
ar
X

iv
:1

30
2.

46
83

v1
  [

he
p-

th
] 

 1
9 

Fe
b 

20
13

ZMP-HH/13-2
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Abstract

We use factorizable finite tensor categories, and specifically the representation categories of
factorizable ribbon Hopf algebras H , as a laboratory for exploring bulk correlation functions in
local logarithmic conformal field theories. For any ribbon Hopf algebra automorphism ω of H
we present a candidate for the space of bulk fields and endow it with a natural structure of a
commutative symmetric Frobenius algebra. We derive an expression for the corresponding bulk
partition functions as bilinear combinations of irreducible characters; as a crucial ingredient this
involves the Cartan matrix of the category. We also show how for any candidate bulk state
space of the type we consider, correlation functions of bulk fields for closed oriented world
sheets of any genus can be constructed that are invariant under the natural action of the
relevant mapping class group.
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1 Introduction

Understanding a quantum field theory includes in particular having a full grasp of its correla-
tors on various space-time manifolds, including the relation between correlation functions on
different space-times. This ambitious goal has been reached for different types of theories to a
variable extent. Next to free field theories and to topological ones, primarily in two and three
dimensions, two-dimensional rational conformal field theories are, arguably, best under control.

This has its origin not only in the (chiral) symmetry structures that are present in conformal
field theory, but also in the fact that for rational CFT these symmetry structures have partic-
ularly strong representation theoretic properties: they give rise to modular tensor categories,
and are thus in particular finitely semisimple. In many applications semisimplicity is, however,
not a physical requirement. Indeed there are physically relevant models, like those describing
percolation problems, which are not semisimple, but still enjoy certain finiteness properties.

It is thus natural to weaken the requirement that the representation category of the chiral
symmetries should be a modular tensor category. A natural generalization is to consider fac-

torizable finite ribbon categories (see Remark 3.6(i) for a definition of this class of categories).
By Kazhdan-Lusztig type dualities such categories are closely related to categories of finite-di-
mensional modules over finite-dimensional complex Hopf algebras [FGST1]. For this reason,
we study in this paper structures in representation categories of finite-dimensional factorizable
ribbon Hopf algebras.

Let us summarize the main results of this contribution. We concentrate on bulk fields.
In the semisimple case, the structure of bulk partition functions has been clarified long ago;
in particular, partition functions of automorphism type have been identified as a significant
subclass [MS2]. Here we deal with the analogue of such partition functions without imposing
semisimplicity. Specifically, we assume that the representation category of the chiral symmetries
has been realized as the category of finite-dimensional left modules over a finite-dimensional
factorizable ribbon Hopf algebra. For any ribbon Hopf algebra automorphism ω we then obtain
a description of the space of bulk fields for the corresponding automorphism invariant and
show that it has a natural structure of a commutative symmetric Frobenius algebra (Theorem
2.5). The proof that the space of bulk fields is a commutative algebra also works for arbitrary
factorizable finite ribbon categories (Proposition 2.3).

We are able to express the resulting bulk partition functions as bilinear combinations of
irreducible characters – such a decomposition can still exist because characters behave additively
under short exact sequences. We find (Theorem 4.4) that the crucial ingredient (apart from ω)
is the Cartan matrix of the underlying category, This result is most gratifying, as the Cartan
matrix has a natural categorical meaning and is stable under Morita equivalence and under
Kazhdan-Lusztig correspondences of abelian categories. The Cartan matrix enters in particular
in the analogue of what in the semisimple case is the charge-conjugation partition function. As
the latter is, for theories with compatible boundary conditions, often called the Cardy case, we
refer to its generalization in the non-semisimple case as the Cardy-Cartan modular invariant.

Finally we describe how for any bulk state space of the type we consider, correlation func-
tions of bulk fields for closed oriented world sheets of any genus can be found that are invariant
under the natural action of the mapping class group on the relevant space of chiral blocks. The
construction of these correlators is algebraically natural, once one has realized (see Proposition
3.4) that the monodromy derived from the braiding furnishes a natural action of a canonical
Hopf algebra object in the category of chiral data on any representation of the chiral algebra.
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2 The bulk state space

2.1 Holomorphic factorization

The central ingredient of chiral conformal field theory is a chiral symmetry algebra. Different
mathematical notions formalizing this physical idea are available. Any such concept of a chiral
algebra V must provide a suitable notion of representation category Rep(V), which should have,
at least, the structure of a C-linear abelian category.

For concreteness, we think about V as a vertex algebra with a conformal structure. A vertex
algebra V and its representation categoryRep(V) allow one to build a system of sheaves on mod-
uli spaces of curves with marked points, called conformal blocks, or chiral blocks. These sheaves
are endowed with a (projectively flat) connection. Their monodromies thus lead to (projective)
representations of the fundamental groups of the moduli spaces, i.e. of the mapping class groups
of surfaces. This endows the category Rep(V) with much additional structure. In particular,
from the chiral blocks on the three-punctured sphere one extracts a monoidal structure on
Rep(V), which formalizes the physical idea of operator product of (chiral) fields. Furthermore,
from the monodromies one obtains natural transformations which encode a braiding as well as
a twist. In this way one keeps enough information to be able to recover the representations of
the mapping class groups from the category Rep(V). Moreover, if Rep(V) is also endowed with
left and right dualities, the braiding and twist relate the two dualities to each other, and in
particular they can fit together to the structure of a ribbon category. In this paper we assume
that Rep(V) indeed is a ribbon category; there exist classes of vertex algebras which do have
such a representation category and which are relevant to families of logarithmic conformal field
theories.

The category Rep(V) – or any ribbon category C that is ribbon equivalent to it – is called
the category of chiral data, or of Moore-Seiberg [MS1,BK1] data. For sufficiently nice chiral
algebras V the number of irreducible representations is finite and Rep(V) carries the structure
of a factorizable finite ribbon category. For the purposes of this paper we restrict our attention
to the case that Rep(V) has this structure.

While chiral CFT is of much mathematical interest and also plays a role in modeling certain
physical systems, like in the description of universality classes of quantum Hall fluids, the vast
majority of physical applications of CFT involves full, local CFT. It is generally expected
that a full CFT can be obtained from an underlying chiral theory by suitably “combining”
holomorphic and anti-holomorphic chiral degrees of freedom or, in free field terminology, left-
and right movers. Evidence for such a holomorphic factorization comes from CFTs that possess
a Lagrangian description (see e.g. [Wi]). Conversely, the postulate of holomorphic factorization
can be phrased in an elegant geometric way as the requirement that correlation functions on a
surface Σ are specific sections in the chiral blocks associated to a double cover Σ̂ of Σ. These
particular sections are demanded to be invariant under the action of the mapping class group
of Σ, and to be compatible with sewing of surfaces.

These conditions only involve properties of the representations of mapping class groups that
are remembered by the additional structure of the category Rep(V) of chiral data. Accordingly,
to find and characterize solutions to these constraints it suffices (and is even appropriate) to
work at the level of Rep(V) as an abstract factorizable ribbon category. We refer to [BK2]
for details on how the vector bundles of chiral blocks, which form a complex analytic modular
functor (in the terminology of [BK2]) can be recovered from representation theoretic data that
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correspond to a topological modular functor, and to [FRS3, Sects. 5& 6.1] for a more detailed
discussion of this relationship for the chiral blocks that appear in the simplest correlation
functions, involving few points on a sphere.

In rational conformal field theories, for which the category Rep(V) has the structure of a
(semisimple) modular tensor category, the problem of finding and classifying solutions to all
these constraints has a very satisfactory solution (see e.g. [ScFR] for a review). In logarith-

mic CFTs, on the other hand, no evidence for holomorphic factorization is available from a
Lagrangian formulation. Instead, in this paper we take holomorphic factorization as a starting
point. Until recently, only few model-independent results for logarithmic CFTs were available.
Here we will present a whole class of solutions for correlators of bulk fields, on orientable surfaces
of any genus with any number of insertions. It is remarkable that, once relevant expressions,
like e.g. sums over isomorphism classes of simple objects, that are suggestive in the semisimple
case have been substituted with the right categorical constructions, we find a whole class of
solutions which work very much in the same spirit as for semisimple theories.

In this contribution we first focus on the bulk state space F of the theory. Invoking the
state-field correspondence, F is also called the space of bulk fields. A bulk field carries both
holomorphic and anti-holomorphic degrees of freedom. When the former are expressed in terms
of C ≃Rep(V), then for the latter one has to use the reverse category Crev, which is obtained
from C by inverting the braiding and the twist isomorphisms. As a consequence, a bulk field,
and in particular the bulk state space F , is an object in the enveloping category Crev

⊠ C, the
Deligne tensor product of Crev and C.

It should be appreciated that owing to the opposite braiding and twist in its two factors,
the enveloping category is in many respects simpler than the category C of chiral data. This
is a prerequisite for the possibility of having correlation functions that are local and invariant
under the mapping class group of the world sheet. If C is semisimple and factorizable, then a
mathematical manifestation of this simplicity of Crev

⊠ C is the fact that its class in the Witt
group [DMNO] of non-degenerate fusion categories vanishes.

The most direct way of joining objects of Crev and C to form bulk fields that comes to mind
is to combine the ‘same’ objects in each factor, which in view of the distinction between Crev

and C means that any object U of C is to be combined with its (right, say) dual U∨ in Crev.
When restricting to simple objects only, this idea results in the familiar expression

F = FC :=
⊕

i∈I

S∨
i ⊠ Si (2.1)

for the bulk state space, where (Si)i∈I is a collection of representatives for the isomorphism
classes of simple objects of C.

In rational CFT, where the index set I is finite, the object (2.1) is known as the charge
conjugation bulk state space, and its character

χFC =
∑

i∈I

χ∗
i
χ
i (2.2)

as the charge conjugation modular invariant. Moreover, it can be shown [FFFS2] that for any
modular tensor category C the function (2.2) is not only invariant under the action of the
modular group, as befits the torus partition function of a CFT, but that it actually appears as
part of a consistent full CFT, and hence FC as given by (2.1) is indeed a valid bulk state space.
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2.2 The bulk state space as a coend

It is, however, not obvious how the formula (2.1), which involves only simple objects, relates
to the original idea of combining every object of C with its conjugate. Fortunately there is a
purely categorical construction by which that idea can be made precise, namely via the notion
of a coend. Basically, the coend provides the proper concept of summing over all objects of
a category, namely doing so in such a manner that at the same time all relations that exist
between objects are accounted for, meaning that all morphisms between objects are suitably
divided out.

The notion of a coend can be considered for any functor G from Cop ×C to any other
category D. That it embraces also the morphisms of D manifests itself in that the coend of
G is not just an object D of D, but it also comes with a dinatural family of morphisms from
G(U, U) to D (but still one commonly refers also to the object D itself as the coend of G). For
details about coends and dinatural families we refer to Appendix A.1. In the case at hand, D
is the enveloping category Crev

⊠ C, and the coend of our interest is

∫ U

U∨
⊠U ∈ Crev

⊠ C . (2.3)

Whether this coend indeed exists as an object of Crev
⊠ C depends on the category C, but if it

exists, then it is unique. If C is cocomplete, then the coend exists. In particular, the coend does
indeed exist for all finite tensor categories (to be defined at the beginning of Subsection 2.4).
This includes all modular tensor categories, and thus all categories of chiral data that appear
in rational CFT. Moreover, a modular tensor category C is semisimple, so that accounting
for all morphisms precisely amounts to disregarding any non-trivial direct sums, and thus to
restricting the summation to simple objects. This yields

∫ U

U∨
⊠U = FC (2.4)

with FC as given by (2.1). In short, once we realize the physical idea of summing over all states
in the proper way that is suggested by elementary categorical considerations, it does explain
the ansatz (2.1) for the bulk state space.

This result directly extends to all bulk state spaces that are of automorphism type. Namely,
for any ribbon automorphism of C, i.e. any autoequivalence ω of C that is compatible with its
ribbon structure, we can consider the coend

Fω :=

∫ U

U∨
⊠ ω(U) . (2.5)

In the rational case this gives

Fω =
⊕

i∈I

S∨
i ⊠ ω(Si) , (2.6)

with associated torus partition function

χFω =
∑

i∈I

χ∗
i
χ
ω̄(i) (2.7)

where ω̄ is the permutation of the index set I for which Sω̄(i) is isomorphic to ω(Si).
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2.3 The bulk state space as a center

In rational CFT, the object (2.1) of Crev
⊠ C can also be obtained by another purely categor-

ical construction from the category C, and one may hope that this again extends beyond the
rational case. To explain this construction, we need the notions of the monoidal center (or
Drinfeld center) Z(C) of a monoidal category C and of the full center of an algebra. Z(C) is a
braided monoidal category; its objects are pairs (U, z) consisting of objects and of so-called half-
braidings of C. The full center Z(A) of an algebra A∈C is a uniquely determined commutative
algebra in Z(C) whose half-braiding is in a suitable manner compatible with its multiplication.
For details about the monoidal center of a category and the full center of an algebra see Ap-
pendix A.2. If C is modular, then [Mü, Thm. 7.10] the monoidal center is monoidally equivalent
to the enveloping category,

Crev
⊠ C ≃ Z(C) , (2.8)

so that in particular Z(A) is an object in Crev
⊠ C.

Now any monoidal category C contains a distinguished algebra object, namely the tensor
unit 1, which is even a symmetric Frobenius algebra (with all structural morphisms being
identity morphisms). We thus know that Z(1) is a commutative algebra in Z(C). If C is
modular, then this algebra is an object in Crev

⊠ C, and gives us the bulk state space (2.1),

Z(1) = FC . (2.9)

Moreover, let us assume for the moment that a rational CFT can be consistently formulated
on any world sheet, including world sheets with boundary, with non-degenerate two-point
functions of bulk fields on the sphere and of boundary fields on the disk. It is known [FFRS2]
that any bulk state space of such a CFT is necessarily of the form

F = Z(A) (2.10)

for some simple symmetric special Frobenius algebra A in C. Further, the object Z(A) decom-
poses into a direct sum of simple objects of Crev

⊠ C according to [FRS2]

F = Z(A) =
⊕

i,j∈I

(
S∨
i ⊠ Sj

)⊕Zij(A)
(2.11)

with the multiplicities Zij(A) given by the dimensions

Zij(A) := dimk

(
HomA|A(S

∨
i ⊗

+A⊗−Sj , A)
)

(2.12)

of morphisms of A-bimodules. Here the symbols ⊗± indicate the two natural ways of con-
structing induced A-bimodules with the help of the braiding of C. (In case A is an Azumaya
algebra, this yields the automorphism type bulk state spaces (2.6), for which Zij(A) = δj̄,ω̄(i),
see formula (2.7)).

The result (2.10) implies further that F is not just an object of Crev
⊠ C, but in addition

carries natural algebraic structure:

Proposition 2.1. [RFFS, Prop. 3]
For A a symmetric special Frobenius algebra in a modular tensor category C, the full center

Z(A) is a commutative symmetric Frobenius algebra in Crev
⊠ C.

In field theoretic terms, the multiplication on F describes the operator product of bulk
fields, while the non-degenerate pairing which supplies the Frobenius property reflects the non-
degeneracy of the two-point functions of bulk fields on the sphere.
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2.4 Logarithmic CFT and finite ribbon categories

It is natural to ask whether the statements about rational CFT collected above, and specifically
Proposition 2.1, have a counterpart beyond the rational case.

Of much interest, and particularly tractable, is the class of non-semisimple theories that
have been termed logarithmic CFTs. It appears that the categories of chiral data of such
CFTs, while not being semisimple, still share crucial finiteness properties with the rational
case. A relevant concept is the one of a finite tensor category ; this is [EO] an abelian rigid
monoidal category with finite-dimensional morphism spaces and finite set I of isomorphism
classes of simple objects, such that each simple object has a projective cover and the Jordan-
Hölder series of every object has finite length.

Unless specified otherwise, in the sequel C will be assumed to be a (strict) finite tensor
category with a ribbon structure or, in short, a finite ribbon category. For all such categories
the coend FC =

∫ U
U∨
⊠U exists [FSS1].

Remark 2.2. Finiteness of I and existence of projective covers are, for instance, manifestly
assumed in the conjecture [QS,GR] that the bulk state space of charge conjugation type de-
composes as a left module over a single copy of the chiral algebra V as

FC  

⊕

i∈I

P ∨
i ⊗

C
Si , (2.13)

where Pi the projective cover of the simple V-module Si.
Note, however, that the existence of such a decomposition does by no means allow one to
deduce the structure of FC as an object of Crev

⊠ C. In particular there is no reason to expect
that simple or projective objects of Crev

⊠ C appear as direct summands of FC, nor that FC is a
direct sum of ‘⊠-factorizable’ objects U ⊠V of Crev

⊠ C. We do not make any such assumption;
our working hypothesis is solely that the bulk state space FC for a logarithmic CFT can still
be described as the coend (2.3).

We are now going to establish an algebra structure on the coend (2.3), without assuming
semisimplicity. As already pointed out, the coend is not just an object, but an object together
with a dinatural family. For the bulk state space FC =

∫ U
U∨
⊠U we denote this family of

morphisms by ı◦ and its members by

ı◦U : U∨
⊠U → FC (2.14)

for U ∈C. The braiding of C is denoted by c=(cU,V ). We also need the canonical isomorphims
that identify, for U, V ∈C, the tensor product of the duals of U and V with the dual of V ⊗U ;
we denote them by

γU,V : U∨ ⊗V ∨ ∼=
−→ (V⊗U)∨ . (2.15)

Now we introduce a morphism mFC from FC ⊗FC to FC by setting

mFC ◦ (ı◦U ⊗ ı◦V ) := ı◦V⊗U ◦ (γU,V ⊠ cU,V ) (2.16)

for all U, V ∈C. This family of morphisms from (U∨
⊠U)⊗ (V ∨

⊠V ) = (U∨⊗V ∨)⊠ (U⊗V ) to FC

is dinatural both in U and in V and thereby determines mFC completely, owing to the universal
property of coends.
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Proposition 2.3.

(i) The morphism (2.16) endows the object FC with the structure of an (associative, unital)
algebra in Crev

⊠ C.

(ii) The multiplication mFC of the algebra FC is commutative.

Proof. (i) For U, V,W ∈C we have

mFC ◦ (idFC ⊗mFC ) ◦ (ı
◦
U ⊗ ı◦V ⊗ ı◦W )

= ı◦W⊗V⊗U ◦ (γV⊗U,W ⊠ cV⊗U,W ) ◦ [(γU,V ⊠ cU,V )⊗ idW∨⊠W ] and

mFC ◦ (mFC ⊗ idFC ) ◦ (ı
◦
U ⊗ ı◦V ⊗ ı◦W )

= ı◦W⊗V⊗U ◦ (γU,W⊗V ⊠ cU,W⊗V ) ◦ [idU∨⊠U ⊗ (γV,W ⊠ cV,W )] .

(2.17)

Using the braid relation

cV⊗U,W ◦ (cU,V ⊗ idW ) = cU,W⊗V ◦ (idU ⊗ cV,W ) (2.18)

and the obvious identity

γV⊗U,W ◦ (γU,V ⊗ idW∨) = γU,W⊗V ◦ (idU∨ ⊗ γV,W ) (2.19)

in HomC(U
∨⊗V ∨⊗W∨, (W⊗V ⊗U)∨), it follows that for any triple U, V,W the two morphisms

in (2.17) coincide, and thus

mFC ◦ (idFC ⊗mFC ) = mFC ◦ (mFC ⊗ idFC ) . (2.20)

This shows associativity. Unitality is easy; the unit morphism is given by

ηFC = ı◦
1

∈ HomCrev⊠ C(1⊠1, FC) . (2.21)

(ii) Denote by cC
rev
⊠ C the braiding in Crev

⊠ C. We have

mFC ◦ cC
rev
⊠ C

FC ,FC
◦ (ı◦U ⊗ ı◦V ) = mFC ◦ (ı◦V ⊗ ı◦U) ◦ (c

−1
V ∨,U∨ ⊠ cU,V )

= ı◦U⊗V ◦ (γV,U ⊠ cV,U) ◦ (c
−1
V ∨,U∨ ⊠ cU,V )

= ı◦U⊗V ◦ [(γV,U ◦ c−1
V ∨,U∨)⊠ (cV,U ◦ cU,V )]

= ı◦V⊗U ◦ [γU,V ⊠ (c−1
V,U ◦ cV,U ◦ cU,V )] = mFC ◦ (ı◦U ⊗ ı◦V ) .

(2.22)

Here the crucial step is the fourth equality, in which the dinaturalness property of ı◦ (to-
gether with (cU,V )

∨ = cU∨,V ∨) is used. We conclude that mFC ◦ cC
rev
⊠ C

FC ,FC
=mFC , i.e. the algebra

(FC, mFC , ηFC ) is commutative.

Let us also point out that working with a non-strict monoidal structure would make the formulas
appearing here more lengthy, but the proof would carry over easily.
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2.5 The coend as a bimodule of a factorizable Hopf algebra

Proposition 2.3 is about as far as we can get, for now, for general finite ribbon categories. To
obtain a stronger result we specialize to a particular subclass, consisting of categories C that
are equivalent to the category H-Mod of (finite-dimensional left) modules over a factorizable

Hopf algebra H . Such an algebra is, in short, a finite-dimensional Hopf algebra (H,m, η,∆, ε, s)
(over an algebraically closed field k of characteristic zero) that is endowed with an R-matrix
R∈H ⊗k H and a ribbon element v∈H and for which the monodromy matrix Q=R21 ·R is
non-degenerate. Some more details about this class of algebras are supplied in Appendix A.4.

It is worth pointing out that categories belonging to this subclass which are relevant to CFT
models are are well known, namely [DPR,CGR,FFSS] the semisimple representation categories
of Drinfeld doubles of finite groups. Logarithmic CFTs for which the category of chiral data is
believed to be at least very close to the type of category considered here are the (1, p) triplet
models, see e.g. [FGST1,FGST2,NT,TW,RGW].

For H a finite-dimensional ribbon Hopf algebra, the category H-Mod carries a natural
structure of finite ribbon category. The monoidal structure (which again we tacitly take to
be strictified) and dualities precisely require the algebra A to be Hopf: the tensor product is
obtained by pull-back of the H-action along the coproduct ∆, the tensor unit is 1=(k, ε), and
left and right dualities are obtained from the duality for Vectk with the help of the antipode.
The braiding c on H-Mod is given by the action of the R-matrix composed with the flip map
τ , while the twist θ is provided by acting with the inverse v−1 of the ribbon element.

In a fully analogous manner one can equip the category H-Bimod of finite-dimensional H-
bimodules with the structure of a finite ribbon category as well: Pulling back both the left
and right H-actions along ∆ gives again a tensor product. Explicitly, the tensor product of
H-bimodules (X, ρX , ρX) and (Y, ρY , ρY ) is the tensor product over k of the underlying k-vector
spaces X and Y together with left and right actions of H given by

ρX⊗Y := (ρX ⊗ ρY ) ◦ (idH ⊗ τH,X ⊗ idY ) ◦ (∆⊗ idX ⊗ idY ) and

ρX⊗Y := ( ρX ⊗ ρY ) ◦ (idX ⊗ τY,H ⊗ idH) ◦ (idX ⊗ idY ⊗∆) .
(2.23)

The tensor unit is the one-dimensional vector space k with both left and right H-action given by
the counit, 1H-Bimod= (k, ε, ε). A braiding c on the so obtained monoidal category is obtained
by composing the flip map with the action of the R-matrix R from the right and the action of
its inverse R−1 from the left, and a twist θ is provided by

θX = ρ ◦ (idH ⊗ ρ) ◦ (v⊗ idX ⊗ v−1) , (2.24)

i.e. by acting with the ribbon element v from the left and with its inverse from the right. (For a
visualization of the braiding and the twist isomorphisms in terms of the graphical calculus for
the symmetric monoidal category Vectk see formulas (3.3) and (4.19), respectively, of [FSS1].)

The category H-Bimod with this structure of ribbon category is of interest to us because
it can be shown [FSS1, App.A.2] to be braided equivalent to (H⊗kH

op)-Mod and thus to the
enveloping category Crev

⊠ C=H-Modrev⊠H-Mod. We will henceforth identify the enveloping
category with H-Bimod and present our results in the language of H-bimodules. In particular
we think of the coend FC =

∫ U
U∨
⊠U as an H-bimodule; we find

9



Theorem 2.4. [FSS1, Prop.A.3]

The coend
∫ U

U∨
⊠U in the category H-Bimod is the coregular bimodule, that is, the vector

space H∗=Homk(H, k) dual to H endowed with the duals of the left and right regular H-actions,

i.e.

ρFC = (dkH ⊗ idH∗) ◦ (idH∗ ⊗m⊗ idH∗) ◦ (idH∗ ⊗ s⊗ bkH) ◦ τH,H∗ and

ρFC = (dkH ⊗ idH∗) ◦ (idH∗ ⊗m⊗ idH∗) ◦ (idH∗ ⊗ idH ⊗ τH∗,H) ◦ (idH∗ ⊗ bkH ⊗ s
−1) .

(2.25)

together with the dinatural family of morphisms given by

ı◦U :=
[
(dkU ◦ (idU

∗ ⊗ ρU))⊗ idH∗

]
◦
[
idU

∗ ⊗ ((τU,H∗ ⊗ idH∗) ◦ (idU ⊗ bkH∗))
]

(2.26)

for any H-module (U, ρU).

Here dk and bk are the evaluation and coevaluation maps for the duality in Vectk, respec-
tively. Thus in particular (2.26) describes ı◦U in the first place only as a linear map from U∗⊗k U
to H∗. But it can be checked [FSS1, LemmaA.2] that ifH∗ =Homk(H, k) is given the structure
of the coregular H-bimodule and U∗ ⊗k U the H-bimodule structure

(U∗ ⊗k U, ρ, ρ) :=
(
U∗⊗k U , ρU∨ ⊗ idU , idU

∗ ⊗ (ρU ◦ τU,H ◦ (idU ⊗ s
−1))

)
(2.27)

that is implied by the equivalence between H-Modrev⊠H-Mod and H-Bimod, then ı◦U is actu-
ally a morphism in H-Bimod.

Now due to our finiteness assumptions, H has an integral and cointegral. Denote by Λ∈H
and λ∈H∗ the integral and cointegral, respectively, normalized according to the convention
(A.31). We henceforth denote the coend

∫ U
U∨
⊠U again by FC and set

mFC
:= ∆∗ : FC ⊗FC →FC , ηFC := ε∗ : 1→FC ,

∆FC := [(idH ⊗ (λ ◦m)) ◦ (idH ⊗ s⊗ idH) ◦ (∆⊗ idH)]
∗ : FC →FC ⊗FC and

εFC := Λ∗ : FC →1 .

(2.28)

Again these are introduced as linear maps between the respective underlying vector spaces, but
are actually morphisms of H-bimodules, as indicated. This way FC is endowed with a Frobenius
algebra structure, as befits the bulk state space of a conformal field theory:

Theorem 2.5. [FSS2, Thm. 2]
For H a factorizable Hopf algebra, the bimodule morphisms (2.28) endow the coend FC with a

natural structure of a commutative symmetric Frobenius algebra with trivial twist in the ribbon

category H-Bimod.

We note that this assertion is in full agreement with the result of Proposition 2.3 which
holds for general finite ribbon categories. Indeed, by implementing the explicit form (2.26) of
the dinaturality morphisms, the product mFC that we defined in (2.16) for any finite ribbon
category C reproduces the expression for mFC in (2.28), and likewise for ηFC .

10



It will be convenient to work with the pictorial expressions for the maps (2.28) that are
furnished by the graphical calculus for tensor categories. They are

mFC =

H∗H∗

∆

H∗

ηFC = ε

H∗

∆FC =

H∗

∆

s

λ

m

H∗H∗

εFC =

H∗

Λ

(2.29)

(Such pictures are to be read from bottom to top.)
The result just described generalizes easily from FC to the automorphism-twisted versions

Fω as defined in (2.5). Namely [FSS1, Prop. 6.1], for any Hopf algebra automorphism ω of H
the H-bimodule that is obtained from the coregular bimodule by twisting the right H-action
by ω, i.e.

Fω =
(
H∗, ρFC , ρFC ◦ (idH∗ ⊗ω)

)
, (2.30)

carries the structure of a Frobenius algebra, which is commutative, symmetric and has trivial
twist. The structural morphisms for the Frobenius structure are again given by (2.28), i.e. as
linear maps they are identical with those for FC.

We also note if H is semisimple, then Fω carries the structure of a Lagrangian algebra in
the sense of [DMNO, Def. 4.6].

3 Handle algebras

Besides in the description of the bulk state space, there is another issue in CFT in which
one needs to perform a sum over all states for the full local theory, namely when one wants
to specify the relation between correlators on world sheets that are obtained from each other
by [So] sewing (respectively, looking at the process from the other end, by factorization) as
‘summing over all intermediate states’.

Let us first consider this relationship for rational CFT, and at the level of spaces of chi-
ral blocks. A rational CFT furnishes a modular functor, and this functor is representable
[BK2, Lemma5.3.1]. Accordingly the space V (E) of chiral blocks for a Riemann surface E is
isomorphic to the morphism space HomC(UE, 1) for a suitable object UE ∈C; in particular, if E
has genus zero and n ingoing (say) chiral insertions U1, U2, ... , Un, then UE

∼=U1⊗U2 ⊗ · · ·⊗Un.
Let now the Riemann surface E1 be obtained from the connected Riemann surface E◦ by re-
moving two disjoint open disks D± and gluing the resulting boundary circles to each other,
whereby the genus increases by 1. Then there is an isomorphism

⊕

i∈I

V (E◦
īi)

∼=
−→ V (E1) (3.1)

between the space V (E1) and the direct sum of all spaces V (E◦
īi
), where the surface E◦

īi
is

obtained from E◦ by introducing chiral insertions Si and Sī
∼=S∨

i , respectively, in the disks D±

11



(see e.g. [BK2, Def. 5.1.13(iv)]). In terms of morphism spaces of C this amounts to

V (E1) ∼=
⊕

i∈I

HomC(S
∨
i ⊗Si ⊗UE◦ , 1) ∼= HomC(L⊗UE◦ , 1) , (3.2)

where on the right hand side we introduced the object

L :=
⊕

i∈I

S∨
i ⊗Si ∈ C . (3.3)

By induction, the space of chiral blocks for a genus-g surface with ingoing field insertions U1,
U2, , ... , Un is then

V (E) ∼= HomC(L
⊗g ⊗U1 ⊗U2⊗ · · ·⊗Un, 1) , (3.4)

i.e. the object L appears to a tensor power given by the number of handles. Also, as we will
point out soon, the object L of C carries a natural structure of a Hopf algebra internal to C; it
is therefore called the (chiral) handle Hopf algebra.

Invoking holomorphic factorization, the correlation function Cor(Σ) for a world sheet Σ is

an element in the space of chiral blocks for the complex double Σ̂ of the world sheet. Taking Σ
to be orientable and with empty boundary and all field insertions on Σ to be the whole bulk
state space F , one has

Cor(Σ) ∈ V (Σ̂) ∼= HomCrev⊠ C(K
⊗g ⊗F⊗m, 1) (3.5)

with
K := L⊠ L =

⊕

i,j∈I

(S∨
i ⊠S∨

j )⊗ (Si⊠Sj) ∈ Crev
⊠ C . (3.6)

K is called the bulk handle Hopf algebra. Note that each of the objects Si⊠Sj with i, j ∈I is
simple and together they exhaust the set of simple objects of Crev

⊠ C, up to isomorphism.

It is tempting to think of the gluing of a handle to a Riemann surface as a means for inserting
a complete set of intermediate states. In view of the isomorphism (3.4) then immediately the
question arises why it is precisely the object L that does this job. And again the categorical
notion of a coend turns out to provide the proper answer. Indeed, just like the bulk state space
FC , the objects L∈C and K ∈ Crev

⊠ C can be recognized as the coends of suitable functors,
namely as

L =

∫ U∈C

U∨ ⊗U and K =

∫ X∈Crev
⊠ C

X∨ ⊗X , (3.7)

respectively (together with corresponding families of dinatural transformations, whose explicit
form we do not need at this point).

Moreover, just like in the discussion of FC this description remains valid beyond the semisim-
ple setting: These coends exist not only when C is a modular tensor category, i.e. for rational
CFT, but also for more general categories, and in particular for any finite tensor category C.
Note that here the statement for K is redundant, as it is just obtained from the from the one for
L by replacing C with Crev

⊠ C, and Crev
⊠ C inherits all relevant structure and properties from

C. This applies likewise to other issues, like e.g. the Hopf algebra structure on these objects,
and accordingly we will usually refrain from spelling them out for L and K separately.

As already announced, we have

12



Theorem 3.1. [Ly1,Ke1]

For C a finite ribbon category, the coend L=
∫ U∈C

U∨ ⊗U carries a natural structure of a Hopf

algebra in C. It has an integral ΛL ∈HomC(1, L) and a Hopf pairing ̟L ∈HomC(L⊗L, 1).

The structural morphisms of L as a Hopf algebra are given by

mL ◦ (ιU ⊗ ιV ) := ιV ⊗U ◦ (γU,V ⊗ idV⊗U) ◦ (idU∨ ⊗ cU,V ∨⊗V ) ,

ηL := ι1 ,

∆L ◦ ιU := (ιU ⊗ ιU) ◦ (idU∨ ⊗ bU ⊗ idU) ,

εL ◦ ιU := dU ,

sL ◦ ιU := (dU ⊗ ιU∨) ◦ (idU∨ ⊗ cU∨∨,U ⊗ idU∨) ◦ (bU∨ ⊗ cU∨,U) ,

(3.8)

and the Hopf pairing is

̟L ◦ (ιU ⊗ ιV ) := (dU ⊗ dV ) ◦
[
idU∨ ⊗ (cV ∨,U ◦ cU,V ∨ ⊗ idV )

]
. (3.9)

Here d and b are the evaluation and coevaluation morphisms for the (right) duality inH-Modand
c is the braiding of H-Mod, while ι is the dinatural family of the coend L, and the isomorphisms
γU,V are the ones defined in (2.15).

In terms of graphical calculus in C,

U∨ U

L

mL

V∨ V

ιU ιV

=

γU,V idV ⊗U

U∨ U

L

c

V∨

c

V

(V⊗U)∨ V⊗U

L L

U∨ U

∆L =

L L

U∨ U

L

ηL

=

L εL

U∨ U

=

U∨ U

sL

L

U∨ U

=

L

U∨∨

c

c

U∨

U∨ U

(3.10)

and

���
���
���
���

���
���
���
���

U∨ U V∨ V

ωL

=

U∨ U

c

c

V∨ V

(3.11)
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Remark 3.2.

(i) That the object L that is associated with the creation of handles carries a Hopf algebra
structure is by no means a coincidence. Indeed, Hopf algebras are ubiquitous in constructions
with three-dimensional cobordisms, and specifically the handle, i.e. a torus with an open disk
removed, is a Hopf algebra 1-morphism in the bicategory Cob of three-dimensional cobordisms
with corners [CrY,Ye]. Moreover, there exists a surjective functor from the braided monoidal
category freely generated by a Hopf algebra object to Cob [Ke2].

(ii) The Hopf algebra L=L(C) is directly associated with the category C, and thereby with
the CFT having C as its category of chiral data, and analogously for K: for given C there is
a uniquely (up to isomorphism) determined chiral handle Hopf algebra, and likewise a unique
bulk handle Hopf algebra. This is in contrast to the bulk state space: for given C there is
typically more than one possibility. Specifically, in rational CFT the different bulk state spaces
are in bijection with Morita classes of simple symmetric special Frobenius algebras in C, see
formula (2.10) above.

(iii) Via its integrals and Hopf pairing, the Hopf algebra L gives rise to three-manifold in-
variants as well as to representations of mapping class groups (see [Ly1, Ly2, Ke1, Vi], and
[FS, Sects. 4.4& 4.5] for an elementary introduction). Even though for non-semisimple C these
cannot be normalized in such a way that they fit together to furnish a three-dimensional topolog-
ical field theory, one may still hope that this hints at a close relationship with three-dimensional
topology even in the non-semisimple case.

(iv) Obviously, the object L of C is obtained from the object FC of Crev
⊠ C by applying the

functor that on ⊠-factorizable objects of Crev
⊠ C acts as U ⊠V 7→U ⊗V . This functor is called

the diagonal restriction functor in [Ly4].

It will be relevant to us that the algebra K acts (and coacts) on the object FC of Crev
⊠ C,

and in fact on any object of Crev
⊠ C. We formulate the relevant statements directly for objects

in Crev
⊠ C; with K replaced by L, they apply analogously in C.

For Y ∈ Crev
⊠ C set

δKY := (idY ⊗ ıKY ) ◦ (bY ⊗ idY ) ∈ HomCrev⊠ C(Y, Y ⊗K) (3.12)

as well as
κ

K
Y := (εK ⊗ idY ) ◦Q

K
Y ∈ HomCrev⊠ C(K ⊗Y, Y ) , (3.13)

where in the latter formula the morphism QK
Y is the partial monodromy between K and Y ,

defined as

QK
Y

X∨

K

X Y

Y

ıKX

:=

X∨

K

X

c

c

Y

Y

ıKX

(3.14)

Proposition 3.3. [Ly2, Fig. 7]
For any object Y of a finite ribbon category C, the morphism (3.12) endows Y with the structure

of a right K-comodule.
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Proposition 3.4. [FSS3, Rem. 2.3]

(i) For any object Y of a finite ribbon category C, the morphism (3.13) endows Y with the

structure of a left K-module.

(ii) The module and comodule structures (3.13) and (3.12) fit together to the one of a left-right

Yetter-Drinfeld module over K. This affords a fully faithful embedding of Crev
⊠ C into the

category of left-right Yetter-Drinfeld modules over K internal to Crev
⊠ C.

Since the crucial ingredient of κK
Y is a double braiding, we refer to κK

Y as the partial mono-

dromy action of K on Y .

Remark 3.5. (i) The second part of Proposition 3.4 fits nicely with the result [Ye, Thm. 3.9]
that every 1-morphism of the cobordism bicategory Cob carries a structure of left-right Yetter-
Drinfeld module over the one-holed torus (compare Remark 3.2(i)).

(ii) The category CL of L-modules in C is braided equivalent to the monoidal center Z(C), see
Theorem 8.13 [BV].

(iii) The full subcategory CQ
L of CL consisting of the modules (U,κL

U) for U ∈C, with κL
U defined

analogously as in (3.13), is a monoidal subcategory: by the definition of ∆L and the functoriality
of the braiding, one has κL

U⊗V =(κL
U ⊗κ

L
V ) ◦∆L.

Next let us specialize to the situation considered in Section 2.5, i.e. that the finite ribbon
category C is equivalent to the category H-Mod for H a factorizable Hopf algebra. Then the
chiral handle Hopf algebra L∈H-Mod is the vector space H∗ dual to H endowed with the
coadjoint H-action

ρ⊲ :=

H∗ H∗

s

m

m

H∗

(3.15)

and the members of the dinatural family ıL are the linear maps (see [Ke1, Lemma3] and
[Vi, Sect. 4.5])

ıLU =
ρU

U∗ U

H∗

(3.16)

When expressed in terms of vector space elements, these morphisms are nothing but the matrix
elements of left multiplication in H .

The unit, counit and coproduct of the Hopf algebra L, as given by (3.10) for the case of
general finite ribbon categories, now read

ηL = (εH)
∗ ≡ (εH ⊗ idH∗) ◦ bkH ,

εL = (ηH)
∗ ≡ dkH ◦ (idH∗ ⊗ ηH) and ∆L = (mop

H )∗ ,
(3.17)
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while two equivalent descriptions of the product are

mL =

H∗ H∗

s

R

H∗

=

H∗ H∗

R

s

s

H∗

(3.18)

and the antipode is

s⊲⊳ =

H∗

s−1

R

H∗

(3.19)

Further, our finiteness assumptions imply that L now comes with an integral and a cointe-
gral, given by

ΛL = λ∗ and λL = Λ∗, (3.20)

respectively. Both of them are two-sided, even though the cointegral λ of H in general is only
a right cointegral.

Similarly, identifying, as in Section 2.5, the enveloping category H-Modrev⊠H-Mod with
the category H-Bimod of bimodules (with the ribbon structure presented there), the coend
K ∈H-Bimod is the coadjoint bimodule, that is, the tensor product H∗⊗k H

∗ of two copies of
the dual space H∗ endowed with the coadjoint left H-action (3.15) on the first tensor factor
and with the coadjoint right H-action on the second factor, with dinatural family

ıKX :=

X
∗

ρX

X

ρX

H∗ H∗

(3.21)

for any H-bimodule X =(X, ρX , ρX). The structural morphisms of K as a Hopf algebra and its
integral and cointegral are straightforward analogues of the expression given for L above; for
explicit formulas we refer to (A.32) – (A.36) of [FSS1].
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The partial monodromy action (3.13) of K on an H-bimodule (Y, ρY , ρY ) is given in terms
of the monodromy matrix Q and its inverse by

κ
K
Y =

H∗ H∗ Y

Q

Q−1

ρY

ρY

Y

(3.22)

i.e. the natural K-action is nothing but the H-bimodule action composed with variants of the
Drinfeld map (A.26).

Remark 3.6.

(i) For H a ribbon Hopf algebra, the Hopf pairing (3.11) of the handle Hopf algebra L is
non-degenerate iff H is factorizable. It is thus natural to call more generally a finite ribbon
category C factorizable iff the Hopf pairing (3.11) of L(C) is non-degenerate.

(ii) Factorizability implies e.g. that the integral of L(C) is two-sided and that L(C) also has
a two-sided cointegral (Prop. 5.2.10 and Cor. 5.2.11 of [KL]). If C is semisimple, then being
factorizable is equivalent to being modular. Thus factorizability may be seen as a generalization
of modularity to non-semisimple categories (the authors of [KL] even use the qualification
‘modular’ in place of ‘factorizable’).

(iii) A quasitriangular Hopf algebra H is factorizable iff its Drinfeld double D(H) is isomorphic,
in a particular manner, to a two-cocycle twist of the tensor product Hopf algebra H ⊗H
[Sc, Thm. 4.3], and thus [ENO, Rem. 4.3] iff the functor that acts on objects U ⊠V of the
enveloping category of H-Mod as

U ⊠V 7−→ (U ⊗V, zU⊗V ) with zU⊗V (W ) := (cU,W ⊗ idV ) ◦ (idU ⊗ c−1
W,V ) (3.23)

furnishes a monoidal equivalence

H-Modrev⊠H-Mod
≃

−→ Z(H-Mod) (3.24)

between the enveloping category and the monoidal center of H-Mod.

(iv) Now the bulk state space in conformal field theory is an object in Crev
⊠ C. Thus if we

want to be able to describe the bulk state space, in line with the semisimple case (2.11), as
a full center, we should better be allowed to regard the full center Z(A) of an algebra A in a
factorizable finite ribbon category C, which by definition is an object in Z(C), also as an object
in Crev

⊠ C, and thus want Z(C) and Crev
⊠ C to be monoidally equivalent. 1

We do not know whether this requirement is satisfied for all factorizable finite ribbon categories.
On the other hand, for the condition to be satisfied it is certainly not required that C is ribbon
equivalent to H-Mod for a ribbon Hopf algebra H . Specifically, the notion of factorizability can

1 In fact, in [ENO] this property is used to define factorizability for braided monoidal categories that are
not necessarily ribbon.
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be extended from Hopf algebras to weak Hopf algebras [NTV, Def. 5.11], and again a weak Hopf
algebra H is factorizable iff the functor (3.23) is a monoidal equivalence [ENO, Rem. 4.3]. This
covers in particular the case of all semisimple C, because every semisimple finite tensor category
is equivalent to the representation category of some semisimple finite-dimensional weak Hopf
algebra [Os, Thm. 4.1&Rem. 4.1(iv)].

4 The torus partition function

4.1 The partition function as a character

By definition, the torus partition function Z of a CFT, whether rational or not, is the character
of the bulk state space F . Here the term character refers to F as a module over the tensor
product of the left and right copies of the chiral algebra V. That is, the character is a real-
analytic function of the modulus τ of the torus, which takes values in the complex upper half
plane, and it is the generating function for dimensions of homogeneous subspaces of V⊗CV-
modules. As such, Z is a sum of characters of simple V⊗CV-modules, even though F is, in
general, not fully reducible.

Referring to the chiral algebra V is not necessary, though. Rather, as for our purposes we
are allowed to work at the level of Rep(V) as an abstract factorizable ribbon category, we can
regard F just as an object of Crev

⊠ C ≃Rep(V⊗CV). Indeed, we know from (3.5) that the torus
partition function – the zero-point correlator on the torus T – is an element of the space

V (T⊔−T) ∼= HomC(L, 1)⊗C HomC(L, 1) ∼= HomCrev⊠ C(K, 1) (4.1)

of chiral blocks. Now the morphism space HomCrev⊠ C(K, 1) contains in particular the characters
of the algebra K. An immediate conjecture for the torus partition function is thus the character
χK
F of the bulk state space as a module (with action κK

F as defined in (3.13)) over the bulk
handle Hopf algebra K. As we will see in Section 5 below, χK

F is in fact just the particular
member (g, n) = (1, 0) of a family of morphisms that are natural candidates for correlation
functions at any genus g and with any number n of bulk insertions.

In this description the term character now refers to F as a K-module. The notion of the
character of a module over an associative k-algebra is standard and is explained in detail in
Appendix A.3. For an algebra A in a monoidal category C one can set up representation theory
in much the same way as for a k-algebra, i.e. for an algebra in Vectk. The notion of character
then still makes sense provided that C is sovereign, which for the categories of our interest is
the case. 2 Concretely, the formula (A.14) for the character of a module M over an algebra A
in Vectk gets modified to

χA
M = trM(ρ) = d̃M ◦ (ρ⊗ πM) ◦ (idA⊗ bM ) ∈ HomC(A, 1) , (4.2)

with πM : M∨ → ∨M the sovereignty isomorphism between the right and left duals of M .
In the case at hand the relevant algebra is the bulk handle Hopf algebra K, and its action

2Any ribbon category is sovereign, i.e. (see e.g. Def. 2.7 of [Dr]) the left and right dualities are connected by
a monoidal natural isomorphism.
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is given by (3.13). We thus have

χK
Y ◦ ıKX =

X∨X

ıKX

κK
Y

Y

πY

=

X∨X

Y

c

c

πY

(4.3)

for any K-module (Y,κK
Y ) in Crev

⊠ C, and analogously for the character χL
U of an L-module

(U,κL
U) in C.

Remark 4.1. Since L and K are Hopf algebras, there are natural notions of left and right
dual modules. The character of the L-module U∨ right dual to U = (U,κL

U) is given by the
same morphism as the one for χL

U , except that the braidings in (4.3) get replaced by inverse
braidings.

It is worth being aware that so far the coend F =FC (2.4) (respectively, F =Fω (2.5)) is only
conjecturally the bulk state space of a conformal field theory, and similarly the morphism χK

F is
merely a candidate for the torus partition function Z of that CFT. But just like we could verify
that, for the case C ≃H-Mod (and F =Fω for any ribbon automorphism ω of H) the coend has
the desired properties of being a commutative symmetric Frobenius algebra, we will see below
that in this case χK

F has the desired property of being a bilinear combination of suitable chiral
characters with non-negative integral coefficients. Moreover, these coefficients turn out to be
quantities naturally associated with the category C.

The status of χK
F can be corroborated further by establishing modular invariance. Indeed,

this follows as a corollary from the mapping class group invariance of general correlation func-
tions that we will present in Section 5 below. The partition function should in addition be
compatible with sewing. At this point we have no handle on this property yet. Thus, while we
can prove modular invariance at any genus, as far as sewing is concerned the state of affairs
bears some similarity with the situation in rational CFT prior to the development of the TFT
construction [FRS1] of correlators: While modular invariance is a crucial property of the par-
tition function, it is only necessary, but in general not sufficient, and indeed there are plenty
of modular invariants which are incompatible with sewing. On the other hand, for all rational
CFTs the charge conjugation modular invariant is compatible with sewing [FFFS1], and ac-
cordingly we do expect that, for any factorizable finite ribbon category C, at least for F =FC

the character χK
F does provide the torus partition function of a CFT with C ≃Rep(V).

4.2 Chiral decomposition

The simple modules of V⊗C V, i.e. the simple objects of Crev
⊠ C ≃Rep(V⊗C V), are of the form

Si⊠Sj with Si, for i∈I, the simple V-modules. For rational CFT, i.e. for semisimple C, the
category Crev

⊠ C is semisimple, too, so that in particular the bulk state space F decomposes as
in formula (2.11) into a direct sum of simple objects Si⊠Sj for appropriate i, j ∈I. When C
is non-semisimple, this is no longer the case. Moreover, for non-semisimple C one even cannot,
in general, write F as a direct sum of ⊠-factorizable objects, i.e. of objects of the form U ⊠V .
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Nevertheless, since characters split over exact sequences, a chiral decomposition analogous
to the one in rational CFT does exist for the torus partition function. Specifically, if C is a
finite tensor category, for which the index set I is finite, the torus partition function can be
written as a finite sum

Z =
∑

i,j∈I

Zij χ
V

i ⊗C
χV

j (4.4)

with Zij ∈Z≥0.
For non-rational CFT the space of zero-point chiral blocks for the torus is not exhausted

by the characters – that is, the characters of V-modules in the vertex algebra description,
respectively by the characters χL

U , for U ∈C, of the L-modules (U,κL
U). Rather, this space

also includes linear combinations of so-called pseudo-characters [FGST1,FG,GT,AN]. Specif-
ically, for any C2-cofinite vertex algebra these functions can be constructed with the help of
symmetric linear functions on the endomorphism spaces of suitable decomposable projective
modules [Mi, Ar]. The existence of an expression of the form (4.4) thus means in particular
that the pseudo-characters do not contribute to the torus partition function. This certainly
fits nicely with the physical idea of counting states; mathematically it is a non-trivial state-
ment that a decomposition of the form (4.4) exists, even without requiring integrality of the
coefficients.

In a purely categorical setting, the analogue of the space of zero-point blocks for the torus
is the space

Cℓ(L) := {f ∈HomC(L, 1) | f ◦mL = f ◦mL ◦ cL,L} (4.5)

of central forms, or class functions, on L. The characters of simple L-modules form a subspace
of Cℓ(L), and this is a proper subspace unless C is semisimple. One should expect that in
analogy with (4.4) the character χK

F satisfies

χK
F ∈ Cℓ(L)⊗kCℓ(L) ⊆ HomC(L, 1)⊗C HomC(L, 1) ∼= HomCrev⊠ C(K, 1) (4.6)

and thus decomposes into products of simple L-characters χL
k as

χK
F =

∑

k,l

xkl(F )χL
k ⊗k

χL
l (4.7)

with xkl ∈Z≥0. We will now establish that this is indeed true in the case that C=H-Mod and
F =Fω.

4.3 The Cardy-Cartan modular invariant and its relatives

Let us thus specialize again to the case that C=H-Mod for some factorizable Hopf algebra H .
The sovereign structure for the ribbon categories H-Mod and H-Bimod is given by

πH-Mod
U =

U∗

U∗

t

ρU

and πH-Bimod
X =

X
∗

X
∗

t

ρX
ρX

t

(4.8)
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respectively, with t an invertible group-like element ofH obtained as the product of the Drinfeld
element u (A.30) and the inverse of the ribbon element of H ,

t = u v−1. (4.9)

Using the formulas (3.16) and (3.21) for the dinatural families ıL and ıK of the coends L and
K, the characters of L-modules (U,κL

U) with U = (U, ρHU )∈H-Mod and those of K-modules
(X,κK

X ) with X = (X, ρHX , ρHX)∈H-Bimod – as described, for the case of K, in (4.3) – can then
be written as

χL
U =

H∗

t

Q

ρHU

ρHU

U

= χH
U ◦m ◦ (t⊗ fQ) = χH

U ◦m ◦ (fQ⊗ t)
(4.10)

and as

χK
X = Q−1

Q

H∗H∗

ρHX

ρHX πH-Bimod
X

= χH⊗Hop

X ◦ (m⊗m) ◦ (t⊗ fQ−1 ⊗ fQ⊗ t) , (4.11)

respectively, with fQ the Drinfeld map (A.26) and fQ−1 the analogous morphism in which the
monodromy matrix Q is replaced by its inverse. (In (4.11), each of the two occurrences of the
element t in πH-Bimod

X can be treated analogously as the single t in (4.10); for details see Lemmas
6 and 8 of [FSS2].)

The result (4.11) is actually a rather direct corollary of (4.10): the categories of H ⊗H-
modules and of H-bimodules are ribbon equivalent (an equivalence functor is given in ex-
plicitly in [FSS1, Eq. (A.22)]), and this equivalence maps the H ⊗H-module L⊗k L and the
H-bimodule K are mapped to one another.

Remark 4.2. Since H is by assumption factorizable, the Drinfeld map fQ is invertible. The
group-like element t is invertible as well. As a consequence the result (4.10) implies that the set
X = {χL

Si
| i∈I} of characters is linearly independent and that the character of any L-module

of the form (U,κL
U) is an integral linear combination of the characters in X . It follows that the

simple objects, up to isomorphisms, of the full monoidal subcategory H-ModQL of H-ModL that
consists of the modules (U,κL

U) are precisely the modules (Si,κ
L
Si
) with {Si | i∈I} the simple

H-modules. As a consequence, in the chiral decomposition (4.7) the simple L-characters are
χL
k =χL

Sk
and the summation extends over the same index set I as the summation in e.g. (4.4).

Next we note that a finite-dimensional Hopf algebra H in Vectk carries a natural structure
of a Frobenius algebra and thus is in particular self-injective. According to (A.22) the character
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of H as the regular bimodule (i.e., with regular left and right actions) over itself can thus be
written as

χH⊗Hop

H =
∑

i,j∈I

ci,j χ
H
i ⊗χH

j (4.12)

with ci,j the entries (A.21) of the Cartan matrix of the category H-Mod. If H is factorizable,
then the coregular bimodule FC (see Theorem 2.4) is isomorphic to the regular bimodule, with
an intertwiner given by the Frobenius map

Φ := ((λ ◦m)⊗ idH∗) ◦ (s⊗ bkH) , (4.13)

and hence the character of FC decomposes like in (4.12),

χH⊗Hop

F =
∑

i,j∈I

ci,j χ
H
i ⊗χH

j . (4.14)

Now compose the equality (4.14) with (m⊗m) ◦ (t⊗ fQ−1 ⊗ fQ⊗ t). Then by comparison
with (4.11) we learn that

χK
X =

∑

i,j∈I

ci,j
[
χH
i ◦m ◦ (t⊗ fQ−1)

]
⊗

[
χH
j ◦m ◦ (fQ⊗ t)

]
. (4.15)

Here the second tensor factor equals χL
j as given in (4.10). For the first factor, the presence of

fQ−1 instead of fQ amounts to replacing the braiding in κL
Si

by its inverse, and thus according
to Remark 4.1 we deal with the L-character the dual module. We conclude that [FSS2, Thm. 3]

χK
F =

∑

i,j∈I

ci,j χ
L
i
⊗χL

j =
∑

i,j∈I

c
i,j
χL
i ⊗ χL

j , (4.16)

where χL
i =χL

Si
is the character of the simple L-module (Si,κ

L
Si
). This is the desired chiral

decomposition, of the form (4.4).

Remark 4.3. (i) By definition (see (A.21)) the numbers ci,j are non-negative integers. And
they are naturally associated with the category C ≃H-Mod – they depend only on C as an
abelian category.

(ii) Among the simple objects of C is in particular the tensor unit 1∼=S0. In general, the
corresponding diagonal coefficient c0,0 in (4.16) is larger than 1. This is not in conflict with the
uniqueness of the vacuum – it just accounts for the fact that for non-semisimple C the tensor
unit has non-trivial extensions and is in particular not projective.

(iii) The result (4.16) fits well with predictions for the bulk state space of concrete classes of log-
arithmic CFTs, namely [GR] the (1, p) triplet models and [QS] WZW models with supergroup
target spaces, compare Remark 2.2.

We refer to the character (4.14) as the Cardy-Cartan modular invariant, because in the
semisimple case, for which ci,j = δi,j, the expression (4.14) reduces to the charge conjugation
modular invariant, which in the context of studying compatible conformally invariant boundary
conditions of the CFT is also known as the Cardy case.

Next we generalize the Cardy-Cartan modular invariant to the situation that we perform a
twist by a ribbon Hopf algebra automorphism of H . This is achieved as follows. First note that
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an automorphism ω of H induces an endofunctor Gω : H-Mod→H-Mod. If ω is a Hopf algebra

automorphism, i.e. both an algebra and a coalgebra automorphism and commuting with the
antipode, then the functor Gω is rigid monoidal, and if ω is a ribbon Hopf algebra automorphism,
i.e. in addition satisfies

(ω⊗ω)(R) = R and ω(v) = v , (4.17)

thenGω is is even a ribbon functor. Given two automorphisms ω and ω′, one hasGω ◦Gω′ =Gωω′ ,
as a strict equality of functors. It follows that Gω has Gω−1 as an inverse and is thus an equiv-
alence of categories. In particular, ω induces a bijection ω from the index set I to itself, in
such a way that {Sω(i) | i∈I} is again a full set of representatives of the isomorphism classes of
simple H-modules.

With this information we are in a position to establish

Theorem 4.4. For ω a ribbon Hopf algebra automorphism of a factorizable Hopf algebra H,

the character of the automorphism-twisted coregular bimodule Fω = (H∗, ρFC , ρFC ◦ (idH∗ ⊗ω))
(see (2.30)) has the chiral decomposition

χK
Fω

=
∑

i,j∈I

c
i,ω(j)

χL
i ⊗ χL

j . (4.18)

Proof. Pictorially, (4.15) reads

H∗ H∗

fQ

fQ−1

F

ρHF

ρHF

πH-Bimod
F

=
∑

i,j∈I

cī,j

H∗

fQ

Si

ρHSi
πH-Mod
Si

H∗

fQ

Sj

ρHSj
πH-Mod
Sj

(4.19)

Now compose this equality with idH∗ ⊗ (ω−1)∗ and use that, by the first equality in (4.17),
(ω⊗ω)(Q) =Q, so that the automorphism ω−1 can be pushed through the Drinfeld map on
both sides of the equality. This yields

χK
Fω

=
∑

i,j∈I

c
i,j
χL
i ⊗ χL

Sω−1
j

=
∑

i,j∈I

c
i,j
χL
i ⊗ χL

S
ω(j)−1

. (4.20)

A relabeling of the summation index j then gives (4.18).

5 Correlation functions

As already pointed out, the conjecture that the character χK
F gives the torus partition function

of a full CFT with bulk state space F =FC constitutes a special case of a proposal for general
correlation functions Corg;n of bulk fields, for orientable world sheets of arbitrary genus g and
with an arbitrary number n of insertions of the bulk state space. This proposal [FSS1,FSS3]
is based on the idea that it should be possible to express correlators entirely and very directly
through the basic structures of their ingredients – that is, the topology of the world sheet and
the structure of the bulk state space as a symmetric Frobenius algebra and as a module (F,κK

F )
over the bulk handle Hopf algebra.
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Let us first see how this works in the case of the torus partition function. To this end we
note the equalities

F F

πH-Bimod
F

=

F F

∆F

ηF

εF

mF

πH-Bimod
F

=

F F

(5.1)

where we first use the Frobenius property and then the symmetry of F . The equality of the
left and right hand sides of (5.1) allows us to rewrite the expression (4.3) for χK

F as

χK
F =

K

FκK
F

mF

∆F

ηF

εF

(5.2)

Thus, basically the morphism χK
F consists of an F -‘loop’ combined with the action of the

handle Hopf algebraK. This can be seen as a manifestation of the fact that we deal with a world
sheet having one handle. In a similar vein, for the correlator Corg;0, i.e. the partition function
of an orientable world sheet Σ of arbitrary genus g, we are lead to the following construction:

Select a skeleton Γ for Σ and label each edge of the skeleton by the Frobenius algebra F .

Orient the edges of Γ in such a manner that each vertex of Γ has either one incoming and
two outgoing edges or vice versa. Label each of these three-valent vertices either with the
coproduct ∆F of F or with the product mF , depending on whether one or two of its three
incident edges are incoming.

To avoid having to introduce any duality morphisms (analogously as in the description
(4.3) of Cor0;0=χK

F ), when implementing the previous part of the construction allow for
adding further edges that connect one three-valent and one uni-valent vertex, the latter
being labeled by the unit ηF or counit εF of F .

For each handle of Σ attach one further edge, labeled by the handle Hopf algebra K, to
the corresponding loop of the skeleton, and label the resulting new trivalent vertex by the
representation morphism κK

F .

The so obtained graph defines a morphism in HomCrev⊠ C(K
⊗g, 1).

At genus g=1 this prescription precisely reproduces the morphisms (5.2) in HomCrev⊠ C(K, 1).
At higher genus several different choices for the skeleton Γ are possible, but with the help of the
symmetry and Frobenius property of F one sees that they all yield one and the same morphism
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in Crev
⊠ C, namely

Corg;0 =

︸ ︷︷ ︸

g factors

K K · · · K

F

κK
F

mF

∆F

ηF

εF

(5.3)

Our ansatz generalizes easily to world sheets with bulk field insertions: For n outgoing (say)
insertions of the bulk state space, just replace the counit εF ∈HomCrev⊠ C(F, 1) in (5.3) with

an n-fold coproduct ∆
(n)
F ∈HomCrev⊠ C(F, F

⊗n). When doing so, the order of taking coprod-
ucts is immaterial owing to coassociativity of ∆F , and the order of factors in F⊗n does not
matter due to cocommutativity of ∆F ; with any choice of ordering, the resulting morphism in
HomCrev⊠ C(K

⊗g, F⊗n) equals

Corg;n(F ) =

︸ ︷︷ ︸

g factors

n factors
︷ ︸︸ ︷

K K · · · K

F F · · · F

κK
F

mF

∆F

ηF

(5.4)
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for n> 0.
Likewise one can generalize the ansatz to correlators Corg;p,q with any numbers q of incoming

and p of outgoing insertions. The incoming insertions are incorporated by replacing the unit
ηF ∈HomCrev⊠ C(1, F ) in (5.3) with a p-fold product m

(q)
F ∈HomCrev⊠ C(F

⊗q, F ). Furthermore,
the case of genus zero is included by just omitting the F -‘loop’. Altogether the prescription
can be summarized as follows:

Cor0;1,1 := idF ,

Cor1;1,1 := mF ◦ (ρKF ⊗ idF ) ◦ (idK ⊗∆F ) ,

Corg;1,1 := Cor1;1,1 ◦ (idK ⊗Corg−1;1,1) for g > 1 ,

Corg;p,q := ∆
(p)
F ◦ Corg;1,1 ◦

(
idK⊗g ⊗m

(q)
F

)
.

(5.5)

Remark 5.1.

(i) One may be tempted to work with ribbons instead of with edges. But since F has trivial
twist, θF = idF , the framing does not matter and can be neglected in our discussion.

(ii) Our ansatz results from the description (5.2) of the torus partition function Cor1;0,0 and the
knowledge that Corg;p,q must be an element of the morphism space HomCrev⊠ C(K

⊗g ⊗F⊗q, F⊗p).
It would be much more elegant to derive the prescription from a three-dimensional approach,
which in the case of rational CFT should be related by a kind of folding trick to the TFT
construction of [FRS1].

What enters in the expressions for correlation functions above is only the structure of C as
a factorizable finite tensor category and of F as a bulk state space, carrying the structure of
a Frobenius algebra that is commutative and symmetric and has trivial twist. Again we can
be more explicit for the case that C is equivalent to the category H-Mod of finite-dimensional
modules over some factorizable Hopf algebra H and that F =Fω for any ribbon automorphism
ω of H . Let us present the correlator Corg;p,q for the case that p= q=1, the extension to
p, q > 1 being easy, and first take F to be the coregular H-bimodule FC. Then by inserting the
expressions 2.29 for the structural morphisms of the Frobenius algebra FC and writing out the
braiding of the category H-Modrev⊠H-Mod≃H-Bimod (which appears in the representation
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morphism κK
F ), after a few rearrangements one obtains

Corg;1,1(FC) =

︸ ︷︷ ︸
g factors of H∗⊗H∗

H∗H∗ H∗H∗ . . . . . . H∗H∗ H∗

H∗

Λ

Λ

Λ

ρ⋄

ρ⋄

ρ⋄
(5.6)

with ρ⋄ the right-adjoint action of H on itself.
For general Fω the result differs from (5.6) only by a few occurences of the automorphism ω

(recall formula (2.30) and that the structural morphisms of the Frobenius algebra Fω coincide
with those of FC as linear maps):

Corg;1,1(Fω) =

H∗H∗ H∗H∗ . . . . . . H∗H∗ H∗

H∗

Λ

Λ

Λ

ω−1

ω−1

ω−1

ρ⋄

ρ⋄

ρ⋄

(5.7)

The correlators of a rational conformal field theory must be invariant under an action of the
mapping class group Mapg:n of closed oriented surfaces of genus g with n boundary components,
where g is the genus of the world sheet and n= p+ q is the number of (incoming plus outgoing)
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field insertions. One expects that this can still be consistently imposed for logarithmic CFTs.
And indeed we are able to establish mapping class group invariance of the ansatz for correlators
that we presented above, i.e. of the morphisms (5.5) for the case that C ≃H-Mod and F =Fω.

Recall that the morphism Corg;p,q is an element of the space HomCrev⊠ C(K
⊗g ⊗F⊗q, F⊗p). A

natural action πK;F
g:p+q of Mapg:p+q on this morphism space has been found in [Ly2,Ly3]. πK;F

g:p+q is
described in some detail in Appendix A.5; here we just note that Mapg:n is generated by suitable
Dehn twists, that most of them are represented by pre-composing with an endomorphim of
K⊗g or F⊗q or post-composing with an endomorphim of F⊗p, and that at genus 1 the relevant
endomorphims of K =H∗⊗k H

∗ are

SK =

H∗

Q−1

H∗

λ

H∗

Q

λ

H∗

and TK =

H∗

v

H∗

H∗

v−1

H∗

(5.8)

which amount to an S- and T-transformation, respectively.

Remark 5.2. In general, the mapping class group action considered in [Ly2, Ly3] is only
projective. But owing to the fact that the category relevant to us is an enveloping category
Crev
⊠ C, with a ribbon structure in which the two factors are treated in an opposite fashion,

in the situation at hand the action is in fact a genuine linear representation (compare Remark
5.5 of [FSS1]).

Denote by Mapg:p,q the subgroup of Mapg:p+q that leaves the subsets of incoming and outgo-
ing insertions separately invariant, and by πK;F

g:p,q the representation of Mapg:p,q that is obtained

(compare (A.40)) from πK;F
g:p+q. The following is the main result of [FSS3] (Theorem 3.2, Remark

3.3 and Theorem 6.7):

Theorem 5.3. For H a factorizable ribbon Hopf algebra and ω a ribbon automorphism of H,

and for any triple of integers g, p, q≥ 0, the morphism Corg;p,q(Fω) is invariant under the action
πK;F
g:p,q of the group Mapg:p,q.

Remark 5.4. Besides invariance under the action of πK;F
g:p,q, the other decisive property of

correlation functions is compatibility with sewing. That is, there are sewing relations at the
level of chiral blocks, and the correlators must be such that the image of a correlator, as a
specific vector in a space of chiral blocks, under these given chiral relations, is again a correlator.
Compatibility with sewing allows one to construct all correlation functions by starting from a
small set of fundamental corrleators and thereby amounts to a kind of locality property.
Like mapping class group invariance, compatibility with sewing is a requirement in rational
CFT, and again one expects that one can consistently demand it for logarithmic CFTs as well.
For now, checking compatibility of our ansatz with sewing is still open. It is in fact fair to
say that already for rational CFT the study of sewing [FFRS1,FFSt] still involves some brute-
force arguments. Understanding sewing in a way suitable for logarithmic CFT may require (or,
amount to) deeper insight into the nature of sewing.
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A Appendix

A.1 Coends

For a category C, the opposite category Cop is the one with the same objects, but reversed
morphisms, i.e. a morphism f : U →V in C is taken to be a morphism V →U in Cop. Given k-
linear abelian categories C and D and a functor G from Cop×C to D, a dinatural transformation

from F to an object B ∈D is a family ϕ= {ϕU : G(U, U)→B}U∈C of morphisms with the
property that the square

G(V, U)

G(idV ,f)

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑

G(f,idU )

yyss
ss
ss
ss
ss
ss

G(U, U)

ϕU

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
G(V, V )

ϕV

yyss
ss
ss
ss
ss
ss
s

B

(A.1)

of morphisms commutes for all f ∈Hom(U, V ).
A coend (D, ι) for the functor G is an initial object among all such dinatural transformations,

that is, it is an object D ∈D together with a dinatural transformation ι such that for any dinat-
ural transformation ϕ from G to any B ∈D there exists a unique morphism κ∈HomD(D,B)
such that ϕU = κ ◦ ιU for every object U of C. In other words, given a diagram

G(V, U)

G(idV ,f)

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏

G(f,idU )

zztt
tt
tt
tt
tt
tt

G(U, U)

ϕU

**

ιU
%%❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

G(V, V )

ϕV

tt

ιV
yytt
tt
tt
tt
tt
tt
t

D

κ

��
✤

✤

✤

✤

B

(A.2)

with commuting inner and outer squares for any morphism f ∈HomC(U, V ), there exists a
unique morphism κ such that also the triangles in the diagram commute for all U, V ∈C.

If the coend exists, then it is unique up to unique isomorphism. The underlying object,
which by abuse of terminology is referred to as the coend of G as well, is denoted by an integral
sign,

D =

∫ U∈C

G(U, U) (A.3)

The finiteness properties of the categories we are working with in this paper guarantee the
existence of all coends we need. Specifically, the bulk state space FC is the coend (2.3) of the
functor GC

⊠
: Cop ×C→ Crev

⊠ C that acts on objects as (U, V ) 7→U∨
⊠V , while the chiral and

full handle Hopf algebras L and K are the coends (3.7) of the functors GC
⊗ : C

op ×C→C and
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GCrev
⊠ C

⊗ : (Crev
⊠ C)op × (Crev

⊠ C)→Crev
⊠ C that act on objects as (U, V ) 7→U∨ ⊗V ∈C and as

(X, Y ) 7→X∨ ⊗Y ∈ Crev
⊠ C, respectively.

If the category C is cocomplete, then an equivalent description of the coend of G (see e.g.
section V.1 of [May]) is as the coequalizer of the morphisms

∐

f : V→W

G(V,W )
s

//

t
//

∐

U∈C

G(U, U) (A.4)

whose restrictions to the ‘fth summand’ are sf =F (f, id) and tf =F (id, f), respectively. Thus,
morally, the coend of G is the universal quotient of

∐
U G(U, U) that enforces the two possible

actions of G on any morphism f in C to coincide.

A.2 The full center of an algebra

Given an object U of a monoidal category C, a half-braiding z= z(U) on U is a natural family
of isomorphisms zV : U ⊗V → V ⊗U , for all V ∈C, such that (assuming C to be strict) z1= idU

and
(idV ⊗ zW ) ◦ (zV ⊗ idW ) = zV⊗W (A.5)

for all V,W ∈C. The monoidal center Z(C) is the category which has as objects pairs (U, z)
consisting of objects of C and of half-braidings, while its morphisms are morphisms f of C that
are naturally compatible with the half-braidings of the source and target of f . The category
Z(C) is again monoidal, with tensor product

(U, z)⊗ (U ′, z′) := (U ⊗U ′, (zV⊗idU ′) ◦ (idU⊗z′V )) (A.6)

and tensor unit (1, id), and with respect to this tensor product it is braided, with braiding
isomorphisms c(U,z),(U ′,z′) := zU ′ . The forgetful functor FZ

C from Z(C) to C, acting on objects as

FZ
C : (U, z) 7−→ U , (A.7)

is faithful (but in general neither full nor essentially surjective) and monoidal.
For A=(A,m, η) a (unital, associative) algebra in C, we say that an object (U, z) of Z(C)

together with a morphism r ∈HomC(U,A) is compatible with the product of A iff

m ◦ (idA ⊗ r) ◦ zA = m ◦ (r⊗ idA) (A.8)

in HomC(U ⊗A,A). Given the algebra A in C, the full center Z(A) of A is [Da] a pair consisting
of an object in Z(C) – by abuse of notation denoted by Z(A) as well – and a morphism
ζA ∈HomC(F

Z
C (Z(A)), A) that is terminal among all pairs ((U, z), r) in Z(C) that are compatible

with the product of A. That Z(A) is terminal among compatible pairs means that for any such
pair ((U, z), r) there exists a unique morphism κ∈HomZ(C)((U, z), Z(A)) such that the equality

ζA ◦ FZ
C (κ) = r (A.9)

holds in HomC(U,A).
For the categories C relevant to us in this paper, the full center of any algebra in C exists.

Being defined by a universal property, Z(A) unique up to unique isomorphism. Further, Z(A)
has a unique structure of a (unital, associative) algebra in Z(C) such that ζA is an algebra
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morphism in C, and this algebra structure is commutative [Da, Prop. 4.1]. Furthermore, if A
and B are Morita equivalent algebras in C, then the algebras Z(A) and Z(B) in Z(C) are
isomorphic [Da, Cor. 6.3].

If the category C is braided, then there is also a more familiar notion of center of an algebra
inside C itself, albeit there are two variants (unless the braiding is symmetric), the left center
and the right center. The left center of an algebra A in C is obtained with the help of an ana-
logue of the compatibility condition (A.8) in which the half-braiding is replaced by the braiding
c of C, according to

m ◦ (idA ⊗ q) ◦ cU,A = m ◦ (q⊗ idA) . (A.10)

Again one considers pairs of objects U in C together with morphisms q ∈HomC(U,A) obeying
(A.10), and defines the left center Cl(A)≡ (Cl(A), ζ

l
A) to be terminal among such compatible

pairs. The right center Cr(A) is defined analogously. Cl(A) has a unique structure of an
algebra in C such that the morphism ζ lA ∈HomC(Cl(A), A) is an algebra morphism. This algebra
structure is commutative (Prop. 2.37(i) of [FrFRS] and Prop. 5.1 of [Da]); clearly, if already A
is commutative, then Cl(A) =A=Cr(A). If C is ribbon and A is Frobenius, then Cl(A) has
trivial twist [FrFRS, Lemma2.33].

We mention the left center here because it was instrumental for the construction by which the
full center Z(A) was introduced originally, for modular tensor categories [RFFS, Eq. (A.1)]. For
the more general categories of our interest, there is the following variant, which also makes use of
the functor RZ

C : C→Z(C) that is right adjoint to the forgetful functor FZ
C . Let us assume that C

is a factorizable finite ribbon category for which Z(C) is monoidally equivalent to the enveloping
category Crev

⊠ C (compare Remark 3.6(iv)). Then the right adjoint functor RZ
C exists [RGW,

Thm. 3.20]). Moreover, RZ
C is lax monoidal, implying that for any algebra A in C, the object

RZ
C (A)∈Z(C) is again an algebra. Also, the natural transformations ε : FZ

C ◦RZ
C ⇒ IdC and

η : IdCrev⊠ C ⇒RZ
C ◦FZ

C of the adjunction are monoidal [Da, Lemma. 5.3]. And further, provided
that the natural transformation ε is epi, the full center of an algebra A∈C can be expressed as
( [Da, Thm. 5.4] and [RGW, Thm. 3.24])

Z(A) = Cl(R
Z
C (A)) with ζA = εA ◦ ζ lRZ

C
(A) . (A.11)

The functor RZ
C can be given explicitly; once we identify Z(C) with Crev

⊠ C, it acts on objects
U ∈C as [RGW, Eq. (3.43)]

RZ
C (U) = (U ⊠1)⊗ RZ

C (1) . (A.12)

Moreover, the algebra RZ
C (1) in Z(C) is commutative [RGW, Lemma3.25] and hence equals

Z(1). Together with the formulas (2.9) and (2.4) for the bulk state space FC this shows that
RZ

C (1) can be obtained as a coend,

RZ
C (1)

∼=

∫ U

U∨
⊠U . (A.13)

Hereby for modular tensor categories, for which FC is given by the finite direct sum (2.1), the
formula (A.11) for the full center reduces to (A.1) of [RFFS].

A.3 Algebras and characters

Let A= (A,m, η) be a (unital, associative) finite-dimensional algebra over a field k, and let
M =(M, ρ) be a finite-dimensional left A-module. The character χA

M of the module M is
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defined to be the partial trace of the representation morphism ρ, with the trace taken in the
sense of linear maps. This means

χA
M = trM(ρ) = d̃ k

M ◦ (ρ⊗ idM∨) ◦ (idA ⊗ b kM) ∈ Hom(A, k) , (A.14)

with b kM the (right) coevaluation and d̃ k

M the (left) evaluation map of Vectk. Now the map d̃ k

M ∈
Homk(M ⊗k M

∗, k) can be expressed through the right evaluation map d k

M ∈Homk(M
∗ ⊗k M, k)

as d̃ k

M = d k

M ◦ τM,M∗ with τ the flip map (and similarly for the left and right coevaluations). Thus

two equivalent descriptions of the character are, pictorially,

χA
M =

A

M

=

A

M

(A.15)

Characters are class functions, i.e. satisfy χA
M ◦m=χA

M ◦m ◦ τA,A. A is semisimple iff the
space of class functions is already exhausted by linear combinations of characters of A-modules.
Furthermore, characters behave additively under short exact sequences. As a consequence,
taking {Si | i∈I} to be a full set of representatives of the isomorphism classes of simple A-mo-
dules, with characters χA

i ≡χA
Si
, and writing [M :Si ] for the multiplicity of Si in the Jordan-

Hölder series of M , one has
χA
M =

∑

i∈I

[M :Si ]χ
A
i . (A.16)

The simple modules Si have projective covers Pi, from which they can be recovered as the
quotients Si =Pi/J(A)Pi with J(A) the Jacobson radical of A. The modules {Pi | i∈I} con-
stitute a full set of representatives of the isomorphism classes of indecomposable projective left
A-modules. There is a (non-unique) collection {ei ∈A | i∈I} of primitive orthogonal idempo-
tents such that Pj =Aej for all j ∈I, as well as Qj = ej A for a full set of representatives of the
isomorphism classes of indecomposable projective right A-modules. The algebra A decomposes
as a left module over itself (with the regular action, given by the product m) as

AA ∼=
⊕

i∈I

Pi ⊗k k
dim(Si). (A.17)

Of particular interest to us is A regarded as a bimodule over itself, with regular left and
right actions. The decomposition of this bimodule into indecomposables is considerably more
involved than the decomposition as a module and cannot be expressed in a ‘model-independent’
manner analogous to (A.17). But we can use that the structure of an A-bimodule is equivalent
to the one of a left A⊗Aop-module. Accordingly, by the character of A as an A-bimodule we
mean its character as an A⊗Aop-module.

Now if k has characteristic zero, then for any two finite-dimensional k-algebras A and B
complete sets of simple modules over the tensor product algebra A⊗B are [CuR, Thm. (10.38)]
given by {SA

i ⊗k S
B
j | i∈IA , j ∈IB}. In view of (A.16), the character of any A⊗B-module X

can therefore be written as the bilinear combination

χA⊗B
X =

∑

i∈IA, j∈IB

[X :SA
i ⊗k S

B
j ] χA

i ⊗k
χB
j . (A.18)
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For the case of our interest, i.e. B=Aop and X =A , this decomposition reads

χA⊗Aop

A =
∑

i,j∈I

[A :Si⊗k Tj ]χ
A⊗Aop

Si⊗k
Tj

(A.19)

with Tk =Qk/J(A)Qk the simple quotients of the projective right A-modules Qk.
Next we use that (for details see [FSS2, App.A])

[A :Si ⊗k Tj ] = dimk

(
HomA(Pi, Pj)

)
= ci,j , (A.20)

where the non-negative integers ci,j are defined by

ci,j := [Pi :Sj ] . (A.21)

The matrix C =
(
ci,j

)
is called the Cartan matrix of the algebra A, or of the category A-Mod.

It obviously depends only on A-Mod as an abelian category.
Assume now that A is self-injective, i.e. injective as a left module over itself. Then Tk

∼=S∗
k

as right A-modules, so that in view of (A.20) we can rewrite the character (A.19) as

χA⊗Aop

A =
∑

i,j∈I

ci,j χ
A
i ⊗χA

j . (A.22)

A.4 Factorizable Hopf algebras

In this paper we deal with finite-dimensional Hopf algebras over a field k that is algebraically
closed and has characteristic zero. In the application to logarithmic CFT, k is the field C of com-
plex numbers. We denote by m∈Homk(H ⊗k H,H) the product, by η∈Homk(k, H) the unit,
by ∆∈Homk(H,H ⊗k H) the coproduct, by ε∈Homk(H, k) the counit, and by s∈Homk(H,H)
the antipode of H .

An R-matrix for H is an invertible element R of H ⊗k H which intertwines the coproduct
and opposite coproduct in the sense that

R∆R−1 = τH,H ◦∆ ≡ ∆op (A.23)

and which satisfies the equalities

(∆⊗ idH) ◦R = R13 · R23 and (idH ⊗∆) ◦R = R13 · R12 (A.24)

in H ⊗k H ⊗k H . (The notation R13 means that R is to be considered as an element in the
tensor product of the first and third factors of H ⊗k H ⊗k H , and similarly for R23 etc.) A Hopf
algebra (H,m, η,∆, ε, s) together with an R-matrix R is called a quasitriangular Hopf algebra.
For more information about quasitriangular Hopf algebras see e.g. Chapters 1 and 2 of [Maj].

For a quasitriangular Hopf algebra, the invertible element

Q := R21 ·R (A.25)

of H ⊗k H is called the monodromy matrix. A quasitriangular Hopf algebra for which Q is
non-degenerate, meaning that it can be expressed as

∑
ℓ hℓ ⊗ kℓ, in terms of two vector space
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bases {hℓ} and {kℓ} of H , is called factorizable. Equivalently, factorizability means that the
Drinfeld map

fQ := (dH ⊗ idH) ◦ (idH∗ ⊗Q) ∈ Hom(H∗, H) (A.26)

is invertible. With a view towards the non-quasitriangular Hopf algebras considered for log-
arithmic conformal field theories in e.g. [FGST1], one should note that for the notion of fac-
torizability we only need the existence of a monodromy matrix Q, but not of an R-matrix;
moreover, the properties of Q can be formulated without any reference to R [Br, Sect. 2].

A factorizable Hopf algebra is minimal in the sense that it does not contain a proper
quasitriangular Hopf subalgebra [Ra2, Prop. 3b], and is thus [Ra1] a quotient of the Drinfeld
double D(B) of some Hopf algebra B.

A ribbon element for a quasitriangular Hopf algebra H is an invertible element v of the
center of H that obeys

s ◦ v = v , ε ◦ v = 1 and ∆ ◦ v = (v⊗ v) ·Q−1. (A.27)

A quasitriangular Hopf algebra together with a ribbon element is called a ribbon Hopf algebra.

By a slight abuse of terminology, for brevity we refer in this paper to a finite-dimensio-
nal factorizable ribbon Hopf algebra over k just as a factorizable Hopf algebra. There exist
plenty of such algebras. For example, the Drinfeld double of a finite-dimensional Hopf algebra
B is factorizable provided that the square of the antipode of B obeys a certain condition
[KaR, Thm. 3]. This includes e.g. the Drinfeld doubles of finite groups (for which explicit
formulas for the morphisms Corg;p,q (5.4) can be found in [FFSS]). Another large class {U(N,ν,ω)}
(with N > 1 an odd integer, ω a primitive Nth root of unity, and ν <N a positive integer such
that N does not divide ν2) of factorizable Hopf algebras is described in [Ra2, Sect. 5.2]. U(N,ν,ω)

has dimension N3/(N, ν2)2 [Ra2, Prop. 10b)], and this family comprises the small quantum
group that is a finite-dimensional quotient of Uq(sl(2)) as the special case ν =2 with q=ω−2,
compare [Ra2, p. 260)] and [LyM, Prop. 4.6].

We also need the notions of integrals and cointegrals for Hopf algebras. A left integral of H
is an element Λ∈H obeying

m ◦ (idH ⊗Λ) = Λ ◦ ε , (A.28)

or, in other words, a morphism of left H-modules from the trivial H-module (k, ε) to the regular
H-module (H,m). Dually, a right cointegral of H is an element λ∈H∗ that satisfies

(λ⊗ idH) ◦∆ = η ◦ λ . (A.29)

Right integrals and left cointegrals are defined analogously.
For a finite-dimensional Hopf algebra there is, up to normalization, a unique non-zero left

integral Λ and a unique non-zero right cointegral λ, and the number λ ◦Λ∈k is invertible.
Also, the antipode s of H is invertible. If H is quasitriangular, then the square of the antipode
is an inner automorphism, acting as h 7→u−1 h u with u∈H the Drinfeld element

u := m ◦ (s⊗ idH) ◦R21 . (A.30)

And if H is factorizable, then it is unimodular, i.e. the left integral Λ is also a right integral,
which implies that s ◦Λ=Λ. Moreover, fQ(λ) is an integral, too, and thus is a non-zero multiple
of Λ. One may then fix the normalizations of the integral and cointegral in such a way that

λ ◦ Λ = 1 and fQ(λ) = Λ . (A.31)
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This convention is adopted throughout this paper; it determines Λ and λ uniquely except for a
common sign factor.

A.5 Representations of mapping class groups

As has been established in [Ly3], the spaces (3.4) of chiral blocks come with natural repre-
sentations of mapping class groups for surfaces with holes (that is, with open disks excised).
To describe these or, rather, the representations on spaces of blocks with outgoing instead of
incoming field insertions (see formula (A.34) below), it is convenient to present these groups
through generators (and relations, but these are irrelevant for us, as we are interested in in-
variants). A suitable set of generators of Mapg:n, the mapping class group of genus-g surfaces
with n holes, is obtained by noticing the exact sequence

1 −→ Bg,n −→ Mapg:n −→ Mapg;0 −→ 1 (A.32)

of groups, where Bg,n is a central extension of the surface braid group by Zn (compare Theorem
9.1 of [FM]). As a set of generators one may thus take the union of those for some known
presentations of Mapg;0 [Wa] and of Bg,n [Sco]. This amounts to the following (non-minimal)
system of generators [Ly1,Ly3]:

1. Braidings which interchange neighboring boundary circles.

2. Dehn twists about boundary circles.

3. Homeomorphisms Sl, for l=1, 2, ... , g, which act as the identity outside a certain region Tl

and as a modular S-transformation in a slightly smaller region T ′
l ⊂Tl that has the topology

of a one-holed torus.
(For the relevant regions Tl and T ′

l , as well as the cycles appearing in the subsequent entries
of the list, see the picture below.)

4. Dehn twists in tubular neighborhoods of certain cycles am and em, for m=2, 3, ... , g.

5. Dehn twists in tubular neighborhoods of certain cycles bm and dm, for m=1, 2, ... , g.

6. Dehn twists in tubular neighborhoods of certain cycles tj,m, for j=1, 2, ... , n−1 and
m=1, 2, ... , g.

In particular, for the torus without holes (g=1 and n=0), the generators S =S1 and T = d1
furnish the familiar S- and T-transformations which generate the modular group SL(2,Z). The
regions Tl and T ′

l and cycles am, bm, em, dm, and tj,m are exhibited in the following picture:

b1 bm−1

am

bm

dm

em

Sl

bl bk bg

tj,k

U1

Uj

Uj+1

Un
(A.33)
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Tl is the shaded region in (A.33); it is a one-holed torus forming a neighborhood of the lth
handle, while T ′

l is the smaller region indicated by the dotted line inside Tl.
Also shown in (A.33) are decorations of the boundary circles by objects U1, U2, ... , Un of a

factorizable finite tensor category C. The representation of Mapg:n constructed in [Ly3] acts on
the space

V U
g:n := HomC(L

⊗g, U) (A.34)

of morphisms of C, where

U :=
⊕

σ∈N

Uσ(1) ⊗Uσ(2) ⊗ · · · ⊗Uσ(n) , (A.35)

with L the handle Hopf algebra (3.7) and with N=N(U1,...,Un) the subgroup of the symmetric
group Sn generated by those permutations σ for which for at least one value of i the objects
Ui and Uσ(i) are non-isomorphic. In this representation πU

g,n of Mapg:n the different types of
generators described in the list above act on the space (A.34) as follows (see [FSS3, Prop. 2.4]):

1. Post-composition with a braiding morphism which interchanges the objects that label neigh-
boring field insertions.

2. Post-composition with a twist isomorphism of the object labeling a field insertion.

3. Pre-composition with an isomorphism idL⊗g−l ⊗SL ⊗ idL⊗l−1 ∈EndC(L
⊗g), for l=1, 2, ... , g.

4. Pre-composition with an isomorphism idL⊗g−m ⊗ [OL ◦ (TL ⊗TL)]⊗ idL⊗m−2 , respectively
idL⊗g−m ⊗

[
(TL⊗ θL⊗m−1) ◦QL

L⊗m−1

]
, for m=2, 3, ... , g.

5. Pre-composition with an isomorphism idL⊗g−m ⊗ (SL−1
◦ TL ◦SL)⊗ idL⊗m−1 , respectively

idL⊗g−m ⊗TL ⊗ idL⊗m−1 , for m=1, 2, ... , g.

6. The map that sends f ∈HomC(L
⊗g, U1⊗ · · · ⊗Un)⊆V U

g:n to

( [
(idU1⊗···⊗Uj

⊗ d̃Uj+1⊗···⊗Un) ◦ (f ⊗ id∨Un⊗···⊗∨Uj+1
)

◦ {idL⊗g−m ⊗ [QL
L⊗m−1⊗∨Un⊗···⊗∨Uj+1

◦ (TL⊗ θL⊗m−1⊗∨Un⊗···⊗∨Uj+1
)]}

]

⊗ idUj+1⊗···⊗Un

)
◦
(
idLL⊗g ⊗ b̃Uj+1⊗···⊗Un

)
(A.36)

and acts analogously on the other direct summands HomC(L
⊗g, Uσ(1) ⊗Uσ(2)⊗ · · · ⊗Uσ(n))

of V U
g:n, with σ ∈N, for j=1, 2, ... , n−1 and m=1, 2, ... , g.

Here we have introduced the abbreviations SL, TL, OL, and QL
W for W ∈C, for specific mor-

phisms of C involving tensor powers of L. These morphisms are defined, with the help of
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dinatural families, by

TL ◦ ıLU :=
θ
U∨

U∨

L

ıLU

U

OL ◦ (ıLU ⊗ ıLV ) :=

U∨

ıLU

U

L

c

c

V∨

L

ıLV

V

QL
W ◦ (ıLU ⊗ idW ) :=

U∨

L

U

c

c

W

W

ıLU

(A.37)

while
SL := (εL ⊗ idL) ◦ O

L ◦ (idL ⊗ΛL) . (A.38)

For applications in CFT, we also need to generalize the prescriptions above to the situation
that there are both outgoing and incoming field insertions. To treat this case, we must partition
the set of boundary circles into two subsets having, say, p and q and elements. Denoting the ob-
jects labeling the corresponding insertions by U1, U2, ... , Up and by W1,W2, ... ,Wq, respectively,
we can define objects U and W analogously as in (A.35) and consider the linear isomorphism

ϕ : HomC(L
⊗g⊗W,U)

∼=
−→ HomC(L

⊗g, U ⊗W∨) (A.39)

that is supplied by the right duality of C. Then by setting

πW,U
g,p,q(γ) := ϕ−1 ◦ πU⊗W∨

g,p+q (γ) ◦ ϕ (A.40)

for γ ∈Mapg:p+q we obtain a representation of the subgroup Mapg:p,q of the mapping class group
Mapg:p+q that leaves each subset of circles separately invariant, on the space HomC(L

⊗g⊗W,U).
Also, in the application to correlation functions of bulk fields in full CFT, we deal with the

category Crev
⊠ C instead of C, and accordingly with the bulk handle Hopf algebra K instead of

L. Then in particular for C ≃H-Mod the S- and T-transformations result in the pictures (5.8)
for SK and TK presented in the main text. For further details we refer to [FSS3, St], e.g. OK

for C ≃H-Mod is given by formula (4.2) of [FSS3].
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