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Abstract

We determine all complete projective special real surfaces. By the supergravity
r-map, they give rise to complete projective special Kahler manifolds of dimension
6, which are distinguished by the image of their scalar curvature function. By
the supergravity c-map, the latter manifolds define in turn complete quaternionic
Kaéahler manifolds of dimension 16.
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Introduction

Projective special real manifolds first occurred as the scalar manifolds of certain super-
gravity theories in five space-time dimensions [GST) [DV1], see Definition [[l below. Their
geometry is encoded in a homogeneous cubic polynomial. A typical example occurring
in string theory is the geometry defined by the cubic form on H%'(X R) for a Kihler
manifold X of complex dimension 3. It was shown in [CHM]|, using constructions from
supergravity, that any complete projective special real manifold of dimension n defines a
complete projective special Kéhler manifold of (real) dimension 2n + 2 and a complete
quaternionic Kéhler manifold of dimension 4n + 8. For that reason it is interesting to
find examples of complete projective special real manifolds. Let us also mention that the
completeness (or incompleteness) of the scalar manifold in the underlying supergravity
theories is related to the global behaviour of solutions to the equations of motion. This
is due to the fact that the scalar fields of the theory cannot approach infinity along a

trajectory of finite length if the manifold is complete.

In this paper we classify all complete projective special real surfaces:

Theorem 1  There exist precisely five discrete examples and a one-parameter family of

complete projective special real surfaces, up to isomorphism:

a) {(z,y,2) € R¥zyz=1, z >0, y > 0},

b) {(z,y,2) € R¥|z(zy — 2%) =1, z > 0},

c) {(z,y,2) € R|z(yz+2?) =1, 2 <0, y >0},

d) {(z,y,2) € R¥z(2* + y* — 2%) =1, 2 < 0},

e) {(x,y,2) € RPlz(y® — 2*) +9° =1, y <0, = >0},

f) {(z,y,2) € R3y?z —4a® + 3222 + 022 =1, 2 <0, 22 > 2}, where b€ (—1,1) C R.

In Sections [[H4] we prove Theorem [I] essentially by first determining all homogeneous

cubic polynomials k on R3 such that the surface {h = 1} C R? has a strictly locally convex



component H of hyperbolic type. It turns out that, up to linear transformations, the
resulting surfaces H of hyperbolic type are precisely those listed in Theorem [II Then we
prove in all cases that J is complete with respect to the Riemannian metric gy induced by
the Hessian of —h. At present we do not know, in dimensions n > 3, whether a projective
special real manifold H C R™*! which is closed as a subset of R"*! is necessarily complete
with respect to the metric g4, see open problem on page [I2. The converse statement,

however, can be easily proven in all dimensions.

In Section [{l we provide general formulas for the curvature of the Kahler manifolds
obtained from the generalized r-map defined in [CHM]. This is applied in Section
to the projective special Kahler manifolds of complex dimension 3 obtained from the
projective special real surfaces of Theorem [Il. Computing the scalar curvature we prove,
in particular, that the complete projective special real manifolds c¢)—f) of Theorem [II
as well as the corresponding complete projective special Kdhler manifolds are not locally
homogeneous as Riemannian manifolds. The family of projective special Kahler manifolds
associated with the Weierstral polynomials hy = y?z — 423 + 3222 + 23, b € (—1,1),
seems to be the first example of a continuous family of complete projective special Kahler

manifolds.

Let us finally mention that applying the supergravity c-map to our examples one
obtains complete quaternionic Kéahler manifolds of dimension 16, which have negative
scalar curvature and cohomogeneity less than or equal to 2. More precisely, there exists
a group of isometries which has cohomogeneity k, where k is the cohomogeneity of the
initial projective special real manifold under the full group of linear automorphisms, that
is £ = 0 in the cases a) and b), £ = 1 in the case ¢) and d) and k£ = 2 in the cases e)
and f) . We expect that the same is true for the full isometry group of the quaternionic
Kéhler manifold.

Acknowledgments This work is part of a research project within the RTG 1670 “Math-
ematics inspired by String Theory”, funded by the Deutsche Forschungsgemeinschaft
(DFG).

1 Statement of the classification problem

Let h be a homogeneous cubic polynomial function on R** and U C R"*! a domain

invariant under multiplication by positive numbers such that h|y > 0. Then
H:={xeUlh(zx)=1} CU

is a smooth hypersurface and —9?h induces a symmetric tensor field gsc on .



Definition 1 If gy is positive definite then the hypersurface 5 C R™ ! is called a
projective special real manifold. Two projective special real manifolds 3, H' C R**! are
called isomorphic if there exists p € GL(n + 1) mapping H to H'.

Remark 1

1) In the above situation | : H — H' is an isometry.

2) For any projective special real manifold H C R™™! the tensor field —9?h is a Lorentzian
metric on U = R>? - H C R™". In particular, (—1)"det 9*h > 0 on U.

The classification of complete projective special real surfaces up to isomorphism can
be separated into two problems. First we have to determine all homogeneous cubic poly-
nomials h on R3, up to linear transformations, which are hyperbolic, that is admit a point
p € R? such that h(p) > 0 and 9*h is negative definite on the kernel of dh,. We can
assume that hA(p) = 1. Then there exists a maximal connected neighborhood H of p in
the level set {h = 1} such that H is a projective special real surface. The second problem

is then to check whether (H, gs) is a complete Riemannian manifold.

2 Classification of cubic polynomials

In this section we provide the needed classification of homogeneous real cubic polynomials
h in three variables up to linear transformations. We will say that two polynomials are
equivalent if they are related by a linear transformation. This problem is equivalent to the
classification of cubic curves in the real projective plane. The study of real plane cubic
curves goes back to Newton [N|. For the classification of complez plane cubic curves up

to projective transformations see the textbooks [BK HJ.

Let us first consider the case when h is reducible, that is a product of homogeneous

polynomials of degree 1 or 2.

Proposition 1 Any reducible homogeneous cubic polynomial on R? is equivalent to one
of the following:

(i) x°,
(i) 2%y,
(iii) wy(r +y),

(v) xyz,



(v) z(2® +y?),
(vi) 2(2* +y?),
(vii) z(2? + y? + 22%),
(viii) z(x* +y* — 2%),
(iz) z(a® +y? — 2%),
(z) (y+2)(a® +y* - 2%).

The proof is a simple exercise. Notice that the first 4 cases are products of linear
factors and are the same as in the complex case. The remaining 6 polynomials contain an

irreducible quadratic polynomial as a factor. Over C there are only 2 such polynomials.

Next we consider the case of singular curves C' = {h = 0} C RP2.

Proposition 2 Any irreducible homogeneous cubic polynomial h on R3 such that the

curve C' = {h =0} C RP? has a singularity is equivalent to one of the following:
(i) =(y* + 2%) + v,

(zii) ©(y® — 2°) +y°,

(ziti) xz2* + y>.

Proof: 'We can assume that h and dh vanish at P = (1,0,0). Then we decompose
h = xzq + r, where ¢ = q(y,2), and r = r(x,y,z) # 0 does not contain any monomial
summands linear in x. Now the conditions h(P) = 0 and 9,h(P) = 0,h(P) = 0 easily
imply that » = r(y,2). By a linear transformation we can obviously assume that ¢ €
{y? +22,y* — 22, 2?}. In the last two cases, one can use the same linear transformation as
in the complex case to bring h to the form (xii) and (xiii), respectively, cf. [H|. Therefore
it suffices to consider the case ¢ = y? + 22. The vector space S = S3(R?)* of homogeneous
cubic polynomials in the variables (y, z) is decomposed as a sum of two irreducible O(2)-
modules:
S3(R*)* = (R*)*q ® span{y® — 3yz?, 2* — 3y°z}.

Using a homothety in the (y, z)-plane we can thus assume that r = y* — 3y2% modulo
(R?)*q. Furthermore, by a linear transformation preserving y and z we can freely change
the (R?)*g-component of r. For instance, we can take it to be 3yq, which implies r = 4y3.

Now it suffices to rescale x and (y, z) to bring h to the form (xi). |

Finally, the classification of smooth irreducible real cubic curves is provided by the

Weierstrafl normal form.



Proposition 3  Let h be an irreducible homogeneous cubic polynomial on R? such that
the curve C' = {h = 0} C RP? is smooth. Then h is equivalent to a Weierstraf cubic
polynomial

Y’z — 4x° + arz® + b2,

of nonzero discriminant a®> — 27b?, for some a,b € R.

Proof: By Bezout’s theorem, we know that C' has 9 complex inflection points [BK] [H].
Since, the imaginary inflection points occur in pairs one of them has to be real. Therefore

the same proof as in the complex case applies [HJ. O

Remark 2 Note that some of the Weierstral cubic polynomials given in Proposition
[3 are linearly equivalent. From the classification of smooth cubics over C, we know that

two Weierstraf cubics are inequivalent if they have different j-invariants (see [BK| [H])

0,3

](a'> b) = ag o 27b2

3 Classification of hyperbolic polynomials

In this section we study the hyperbolicity of the polynomials given in Propositions [
and Pl The study of Weierstrafl polynomials with nonzero discriminant is postponed to
Subsection E11

Proposition 4 Let h be a hyperbolic homogeneous cubic polynomial on R3. Then either
h is equivalent to a Weierstraf$ cubic polynomial with nonzero discriminant or to one of
the following:

1) zyz,

2) 2(a® +y? = 2%,

3) w(a? +y* - 2%),

4) (y+2)@* +y* = 2%),

5) x(y* +2%) + v,

6) x(y* — 2%) + 97,

7) w2 + 3.



Proof: In the following we will denote by g the symmetric tensor field on the surface
{h = 1}, which is induced by —9*h. We have to decide whether —9?h(p) is Lorentzian for
some p € {h = 1} or, equivalently, whether g, is positive definite for some p € {h = 1}.

The polynomials (i-iii) and (v) in Proposition [l do not depend on z. Hence, their
Hessian is everywhere degenerate. We claim that also (vi) and (vii) are not hyperbolic,
which leaves us with the cases 1)-7). In the case (vi), det9*h = —8h is negative on

{h = 1}. Therefore, h is not hyperbolic. In the case (vii), det 9*h = 8(42® — h), which

is positive precisely on those points of {h = 1} for which = > 3%/1. Next we observe

that det <hyy e
hzy hzz
denote partial derivatives. This shows that 9?h is positive definite on the set {det 9*h >

) = 422 and h,, = 2z are positive for x > %4, where the subscripts

0} N {h > 0}. In particular, h is not hyperbolic. Now we prove that the remaining
polynomials are all hyperbolic. The polynomials 1), 3) and 4) give rise to the complete
projective special real surfaces a)-c) in Theorem [I which were already discussed in [CHM].
In fact, x(z? + y* — 2?) is equivalent to zyz + 2% and (y + 2)(2? + y? — 2?) to z(zy — 2?).
In case 2), det 9*h = —8(42% + h), which is positive precisely on those points of {h = 1}
for which z < —3%/1. Since 92h = 2z, we see that the subset of {h = 1} on which g is
Riemannian is nonempty and coincides with the subset on which det 9*h > 0. This subset
is precisely the surface d) in Theorem [l In fact, z < 0 and h = 1 imply z < -1 < _%Z'
In case 5), the surface {h = 1} is a graph
1—13

T = P
over the domain R? \ {0} in the (y,2)-plane. The (nonempty) subset on which g is
Riemannian is

{(y,2) € R*|y(y* — 32°) — 1 > 0}.

This follows from det 9h = 8(y(y* — 32%) — h), since §2h = 0.
In case 6), the surface {h = 1} is a union of the graph
-y 2
{o= =2 y-— 2 #0}
and the two vertical lines {y = |z| = 1}. Since det 9*h = 8(h — y(y* + 32?)) and 92h = 0,
we see that the (nonempty) subset of {h = 1} on which —9%*h induces a Riemannian
metric on the surface is precisely

11—
{y(y* +32%) <1,z = RO y? — 22 # 0},
In case 7), {h = 1} is a graph

y=v1—x22

7



over the (z, z)-plane and ¢ is Riemannian precisely on the (nonempty) subset
zz? > 1.

This follows from det 9?°h = —24y2?, since §?h = 0.
O

4 Classification of complete surfaces

In this section we study the completeness of the maximal connected projective special
real surfaces associated with the hyperbolic cubic polynomials h described in Proposition

4. These are precisely the connected components of the hypersurface

H(h) :={x € R*|h(z) =1 and g, >0},
where we recall that g, is the restriction of the symmetric bilinear form —d*h(x) to the
plane ker dh(x).

In the next theorem we determine all the complete and incomplete components of H (h)
for the polynomials 1)-7) of Proposition ] up to equivalence. The five cases which admit
a complete component are listed first. They correspond to the surfaces a)-e) in Theorem
[l The case of Weierstrafl polynomials with nonzero discriminant will be analysed in the

next subsection. It will lead to the family of surfaces f) in Theorem [II
Theorem 2
1) For h = xyz, H(h) = {h = 1} has four isomorphic components, each of which is
complete.

2) For h = x(xy — 2%), H(h) = {(z,y,2) € R}|h(z,y,2) =1, x > 0} is connected and

complete.

3) For h = alyz +2%), H(h) = {(v,9,2) € B|h(z,y,2) = 1, = < =} has four
components; a pair of isomorphic complete components and a pair of isomorphic

incomplete components.

4) For h = z(z* +y? — 22), H(h) = {(z,y,2) € R3|h(z,y,2) =1, 2 < 0} is connected

and complete.
5) For h = x(y* — 2%) + y3,
H(h) ={(z,y,2) e R?|h(z,y,2) = 1, y* — 22 £ 0, y(y* + 32%) < 1}
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has four components; a complete component, a pair of isomorphic incomplete com-

ponents and a further incomplete component.

6) For h = x(y> + 2°) + 4%, H(h) = {(z,y,2) € R¥|h(x,y,2) = 1, y(y* — 32%) > 1}
has three components; a pair of isomorphic incomplete components and a further

mcomplete component.

7) For h = x2*+y3, H(h) = {(z,y, 2) € R3|h(x,y,2) =1, y < 0} has two components.

They are isomorphic and incomplete.

Proof: 1) The group Z3 acts by (z,y,2) — (€17, €2y, €1€22), €1,€2 € {£1}, on the level
set {h = 1} permuting its four components. Therefore, the statement follows from the
fact [CHM]| that the tensor field g is positive definite and complete on the component
{(z,y,2) e R¥|zyz =1, 2 >0, y > 0}.

2) The description of H(h) follows from det 9*h = 8z° and d7h = 0, the completeness
from [CHM].

3) The description of J(h) follows from det9*h = 2(h — 42°) and J;h = 0. Notice
that J(h) is a graph over the union of the following four domains in the (x,y)-plane:
{x <0,y >0}, {z < 0,y < 0},{0 <z < %,y > 0},{0 < z < %,y < 0}. The
corresponding components of H(h) are related by the involution (x,y, z) — (x, —y, —2).

So up to isomorphism, it suffices to consider the two components

{(z,y,2) € R}|h(z,y,2) =1, 2 < 0,y > 0},
1
{(I,y,Z) S R3|h(x,y,z) = 17 0<z< 3—7y > 0}

V4

The first one is complete by [CHM] and the second one is incomplete. This follows from

the fact that the second component has nonempty boundary. The boundary is given by

1 3 0
M>y> 42/3y y > .

4) The description of H = H(h) was obtained in the proof of Proposition @l In order

to prove the completeness let us first remark that H(h) is a surface of revolution. More

the curve

precisely, it is the graph of the function

(z,y) = 2= ¢(p),

where p = r? = 22 + y? and

¢ :[0,00) = (—o0, —1]

is the inverse of the strictly decreasing function

fi(—o0,—1] = [0,00), z—p=f(z)=—-+2"



Let us first calculate the metric ¢ = —9?h|y in the coordinates (z,y). Using that z = ¢(p),

we obtain

1
59 = —2(d2*+dy?)+32d="=2(zdr+ydy)dz = —p(p)(dr*+dy®)+'(p) (30 (p)# ()= 1)dp”.

Rewriting dz? + dy? = dr? + r?ds® = 4ipdp2 + pds? in polar coordinates (r,s) in the

(x,y)-plane we arrive at

9ltos0y = 2f1(p)dp* + 2 fo(p)ds?, (4.1)
where
filp) = —%w(p) L (0)Be()e (0) — 1)
falp) = —w(p)p.

The metric (4.1]) is of the type considered in Section 1 of [CHM] (cf. Lemma [l below).

Therefore, for all a > 0, the completeness of H is equivalent to

/OO V fi(p)dp = oo. (4.2)

A straightforward calculation shows the following asymptotics when p — oc:

which implies (4.2)).
5) The description of H(h) was obtained in the proof of Proposition @l The surface is a

graph over the union of the following four domains in the (y, z)-plane:

{y <0 |2l <y}, {0<y<1|z] <min(y, f(y)}, {ez > 0]yl < 2],y < f (2D},

where € = £1, f: (0,1) = (0, 00) is the strictly decreasing function f(y) = %(i —y?)1/?

(0,1) denotes its inverse. The involution (z,y,z) — (z,y, —z) acts

~

and f~!: (0,00) =
on H(h) preserving the first two components and interchanging the last two. The last
three components are incomplete as they have a nonempty boundary. The boundary of

the second component is
, 3
{(z,y,2) eR’lyo <y <1, |2] = f(y), = m}v
where vy is the unique fixed point of f. The boundary of the third one (¢ = 1) is

1—193
{(z,y,2) eR’|0 <y <o, 2= f(y), z = m}-

10



Now we show that the first component, namely

1 -3
H .= {(:lj',y,Z) € R3|y <0, |Z| < |y|ax = m}’

is complete. The metric ¢ is given by

1
§g = —(z+ 3y)dy2 + xdz? — 2dx(ydy — zdz),

where (y, z) is restricted to the domain {y < 0,|z] < |y|} and = = y12__y;2. Using the

function s = y? — 22 > 0, we rewrite this as

1
59= —3ydy* — x(dy* — dz*) — dxds.

Eliminating x = % and
3y%d 1—1%)d
g — 3y ( .Z) .
s s

we get

1 dy? — dz?

59 = =3ydy’ — (1 = y") =—— + 3y’dydo + (1 - y")do,

s

where 0 = In s. Using the coordinates
ty = 1In(ly| £ 2),
such that
g = t+ —|— t_,
this is
1

59 = —3ydy* — (1 — y*)dt dt_ + 3y>dy(dt, + dt_) + (1 — y®)(dty + dt_)>.

Notice that the coordinates (¢, ,¢_) define a diffeomorphism H = R?. Eliminating

et + el-

y=—- 9 )

we get

—g = (1+ %(eg’”ﬁ+ + M)t + dtt) + (1 — i(eg’”ﬁ+ + %)) dt dt
= dt’ +dt* +dtydt-+ %(e?’t+ + e¥)) (dty — dt_)?
> dtt +dt? +dtpdto > %(dti +dt?).

So ¢ is bounded from below by the complete metric dt +dt% and, hence, is itself complete.
6) The description of H(h) follows from det 8°h = 8(y(y*>—32%)—h) and 9*h = 0. H(h) is

11



a graph z = ;zjr—y; over the union of the following three domains in the (y, z)-plane: {y <
0, 322 > yz—i, 2> 0}, {y <0, 322 > yz—i, z2< 0}, {y >0, 322 < y2—§}. The first two
correspond to components of H(h) that are related by the involution (z,y, 2) — (z,y, —2).

(y,2) = (—1,4/2/3) and (y,2) = (1,0) are points in the boundary of the first and third
components of H(h) have nonempty boundary. Hence, all three components of H(h) are

domain respectively. Since |z| = | | < oo for (y,z) # (0,0), the corresponding

incomplete.

7) The description of H(h) follows from det 9*h = —24yz* and 92h = 0. H(h) is a
graph y = /1 — 222 over the union of the following two domains in the (z,z)-plane:
{xz? > 1,2 > 0}, {z2®> > 1, 2 < 0}. The corresponding components of H(h) are related
by the involution (z,y, 2) — (z,y,—2). (z,y,2) = (1,0,1) is a point in the boundary of

the first component. Hence both components of H(h) are incomplete. O

Proof: (of Theorem [Il) In Section 2 we classified all homogeneous cubic polynomials,
up to linear equivalence. They fall into three classes: reducible polynomials, irreducible
polynomials h such that {h = 0} C RP? is a singular curve and irreducible polynomials
such that the corresponding cubic curve in RP? is smooth. For the first two classes, all
hyperbolic polynomials, i.e. all polynomials that define a projective special real surface
are classified in Proposition @l Theorem [ then classifies all complete projective special
real surfaces defined by the polynomials given in Proposition [4. This gives the surfaces
a)-e). The polynomials in the third class are all equivalent to Weierstral polynomials of
nonzero discriminant (Proposition[3]). They are studied in the next subsection. According
to Corollary 2] the surfaces in the one-parameter family f) are, up to equivalence, the
only closed projective special real surfaces defined by Weierstrafl polynomials of nonzero
discriminant. Proposition [§ in combination with Lemma [ shows that all surfaces in the

family f) are complete. |
Remark 3 More precisely, we have classified all projective special real surfaces that
are closed in R and we have shown that all closed projective special real surfaces are

complete.

Together with the classification of all closed and of all complete projective special real

curves in [CHM], we obtain the following corollary:

Corollary 1 A projective special real manifold H C R™ ! of dimension n < 2 is

complete if and only if H is a closed subset of R"*1.

Open problem: Does the statement of Corollary[d hold in all dimensions?

12



4.1 Complete surfaces defined by Weierstraf3 polynomials with
nonzero discriminant

In this subsection, we will study Weierstral polynomials
Rt = 422 — 42® + ax2? 4 b2?

with a® — 270? # 0 and show that for positive discriminant, they define a one-parameter
family of complete projective special real surfaces and that for negative discriminant, all

connected components of {x € R|h(z) =1, g, > 0} are incomplete.

First, we study the connected components of {h = 1}. In the case of positive discrimi-
nant, we can restrict ourselves to Weierstrafl cubics with a = 3, according to the following

lemma.

Lemma 1 Let h(®? = 22 — 423 + ax2® + b2° be a Weierstraf§ cubic polynomial with

positive discriminant a® — 276> > 0. Then h(®® is linearly equivalent to h®®) with —1 <
Y

b<1.

Proof: a® — 27b* > 0 implies @ > 0. Defining 7 := z, § = (%)%y, Z = /%2 and
~ 3 - ~

b:= (2)? b, we obtain h(®" (z,y, 2) = §?2—4F+3272+b7° = h®Y(7,7,2) and a®— 270 =
a(1—b%) > 0 if and only if —=1 < b < 1. O

Proposition 5 Let h = y?z — 42° + axz® + bz3 with a,b € R such that the discriminant
a® — 27b% is nonzero. Then {(z,y,z) € R3|h(x,y,2) = 1} has

a) one connected component for a® — 27b* < 0 and

b) two connected components for a®> — 276> > 0. For a = 3 (and hence —1 < b < 1),
one of them is given by H3Y = {(z,y,2) € R®|h(x,y,2) =1, 2 <0, 2z > z}.

Proof: Consider the diffeomorphism

O {h A0 {z =1} 5 {h=130{z£0}, (5,9.1]) > ———(2,3,1)
h(z,y,1)

with inverse ®~1(7,7,2) = (Z, %, 1) . The restriction of ® gives diffeomorphisms

Vi={h>0n{z=1} = {h=1}n{z> 0} = 3,
Vo={h<0}n{z=1} S {h=1}n{z<0} = F_.

The discriminant a® — 27b% determines the number of real roots of

f(z) :=y* = h(z,y,1) = 42° — ax — b.

13



a) Case a® — 27b* < 0: For negative discriminant, f(x) = 42® — az — b has exactly one
real root that we denote by z;. Then V, = {(x,y,1) |z € R, y* > f(x)} and V_ =
{(z,y,1)| x> z1, y* < f(x)} are connected. Hence, H, = ®(V,) and H_ = &(V_)
are connected as well. With Hy :={h =1} N{z =0} = {(—%,y,O) |y € R}, we
have {(x,y,2) € R®|h(x,y,2) =1} = H, UHyUH_. For x < z1, we have

1 oo, 1
H, > ®(2,0,1) = \3/_4x3+ax+b(x,o,1) = (—\7—1,0,0)6}&]

and for z > xq,
1 T——+00 1
H_>P(x,0,1) = 2,0,1) " — (———=,0,0) € H,.
( ) \3"/—4x3+ax+b( ) ( 4 ) 0

Thus, {(z,y,z) € R*|h(x,y,z) = 1} is connected.

b) Case a®> — 270> > 0: Without loss of generality, we set a = 3 (see Lemma [I]).
Then —1 < b < 1. For positive discriminant, f(z) = 42® — 3z — b has three real
roots that we denote by xi, z9,x3 such that o < z3 < x;. Hence, f(z) > 0 for
T € (T, 23) U (21,00). As before, V, = {(x,y,1)|x € R, y*> > f(z)} is connected

and diffeomorphic to H . V_ has two connected components given by

Vi = {(z,y,1)|ze < < x5, y* < f(x)} and V_, := {(z,y, 1)|z > z1, ¥* < f(x)}.

Hp:=D(V,) = Vyand H_, = &(V_,) = V_, are connected and with Hy :=
{h=1}n{z=0}= {(—%/iz,y,O)Ly € R}, we have {(z,y, 2) € R*}|h(z,y,2) =1} =
Hy UHogUH_, UH_,,. By the same reasoning as in the proof of a), we see that
Hy UFoUH_, is connected.

Notice that the minimum of f(z) is located at z = %, so z3 < § < z;. Hence, we
have H_, = ®(V_,) C{z < 0}n{L <t} and H_, =®(V_,) C{z<0}n{Z>1}.
From {z < 0} N {2z > z}NH, = 0, it follows that FH_,N(H,UH,UH_,) = 0. Thus,
{(x,y,2) € R*h(x,y, z) = 1} has two connected components, namely H , UH,UH _,
and HGY = H_, ¢ {z <0} N {2z > z}. O

Now, we show that h is hyperbolic for each point in the closed surface HG? =
{(z,y,2) € R}AGBY (2,y,2) =1, 2 <0, 22 > 2z} C R? defined in Proposition [ b).

Proposition 6  Let h = y?z — 4% + 322% + b2° with —1 < b < 1 and let HOY =
{(z,y,2) € R®|h(z,y,2) =1, 2 <0, 2z > z}. Then —0?h(p) has Lorentzian signature for
all p € HED.,

Proof: Let x5 < x3 < 7 be the three distinct solutions of 42® — 3z — b = 0 and let
d := det ?h = —24(12z2(x + bz) + 32 — day?). Let (z,y,1) € Vo :={(z,y,1) |12 < 2 <
r3, y? < 42 — 3z — b}. We show that d(z,y,1) < 0:
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Case = = 0: —d(oz’i’l) =3>0.

Case z < 0: —%8D — 194 (2 4+ b) + 3 — day? = 12(z + 2)? + 3(1 — b%) — day® > 0.

Case = > 0: We use y? < 423 — 3z — b:

1
—% = 12z(x +b) + 3 — dzy® > 122(x + b) + 3 — 4z (42® — 32 — b)
= —162" + 242* + 16bz + 3 =: g(x).
g'(x) = —16(42® — 3z — b), so g(z) has local maxima at z, < —3 and z; > 3 and

a local minimum at z3. For —1 < b < 1, the quartic polynomial g(z) has only two
real rootsH, which must lie in (—o0,z3) and (x1,00). So g(x3) > 0 and it follows
that g(z) > 0 for 0 < x < x3.

(Note that, depending on the value of b, some of these cases might be empty.)

We have H3b) = {m(z,y, 1)|(x,y,1) € V_u}, where hly_, < 0 (see the proof

of Proposition Blb). Since d is homogeneous of degree three, d|y._, < 0 implies d|5 > 0.
Now 9?h|s can have signature (+,+,+) or (+,—, —). Since §?h(9,,0,) = 2z < 0, the
signature of 9%hls is (+, —, —). O

Lemma 2 For h® =122 — 42 4+ ax2® + bz®, —0?h*Y(z,y, 2) is Lorentzian iff
(z,9,2) € ULy, := {det 9*h > 0, z > 0} U {det 9*h > 0, z < 0}.

Proof: For h = y?z — 423 + axz® + bz3, 0°h is positive definite iff h,, = —24x > 0,
det (ZZ Z;Z) = —48xz > 0 and det 9*h = —8(12xz(ax + 3bz) + a?z> — 122y?) > 0, i.e.
{(z,y,2) € R}?h(x,y,2) > 0} = {(z,9,2) € R*|z <0, 2> 0, det 9*h > 0} =: Uppps..

Hence, —9*h(x, vy, z) is Lorentzian iff
(z,y,2) € {(7,y,2) € R?*| det 9*h > 0}\Upps. = {det 0*h > 0, x > 0}U{det 3*h > 0, 2 < 0}.
We show that {det 9*h >0, x =0, 2 >0} U{det *h >0, 2 <0, 2=0}=0:
=0, 2> 0= det *h = —8a%2> <0,
<0, z=0= det 9*h = 962y < 0.
O

Using the above lemma, we show that except for H®? all connected components of
{x € R|ABY (2) =1, g, > 0} have nonempty boundary in R3.

!This can be shown using the relation between the roots of a quartic polynomial and the roots of its
cubic resolvent (see e.g. [I], section 10.5). The cubic resolvent s(z) = 23 =322 +32—b2 = (2 —1)>+3 - b2
of g(z) has only one real root. This implies that g(x) has two real roots.
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Proposition 7 Let

a) 8 = {(z,y,2) € R¥h(x,y,2) = 1} for h = y*2 — 42® + axz? + bz> with negative

discriminant or

b) 8 := {(x,y,2) € R3|h(z,y,2) = 1N\HEY for h = y?z — 423 + 3x2% + b2 with
-1 <b <1, where HEH = {(I,y,Z) < R3|h(x,y,z) =1, 2<0, 2z > Z}'

Then 8 N {(z,y, z) € R3| — &?h(x,y, 2) Lorentzian} has no connected component that is

closed in 8.

Proof: Let H be a connected component of 8 N Upe,. (see lemma [2). (—%,0,0) €
8 N {det 92h = 0} implies H # 8. Uper, = {det 8h > 0, z > 0} U {det 8h > 0, z < 0}
is open in R?, so 8 N Uz, and hence H are open in 8. According to proposition B, 8 is

connected. Since H C 8 is open, nonempty and # 8, it cannot be closed in 8. O

In summary, we have proven the following

Corollary 2 Up to linear equivalence, the only closed (in R3) projective special real

surfaces defined by WeierstrafS cubic polynomials with nonzero discriminant are given by
HEY = {(z,y,2) € R¥|y?z —4a® + 3222 +b2° =1, 2 < 0, 22 > 2}

with —1 < b < 1. O

To prove the completeness of the projective special real metric defined on the closed

component H3?) given in Corollary [, we will use the following three lemmata.

Lemma 3  For each b € (—1,1) there exists exvactly one R € R, such that h®? =

Y2z — 4x3 + 3222 + b2® is equivalent to
h(z,y,2) == y*2 — 2° + 22° + Ra’z.

Proof: It is straightforward to see that hG®? is equivalent to hy(x,y,2) = 3?2z — 2® +

r2? + §—§z3. To eliminate the z3-part we make the ansatz x = = + cz. We obtain
2

) ) . 2b
h(Z +czy,2) =y — 2 + (1 = 3¢%)T2* — 3¢z + <_03 tet 3_3) 2
2

We need to analyse the solvability of (—03 +c+ 32—2) = 0. Therefore, we define f(c) :=
2
¢ —c and calculate its first derivative f’(c) = 3c*—1. f'(c) vanishes if and only if ¢ = —?%%
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or ¢ = 4, and f (-L) = (Ll) = —-2 . Thus, for each b € (—1,1) there is

I I 3 3
32 32 32 32 2

exactly one ¢, € (—3%, 3%), such that f(c,) = ;—é Choosing ¢ that way, we arrive at
2 2 2

S o

hi(x,y,2) = v’z — 2° + (1 — 3¢%)T2* — 3ca°2.
It follows from |c| < 3% that (1 — 3¢?) > 0, regardless of the choice of the parameter
2
b e (—1,1), and, hence, the transformation z = (1 — 3¢2)~2% does not switch signs. After

the additional transformation y = (1 — 302)@', hi reads

~ 3~ -3¢ -
hi(x,y, 2) =9°Z —2° +72° + ————T°%.
(1 —3c?)2
One can easily verify that R : (—%, %) - R,c— + is a bijection. O
32 32 (1—302)

In the following we will omit the tildes so that x,y, z denote our new coordinates.

Lemma 4  The closed surface H®Y = {(z,y,2) € R}|hGY =1, 2 < 0, 22 > 2} is

linearly equivalent to
K= {(x,y,2) € R|h(2,y,2) =1, >0, z <0},

where h = y*z — 2® + x2° + Rax?z as in the above lemma.

Proof: After transforming h®®) into h(z,y, z) = y?z — 2° +x2% + Ra?z, the corresponding

inequalities for the coordinates introduced in the proof of Lemma [3] read

1—+/3c¢
z
\/_ \/’
where ¢ is the parameter determined in the proof of Lemma [B, which satisfies 0 <

| < 372. We have to show that = > 0. Since H®? is connected, H := {(z,y,z) €
R3|h(z,y,2) =1, 2< 0,2 > \/— i;gZz} is connected as well. Hence, it suffices to show

that H N {z =0} = 0. To do so, we write H as a graph.

z2<0, >

h(z,y,z) =1
s yiz -2 + a2+ Refe =1

2 2
¢>z2+(ﬂ)z—(x2+l):0
X X

1
2(z,y) =2z = ~55 <y2 + Rx? + \/(y2 + Rx?)? + 4a* + 4:):) ) (4.3)

The last equivalence holds since z < 0.
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Considering the limit x — 0, we see that in the case y # 0, lim, 0 4~0 2(2,y) = —00.

In the case y = 0, it is easy to verify that

1 1 4 1
2(2,0)] = o (\/32:,;4 o — |R|x2) = S\ Ba? + = = S|Rlz > 0.
x X

Therefore, we have

lim |z(x,0)] lim = 00.
z—0,2>0 x—>0 , x>0

Since (K \ {z = 0}) Nn{z = 0} = H N {z = 0}, the above calculation shows that
H N {z =0} = 0. Hence, K can be written as the disjoint union of H and {h(:E Y,2) =

1]z < 0,0 >z > %, / L\/— z}. This shows that H is a connected component of H. Since

H is connected, the equality H = H holds true. O

Lemma 5  Let (M,g1) be a complete Riemannian manifold and let g2, be a family
of complete Riemannian metrics on R, depending smoothly on p € M such that g2, =

G(p)ds®*. Then (M x R, g1 + gayp) is also a complete Riemannian manifold.
Proof: This is a special case of Theorem 2 in [CHM]. |

Proposition 8  The surface H defined in Lemmoa [4] endowed with the metric gy =

—a2h|T:}{XT:}{ is a complete Riemannian manifold for all R € R.

Proof: Computing the Hessian of h, we obtain
—0%h = (61 — 2Rz)dx? — 2zdydy — 2xdzdz — 4(z + Rr)drdz — dydydz.
It was shown in the proof of Lemma 2 that H admits the following parametrization:
F:RxR—=HCR? (z,9)— (z,y,2(z,y)),

where z(z,y) is the function defined in equation (£3). With the abbreviation A :=
(y? + Rxz?)? + 4a* + 4x, gy reads

g3 = x_?’(A%(ydx —xdy)? + A ((ydz — xdy)*(122%y* + 62y + 3R*x'y* + 3R2*y*
+ R*2% 4+ 4R2% + %) 4+ 622 ((1 + R*2® + 42°)da® + xy’dy?) + 2R2* (y?da® + x*dy?
+ (ydz + zdy)?))).

Now we change the coordinates via

T:R°xR =R xR, (s,t) — (s,st),
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such that, in particular, T*(ydz—xdy) = —s?dt. In these coordinates, g5 has the following

form:
g3 = (sA)71((245 + 6 + 65°(1* + R)?)ds>
+ 125 (#* + R)dsdt
+ (4383 + SRS 4 ARS® 4+ 12552 + 530 + 126°0% + 3R%s32 + 3RS

+ (sOR? + 2552 R + %1 + 45° + 45%)\/s4(12 + R)? + 45 + 43) dt?),

where A = s*(t* + R)? + 4s* + 4s is the same function as above in the new coordinates s

and t. To show that gg¢ is complete, we start with rewriting it and make some estimates:

(sA)71((245% 4+ 6 + gs?’(t2 + R)?)ds®

g3 =
+ <4S8R + P R® 4+ 4Rs” 4+ 125%% + %5 + 45°t* + 3R*s%* + 3Rs%t*
+ (sSR% 4+ 2552 R + 5t + 45% + 45%)\/s4(t2 + R)? + 45* + 43) dt?
L9
2

s*(1* + R)%ds® + 12s*t(t* + R)dsdt + 8s°t*dt?)

S

~~

(%s%(tQ—l—R)ds—i—\/gs%tdt)zzO
> (sA) N (45 + 4 + s*(1* + R)?)ds?
+ (4581% + PR3+ ARs + 4532 + %10 + 45°¢% + 3R%2%t? + 3Rt

+ (OR? + 2552 R + s%t* + 45° 4 45%)\/s4(12 + R)? + 45 + 43) dt?)

1
= gals2 + (sA)TSPA(SR + %% 4 /54 (12 4+ R)? + 4s* + 4s)dt?

1

> gdsz + 8(s2R + 82 + /s4(t2 + R)? + s*)dt*
1

= —ds? + 5°(t? + R* + /(2 + R)> + 1)dt*.
S

Solving the ODE

u’:\/t2+R+ V(2 + R)2+1, (4.4)
we obtain a (strictly increasing) diffeomorphism p : R — R, ¢ +— pu(t), such that du? =

(2 + R+ +/(t? + R)? + 1)dt?. In fact, the right-hand side of (£4) is bounded from below
by a positive constant. Now we can conclude the proof using Lemma [5, which shows that

the metric %ds® + s3(t2 + R* + /(t? + R)? + 1)dt* = do? + €*dy® is complete, where

oc=Ins. O
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5 Curvature formulas for the generalized supergra-
vity r-map

We generalize the definition of projective special real manifolds in section [Il to hypersur-
faces H C R™*! defined as the level set of an arbitrary homogeneous function h and then
define the generalized supergravity r-map, which assigns to each such n-dimensional real
manifold a Kéhler manifold of dimension 2m := 2n + 2 (see [CHM]). Then we calculate
the Riemann, Ricci and scalar curvature of manifolds in the image of the generalized

supergravity r-map and express them in terms of h and its derivatives.

Let U C R""! be an R>%invariant domain and let h : U — R>? be a smooth function
which is homogeneous of degreeH D € R°N\{1}. Then H := {x € Ulh(z) = 1} C U
is a smooth hypersurface and we will assume that —9?h induces a Riemannian metric

gx = —a2h|T9fxT9{ on H.

We consider M := R"*! +4iU c C"*!, endowed with the standard complex structure
and the standard holomorphic coordinates z!,...,z"*! induced from C"*'. We define
ot = Imz" and y* := Rezt, ie. 2 = (2")y=1,. n+1 = y +ix with z = (2#) € U and
y = (y*) € R, We define a positive definite Kéhler metricH gy on M with Kéahler
potential K(z,z) = —logh(z):

_ PK @) | b))
0zr0zv 4h(zx) Ar2(z)

am = QQMEdZMdZV, Guv - (51)

Here, we use the notation h,(z) := 6&62), by () = %,

Definition 2 We call the correspondence (H, gsc) — (M, gar) the generalized super-
gravity r-map. The restriction to polynomial functions h of degree D = 3 is called the
supergravity r-map. Manifolds in the image of the supergravity r-map are called projective
very special Kahler.

Note that the Kéhler manifolds in the image of the generalized supergravity r-map in
general only fall into the class of projective special Kéhler manifolds (see e.g. [CHM]) if
h is a polynomial of degree D = 3.

Using the fact that % is a homogeneous function of degree D, ie. > h,(z)z" =
D - h(z), >, hu(x)r” = (D —1)-h,(x), ..., one can check that the coefficients of the

2Note that one can extend this definition to D < 0. For D < 0, we then get a different signature for
gnm compared to the conventions in [CHM].

3 Note that gy differs from the metric in [CHM] by a conventional factor: gESHM] = % gM -
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inverse metric g]\_J1 are given by@

A vA v
g"" = —4h(x)h(x) + PR (5.2)

where h* denote the coefficients of the matrix (h,, ).

Theorem 3 Let M be a 2m-dimensional manifold in the image of the generalized su-
pergravity r-map described by a homogeneous function h of degree D € R>°\{1}. Then the
Riemann, Ricci and scalar curvaturjé in the holomorphic coordinates (z) = (y* + ix')

defined above are given by

1 1
RPUW =~z [ — h%f’wu + D 1zp(hh(w — hyohy) + hyhy 08 + hoh,0,,
1
—h (h(,,,ag + hyf — ﬁhwéﬁ) - h%pyﬁh@] , (5.3)
; 1 ap 1 2

RZCMD = —Mmgup + Zhu hagy + Zh pUY? (54)

L= —m?+ 22 o hh gk 4 R 5.5

scal = —m +ﬁm+ By + e (5.5)

where the argument of h and its derivatives is always x and where we use the Lorentzian
metric —0*h to raise and lower indices. Sums over repeated indices are implied via the

FEinstein summation convention.

Proof: For Kéhler manifolds, the only non-vanishing Christoffel symbols are (see e.g. [M],
section 12.2, or [KN])
A2’ (Vo o 0u) =10, = ¢" 0.0 gur

and its complex conjugate. For the Riemann tensor R(X,Y) := VxVyZ — VyVxZ —

Vix,y1Z in holomorphic coordinates, we have (see e.g. [M], section 12.2, or [KNJ)

dz" (R(azu, asz)aza) = Rpo—“lj = —05u1—‘§”.

The other non-vanishing components R’;,;, R’,;, and R";;, of the curvature tensor can

be obtained from this via symmetry and complex conjugation.

4This has been found by specializing the formula for the inverse of projective special Kahler metrics
in [C=G] to projective very special Kiahler metrics (D = 3) and then generalizing this to metrics of the
form (B defined by arbitrary homogeneous functions h.

5We define the scalar curvature scal for Kihler manifolds to be one half of the trace of Ric, i.e. scal :=
g“DRicW;. Compared to the standard definition scalg := tr Ric of the scalar curvature in differential
geometric literature, we thus have scalgr = 2scal.
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Since the metric only depends on the imaginary part of 2z = y + ix € M, we have

) h h,h
O.oGur = ——0Oyo _BE  THER
u P ( IR )
11
- C24R3 (_h2h;mcr + hhohys + hhehyg + hbylie — 2h“h“h0) ’

where the argument of h and its derivatives is always z. This gives

i ' 4
Ffw = " 0o Gy = _% (—4hh’m + T lszn)

1
V] (—h2hum + hhohye + hhohye + hhyhy, — 2huhnhg)
i i 1 1
=3 <h3h” Py — h2h055 — ﬁhzx”hw — h?h, 6" + mﬂmphuho
D -2 D D
— rhzxphuo + hx”hoh“ + 7_1h2$’ph“0— + hfﬁph“ho — 7_12h$ph“ho>
_ hhP*h he6? — h,,0° L Ph
—_ﬁ kpo — oYy T /.LU_'_D_]_':C wuo | >
where for the third equality, we used h**h, = ﬁxﬁ . The curvature tensor is then found
to be
Rl = ia e = L , hh*"h hyd? — h,6f ! ’h
JMD__§Z‘V o'u__ﬁ _W HMU_JH_MU_‘_D—lz no
+ h b By — WP Ry By + REP o,
1 1
— oy o), — by g + ﬁhw@f + Do 1:£ph,wy]
1 2ppK 1 p p p
- 4n? PR Ry + D — 1$ (hhyow = huohy) + Ty, 65 + hffh'/(su
1
—h (h(wéﬁ + hyw 0l — ﬁhwdﬁ) — hzhpahmghﬁ“hwa] , (5.6)
where for the second equality, we used the formula £A~! = —A~144 A~1 for an invertible

matrix A that smoothly depends on a parameter t. Now, we contract the indices p and pu
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in equation (5.6]) to obtain the Ricci tensor:

) 1
RZij = Rpuplj = _4—h,2

1
B s + 75— (hltgpas = i) + hoh 3, + 3,

1

L 1hpu55) — B2 hygh ™ By

1
=== (D = Dhhy, = (D = Dhyh,) + hyuh, +mhyh,

—h <mh,w + By — ﬁhw) - thmhmﬁhﬁﬁhW]

1 1
= —mgu + Zhﬂahmghﬁ“hﬁpu — Zh”“hw,,.

The scalar curvature for manifolds in the image of the generalized local r-map reads

_ 1 1
scal = gMVRiCMD = (_4hh/“/ + D— IINI»V) (_mg/u/ + thahuaﬁhﬁﬁhnpu - Zh'pnh/ip/u/)
_ 2 o Bk 1, v (D B 2)2 B K v (D B 3)(D B 2)
= 0 = s W g+ 00 A g W — e
D -2
= = - S — BB g B By R g W
O

Remark 4 Note that in the derivation of these formulas, we did not use the fact that
D is positive, i.e. the theorem also holds for metrics of the form (&1l with A being a

homogeneous function of degree D < 0.

The curvature for projective very special Kdhler manifolds, i.e. for manifolds in the
image of the generalized supergravity r-map that are defined by a homogeneous cubic
polynomial h can be easily obtained from Theorem [ by setting D = 3 and dropping

terms with quadruple derivatives of h.

For an arbitrary homogeneous function h, we also give the following alternative ex-

pression for Ric and scal:

Corollary 3  Let M be a 2m-dimensional manifold in the image of the generalized
supergravity r-map described by a homogeneous function h of degree D € RZ°\{1}. Then

the Ricci tensor and the scalar curvature are given by

d
Ricu,j = _azu sV lOg h—m, (57)
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D—2 h h
scal = —m2 —+ ﬁm — Eduﬂ + ﬁd“duy (58)

where d(z) := det(0*h(x)).

Proof: Using 4 (det A) = det A - tr (A7'%1) | we get

d 1 02 1 0 d,
—Uzn 21’1 = cOzu 51}1 h— - 1 d= — ;— ————
0,10z log o m - 0,u05v log 192800 og mg, 190 d
1 0
_ - af
= MY ~ 15 (K hyap)

1 1
= —mgu + Zhaphupahaﬁhmg - Zho‘ﬁhumg
@ RiC“p.

Since h,, are homogeneous of degree D — 2, d = det(h,,) is homogeneous of degree
m(D — 2). Using this property and (5.2), we find

) h h
scal = g" Ric,; = —m* + S — 25 d,d,

d?
1 1 ,
~ P51 1m(D —2)(m(D—-2)—1)+ D1 1(m(D —2))
D -2 h h
— 2 v v
=-—m" + ﬁm + Eh” dwj — ﬁh” dﬂd’/‘

6 Classification of complete projective very special
Kahler manifolds of complex dimension 3

In [CHM], it was shown that the supergravity r-map maps complete n-dimensional pro-
jective special real manifolds to complete projective special Kahler manifolds of complex
dimension m := n + 1. Since there is a totally geodesic embedding of a projective spe-
cial real manifold into the corresponding very special Kahler manifold, the image of an
incomplete manifold under the r-map is incomplete. From the classification of all com-
plete projective special real surfaces in Theorem [I we thus immediately get the following

corollary:

Corollary 4  The supergravity r-map assigns to each projective special real surface given
in Theorem 1l a complete projective special Kdahler 3-manifold and up to isometry, any
complete projective special Kdhler 3-manifold in the image of the r-map is obtained from

one of the surfaces in Theorem [1. O
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To classify all complete projective very special Kahler manifolds up to isometry, we
want to show that the supergravity r-map maps the list of complete surfaces in Theorem

[ to a list of pairwise non-isometric manifolds.

Using the formula for the scalar curvature of manifolds in the image of the supergravity

r-map given in Corollary B we obtain the following result:

Proposition 9  The five complete projective special Kdahler manifolds in the image of
the supergravity r-map obtained from the examples a)-e) in Theorem [l are pairwise non-

1sometric.

Proof: Applied to the case of projective very special Kahler 3-manifolds, the formula for

the scalar curvature given in Corollary B reads

15 h h .,
scal = 3 + Eh“ dy — ﬁh“ d,d,. (6.1)
We use it to determine the image of scal : M — R for the five projective special Kahler
manifolds in the image of the supergravity r-map obtained from the examples a)-e) in
Theorem [l scal(M) is pairwise different for the examples a)-e) and hence they are

non-isometric.

a) Example a), the so-called STU model, is defined by
h:U—=R, (z,y,2) = xyz with U= {(z,y,2) eR¥z >0, y>0, z>0}

The corresponding manifold in the image of the r-map is the symmetric space

(SU(1,1)/U(1))3. Consequently, its scalar curvature is constant:
d = det hy, = 2h @ Ric,p = =29, = scal = —6,
i.e. the image of the scalar curvature is scal(M) = {—6}.

b) This example is described by
2
h:U—=R, (z,y,2) = x(vy — 22) with U= {(z,y,2) e R}z >0, y > Z—}.
x
While the corresponding projective special real manifold is the symmetric space

SO(2,1)/S0O(2), the corresponding projective special Kéhler manifold obtained

from the r-map is homogeneous but non-symmetric [DVI].

0 2 0
We have (W) = ;L5 [ #? —2* —ay —az | and with d := det(h,,) = 823, one
0 —rz  —a?

finds h*d,, =0, Wd,d, = 0. (1)) then gives scal(M) = {—-7.5}.
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¢) The so-called quantum STU model is defined by

2
h:U—=R, (z,y,2) — xyz+a® with U= {(z,y,2) eR}z <0, 2<0, y> —I—}.
z

2

—x Ty Tz
With d = 2h — 8z% and W = 2 | ay —y?  yz—62% |, we calculate
vz  yz— 622 —2?

12
h*d,, =12 - %, h*d,d, = = [(zyz — 52°)* — 522°] .

The scalar curvature can be written as

15 1 , h
scal:—?—l—?)h- <a+48x E)

Using d = 2h — 823, we can show that scal > —%:

15 (h,go)

scal > 3 d® 4+ 482°h >0 < (2h 4+ 42®) +482° > 0.

We also check that scal < —6:
1 3 h 3 (d>0) 3 h 3
scal < —6 & 3h<8+48:£ $)<§ & 2h(1+ 48z ﬁ)<d:2h—8x

o 2.482%R2 < —8a3d? =0 oR2 L @ > 0.

To show that the bounds —% < scal < —6 are optimal, we determine the behaviour
ofscalattheboundary@U:{y:—%2, <0, 2z<0}U{r=0,y>0, 2<0}:
For 0U N {z < 0}, we have h|oynfz<or = 0, d|oun{z<oy = —82° # 0 and hence

h—0 15
scal — ——.
r=x0<0 2

For {z =0, y >0, 2 <0} CoU N{z =0}, we have

= —-15 3
scal z29 — + — = —6.
y=y0>0, 2=20<0 2 2

Since U is connected and scal is continuous, we have proven that

seal(M) = (- ? —6) = (~7.5.-6).

d) This example is described by

h:U—=R, (z,y,2) = z(z2®+y*—2%) with U = {(2,y,2) € R*| 2 < 0, 2%+y* < 2*}.
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y? + 322 —xy xrz
Using d = —8(h + 423) and h* = _74 —xy x> +32%2 yz |, we calculate

Tz Yz —22

h 1
Wy =192 =, Wdyd, = 12d+ 4 - 962> + 4 - 96 63.

The scalar curvature can be written as

15 1 , h
scal:—?—mh- <a—16-48z E)

We show that scal < —%:

15 (h,go)

scal < —— d*—16-482°h >0 < (h—22%)%4+122° > 0.

This bound is assumed at the boundary of U:

lim scal, = —1?5 V po € OU\{0}.

pP—Po
At (z,y,2) = (0,0,—1) € U, we have scal(0,0, —1) = —8—2. To show that —8—2 is
a lower bound for the scalar curvature, we show —% > —% and 12-16-48% > —%:

12h

1 z
- @ 0> —d+24h o 0>h+t D o<
2°h 2 372 313

272° (2% + y* — 22)? > 23 (2% + y* + 327)°
0 < (2® +y°)° = 18(2 +y*)%2% + 81(2” + )"
0< (@ +y) (2 +y* — 92°)°

(I

We have thus proven that

scal(M) = [— 8 — % —?) — [-8.6,-7.5).

This example is described by

h:U—=R, (z,y,2) — o(y*—2*)+y® with U = {(2,9,2) € R*|y <0, 2 >0, h > 0}.
—x(r+3y) zy (r+3y)z

One has d = 8(z(y? — 2%) — 3yz?) and h* =3 Ty —22 —yz
(x+3y)z —yz -y’

Then h*¥d,,, = 192% and

64
hd,d, = 4-3 [3x2y4 — 62222 4 3022t — 3wy® — 24ayP2 4+ 2Tyt — T2yt — 9z6} .
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The scalar curvature can be witten as

scal = =% 4192 1 —12~64-d%[:c(x—y)y4
—29%2% ((x + 2y)? + 8y?) + x(x + 9y)2* — 326} :

Since scal only contains even powers of z, we have %‘ = 0. We restrict
z=0
ourselves to the hypersurface M N{z = 0} C M and determine scal(M N{z = 0}).

12zy + 9y?

l 0)=-6
scal(x,y,0) + 5,2

has critical points only for y = —2

5%, where it assumes the value —8:

~ 6z +9y

%scal(:p, Y, O) - 2 ) axSCCLl(ZL', Y, 0) =Y

2
b + 9y; scal(z, —3% 0) = -8.

23
Since scal is homogeneous of degree zero, it suffices to consider the image of
(—=1,0) > R, y > scal(l,y,0).
At the boundaries y = —1 and y =0 of U N {x = 1,z = 0}, we have
yll>r1_11 scal(1,y,0) = —7.5 and Zllli% scal(1,y,0) = —6.

This shows that scal(M N{z = 0}) =[-8, —6). In particular, we have

[—8,—6) C scal(M).

O

Remark 5 Note that the results obtained in the proof of the above proposition show

that the complete projective special Kdhler manifolds obtained from examples ¢), d) and

e) in Theorem [l via the supergravity r-map have non-constant scalar curvature and, hence,

are not locally homogeneous.

Using the formula for the scalar curvature in Corollary [3] one can similarly show that

all manifolds in the one-parameter family of complete projective special Kdhler manifolds

obtained from Weierstrafl cubic polynomials (see example f) in Theorem[I]) are not locally

homogeneous. This one-parameter family is particularly interesting, since using the su-

pergravity c-map, which maps complete projective special Kahler manifolds to complete

quaternionic Ké&hler manifolds [CHM], it gives an explicit expression for a one-parameter

family of complete quaternionic Kéhler metrics.
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Remark 6 For the one-parameter family of complete projective very special Kéahler
manifolds defined by Weierstrafl polynomials (see Example f) in Theorem [II), we obtain

the following results using numerical methods:

[Smin (D), Smaz(D)] for —1<b<0

I(M) =
scal(M) {[smm(b), _7.5) for 0<b<1,

where Spee @ (—1,0) = (=7.5,—6) and Sy, : (—1,1) = (—=8.6,—8) are strictly decrea-
sing. This shows that all manifolds in the image of the supergravity r-map obtained from
the examples in Theorem [I] are non-isometric and hence it finishes the classification of all

complete projective very special Kahler 3-manifolds.

Remark 7 There exist precisely two complete projective special real curves, up to lin-
ear equivalence [CHM]: Hpom. = {(z,y) € R%2%y = 1, z > 0} and Hypp, := {(2,9y) €
R?|z(2? — y?) = 1, > 0}, where Hj,op, admits a transitive group of linear transforma-

tions, while H,,;. is inhomogeneous.

One can show using the curvature formulas in Theorem [3] that the projective special
Kahler manifold Mj,,,. obtained from JH,,, via the supergravity r-map is a product of two
complex hyperbolic lines with different curvature, which is well-known from the physics
literature (see e.g. [DV2]). On the other hand, the projective special Kahler manifold
M. corresponding to H;,p,. has non-constant scalar curvature and hence, it is not locally

homogeneous.
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