B)
of a separation (A,B) is the cardinality of its separator A\B. A separation of
order k is called a k-separation. By simple calculations we obtain:

Lemma 2.1. For any two separations (A,B) and (C,D), the orders of the
separations (A \ C,B [D) and (B \D,A [ C) sum to |A \B|+ |C \D|.

We define a partial ordering on the set of separations of G by

(A,B)  (C,D) :, A ✓ C ^B ◆ D. (1)

A separation (A,B) is nested with (C,D), written as (A,B)k(C,D), if it is
1We should point out that our reason for thinking in terms of algorithms is not, at this

stage, one of complexity considerations: these are interesting, but they are not our focus
here. Describing a decomposition in terms of the algorithm that produces it is simply the
most intuitive way to ensure that it will be canonical: as long as the instructions of how to
obtain the decomposition refer only to invariants of the graph (rather than, say, to a vertex
enumeration that has to be chosen arbitrarily at some point), the decomposition that this
algorithm produces will also be an invariant.
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-comparable with either (C,D) or (D,C). Since

(A,B)  (C,D) , (D,C)  (B,A), (2)

the relation k is reflexive and symmetric.2 Two separations that are not nested
are said to cross.

A separation (A,B) is nested with a set S of separations, written as (A,B)kS,
if (A,B)k(C,D) for every (C,D) 2 S. A set S of separations is nested with
set S 0 of separations, written as SkS 0, if (A,B)kS 0 for every (A,B) 2 S; then
also (C,D)kS for every (C,D) 2 S 0.

A set of separations is called nested if every two of its elements are nested; it
is called symmetric if whenever it contains a separation (A,B) it also contains
(B,A). The minimal symmetric set containing a given set of separations is
called its symmetric closure. A symmetric set of proper separations is called a
system of separations, or separation system.3

A separation (A,B) separates a set X ✓ V if X meets both ArB and BrA.
Given a set S of separations, we say that X is S-inseparable if no separation
in S separates X. An S-block of G is a maximal S-inseparable set of vertices.

Recall that a tree-decomposition of G is a pair (T ,V) of a tree T and a family
V = (Vt)t2T of vertex sets Vt ✓ V (G), one for every node of T , such that:

(T1) V (G) =
S

t2T Vt;

(T2) for every edge e 2 G there exists a t 2 T such that both ends of e lie in Vt;

(T3) Vt1 \ Vt3 ✓ Vt2 whenever t2 lies on the t1–t3 path in T .

The sets Vt in such a tree-decomposition are its parts. Their intersections
Vt\Vt0 for edges tt0 of the decomposition tree T are the adhesion sets of (T ,V);
their maximum size is the adhesion of (T ,V).

Deleting an oriented edge e = t1t2 of T divides T � e into two components
T1 3 t1 and T2 3 t2. Then (

S
t2T1

Vt,
S

t2T2
Vt) is a separation of G with separa-

tor Vt1 \ Vt2 [4, Lemma 12.3.1]; we say that our edge e induces this separation.
A node t 2 T is a hub node if the corresponding part Vt is the separator of a
separation induced by an edge of T at t. If t is a hub node, we call Vt a hub.

As is easy to check, the separations induced by (the edges of T in) a tree-
decomposition (T ,V) are nested. Conversely, we proved in [3] that every nested
separation system is induced by some tree-decomposition:

Theorem 2.2. [3, Theorem 4.8] Every nested separation system N is induced
by a tree-decomposition (T ,V) of G such that

(i) every N-block of G is a part of the decomposition;

(ii) every part of the decomposition is either an N-block of G or a hub.

See [3] for how these tree-decompositions are constructed from N.
2But it is not in general transitive, compare [3, Lemma 2.2].
3Alert: Both conditions, that a set of separations is symmetric and the separations them-

selves are proper, are restrictions we shall often need to impose, and for which we therefore
need a simple term. We hope that readers remember both these restrictions when they see
the term ‘system’, as making them explicit each time would be cumbersome.
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Let k be a positive integer. A set I of at least k vertices is called (< k)-
inseparable if it is S-inseparable for the set S of all separations of order < k,
that is, if for every separation (A,B) of order less than k we have either I ✓ A
or I ✓ B. A maximal (< k)-inseparable set of vertices is called a k-block of G.

Since a k-block is too large to be contained in the separator A \ B of a
separation (A,B) of order < k, it thus ‘chooses’ one of the sides A or B, the
one containing it. Compared with choosing one side of every separation of
order < k arbitrarily, always choosing the side that contains a certain k-block b
makes these choices consistent in a sense.

Another way of making consistent choices for small-order separations, but
one that cannot necessarily be defined by setting a ‘target’ in this way, are
tangles, introduced by Robertson and Seymour [8]. Like k-blocks, tangles have
been considered as a way of identifying the highly connected parts of a graph,
and so we wish to treat them together with k-blocks in a unified way.

This can be done by axiomatically writing down some minimum requirements
on what makes choices of sides in separations ‘consistent’: in a way just strong
enough to prove our decomposition results,4 but weak enough to encompass
both blocks and tangles.

Given k and a k-block b, consider the following set Pk(b) of separations:

Pk(b) := { (A,B) : |A \B| < k ^ b ✓ B }. (3)

It is easy to verify that P = Pk(b) has the following properties:

(P1) for every (A,B) 2 P and every separation (C,D) with (C,D)  (A,B)
we have (D,C) /2 P ;

(P2) for all (A,B), (C,D) 2 P we have (B \D,A [ C) /2 P .

Similarly, it is immediate to check that every tangle P satisfies (P1) and (P2).
Let us call an arbitrary set P of separations a profile if it satisfies (P1)

and (P2). Note that (P1) says something only about nested separations, while
(P2) is essentially about crossing separations. Separation systems that satisfy
(P1) but not necessarily (P2) will be play a role too later.5

While axioms (P1) and (P2) reflect the consistency in the choices which b or
the tangle makes from each separation (A,B) (in that it ‘chooses’ B ◆ b rather
than A), it is only when, as in (3) or in the definition of a tangle of order k, such
a choice is made for every separation of order < k that such consistent choices

4The notion of k-profiles we are about to introduce arose when we noticed that, in our
proofs of the existence of canonical tree-decompositions distinguishing k-blocks [3], all we
really used about the k-blocks was the information of which side of each (< k)-separation
they lay in. Forgetting the rest, and working with just the sets of these choices rather than
concrete vertex sets, makes the decomposition theory more abstract but also more powerful.
The fact that it also applies to tangles bears witness to this, as does the fact that it also works
for matroids [7].

5As a typcial example, consider the union of three large complete graphs X1, X2, X3 identi-
fied in a common triangle. The three 3-separations whose left side is one of X1, X2, X3 satisfy
(P1) but not (P2), because the separation (B \D, A [ C) in (P2) happens to be one of the
original three separations. The analogous system with four complete graphs does satisfy (P2).
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signify something ‘big’ in G.6 Let us just point out that (P2) then becomes
reminiscent of the property of ultrafilters that ‘the intersection of large sets
are large’. An important di↵erence, however, is that rather than demanding
outright that (A [ C,B \D) 2 P , the indirect phrasing of (P2) has it require
this only when (A [ C,B \D) has order < k; if not, (P2) requires nothing of
either this separation or its inverse.

To give such rich profiles a name, let us call a set P of separations satisfying
(P1) and (P2) a k-profile if it satisfies

Every separation in P has order < k, and for every separation
(A,B) of order < k exactly one of (A,B) and (B,A) lies in P . (4)

So the set Pk(b) in (3) is a k-profile; this is the k-profile induced by b, and we
call it the k-profile of b. A k-profile induced by some k-block is a k-block profile.

Since a k-block is a maximal (< k)-inseparable set of vertices, there is for
every pair of distinct k-blocks b, b0 a separation (A,B) of order < k such that
(A,B) 2 Pk(b) and (B,A) 2 Pk(b0) [3, Lemma 2.1]. Hence Pk(b) 6= Pk(b0).
Thus, while every k-block induces a k-profile, conversely a k-profile P is induced
by at most one k-block, which we then denote by b(P ). All k-block profiles P
then satisfy P = Pk(b(P )), and we say that b and P correspond .

Not every k-profile is induced by a k-block. For example, there are tangles
of order k that are not induced by a k-block, such as the unique tangle of any
order k � 5 in a large grid (which has no k-block for k � 5; see [2, Example 3]).
Conversely, there are k-block profiles that are not tangles; indeed, there are
graphs that have interesting k-block profiles but have no non-trivial tangle at all
[2, Examples 4–5 and Section 6]. The notion of a k-profile thus unifies the ways
in which k-blocks and tangles of order k ‘choose’ one side of every separation of
order < k, but neither of these two instances of k-profiles generalizes the other.

Let S be any set of separations of G. An S-block X of G is called large
(with respect to S) if it is not contained in the separator of a separation in S.
If all the separations in S have order < k, an obvious but typical reason for an
S-block to be large is that it has k or more vertices. In analogy to (3) we define
for a large S-block X

PS(X) := {(A,B) 2 S | X ✓ B} ✓ S. (5)

Clearly, PS(X) is a profile; we call it the S-profile of X. As before, the S-
profiles PS(X) and PS(X 0) of distinct large S-blocks X,X 0 are distinct; if S is
symmetric, they are incomparable under set-inclusion.

Not every k-profile has this form. For example, a tangle ✓ of order k � 5
in a large grid is not the S-profile of a large S-block X for any set S ◆ ✓ of
separations, since X would be contained in a large ✓-block but the grid has none.

Although profiles are, formally, sets of separations, our intuition behind them
is that they signify some ‘highly connected pieces’ of our graph G. Our aim will

6Readers familiar with the notion of preferences, or havens – a way of making consistent
choices of components of G�X for vertex sets X – will recognize this: it is because a preference
or haven assigns a component of G � X to every set X of < k vertices for some k that the
bramble formed by these components has order � k.
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be to separate all these pieces in a tree-like way, and we shall therefore have
to speak about sets of separations that, initially, are quite distinct from the
profiles they are supposed to ‘separate’. To help readers keep their heads in this
unavoidable confusion, we suggest that they think of the sets S of separations
discussed below as (initially) quite independent of the profiles P discussed along
with them, the aim being to explore the relationship between the two.

A separation (A,B) distinguishes two subsets of V if one lies in A, the other
in B, and neither in A \ B. A set S of separations distinguishes two sets of
vertices if some separation in S does.

A separation (A,B) distinguishes two sets P,P 0 of separations if each of
P r P 0 and P 0 r P contains exactly one of (A,B) and (B,A). Thus, a (< k)-
separation (A,B) distinguishes two k-blocks if and only if it distinguishes their
k-profiles. A set of separations S distinguishes P from P 0 if some separation
in S distinguishes them, and S distinguishes a set P of sets of separations if it
distinguishes every two elements of P. If all the separations in S have order < k,
it thus distinguishes two k-blocks if and only if it distinguishes their k-profiles.

An asymmetric set P of separations (one containing no inverse of any of its
elements) orients a set S of separations if, for every (A,B) 2 S, either (A,B) 2
P or (B,A) 2 P \S; we then call P \S an orientation of S. If, in addition, some
set X of vertices lies in B for every (A,B) 2 P \ S, we say that P orients S
towards X. If P is a profile then so is P \S; we call it the S-profile of P .7 More
generally, every profile that is an orientation of S will be called an S-profile.

A profile orienting a set S of separations need not orient it towards any non-
empty set of vertices: consider, for example, our earlier tangle ✓ with S = ✓.
However, a profile P orienting a nested separation system N orients it towards
the union X of the separators of the -maximal separations in P \N, which is
non-empty if G is connected. Using (P1) one can show that X is N-inseparable.
However, it can be ‘small in terms of N ’, that is, contained in a separator of
a separation in N. In that case it may extend to more than one N-block of G,
and P need not orient N towards any of these. However if X does not lie in a
separator of N, it extends to a unique N-block, towards which P orients N. We
then say that P lives in this N-block.

Given a set S of separations of G and a set P of profiles orienting S, let us
say that two profiles P,P 0 2 P agree on S if their S-profiles coincide, that is, if
P \ S = P 0 \ S. This is an equivalence relation on P, whose classes we call the
S-blocks of P. By definition, elements P,P 0 of the same S-block Q of P have
the same S-profile P \ S = P 0 \ S, which we call the S-profile of Q.

A set P of separations satisfying (P1) is a (P1)-set of separations. A separa-
tion (A,B) splits a (P1)-set P if both P[{(A,B)} and P[{(B,A)} satisfy (P1).
(This implies that neither (A,B) nor (B,A) is in P .) For example, the S-profile
corresponding to an S-block Q of a set P of profiles orienting a separation sys-
tem S is split by every separation (A,B) that distinguishes some distinct profiles
in Q.

7This formalizes the idea that P , thought of as a big chunk of G, lies on exactly one side of
every separation in S. For example, if the separations in S have order < k, then any k-profile
will orient S.
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Note that every separation splitting a (P1)-set of separations must be proper:

If (A,B) is an improper separation, with A ✓ B say, then (B,A) is
not contained in any set of separations satisfying (P1). (6)

Indeed, if A ✓ B then (A,B)  (B,A), which implies (6).
We shall need the following lemma. A (P1)-orientation of a separation sys-

tem S is an orientation of S that satisfies (P1).

Lemma 2.3. Let N be a nested separation system.
(i) Every proper separation (A,B) /2 N that is nested with N splits a unique

(P1)-orientation O of N. This set O is given by

O = {(C,D) 2 N | (C,D)  (A,B)} [ {(C,D) 2 N | (C,D)  (B,A)}.

(ii) If two separations not contained in but nested with N split distinct (P1)-
orientations of N, they are nested with each other.

Proof. (i) Since (A,B) is nested with N, for every separation (C,D) 2 N either
(C,D) or (D,C) is smaller than one of (A,B) or (B,A) and thus contained in

O := {(C,D) 2 N | (C,D)  (A,B)} [ {(C,D) 2 N | (C,D)  (B,A)}.

By definition, O contains only separations from N. As we have seen, every
separation from N or its inverse lies in O. Once we know that O satisfies (P1)
it will follow that for every separation it contains it will not contain its inverse,
so O will be an orientation of N.

To check that O satisfies (P1), consider separations (E,F )  (C,D) with
(C,D) 2 O. Our aim is to show that (F,E) /2 O. This is clearly the case if
(E,F ) /2 N, since O ✓ N and N is symmetric, so we assume that (E,F ) 2 N.
By definition of O, either (C,D)  (A,B) or (C,D)  (B,A); we assume
the former. Then by transitivity (E,F )  (A,B), and hence (E,F ) 2 O by
definition of O. To show that (F,E) /2 O we need to check that (F,E) 6 (A,B)
and (F,E) 6 (B,A). If (F,E)  (A,B) then (B,A)  (E,F )  (A,B) and
hence B ✓ A, contradicting our assumption that (A,B) is proper. If (F,E) 
(B,A) then (A,B)  (E,F )  (A,B) and hence (E,F ) = (A,B), contradicting
our assumption that (A,B) /2 N.

So O is a (P1)-orientation of N. In particular, O never contains the in-
verse of a separation it contains. This implies by the definition of O that also
O [ {(A,B)} and O [ {(B,A)} satisfy (P1). Hence (A,B) splits O, as desired.

It remains to show that O is unique. Suppose (A,B) also splits a (P1)-orien-
tation O0 6= O of N. Let (C,D) 2 N distinguish O from O0, with (C,D) 2 O and
(D,C) 2 O0 say. By definition of O, either (C,D)  (A,B) or (C,D)  (B,A).
In the first case O0[{(A,B)} violates (P1), since (B,A)  (D,C) 2 O0 [ {(A,B)}
but also (A,B) 2 O0[{(A,B)}. In the second case, O0[{(B,A)} violates (P1),
since (A,B)  (D,C) 2 O0 [ {(B,A)} but also (B,A) 2 O0 [ {(B,A)}.

(ii) Consider separations (A,B), (A0, B0) /2 N that are both nested with N.
Assume that (A,B) splits the (P1)-orientation O of N, and that (A0, B0) splits
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the (P1)-orientation O0 6= O of N. From (6) we know that (A,B) and (A0, B0)
must be proper separations, so they satisfy the premise of (i) with respect to
O and O0. As O 6= O0, there is a separation (C,D) 2 N with (C,D) 2 O and
(D,C) 2 O0. By the descriptions of O and O0 in (i), the separation (C,D) is
smaller than (A,B) or (B,A), and (D,C) is smaller than (A0, B0) or (B0, A0).
The latter is equivalent to (C,D) being greater than (B0, A0) or (A0, B0). Thus,
(B0, A0) or (A0, B0) is smaller than (C,D) and hence than (A,B) or (B,A), so
(A,B) and (A0, B0) are nested.

We remark that the (P1)-set O in Lemma 2.3 (i) is usually an N-profile; it
is not hard to construct pathological cases in which O fails to satisfy (P2), but
such cases are rare.

3 Tasks and strategies

In this section we describe a systematic approach to distinguishing some or all of
the k-profiles of G by (the separations induced by) canonical tree-decompositions
of adhesion less than k. Since the separations induced by a tree-decomposition
are nested, our main task in finding such a tree-decomposition will be to select
from the set S of all (< k)-separations of G a nested subset N that will still
distinguish all the k-profiles under consideration.

We begin by formalizing the notion of such ‘tasks’. We then show how to
solve ‘feasible’ tasks in various ways, and give examples showing how di↵erent
strategies – all canonical in that they commute with graph isomorphisms – can
produce quite di↵erent solutions.

Consider a separation system S and a set P of profiles. Let us call the pair
(S,P) a task if every profile in P orients S and S distinguishes P. Another task
(S 0,P 0) is a subtask of the task (S,P) if S 0 ✓ S and P 0 ✓ P.

The two conditions in the definition of a task are obvious minimum require-
ments which S and P must satisfy before it makes sense to look for a nested
subset N ✓ S that distinguishes P. But to ensure that N exists, S must also be
rich enough (in terms of P): the more profiles we wish to separate in a nested
way, the more separations will we need to have available. For example, if S
consists of two crossing separations (A,B), (C,D) and their inverses, and P
contains the four possible orientations of S (which are clearly profiles), then S
distinguishes P but is not nested, while the two subsystems {(A,B), (B,A)}
and {(C,D), (D,C)} of S are nested but no longer distinguish P. But if we
enrich S by adding two ‘corner separations’ (A\C,B [D), (A[C,B \D) and
their inverses, then these together with (A,B) and (B,A), say, form a nested
subsystem that does distinguish P.

More generally, we shall prove in this section that we shall be able to find
the desired N if S and P satisfy the following condition:

Whenever (A,B), (C,D) 2 S cross and there exist P,P 0 2 P such
that (A,B), (C,D) 2 P and (B,A), (D,C) 2 P 0, there exists a sep-
aration (E,F ) 2 P \ S such that (A [ C,B \D)  (E,F ).

(7)
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Anticipating our results, let us call a task (S,P) feasible if S and P satisfy (7).
Let us take a moment to analyse condition (7). Note first that, like the

given separations (A,B) and (C,D), the new separation (E,F ) will again dis-
tinguish P from P 0: by assumption we have (E,F ) 2 P , and by (2) we have
(F,E)  (B \D,A [ C)  (B,A), so (F,E) 2 P 0 by (P1) and the fact that P 0

orients S.
Now the idea behind (7) is that in our search for N we may find ourselves

facing a choice between two crossing separations (A,B), (C,D) 2 S that both
distinguish two profiles P,P 0 2 P, and wonder which of these we should pick
for N. (Clearly we cannot take both.) If (7) holds, we have the option to choose
neither and pick (E,F ) instead: it will do the job of distinguishing P from P 0,
and since it is nested with both (A,B) and (C,D), putting it in N entails no
prejudice to any future inclusion of either (A,B) or (C,D) in N.

Separations in S that do not distinguish any profiles in P are not really
needed for N, and so we may delete them.8 So let us call a separation P-relevant
if it distinguishes some pair of profiles in P, denote by R the set of all P-relevant
separations in S, and call (R,P) the reduction of (S,P). If (S,P) = (R,P),
we call this task reduced. Since all the separations (A,B), (C,D), (E,F ) in (7)
are P-relevant, R inherits (7) from S (and vice versa):

(R,P) is feasible if and only if (S,P) is feasible. (8)

Consider a fixed feasible task (S,P). Our aim is to construct N inductively,
adding a few separations at each step. A potential danger when choosing a new
separation to add to N is to pick one that crosses another separation that we
might wish to include later. This can be avoided if we only ever add separations
that are nested with all other separations in S that we might still want to include
in N. So this will be our aim.

At first glance, this strategy might seem both wasteful and unrealistic: why
should there even be a separation in S that we can choose at the start, one that
is nested with all others? However, we cannot easily be more specific: since
we want our nested subsystem N to be canonical, we are not allowed to break
ties between crossing separations without appealing to an invariant of G as a
criterion, and it would be hard to find such a criterion that applies to a large
class of graphs without specifying this class in advance. But the strategy is also
more realistic than it might seem. This is because the set of pairs of profiles we
need to distinguish by separations still to be picked decreases as N grows. As a
consequence, we shall need fewer separations in S to distinguish them. We may
therefore be able to delete from S some separations that initially prevented the
choice of a desired separation (A,B) for N by crossing it, because they are no
longer needed to distinguish profiles in what remains of P, thus freeing (A,B)
for inclusion in N.

To get started, we thus have to look for separations (A,B) in S that are
nested with all other separations in S. This will certainly be the case for (A,B)

8But do not have to: the freedom to discard or keep such separations will be our source of
diversity for the tree-decompositions sought – which, as pointed out earlier, we may wish to
endow with other desired properties than the minimum requirement of distinguishing P.
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if, for every (C,D) 2 S, we have either (C,D)  (A,B) or (D,C)  (A,B);9 let
us call such separations (A,B) extremal in S. The following is easy to check:

Distinct extremal separations cannot lie in the same profile.
If they are proper separations, they are -incomparable. (9)

Extremal separations always exist in a feasible task (S,P), as long as S
contains no superfluous separations (which might cross useful ones):

Lemma 3.1. [7, Lemma 5.3] If (S,P) is reduced, then every -maximal element
of S is extremal in S.

The proof of Lemma 3.1 is not hard, but uses crucially that (S,P) is feasible.

If (S,P) is reduced, then every separation (A,B) 2 S distinguishes some
profiles from P; in particular, there will be a profile P 2 P such that (A,B) 2 P .
If (A,B) is extremal, it is not hard to show that this profile is unique:

Lemma 3.2. [7, Lemma 5.4] If (S,P) is reduced, then for every extremal sepa-
ration (A,B) in S there is a unique profile P(A,B) 2 P such that (A,B) 2 P(A,B).

Lemma 3.2 implies that (A,B) distinguishes P(A,B) from any other profile in P.
Let us call a profile P orienting S extremal with respect to S if it contains

an extremal separation of S. This will be the greatest, and hence the only
maximal, separation in P \ S.

As we have seen, an extremal profile is distinguished from every other profile
in P by some separation (A,B) that is nested with all the other separations in S;
this makes (A,B) a good choice for N. The fact that made (A,B) nested with
all other separations in S was its maximality in S (Lemma 3.1). In the same
way we may ask whether, given any profile P 2 P (not necessarily extremal),
the separations that are -maximal in P \ S will be nested with every other
separation in S: these are the separations ‘closest to P ’, much as (A,B) was
closest to P(A,B) (although there can now be many such separations).

Let us prove that the following profiles have this property:

Definition 3.3. Call a profile P orienting S well separated in S if the set of
-maximal separations in P \ S is nested.

Note that extremal profiles are well separated.

Lemma 3.4. Given a profile P orienting a separation system S, the following
assertions are equivalent:

(i) P is well separated in S.
(ii) Every maximal separation in P \ S is nested with all of S.
(iii) For every two crossing separations (A,B), (C,D) 2 P \ S there exists a

separation (E,F ) 2 P \ S such that (A [ C,B \D)  (E,F ).
9This does not imply that (A, B) is maximal in S, only that any (C, D) 2 S that is strictly

greater than (A, B) will not be proper.
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Proof. The implication (ii)!(i) is trivial; we show (i)!(iii)!(ii).
(i)!(iii): Suppose that P is well separated, and consider two crossing sep-

arations (A,B), (C,D) 2 P \ S. Let (A0, B0) � (A,B) be maximal in P \ S.
Suppose first that (A0, B0)k(C,D). This means that (A0, B0) is -comparable
with either (C,D) or (D,C). Since (A,B) is not nested with (C,D) we have
(A0, B0) 6 (C,D) and (A0, B0) 6 (D,C), and since both (C,D) and (A0, B0) are
in P , axiom (P1) yields (D,C) 6 (A0, B0). Hence (C,D)  (A0, B0), and thus
(A [ C,B \D)  (A0, B0). This proves (iii) with (E,F ) := (A0, B0).

Suppose now that (A0, B0) crosses (C,D). Let (C0,D0) � (C,D) be maximal
in P \ S. Since (A0, B0) and (C0,D0) are both maximal in P \ S they are
nested, by assumption in (i). As in the last paragraph, now with (C0,D0)
taking the role of (A0, B0), and (A0, B0) taking the role of (C,D), we can show
that (A,B)  (A0, B0)  (C0,D0) and hence (A [ C,B \D)  (C0,D0).10 This
proves (iii) with (E,F ) := (C0,D0).

(iii)!(ii): Suppose some maximal (A,B) in P \ S crosses some (C,D) 2 S.
As P orients S, and by symmetry of nestedness, we may assume that (C,D) 2 P .
By (iii), there is an (E,F ) 2 P \ S such that (A [ C,B \ D)  (E,F ), so
(A,B)  (E,F ) as well as (C,D)  (E,F ). But then (E,F ) = (A,B) by
the maximality of (A,B), and hence (A,B)k(C,D), contradicting the choice of
(A,B) and (C,D).

Let us call a separation (A,B) locally maximal in a task (S,P) if there
exists a well-separated profile P 2 P such that (A,B) is -maximal in P \ S.
Lemma 3.4 shows that these separations are a good choice for inclusion in N:

Corollary 3.5. Locally maximal separations in a task (S,P), not necessarily
feasible, are nested with all of S.

We have seen three ways of starting the construction of our desired nested
subsystem N ✓ S for a feasible task (S,P) by choosing for N some separations
from S that are nested with all other separations in S: we may choose either

• the set ext(S,P) of extremal separations in S and their inverses; or
• the set loc(S,P) of all locally maximal separations in (S,P) and their

inverses; or
• the set all(S,P) of all separations in S that are nested with every separa-

tion in S (which is a symmetric set).

Clearly,
ext(S,P) ✓ all(S,P) ◆ loc(S,P) (10)

in general, and
; 6= ext(S,P) ✓ loc(S,P) ✓ all(S,P) (11)

10In the argument we need that (C, D) and (A0, B0) cross. This is why we first treated the
case that they don’t (but in that case we used that (A, B) and (C, D) cross).
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if S 6= ; and (S,P) is reduced,11 since in that case every maximal separation
in S is extremal (Lemma 3.1) and every extremal separation (A,B) is locally
maximal for P(A,B) 2 P.

Example 1. Let G consist of three large complete graphs X1,X2,X3 threaded
on a long path P , as shown in Figure 1. Let S be the set of all proper 1-
separations. Let P = {P1, P2, P3}, where Pi is the 2-profile induced by Xi.
Then all(S,P) = S, while loc(S,P) contains only the separations in S with
separators x1, x2, y2 and x3, and ext(S,P) only those with separator x1 or x3.

X1 x1 x2 y2 x3
X3X2

PP

Figure 1: Di↵erent results for ext(S,P), loc(S,P) and all(S,P)

How shall we proceed now, having completed the first step of our algorithm
by specifying some nested subsystem N 2 {ext(S,P), loc(S,P), all(S,P)} of S?
The idea is that N divides G into chunks, which we now want to cut up further
by adding more separations of S to N. While it is tempting to think of those
‘chunks’ as the N-blocks of G, it turned out that this fails to capture some of
the more subtle scenarios. Here is an example:

Example 2. Let G be the graph of Figure 2. Let N consist of the separations
(X1, Y1), . . . , (X4, Y4) and their inverses (Yi,Xi), where Yi := (A\B)[

S
j 6=i Xj ,

and let S := N [ {(A,B), (B,A)}. Let P consist of the following six profiles:
the orientations of S towards X1, . . . ,X4, respectively, and two further profiles
P and P 0 which both orient N towards A \ B but of which P contains (A,B)
while P 0 contains (B,A). Then N distinguishes all these profiles except P
and P 0. But these are distinguished by (A,B) and (B,A), so we wish to add
these separations to N.

X1

X3

X2

X4

A∩B

A

B
Figure 2: Two S-distinguishable profiles living in an S-inseparable N-block

The profiles P and P 0 live in the same N-block of G, the set A \ B. But
although S distinguishes P from P 0, it does not separate this N-block. We

11In fact, all we need for an extremal separation (A, B) to be locally maximal is that it
lies in some P 2 P. But this need not be the case if (S,P) is not reduced: although one of
(A, B) and (B, A) must lie in every P 2 P (because P orients S), it might happen that this
is always (B, A).
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therefore cannot extend N to a separation system distinguishing P by adding
only separations from S that separate an N-block of G.

The lesson to be learnt from Example 2 is that the ‘chunks’ into which
N divides our graph G should not be thought of as the N-blocks of G. An
alternative that the example suggests would be to think of them as the N-blocks
of P: the equivalence classes of P defined by how its profiles orient N. In the
example, P has five N-blocks: the four singleton N-blocks consisting just of the
profile Pi that orients N towards Xi, and another N-block Q = {P,P 0}. So the
algorithm could now focus on the subtask (RQ,Q) with RQ = {(A,B), (B,A)}
consisting of those separations from S that distinguish profiles in Q.

More generally, we could continue our algorithm after finding N by iterating
it with the subtasks (RQ,Q) of (S,P), where Q runs over the non-trivial N-
blocks of P and RQ is the set of Q-relevant separations in S. This would indeed
result in an overall algorithm that eventually produces a nested subsystem of S
that distinguishes P, solving our task (S,P).

However, when we considered our three alternative ways of obtaining N,
we also had a secondary aim in mind: rather than working with the reduction
(R,P) of (S,P) straight away, we kept our options open to include more sep-
arations in N than distinguishing P requires, in order perhaps to produce a
tree-decomposition into smaller parts.12 In the same spirit, our secondary aim
now as we look for ways to continue our algorithm from N is not to exclude
any separation of S r N from possible inclusion into N without need, i.e., to
subdivide (S,P) into subtasks (Si,Pi) if possible with

S
i Si = S.

In view of these two aims, the best way to think of the chunks left by N
turned out to be neither as the (large) N-blocks of G, nor as the N-blocks of P,
but as something between the two: as the set ON of all (P1)-orientations of N.
Let us look at these in more detail.

Recall that since every P 2 P orients N, it defines an N-profile P \ N.
Equivalent P,P 0 define the same N-profile P \N = P 0 \N, the N-profile of the
N-block Q containing them. This is a (P1)-orientation of N. Conversely, given
O 2 ON, let us write PO for the set of profiles P 2 P with P \N = O. Note
that ON may also contain (P1)-orientations O of N, including N-profiles, that
are not induced by any P 2 P, i.e., for which PO = ;.

Similarly, every large N-block X of G defines an N-profile, the N-profile
PN (X) of X. This is a (P1)-orientation of N. Again, ON may also contain
(P1)-orientations that are not of this form.13

Recall that a separation (A,B) splits O 2 ON if both O [ {(A,B)} and
12In Example 1 with ext(S,P), where N consists of the proper 1-separations with separator

x1 or x3, every N-block of P is trivial. But the middle N-block of G consists of X2 and the
entire path P , so we might cut it up further using the remaining 1-separations in S. If P
consisted only of P1 and P3, then ext(S,P) would have produced the same N, and the middle
N-block would not even have a profile from P living in it. But still, we might want to cut it
up further.

13In Example 2, the set A \B is a small S-block of G for the nested separation system S.
The profiles P, P 0 are two (P1)-orientations of S orienting it towards A \B, but not towards
any large S-block.
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O [ {(B,A)} are again (P1)-orientations.14 Let us write SO for the set of
separations in S that split O. These sets SO extend our earlier sets RQ in a
way that encompasses all of S rN, as intended:

Lemma 3.6. Let N be a nested separation system that is oriented by every
profile in P and nested with S.15

(i) (SO | O 2 ON ) is a partition of S rN (with SO = ; allowed).
(ii) (PO | O 2 ON ) is a partition of P (with PO = ; allowed).
(iii) The N-profile P of any N-block Q of P satisfies PP = Q and SP ◆ RQ.
(iv) The (SO,PO) are feasible tasks.

Proof. (i) By Lemma 2.3, every separation (A,B) 2 SrN splits a unique (P1)-
orientation of N. Note that (A,B) is proper, since S is a separation system.

(ii) follows from the fact that every profile in P orients N and satisfies (P1).
(iii) The first assertion is immediate from the definition of an N-block of P.

For the second assertion let (A,B) 2 RQ be given, distinguishing Q,Q0 2 Q say.
By (i), we have (A,B) 2 SO for some O 2 ON . Since Q and Q0 satisfy (P1),
agree with P on N, and orient {(A,B), (B,A)} di↵erently, (A,B) splits the
(P1)-orientation P of N. By the uniqueness of O this implies P = O. Hence,
(A,B) 2 SO = SP as desired.

(iv) As SO distinguishes PO, by (iii), we only have to show that (SO,PO) is
feasible. As (S,P) is feasible, there is a separation (E,F ) in S for any two cross-
ing separations (A,B), (C,D) 2 SO distinguishing profiles P,P 0 2 PO as in (7).
Since (E,F ) also distinguishes P from P 0, we have (E,F ) 2 SO by (iii).

We remark that the inclusion in Lemma 3.6 (iii) can be strict, since SO may
contain separations that do not distinguish any profiles in P. Similarly, we can
have SO 6= ; for O 2 ON with PO = ;.

The subtasks (SO,PO) will be ‘easier’ than the original task (S,P), because
we can reduce them further:

Example 3. The separations (X,Y ) and (X 0, Y 0) in Figure 3 are P-relevant
(because they separate the profiles P,P 0 2 P, say), so they will not be deleted
when we reduce S (which is, in fact reduced already). They both belong to SO

for the middle (P1)-orientation O of N, but are no longer PO-relevant, where
PO = {P1, P2, P3} as shown. We can therefore discard them when we reduce the
subtask (SO,PO) before reapplying the algorithm to it, freeing (A,B) and (C,D)
for adoption into N in the second step.

14In Example 2, the N-profile of X = A \ B could be split into the (P1)-orientations P
and P 0 by adding the separations (A, B) and (B, A), although the large N-block X could not
be separated by any separation in S. Thus, splitting the N-profile of a large N-block is more
subtle than separating the N-block itself.

We remark that although all the (P1)-orientations considered in this example are in fact
profiles, our aim to retain all the separations from S rN at this state requires that we do
not restrict ON to profiles: there may be separations in S (which we want to keep) that only
split a (P1)-orientation of N that is not a profile, or separations that split an N-profile into
two (P1)-separations that are not profiles.

15For better applicability of the lemma later, we do not require that N ✓ S.
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X
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A
B

∈

N

∈

N

P1

P2

P3

O ∈ ON

O

PP

X
Y

O

Figure 3: (X,Y ) and (X 0, Y 0) are P-relevant but no longer PO-relevant

More generally, reducing a subtask (S 0,P 0) will be the crucial step in getting
our algorithm back afloat if it finds no separation in S 0 that is nested with all
the others. Example 3 shows that this can indeed happen.16 But after reducing
(S 0,P 0) to (R0,P 0), say, we know from (11) that each of ext, loc, all will find a
separation in R0 that is nested with all the others.

As notation for the double step of first reducing a task (S,P), to (R,P) say,
and then applying ext, loc or all, let us define17

extr(S,P) := ext(R,P); locr(S,P) := loc(R,P); allr(S,P) := all(R,P).

We shall view each of ext, loc, all, extr, locr, allr as a function that maps a given
graph G and a feasible task (S,P) in G to a nested subsystem N 0 of S 0.

A strategy is a map � : N ! {ext, loc, all, extr, locr, allr} such that
�(i) 2 {extr, locr, allr} for infinitely many i. The idea is that, starting from some
given task (S,P), we apply �(i) at the ith step of the algorithm to the sub-
tasks produced by the previous step, adding more and more separations to N.
The requirement that for infinitely many i we have to reduce the subtasks first
ensures that we cannot get stuck before N distinguishes all of P.

Formally, we define a map (�, G, (S,P)) 7! N�(S,P) by which every strat-
egy � determines for every feasible task (S,P) in a graph G some set N�(S,P).
We define this map recursively, as follows. Define �+ by setting �+(i) := �(i+1)
for all i 2 N. Note that if � is a strategy then so is �+. Let s := |S|, and let
r� be the least integer r such that �(r) 2 {extr, locr, allr}. Our recursion is on s,
and for fixed s on r�, for all G.

If s = 0, we let N�(S,P) := S = ;. Suppose now that s � 1; thus, S 6= ;.
Let N := �(0)(S,P). By Lemma 3.6 (iv), the subtasks (SO,PO) with O 2 ON
are again feasible.

Assume first that r� = 0, i.e. that �(0) 2 {extr, locr, allr}, and let (R,P)
be the reduction of (S,P). If R ( S we let N�(S,P) := N�(R,P), which is

16More generally, if we apply all(S,P) in the first step to obtain N, say, then every subtask
(SO,PO) with O 2 NO will have this property: if a separation (A, B) 2 SO was nested
with all of SO it would in fact be nested with all of S (and have been included in N ), by
Lemma 2.3 (ii).

17For the remainder of this section, G and (S,P) will no longer be fixed.
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already defined. If R = S then N 6= ; by (11), and |SO|  |SrN| < s for every
O 2 ON . Thus, N�+(SO,PO) is already defined.

Assume now that r� > 0, i.e. that �(0) 2 {ext, loc, all}. Then r�+ < r�, so
again N�+(SO,PO) is already defined. In either case we let

N�(S,P) := N [
[

O2ON

N�+(SO,PO) . (12)

Theorem 3.7. Every strategy � determines for every feasible task (S,P) in a
graph G a nested subsystem N� of S that distinguishes all the profiles in P.

These sets N� are canonical in that, for each �, the map (G,S,P) 7! N�

commutes with all isomorphisms G 7! G0. In particular, if S and P are invari-
ant under the automorphisms of G, then so is N�.

Proof. We apply induction along the recursion in the definition ofN� = N�(S,P).
If s = 0, then N� = S distinguishes all the profiles in P, because (S,P) is a task.

Suppose now that s � 1. Then N� is defined by (12). Both N and the sets
N�+(SO,PO) are subsets of S, hence so is N�. By definition, N is nested with
all of S, in particular, with itself and the sets N�+(SO,PO). These sets are
themselves nested by induction, and nested with each other by Lemma 2.3 (ii).
Thus, N� is a nested subset of S.

Any two profiles in the sameN-block of P are, by induction, distinguished by
N�+(SO,PO) for their common (P1)-orientation O (cf. Lemma 3.6 (iii)). Profiles
from di↵erent N-blocks of P are distinguished by N. Hence N� distinguishes P.

Finally, the maps (S,P) 7! N� commute with all isomorphisms G 7! G0.
Indeed, the maps (S,P) 7! N and hence (S,P) 7! { (SO,PO) | O 2 ON } do by
definition of ext, loc, all, extr, locr, allr, and the maps (SO,PO) 7! N�+(SO,PO)
do by induction.

Let us complete this section with an example of how the use of di↵erent
strategies can yield di↵erent nested separation systems. Unlike in the simpler
Example 1, these will not extend each other, but will be incomparable un-
der set inclusion. Let Ext, Loc and All denote the strategies given by setting
Ext(i) = extr and Loc(i) = locr and All(i) = allr, respectively, for all i 2 N.

Example 4. Let G be the 3-connected graph obtained from a (3⇥ 17)-grid by
attaching two K4s at its short ends, and some further edges as in Figure 4. Let
S be the set of all its 3-separations, and P the set of all its 4-block profiles. It is
not hard to show, and will follow from Lemma 4.1, that (S,P) is a feasible task.

The grey bars in each of the three copies of the graph highlight the separa-
tors of the separations in NExt(S,P), in NLoc(S,P), and in NAll(S,P). The step
at which a separator was added is indicated by a number.

Note that the three nested separation systems obtained are not only ✓-in-
comparable. They are not even nested with each other: for every pair of NExt,
NLoc and NAll we can find a pair of crossing separations, one from either system.
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1 12 43 4 3 2

Ext: add the extremal separations at each step

1 2 2 2 3 3 2 11 1

Loc: add the locally maximal separations at each step

1 2 2 1 1 2 2 1 2 2 1

All: add all possible separations at each step

Figure 4: Three di↵erent nested separation systems distinguishing the 4-blocks

4 Iterated strategies and tree-decompositions

Let us apply the results of Section 3 to our original problem of finding, for any
set P of k-profiles in G, within the set S of all proper (< k)-separations of G a
nested subset that distinguishes P (and hence gives rise to a tree-decomposition
of adhesion < k that does the same). This is easy now if G is (k�1)-connected:

Lemma 4.1. If G is (k � 1)-connected (k � 1), then (S,P) is a feasible task.

Proof. The pair (S,P) clearly is a task. So let us show that it is feasible.
Let (A,B) , (C,D) 2 S and P,P 0 2 P be such that (A,B), (C,D) 2 P and
(B,A), (D,C) 2 P 0. We prove that (E,F ) := (A[C,B \D) has order at most
k � 1, and hence lies in S; by (4) and (P2) it then also lies in P , implying (7).

Suppose (E,F ) has order greater than k � 1. By Lemma 2.1 this implies
that the separation (X,Y ) := (B [ D,A \ C) has order less than k � 1, and
hence is improper since G is (k � 1)-connected. As both (A,B) and (C,D) are
proper separations and hence X r Y = (B [D) r (A \ C) 6= ;, we then have
Y ✓ X. Then (X,Y ) /2 P 0, by (6). But by definition of (X,Y ) and (P2) for P 0

we also have (Y,X) /2 P 0. This contradicts (4).

Coupled with Lemma 4.1, we can apply Theorem 3.7 as follows:
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Corollary 4.2. Every strategy � determines for every (k�1)-connected graph G
a canonical nested system of separations of order k � 1 which distinguishes all
the k-profiles of G.

If G is not (k � 1)-connected, the task (S,P) consisting of the set S of all
proper (< k)-separations of G and the given set P of k-profiles need not be
feasible. Indeed, the separation (A[C,B\D) in (7) might have order � k even
if both (A,B) and (C,D) have order < k. Then if B\D induces a big complete
graph, for example, there will be no (E,F ) as required in (7).

However, if ord(A,B) = ord(C,D) = k � 1 in this example, the separation
(B[D,A\C) will have some order ` < k�1. This separation, too, distinguishes
the profiles P,P 0 given in (7). Hence our dilemma of having to choose between
(A,B) and (C,D) for inclusion in our nested subset N of S (which gave rise
to (7) and the notion of feasibility) would not occur if we considered lower-order
separations first: we would then have included (B [D,A\C) in N, and would
need neither (A,B) nor (C,D) to distinguish P from P 0.

It turns out that this approach does indeed work in general. Given our set
P of k-profiles, let us define for any 1  `  k and P 2 P the induced `-profile

P` := { (A,B) 2 P | ord(A,B) < ` }, and set P` := {P` | P 2 P } .

Note that distinct k-profiles P may induce the same `-profile P`. Let (P,P 0)
denote the least order of any separation in G that distinguishes two profiles P,P 0.

The idea now is to start with a nested set N1 ✓ S of (< 1)-separations that
distinguishes P1, then to extend N1 to a set N2 ✓ S of (< 2)-separations that
distinguishes P2, and so on. The tasks (SO,PO) to be solved at step k, those left
by the (P1)-orientations O of Nk�1, will then be feasible: since Nk�1 already
distinguishes Pk�1, and hence distinguishes any P,P 0 2 P with (P,P 0) < k�1,
any P,P 0 in a common PO will satisfy (P,P 0) = k�1, and (7) will follow from
Lemma 2.1 as before.

What is harder to show is that those (SO,PO) are indeed tasks: that SO is
rich enough to distinguish PO. This will be our next lemma. Let us say that
a separation (A,B) of order ` that distinguishes two profiles P and P 0 does so
e�ciently if (P,P 0) = `. We say that (A,B) is P-essential if it e�ciently dis-
tinguishes some pair of profiles in P. Note that for `  m we have (Pm)` = P`,
and if (A,B) is P`-essential it is also Pm-essential.

Lemma 4.3. Let P be a set of k-profiles in G, let N be a nested system of Pk�1-
essential separations of G that distinguishes all the profiles in Pk�1 e�ciently,
and let S be the set of all proper (k�1)-separations of G that are nested with N.
Then for every (P1)-orientation O of N the pair (SO,PO) is a feasible task.

Proof. As pointed out earlier, (SO,PO) will clearly be feasible once we know it
is a task. Since all profiles in PO are k-profiles and hence orient SO, we only
have to show that SO distinguishes PO.

So consider distinct profiles P1, P2 2 PO. Being k-profiles, they are distin-
guished by a separation (A,B) of order at most k � 1. Choose (A,B) nested
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with as many separations in N as possible; we shall prove that it is nested with
all of N, giving (A,B) 2 SO as desired. Note that ord(A,B) = k � 1, since N
does not distinguish P1, P2 2 PO. As (A,B) distinguishes P1 from P2, we may
assume (B,A) 2 P1 and (A,B) 2 P2.

Suppose (A,B) crosses a separation (C,D) 2 N. Since every separation
in N is Pk�1-essential, by assumption, there are profiles Q0

1, Q
0
2 2 Pk�1 such

that (C,D) distinguishes Q0
1 from Q0

2 e�ciently. By definition of Pk�1, this
implies that there are distinct profiles Q1, Q2 2 P which (C,D) distinguishes
e�ciently. Then

m := ord(C,D) < k � 1 = ord(A,B). (13)

Hence (C,D) does not distinguish P1 from P2; we assume that (D,C) 2 P1 \
P2 \ Q1 and (C,D) 2 Q2. Since Q2 is a k-profile it contains precisely one of
(A,B) and (B,A), we assume (A,B) 2 Q2 (Figure 5).

P1 P2

Q1

Q2

? ?Q1

A

C

D

B

m

k 1

Figure 5: The known positions of P1, P2, Q1 and Q2

Now if (X,Y ) := (A [C,B \D) has order < m, then (X,Y ) 2 Q2 by (P2),
and (Y,X) 2 Q1 by (P1). Hence (X,Y ) distinguishes Q1 from Q2 and has
smaller order than (C,D), contradicting the fact that (C,D) distinguishes Q1

and Q2 e�ciently. Thus (X,Y ) has order at least m.
Hence by (13) and Lemma 2.1, the order of (E,F ) := (B [D,A \ C) is at

most k � 1. Then (E,F ) 2 P1 by (P2), and (F,E) 2 P2 by (P1). Thus (E,F )
distinguishes P1 from P2. By [3, Lemma 2.2],18 (E,F ) is nested with every
separation in N that (A,B) is nested with, and in addition (E,F ) is also nested
with (C,D). Hence, (E,F ) is nested with more separations in N than (A,B) is,
contradicting the choice of (A,B).

When we apply Lemma 4.3 inductively, we have to make sure that every N`

we construct consists only of P`-essential separations. To ensure this, we have
to reduce any task we tackle in the process of constructingN`. Given k � 1, a k-
strategy is a k-tuple (�1, . . . ,�k) of strategies �i each with range {extr, locr, allr}.

18Swap the names of (C, D) and (E, F ) in the statement of the lemma in [3].
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The restriction in the range of k-strategies will reduce our freedom in shaping
the decompositions, but Example 4 shows that considerable diversity remains.

Given G and P, a k-strategy ⌃ = (�1, . . . ,�k) determines the set N⌃ =
N⌃(G,P) defined recursively as follows. For k = 1, let N⌃ := N�1(S,P), where
S is the set of proper (< 1)-separations of G. Then for k � 2 let

N⌃ := N [
[

O2ON

N�k(SO,PO) , (14)

where N = N⌃0(G,Pk�1) for ⌃0 = (�1, . . . ,�k�1), and S is the set of proper
(k�1)-separations of G that are nested with N. The pairs (SO,PO) are defined
with reference to N, S and P = Pk as before Lemma 3.6.

As before, the sets N⌃ will be canonical in that, for each ⌃, the map
(G,P) 7! N⌃ commutes with all isomorphisms G 7! G0. In particular, if P
is invariant under the automorphisms of G, then so is N⌃.

Theorem 4.4. Every k-strategy ⌃ determines for every set P of k-profiles of
a graph G a canonical nested system N⌃(G,P) of P-essential separations of
order < k that distinguishes all the profiles in P e�ciently.

Proof. We show by induction on k that the recursive definition of N⌃(G,P)
succeeds and that N⌃ = N⌃(G,P) has the desired properties. For k = 1 this
follows from Corollary 4.2.

For k � 2 let N and S be defined as before the theorem. By the induction
hypothesis, N is a nested system of Pk�1-essential separations of G that distin-
guishes the profiles in Pk�1 e�ciently. For every (P1)-orientation O of N the
pair (SO,PO) is a feasible task, by Lemma 4.3. By Theorem 3.7, then, �k deter-
mines a nested separation system N�k(SO,PO) ✓ SO ✓ S that distinguishes all
the profiles in PO. By definition of S, all these N�k(SO,PO) are nested with N,
and they are nested with each other by Lemma 2.3. Hence N⌃ is well defined
by (14) and forms a nested separation system.

Let us show that N⌃ has the desired properties. To show that N⌃ distin-
guishes the profiles in P e�ciently, consider distinct P,Q 2 P. If (P,Q) < k�1,
then Pk�1 6= Qk�1 are distinct profiles in Pk�1. So by the induction hypoth-
esis there is a separation in N ✓ N⌃ that distinguishes P from Q e�ciently.
If (P,Q) = k � 1, we have Pk�1 = Qk�1. Then P and Q have the same N-
profile O, and P,Q 2 PO. Hence there is a separation in N�k(SO,PO) ✓ N⌃

that distinguishes P from Q; as it has order k � 1, it does so e�ciently.
It remains to show that every separation (A,B) 2 N⌃ is P-essential. If

(A,B) 2 N, this holds by the induction hypothesis and the definition of Pk�1.
So assume that (A,B) 2 N⌃ rN. Then there is a (P1)-orientation O of N such
that (A,B) 2 N�k(SO,PO). Since �k(i) 2 {extr, locr, allr} for all i 2 N, we know
that (A,B) distinguishes some P,Q 2 PO. Then (P,Q) = k � 1 = ord(A,B),
as otherwise N would distinguish P from Q by the induction hypothesis. Hence,
(A,B) distinguishes P from Q e�ciently, as desired.

It remains to translate our results from separation systems to tree-decom-
positions. Recall from Theorem 2.2 that every nested separation system N
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of G is induced by a tree-decomposition (T ,V): the separations of G that cor-
respond to edges of T are precisely those in N. In [3] we showed that (T ,V) is
uniquely determined by N.19 Hence if N is determined by some k-strategy, as
in Theorem 4.4, we may say that this k-strategy defines (T ,V) on G.

If N comes from an application of Theorem 4.4, it will be canonical. In par-
ticular, if the set P of profiles considered is invariant under the automorphisms
of G, then so is N, and hence so is T : the automorphisms of G will act on V (T )
as automorphisms of T . And many natural choices of P are invariant under the
automorphisms of G: the set of all k-profiles for given k, the set of all k-block
profiles, or the set of all tangles of order k to name some examples. All these
can thus be distinguished in a single tree-decomposition:

Theorem 4.5. Given k 2 N and a graph G, every k-strategy defines a canonical
tree-decomposition of adhesion < k of G that distinguishes all its k-blocks and
tangles of order k. In particular, such a decomposition exists.

Theorem 4.5 is not the end of this story, but rather a beginning. One can
now build on the fact that these tree-decompositions are given constructively
and study their details. For example, we may wish to find out more about the
structure or size of their parts, or obtain bounds on the number of parts contain-
ing a k-block or accommodating a tangle of order k, compared with the total
number of parts. The answers to such questions will depend on the k-strategy
chosen. We shall pursue such questions in [1].
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