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A SPECTRAL SEQUENCE FOR THE HOMOLOGY OF A FINITE
ALGEBRAIC DELOOPING

BIRGIT RICHTER AND STEPHANIE ZIEGENHAGEN

ABSTRACT. In the world of chain complexes F,-algebras are the analogues of based n-fold
loop spaces in the category of topological spaces. Fresse showed that operadic F,-homology
of an E),-algebra computes the homology of an n-fold algebraic delooping. The aim of this
paper is to construct two spectral sequences for calculating these homology groups and to treat
some concrete classes of examples such as Hochschild cochains, graded polynomial algebras and
chains on iterated loop spaces. In characteristic zero we gain an identification of the summands
in Pirashvili’s Hodge decomposition of higher order Hochschild homology in terms of derived
functors of indecomposables of Gerstenhaber algebras and as the homology of exterior and
symmetric powers of derived Kahler differentials.

1. INTRODUCTION

The little n-cubes operad acts on and detects based n-fold loop spaces [Ma72]. Its algebraic
counterpart, the operad that is given by (a cofibrant replacement of) its reduced chains, is the
so-called F,-operad and its algebras are FE,-algebras. In this sense, F,-algebras are algebraic
analogues of based n-fold loop spaces. Benoit Fresse constructed an n-fold bar construction
for any FE,-algebra A,, B"A, [F1la] and showed that the E,-homology of A,, HF"(A,) is the
homology of the n-fold desuspension of B"A,, thus F,-homology calculates the homology of an
algebraic n-fold delooping.

In characteristic zero the operad E, i is quasi-isomorphic to its homology, H.(Fy+1). The
homology of E, 1 codifies n-Gerstenhaber algebras. As one consequence the operations on the
homology of any F,i-algebra are given by the n-Gerstenhaber algebra structure. However, in
finite characteristic this does not hold any longer: If A, is an algebra over the operad F,1,
then H, A, has more structure than an n-Gerstenhaber algebra. The homology of a free F,,,1-
algebra on a chain complex C, carries a restricted n-Gerstenhaber structure and in addition
there are Dyer-Lashof operations to consider. Thus in these cases it is not enough to study the
operad H,(F,+1) in order to understand all homology operations, but we have to understand
the monad A, — H.(E,+1(AL)).

We start in Part 1 by developing a standard resolution spectral sequence in the cases of fields
of characteristic two and zero. We identify its E%-term as the derived functor of indecomposables
with respect to a shifted (restricted) Gerstenhaber algebra structure (Theorem [3.9/and Theorem
[43). The chain complex of an n-fold loop space carries an E,-algebra structure. If the loop
space is of the form Q"™ X for n > 2 and connected X, then our spectral sequence gives
an easy argument for the fact that E,-homology of the chain algebra hands back the reduced
homology of X" X.

As we can express the indecomposables with respect to a Gerstenhaber structure as a com-
posite of two functors we get a Grothendieck-type spectral sequence in the non-additive context
by the work of Blanc and Stover [BS92|. This spectral sequence converges to the input of the
E?-page of the resolution spectral sequence.

In Part 2 we apply these spectral sequences for calculations of E,,-homology.

By forgetting structure every commutative algebra can be viewed as an F,-algebra. In some
cases classical work of Cartan [C54] can be used to identify E,-homology groups of commutative
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algebras. We extend these classes of examples by calculating F,-homology for free graded
commutative algebras on one generator.

A different class of interesting examples of Es-algebras is the class of reduced Hochschild
cochain algebras of associative algebras: For any vector space V, the tensor algebra TV is the
free associative algebra generated by V. Taking the composition with the reduced Hochschild
cochains, C*(—, —), we assign to any vector space V the Es-algebra C*(TV,TV). One can ask,
how free this Es-algebra is. For a free Es-algebra on a vector space V', Fo-homology gives V'
back. Is the homology of the 2-fold delooping, i.e., HE2(C*(TV,TV)), close to V? We give a
positive answer for a one-dimensional vector space over the rationals (Theorem [B3]).

In characteristic zero the resolution spectral sequence for calculating E,,-homology of commu-
tative algebras has trivial differentials from the E?-term onwards and we get a decomposition of
E,,-homology. We identify the summands of the Hodge decomposition of higher order Hochschild
homology in the sense of [P00] with derived functors of indecomposables of Gerstenhaber alge-
bras. This recovers the identification of the Hodge summands of Hochschild homology of odd
order as

HH), 1 (4;Q) & Hpypa (A () g ©p, Q)

for a free simplicial resolution P, of the commutative algebra A but we extend this result (see
Theorem [0.5]) to the Hodge summands of Hochschild homology of even order:

Torp, 1 1_¢(0%, £(4;Q)) 2 (LinQ2k—1)A) (26— 1)(0—1) = HmfZJrl(Symg(QlPAQ ®p, Q).

In the following we work relative to a field k&, which is most of the time specified to be Q or
Fy. We denote by kx the k-vector space with basis element x.
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Part 1. Spectral sequences for E,-homology
2. A SPECTRAL SEQUENCE

We choose a Y:-cofibrant model of the operad E,,+1 and as n will be fixed in the following, we
call this model E = (E(r)). Usually E,41(0) is used to keep track of base-points, but we work
with the reduced version with F(0) = 0. In the following we work with augmented FE-algebras
e: Ay — k and E,;1-homology is an invariant of non-unital F-algebras, so we will consider the
augmentation ideal A, = ker(¢). However we will frequently switch to working with A, when
considering invariants of unital objects, e.¢g. André-Quillen homology.

We use a free simplicial resolution to establish a standard spectral sequence converging to
the E,1-homology of any F-algebra.
Lemma 2.1. For any E-algebra A, there is a spectral sequence

~ o 1 En A
E;, = H(E*(AL) = HJ (A
Proof. As A, is an E-algebra, there is a simplicial resolution of A, with augmentation e: E(A,) —
A,,
—
o A\ $S——= ro AN T— A € A
The spectral sequence associated to the filtration by simplicial degree has
Bl = H (BT () = B (A,

But Ej,11-homology of a free E,i-algebra E(Bi) is isomorphic to H.(Bi) [F09, 13.1.3, 4.4.2]
and therefore the above El-term reduces to Hy(E°*(A,)). O
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For topological spaces Cohen identified the homology of C, 11X for any space X. Here C), 11
denotes the operad of little (n 4+ 1)-cubes. He showed [CLMT76), III, Theorem 3.1] that with
[Fp-coefficients one gets

H,(Cpy1 X;Fp) = W (H, (X Fp)).

Here W, is a free construction that takes the free restricted Lie algebra structure, the partial
Dyer-Lashof structure and the commutativity of H,(Cy41X;F),) into account.

A similar desciption holds for the monad of homology operations in our algebraic setting. In
[F11Db] Fresse describes the homology of E(Cy) for any chain complex C,. Note that

H,(E(C.)) = HJ( E(r) @z, CL7) = @D Hu(E(r) @ps,) C7).

r>1 r>1

We can view the term H.(E(r) @y, C2") as the homology of a bicomplex and as we assumed
that E is Y-cofibrant, the associated spectral sequence has as vertical homology

E(r) @gs,) Ho(CET).

As we are working over a field, there is a quasi-isomorphism from H,(C,) to C.. Therefore
there are no higher differentials and we obtain the following result.

Lemma 2.2.

=~ P H.(E(r) s, (H.C.E").

r>1

For any space X we denote by C.(X,F,) the normalized chain complex of the simplicial
IF,-vector space of simplices in X. The following result is well-known; it is for instance used in
[E11b], but for the reader’s convenience we record it with a proof.

Proposition 2.3. Let W,, denote the monad
Cy = Wi(Cy) :i= W (H.(Cy) ®Fp)/Fp- 1

on the category of non-negatively graded chain complexes with structure maps induced by the
monad Wy, and the isomorphism W, (Cy)®F, = W, (H.(Cy)®F,). Then there is an isomorphism

H(E(=)) = Wa(=)
of monads.

Proof. For any non-negatively graded chain complex C, there exists a (non-unique) based space
X¢ such that the reduced homology of X¢ is isomorphic to the homology of C,. Let E. denote
the unreduced version of E with E,(0) = F,. By Lemma we know that H,(E(C.)) is
isomorphic to H. (€, E(r) ®F,x, H.(X®;F,)®"), which coincides with H(D,50 E+(r) ®F, 3,
H.(XC;F,)® /E,(0) ® H,(X%;F,)®%). Switching to unreduced homology can be done by
introducing the quotient by base point identification, so

H.(EP Ei(r) ®p,s, HJ(XCF,)®"/ ~)

r=>0

where ~ reduces occurrences of the class [pt] € Ho(X;F,) of the base point pt € X by
contracting the elements in the operad by inserting the basis element of £ (0) = [, and divides
out by E1(0) ® Ho(X%F,)® 2 F, ® F, = F,. As we are working over a field we can again
replace the homology of X© by its chain complex by picking representatives for cycles. Since %,
acts freely on Cj,41(r), the normalized singular chains C,(C,,+1(r)) are free as an Fp¥,-module.
As E, is quasi-isomorphic to Cy(C,+1) as an operad, we can identify the term above with

@C Cri1(r) ®r,5, Co(XO)T/ ~)

r=0
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via the Kiinneth spectral sequence. The fact that the shuffle transformation is lax symmetric
monoidal yields that the latter is isomorphic to

Ho((|| Coa () 5, (XOY/ ~)/CL(C(0) x (XE)0)
r=0
where ~ now denotes the usual reduction of base points, so we get the reduced homology of the
reduced monad associated to the operad C,, 41 applied to X. Since the class of the base point
in C,,11X%/ ~ corresponds to the unit element under Cohen’s identification H,(Cj,1(X%)/ ~
) 2 W, (H,(X©)) this yields an isomorphism H,(E(C,)) — W,(H.(C,)). Choosing a wedge of
spheres for X ¢ and XP and observing that every morphism H,(C\) — H,.(D,) can be modelled
via a map X¢ — XP one sees that this isomorphism is natural in C,.

To show that this is indeed an isomorphism of monads we first note that the monad multipli-
cation of H,(E(—)) is induced by the composition in F, whereas the monad multiplication of
W,, stems from the fact that W, is left adjoint to the forgetful functor from what Cohen calls
the category of allowable AR, A,-Hopf algebras to F,-modules that are unstable modules over
the Steenrod algebra.

Iterating the isomorphism above yields

H.(E(E(H.(C4)))) & H(E(H(Cot1 X9/ ~))) 2 Hu(Cpi1 (Con1 X9/ ~) [ ~).

Under this identification the multiplication of H,(E(—)) corresponds to the map induced by
the composition ¢ of C),11. Therefore it suffices to prove that the diagram

Hy(vo)

H*(Cn-i—l(cn-i-lXC/ ~)/ ~) —>H*(Cn+1XC/ ~)

1%

Wy H, (Coi1 XC/ ~) vxe

Wn(yxC)T
W W H, (X)) — Y W, H,(X°)

commutes, where vy denotes the multiplication of the monad W, and vx denotes Cohen’s
isomorphism W, H,(X) = H,.(Cp 11X/ ~).
Note that vx is defined as the morphism corresponding to

H(nx): Ho(X) = UH.(Cny1 X/ ~)

under the adjunction given by W, and the forgetful functor U, whereas yy corresponds to
idyw, m, (x)- Also note that since y¢ is a map of C-spaces H.(y¢) is a morphism of allowable
ARy An-Hopf algebras and that yc¢ o ne, , xo/~ is the identity.

Using these observations allows us to prove the commutativity of the diagram above by
exploiting that the bijections coming from the adjunction are natural. One quickly checks that
taking reduced homology in the upper horizontal of the diagram corresponds to dividing out by
F), - 1w, in the lower horizontal and concludes that H(y¢) is identified with

W W, H, (Cy) = Wy (Wi (Ho (X)) /Fp - Ly, — Wi (H (X)) /Fy - 1y, = W, Ho(C).

Since we used an operad morphism Ey — Cy(Cypy1) to identify H,(EC) with H(Cpy1 X/ ~)
and since vx is induced by the unit map of C,; it is clear that the unit morphisms of the
monads coincide under the isomorphism in question. O

The proof works in broader generality for monads associated to operads P in topology and
their associated chain operads Cy(P) whenever C,(P(r)) is X,-projective for each arity r.

Remark 2.4. In the following we also need to cover the case where we consider chain complexes

that are concentrated in non-positive degrees, thus we have to modify the proof of Proposition

23l If C_, is a chain complex concentrated in non-positive degrees, then the associated cochain
4



complex, C* with C" = C_,,, is concentrated in non-negative degrees and it is quasi-isomorphic
to its cohomology, H*(C*). We choose a space X as above with H,(X%) = H*(C*). As above
we get an isomorphism of monads between

(1) C_. = H.(E(H*(C"))) and C_, — W,,(Cy) := W,(H*(C*) & F,)/Fp - 1w,

3. THE CASEn=1,p=2

Cohen showed in [CLM76, Theorem 3.1] that over a prime field the homology of a free Cj,1-
algebra in spaces, C,, 11X, can be described as a free gadget on the homology of the underlying
space. He also gave a description that allows to deduce the answer in characteristic zero.

For odd primes or for higher iterated loop spaces, the answer is pretty involved, but for p = 2
and n = 1 one is left with a 1-restricted Gerstenhaber structure.

Haynes Miller worked out the case p = 2,n = 1 in [Micc]: For any space, the homology of
Cs X with coefficients in Fy is given by

S(IrL)(H.(X;F2)
where 17 L(—) denotes the free 1-restricted Lie algebra and S(—) is the free commutative algebra
with the induced unique restricted Lie structure. We will recall the definitions and fix some
notation.

Definition 3.1. A 1-restricted Lie algebra over Fq is a non-negatively graded (or non-positively
graded) Fo-vector space, g., together with two operations, a Lie bracket of degree one, [—, —]
and a restriction, ¢:

[ =]t 8 X8 = 8itj41, 1,7 =0,
§: 0 8 — 92i11 i > 0.
These satisfy the relations

(a) The bracket is bilinear, symmetric and satisfies the Jacobi relation
[a, [b,c]] + [b, [¢c,a]] + [¢, [a,b]] = 0 for all homogeneous a, b, ¢ € g,.
(b) The restriction interacts with the bracket as follows: [{(a),b] = [a, [a,b]] and {(a 4+ b) =
&(a) +&(b) + [a, b] for all homogeneous a,b € g,.

A morphism of 1-restricted Lie-algebras is a map of graded vector spaces of degree zero pre-
serving the bracket and the restriction. We denote the category of 1-restricted Lie-algebras by
1rL.

Remark 3.2. Note that these relations imply that [a,a] = 0 and £(0) = 0.

Definition 3.3. A 1-restricted Gerstenhaber algebra over Fo is a l-restricted Lie algebra G
together with an augmentation ¢: G, — 9 and a graded commutative Fa-algebra structure on
G, such that the multiplication in G, interacts with the restricted Lie-structure as follows:

e (Poisson relation)
[a,bc] = bla, c] + [a, b]e, for all homogeneous a,b,c € G,.
e (multiplicativity of the restriction)
£(ab) = a?€(b) + &(a)b* + abla, b] for all homogeneous a,b € G,.

The augmentation is required to be multiplicative and to satisfy e[a,b] = 0 for all a,b € G, and
e&(a) = 0.

A morphism of 1-restricted Gerstenhaber algebras is a map of graded vector spaces of degree
zero preserving the product, the augmentation, the bracket and the restriction. We denote the
category of 1-restricted Gerstenhaber algebras by 1rG.
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In particular, the bracket and the restriction annihilate squares: [a,b?] = 2b[a,b] = 0 and
£(a?) = 2a%¢(a) + a*[a,a] = 0. Thus if 1 denotes the unit of the algebra structure in G,, then
[a,1] =0 for all @ and £(1) = 0.

Usually an augmentation is not part of the definition, but since we consider augmented F-
algebras all 1-restricted Gerstenhaber algebras that we will encounter are naturally augmented.
The requirements on € are equivalent to € being a morphism of 1-restricted Gerstenhaber al-
gebras €: G, — Fo where Fy is viewed as a commutative algebra with trivial 1-restricted Lie
structure.

We denote by 1G, the augmentation ideal of G,. This ideal carries a structure of a non-unital
1-restricted Gerstenhaber algebra and we will call both G, and IG, 1-restricted Gerstenhaber
algebras.

For a 1-restricted Lie-algebra g, the free graded commutative algebra generated by g, S(g),
carries a unique l-restricted Gerstenhaber structure that is induced by the 1-restricted Lie
algebra structure on g and the relations in Definition B3l

Remark 3.4. The functor S: 1rL — 1rG is left adjoint to the augmentation ideal functor
I: 1rG — 1rL and the forgetful functor U: 1rL — grlFy from the category of 1-restricted Lie-
algebras to the category of graded Fo-vector spaces has the free 1-restricted Lie algebra functor
1rL: grlFy — 1rL as a left adjoint.

For p = 2,n =1 the structure on H,(C2X;F2) looks so nice because
Ri(q) = Fo(Q|I = (s1,...,5;) admissible, e(I) > q, s, < q)
reduces to .
Ri(q) = Fo(Q® 0209 || > 1),

Therefore, in Cohen’s identification of H,(C2X;Fs) the contribution of the Dyer-Lashof terms
is absorbed into the free commutative algebra part: a term like

Q'
with 2, in 1rL(H,X;F3) of degree ¢ is identified (in what Cohen calls V;) with xgk. Thus

H,(CyX;Fy) =2 S(IrL)(H.(X;Fy)).
As a corollary to Proposition 23] we get

k—1
2 q772q7q) ® xq

Corollary 3.5. For any non-negatively graded (or non-positively graded) chain complex over
Fy, Cy, we have
H,(EyC\;F9) =2 IS(1rL)(H,.C).

Definition 3.6. For an augmented 1-restricted Gerstenhaber algebra over Fs we denote by
Q1r¢ the Fa-vector space of indecomposable elements with respect to the three operations, the
product, the bracket and the restriction, i.e., the quotient of IG, by the ideal generated by
these operations:

Q1r¢(Gy) = IG,/(&(a), [a,b],ab,a,b € IG,).
We extend this notion to IG,, so Q1,.¢(IGy) = IG./({(a),[a,b],ab,a,b € IG,).

Similarly, we denote by Q,(—) the indecomposables with respect to the algebra structure and
@1, (—) the indecomposables with respect to the 1-restricted Lie algebra structure.

Lemma 3.7. For any augmented 1-restricted Gerstenhaber algebra G, over Fy the vector space
of indecomposables Q1rg of G« can be computed as the composite

erG(G*) = erL(Qa(G*))-

Proof. As we demand that ¢ annihilates Lie brackets and restrictions, there is a well-defined
L-restricted Lie-structure on /G, and the algebra indecomposables, Q,(G«) = IG./J, inherit a
1-restricted Lie algebra structure from G,: For homogeneous a,b € G, we set

[a+ J,b+ J] :=[a,b] and {(a + J) :=&(a).
6



The relations from Definition B3] tell us that this gives a well-defined bracket and a well-defined
restriction on Q,(G,). Taking the 1-restricted Lie algebra indecomposables of Q,(G.) kills
expressions in Qq(Gy) that are of the form &(a) with a € IG, and [a,b] with a,b € G, so we
kill everything in G, that is a product, a bracket or a restricted element. O

The algebraic indecomposables of a free commutative algebra on a (graded) vector space
hand back the vector space and the indecomposables with respect to the 1-restricted Lie algebra
structure take 1rL(V;) as input and have V; as output, so we get:

Lemma 3.8.
Qura(S(1rL) (Vi) = Vi and Qu,¢(IS(1rL)(Va)) = Vi.
We want to identify the E?-term of the spectral sequence

Ej = Hy(E(A.)) = (IS(rL))P(Ho(AL)))g = Hy2 (AL).

The homology of A, is a non-unital 1-restricted Gerstenhaber algebra over Fs, so the free-
forgetful adjunction identifies

.= (IS(IrL)PY (H,(AL)) — (IS(IrL))P(H,(A,)) — ... — IS(1rL)(H.(A,))

as aresolution coming from a simplicial resolution of H,(A,). Here, the term (IS(1rL))P™(H,.(A.))
is in resolution degree p. Applying the functor QQ1,¢ to this simplicial resolution gives

.= (IS(ArL))P(H.(A,)) — (IS(1rL))P Y (H.(A,)) — ... — H,(A,).
This shows:
Theorem 3.9. The above E'-term is isomorphic to

E}, 2= (Que(ISArL)P T (H.(A))))

and the d*-differential takes homology with respect to the resolution degree. Therefore the E2-
term calculates derived functors of indecomposables of the homology of A..

B, = (L,Qua(H.(A.)),.

4. THE RATIONAL CASE

Most things are similar for the rational case with the difference that we consider n-Gerstenhaber
algebras for all n > 1. In this section the ground field will always be Q.

Definition 4.1. An n-Lie algebra over Q is a non-negatively graded (or non-positively graded)
Q-vector space, L, together with a Lie bracket of degree n:

(= —]: Li x Lj = Liyjin, i,j =0,
such that the bracket is bilinear and satisfies a graded Jacobi relation
(=D [z, [y, 2]l + (=D, [z, 2] + (=1)"[2, [z,9]] = 0,
and a graded antisymmetry relation
[, y] = —(=1)"[y, 2].

Here, p = |z| +n, ¢ = |y|+n and r = |z| +n. A morphism of n-Lie algebras is a map of graded
vector spaces of degree zero preserving the bracket. We denote the category of n-Lie algebras
by nL.

Note that there is an operadic notion of n-Lie algebras involving n-ary Lie brackets. That is
something different.
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Definition 4.2. An n-Gerstenhaber algebra over Q is an n-Lie algebra G, together with a
unital commutative Q-algebra structure on G, and an augmentation €: G, — Q such that the
Poisson relation holds:

[a, bc] = bla, c] + [a,b]e, for all homogeneous a,b,c € G,

and such that e[a,b] = 0.

A morphism of n-Gerstenhaber algebras is a map of graded vector spaces of degree zero pre-
serving the product, the augmentation and the bracket. We denote the category of (augmented)
n-Gerstenhaber algebras by nGG. As in the characteristic two case, we also consider IG, as a
non-unital n-Gerstenhaber algebra.

Let nG denote the free n-Gerstenhaber algebra functor from the category gr Vetg of graded
rational vector spaces to the category of augmented n-Gerstenhaber algebras. Then this can be
factored as S onL where nL denotes the free n-Lie algebra functor.

Similarly, we can factor the functor of n-Gerstenhaber indecomposables, ¢, as the algebraic
indecomposables followed by the n-Lie indecomposables:

Qnc = Qnr © Qq-
Theorem 4.3. There is a spectral sequence with
~ A En 1
B % (LyQua(Hi(A))))g = H (A)
for every E, 1-algebra A, over the rationals.

Example 4.4. Let X be a connected and well-behaved topological space and let n be greater
or equal to one. In characteristic zero, H,(C),+1X;Q) is isomorphic to the free n-Gerstenhaber
algebra generated by the reduced homology of X [CLMT76]. Thus the above E2-term for A, =
Cy(Cp+1X; Q) is isomorphic to

Epy = (LyQua(nG(H.(X; Q)
which is concentrated in bidegrees (0, ¢q) and thus the spectral sequence collapses and gives
HP 1 (Cu(Cri1 X;Q)) = Hy(X;Q).

Note that H,(Cp1X;Q) = H,(Q"FI¥nt1X Q) if X is path-connected, thus in this case the
algebraic delooping induced by F,i-homology corresponds to a geometric delooping.

5. SOME APPLICATIONS OF THE RESOLUTION SPECTRAL SEQUENCE

Let U be the forgetful functor from the category of n-Lie algebras to graded Q-vector spaces.

Lemma 5.1. Let V' be an n-Lie algebra and let C be S(V') where the n-Gerstenhaber algebra
structure on C' is induced by the n-Lie structure of V. Then a free resolution in the category of
simplicial n-Gerstenhaber algebras of C is given by Y, with

Y, = S(nLoU)* V), £>0.

Proof. We use the adjunction (nL,U) to obtain the simplicial structure on Y,. The usual
simplicial contraction for (nL o U)*™! shows that Y, is a resolution of S(V). Note that the
augmentation

Yo=SnLoU)(V)— S(V)

is a morphism of n-Gerstenhaber algebras.

The degeneracy maps send nG(U(nL o U)*(V)) to nG(U(nL o U)*1(V)) via maps of the
form nG(f) with f: U(nL o U) (V) — U(nL o U)**(V), thus Y, is a free simplicial resolution
of S(V). O



Corollary 5.2. For S(V) as in Lemma [51] there is an isomorphism

(LanG(S(V)))q = (LanL(V))q
for all p > 0 and all q. In particular, for any E,1-algebra A, with H.(Ay) = S(V) with S(V)
as in Lemma 5, the E*-term of Theorem [[.3 is isomorphic to

Ef),q = (LanL(V))q-
Proof. Using the resolution S(nL o U)**1(V) of S(V) we get that
Qna(S(nLo U H(V)) = U((nL o U))(V) = Qur((nL o U)* (V).

As (nL o U)*TY(V) is a simplicial resolution of V by free n-Lie algebras, the claim follows. [
Remark 5.3. There is an equivalence of categories between the category nL and the category
of graded Lie algebras, L, where the latter category is nothing but the category of 0-Lie al-

gebras [KM95, Proposition 1.6.3]. The equivalence is given by the n-fold suspension, X", and
desuspension, >~ ":
En
nL " L.
E—TL
An analogous result holds in characteristic two [CLM76, III §15].

We can use the resolution exhibited in to exploit the equivalences between the different
n-Lie structures.

Corollary 5.4. Suppose that H.(A) = S(V) as in[51l Then for every £ € 7 the E*-term of
the spectral sequence calculating E, 1-homology of A can be computed as

Elaq = (LPQZL(En_EV))quan-
Proof. Using the natural isomorphism nL = S~"¢L¥"¢ and the fact that this is an isomor-
phism of monads we find
Ey, = (mpU(nLU)(V))g = (mpU(SLE™ V) (V)
= (mU(SLUS" ) (V) = (mp S "U(LLU)* (2" V),
= (WPU(ELU).(EH_KV))qunf&
which proves the claim. O

Remark 5.5. Similar results hold in characteristic two, ¢.e., if V' is a 1-restricted Lie algebra
over Fy and if C'= S(V) carries the induced 1-restricted Gerstenhaber algebra structure, then
S(1rL o U)**! is a resolution of C' by free 1-restricted Gerstenhaber algebras and the E2-term
of the resolution spectral sequence simplifies to

Ef),q = (Llev"L(V))q

and the suspension isomorphism yields that this in turn can be expressed as derived functors
of indecomposables of restricted Lie algebras.

In the following we want to use the Tor interpretation of Lie-homology in our setting:

Remark 5.6. Let g be a graded Lie-algebra, restricted if & = Fo and unrestricted over the
rationals. The usual Tor interpretation (see for instance [Q70]) of LsQr(g) holds in the graded
case. Indeed one easily identifies the indecomposables of the standard cofibrant replacement

X = L**!(g) (or X = rL*!(g) in the restricted case) with 4(X) ®y(x) k. Here 8(g) denotes

the (restricted) universal enveloping algebra of the bigraded Lie algebra g while 4((g) denotes its
augmentation ideal. The Kiinneth spectral sequence constructed by Quillen [Q67, I1.6] can be
generalized to the graded setting, and since X consists of free graded (restricted) Lie algebras,

(X)) is a cofibrant U(X)-module. Hence we get a spectral sequence of internally bigraded
vector spaces

B2 = Torh M) (1, (8U(X)), k)q = Tpiq(U(X) @y(x) k),
9



where ¢ is the degree originating from taking homotopy groups. Filtering $4(X) and (g) by the
standard filtration for enveloping algebras and considering the associated spectral sequences, a
bigraded version of the Poincaré-Birkhoff-Witt theorem shows that the augmentation {(X) —

{(g) induces an isomorphism on E! (see [Pr70] for the case of characteristic two). Hence the

above E%-term equals Torg(g) (U(g), k) concentrated in degree ¢ = 0. Finally the short exact

sequence

0—— (g) U(g) k 0

yields
L.Qz(a) = Tort ¥ (k, k).

An example of how this simplifies our spectral sequence is given by the chains on an iterated
loop space on a highly connected space. For an (n + 1)-connected space X the space Q"X
is path-connected. A classical result expresses H,(Q2"T'X;Q) as a free graded commutative
algebra: The connectivity assumptions ensure that due to the Milnor-Moore result [MMG65],
p.263] the Hurewicz map

(X)) ©Q = H(Q"X;Q)
induces an isomorphism of Hopf algebras between the enveloping algebra of the Lie-algebra
T (" X) ® Q and H,(Q"M'X;Q). Here, the Lie-structure on the source is given by the
Samelson product. For n > 1, this Lie-structure is trivial and thus the enveloping algebra is
isomorphic to the free graded commutative algebra generated by . (2"t X) ® Q:

S(m Q" X) © Q) = H ("M X;Q).

Cohen showed [CLM76] p. 215] that the Whitehead product on ¥~ !7,(X) ® Q corresponds
to the Browder-bracket A, on H,(2""!1X;Q). Gaudens and Menichi observed [GMO7, Theorem
4.1] that this leads to an isomorphism of nG-algebras

(2) S(E " (QX) © Q) 2 H,(1X;Q)
where the n-Lie structure on the left-hand side is induced by the Samelson bracket on m, (£2.X).

Proposition 5.7. For every (n + 1)-connected space X

Ly(Que) (H« ("1 X; Q) = Tor? 1350, Q).

Proof. Corollary implies that the E%-term of the resolution spectral sequence in this case is
isomorphic to

(LsQnL)t(Ein (W*(QX) ® Q)))
Corollary 5.4 together with the Tor-description of Lie-homology and the Milnor-Moore Theorem
show the claim. O

Remark 5.8. Up to a shift in degrees the above E?-term is isomorphic to the E?-term of

the Rothenberg-Steenrod spectral sequence [RS65]. The latter converges to the homology of

the space X. We conjecture that there is an isomorphism of spectral sequences between our

resolution spectral sequence and the (shifted) Rothenberg-Steenrod spectral sequence.
Anderson constructed a spectral sequence [An71] whose E2-page is

2 ~ n+1 n+lvy.
EZ = gHM(H QX Q)),

and which converges to Hp,4(X; Q). Here HH Lnﬂ} denotes Hochschild homology of order n+1
in the sense of [P00].

However, in his setting H, (2" X; Q) is considered as a graded commutative algebra, whereas
the n-Lie structure is ignored. In this situation Hochschild homology of order n+1 is isomorphic
to Ey,41-homology,

HHP(H(QIX;Q)), 2 H (H(Q X Q).

p—n—1
Thus his spectral sequence starts off with F,, 1 1-homology of the underlying graded commutative
algebra of H, (2" X:Q) and converges to H,(X;Q).
10



6. THE BLANC-STOVER COMPOSITE FUNCTOR SPECTRAL SEQUENCE

We know that working relative to Fo we can factor Q1,¢ as Q1,1 © Q. and similarly in the
rational setting we have Qg = Qnr © Q4. Therefore we want to use the composite functor
spectral sequence of Blanc and Stover in order to approximate the E2-term of our resolution
spectral sequence (as in Theorem [3.9] and Theorem [£3)). Let C and B denote categories of
universal graded algebras such as the category of graded commutative algebras (over Q or [Fy),
the category of (restricted) m-Lie algebras or of (restricted) n-Gerstenhaber algebras. Let A
denote a concrete category such as the category of graded vector spaces over a field. Moreover
let T: C — B and Z: B — A be functors, then Blanc and Stover prove the existence of the
following spectral sequence.

Theorem 6.1. [BS92| Theorem 4.4] Suppose that TF is Z-acyclic for every free F' in C. Then
for every C in C there is a Grothendieck spectral sequence with

EZ, = (LsZ)(L.T)C = (Lot (Z o T))C.

The condition that TF is Z-acyclic means that the left derived functors LL,Z applied to TF
are trivial but in degree zero where they are isomorphic to ZTF. The terms LL,Z are a certain
extension of the derived functors of Z to the category of II-B-algebras, i.e., Z takes the homotopy
operations into account that live on the homotopy groups of every simpicial B-algebra.

If we unravel the notation in [BS92, Theorem 4.4] then the E2-term gives

Ey = msmiZ(Bas)

where the notation is as follows: Let Y, — C be a cofibrant resolution of C in the Quillen
model category of simplicial objects in C. Then B, , is a free resolution of T'Y, in the E%-model
category structure on the category of bisimplicial objects in B [DKS93|, 5.10], [BS92, 4.1]. As
we have various E?-terms floating around, we will call this model structure the DKS-model
structure. If B, o in bidegree (t,s) is By s then i is the tth homotopy group with respect to the
first simplicial direction and then 7T§B.,. is a free simplicial resolution of m; 1Y, by II-B-algebras.

Remark 6.2. As the functor Z is an extension of Z to the category of II-B-algebras the terms
on the E2-page, (LsZ;)(IL.T)C, are not the derived functors of Z evaluated on L,T(C). See
Remark for an explicit example.

Proposition 6.3.
o [f the ground field is Fo and if we consider the sequence of functors

1rG Qe 1rL Qire grlFy,

then for any C € 1rG the E?-term of the spectral sequence simplifies to
EZ, = (Ls(Q1r1)t)(AQ,(C|Fa,Fa)).

e For the sequence

nG Qe nL Qni grVetg

over the rationals, the spectral sequence has E?-term isomorphic to

(Ls(@nr))(AQ.(CIQ, Q).

Proof. There are two adjoint pairs, (1rG, V') and (nG, V'), where V' denotes the forgetful functor
to the underlying category of graded vector spaces. Associated to these are standard simplicial
resolutions for calculating L.Q,(C), namely (17G o V)**1(C) for characteristic two and (nG o
V)*T1(CO) for characteristic zero. The free 1-restricted Gerstenhaber algebra generated by a
graded vector space W, is S(1rL(W,)), the free graded commutative algebra generated by the
free 1-restricted Lie algebra on W,. In particular the above mentioned resolutions consist of free
graded commutative algebras and Q,(S(1rL(W,))) is 1rL(W,), which is Qi,r-acyclic. Since
the derived functors of ), compute André-Quillen homology we get a spectral sequence of the
form above. Similar arguments hold for n-Gerstenhaber algebras. O
11




Remark 6.4. How can one calculate these E2-terms? First one resolves C' simplicially by free
Gerstenhaber algebras, P, — C, and takes indecomposables, Q,(P,). This is now a simplicial
object in some category of Lie algebras (n-Lie or restricted 1-Lie), thus one has to find a free
resolution of this object in the DKS-model structure as explained in [BS92, 4.1.1]

Over the rationals we want to compare FE,-homology of a commutative algebra with F,,-
homology for n # m. To this end, we first compare the model category structures on the
corresponding categories of simplicial shifted Lie algebras.

Let us briefly recall the model category structure on simplicial n-Lie algebras, snL [Q67, II,
§4]:

e A map f:ge — g, is a weak equivalence if U(f) is a weak equivalence of simplicial
Q-vector spaces.
e Such a map is a fibration, if the induced map f

mo(f)
70(ge) ——— mo(ge)
is surjective.
e A map is a cofibration if it has the left lifting property with respect to acyclic fibrations.

Proposition 6.5. The model categories of simplicial n-Lie algebras and of simplicial graded
Lie algebras are Quillen equivalent.

Proof. The equivalence (X", X7") between n-Lie algebras and graded Lie algebras that we
mention in Remark [5.3] preserves and detects weak equivalences as these are given by reference
to the underlying simplicial graded vector spaces, hence a morphism f: g — X "g’ of n-Lie
algebras is a weak equivalence if and only if ¥"(f): ¥"g — g’ is one. Similarly, suspension does
not affect surjectivity of maps. O

What we actually need is to extend this Quillen equivalence to the corresponding model cate-
gories of simplicial Lie II-algebras.

Theorem 6.6. The model categories of simplicial n-Lie-I1 algebras and of simplicial graded Lie
II-algebras are Quillen equivalent.

Proof. We first show that the n-fold suspension and desuspension functors pass to functors
between (shifted)-II-Lie algebras. Let g, be an n-Lie algebra with n-Lie homotopy operations.
These operations are parametrized by elements in

N
[nL(QS™(¢)s), nL(ED QS™ (£:)e)]sni
i=1

where S™(¢) is the graded simplicial set that has the simplicial m-sphere in degree ¢. If we
consider X"g,, then this inherits operations parametrized by

N N
[E"nL(QS™(0)), S nL(ED QS™ (€:)e))sr. =[L(E"QS™(€)s), LIED S"QS™ (4:)e))s
=1 =1

N
=[L(QS™ (¢ — n)), LIED QS™ (£; — n)e)]sL.
i=1
Vice versa the n-fold desuspension of a graded Lie II-algebra inherits Lie homotopy operations.
Weak equivalences and fibrations are again determined by the underlying simplicial vector

spaces and on this level (de)suspensions just shift the internal grading. (]
12



Lemma 6.7. Let A be an augmented E-algebra and £ € Z. Then there is a natural isomorphism
5" LsQnp )i (AQ.(HLA|Q; Q)) 2 (LaQep )i (5" AQL(HLAQ; Q).

Proof. Let Y, be a resolution of H,A as a simplicial augmented Gerstenhaber algebra such that
Y, is cofibrant as a simplicial commutative algebra. As we explained above, we have

(LsQnL)t(AQ*(H*A|@§ Q)) = 7"-sﬁanL(B',O)
where B, o is a cofibrant replacement of @,Y,. in the category of bisimplicial n-Lie algebras
with respect to the DKS-model structure. According to [BS92), 4.1] the following conditions are
sufficient for B, o to be cofibrant:
e For fixed external degree s each B, s is homotopy equivalent to nL(X[s]s) as a simplicial
n-Lie algebra, where X[s], is weakly equivalent to a sum of spheres @, QS™(r;)a.
e The external degeneracies are induced by maps X|[s| — X[s + 1] which are inclusions of
summands up to homotopy.
Blanc and Stover show as well that such a B, o can always be constructed.
Suppose that B, , is a cofibrant replacement fulfilling these conditions. Now consider E”*ZB.,.
Regrading the internal nonsimplicial degree does not affect the homotopy groups, so

TN By o = 85 02" mQaYe = 05 0m X" Q0 Y

and we find that E"_KB., is a resolution of E"_KQGY.. It is easy to see that E"_KB., is
cofibrant as well: We know that X" ‘B, ; = (L(X"“X[s],) and that suspending a simplicial
sphere QS™:(r;) internally just shifts r;. Hence we can compute (LsQr)¢(X"*AQ, (H.A|Q; Q)
as the homotopy groups of @y LE"_KB.,.. Exploiting the adjunction between ,;, and the functor
which endows a graded Q-vector space with a trivial /-Lie algebra structure we obtain

Qe o X"t 2B Q,,.
Therefore the homotopy groups in question are the homotopy groups of
EnianLBo,o
and the result follows. O
Since the composite functor spectral sequence is the spectral sequence associated to the
bisimplicial object given by applying the indecomposables functor to a resolution with respect
to the DKS model structure it is clear that an isomorphism of resolutions yields a morphism

of spectral sequences. Note that deriving a functor followed by a suspension equals suspending
the derived functor.

Corollary 6.8. The above isomorphism is part of a morphism between the suspension of the
Grothendieck spectral sequence

Eniz(LsQnL)t(AQ*(H*A|QaQ)) = EniéLerthGH*(A)

associated to Q1 0 Q4 and the Grothendieck spectral sequence
(LsQer)e (X" AQ.(HLAIQ; Q) = Lo1t(Qer 0 5" 0 Qo) He(A).

Remark 6.9. We could deduce that the E%-term of the spectral sequence calculating F,, -
homology is

LpQna(H.(A)) = Eﬁ_an(QﬁL oxto Qa)(H.(A)),
but this is clear since
Qer o X"t 2yt Q, .

Identifying n-Lie-II algebra structures is hard. Sometimes we can reduce the complexity
of that task. In characteristic zero, the Blanc-Stover spectral sequence simplifies due to the
following well-known result.

Lemma 6.10. Let k = Q. A Lie-II algebra m.(ge) is a bigraded Lie algebra.
13



Proof. The Lie-II structure on the homotopy groups of a simplicial graded Lie algebra is the
structure induced by elements in

N
[L(QS™(k EB@S"Z = 7 (L(ED Q5™ (ki)
i=1

Set X = @Z 1 Q8™ (k;). Interpreting the Lie operad as a constant simplicial operad in graded
vector spaces we find that we need to calculate 7, (€D, Lie(j) @, (X)®9),.
Since over Q every ¥;-module is projective we see that this is isomorphic to

P P Lictlass;, P Fn(X)n @ @70 (X,

720 a+b=k ni+..+nj=n

bi+...4b;=b
e., the free bigraded Lie algebra on N generators of degree (k;,n;), where we now consider
the Lie operad as an operad in bigraded modules concentrated in bidegree (0,0). This yields
that all homotopy operations on ,(ge) are the ones induced by the Lie structure of ge via the
Eilenberg-Zilber map. (]

We obtain an analogous result in finite characteristic.

Lemma 6.11. Let k be ). If g = m. X, is a restricted I1-Lie-algebra that is concentrated in
m9Xe, then the 11-Lie-algebra structure on g reduces to a restricted Lie-algebra structure.

Proof. According to [BS92, §3] the operations on 7 X, are parametrized by elements in the set
of homotopy classes of simplicial restricted Lie algebras

[rL(S°(k)),rL @S i)]srL-

Here, S(r) is the simplicial graded [F,-vector space that is Fp[r] in every simplicial degree and
[F,[r] is the graded [F,-vector space that is I, concentrated in degree r. As the simplicial direction
is constant in this case, the above set of homotopy classes reduces to the set of homomorphisms
of restricted Lie-algebras

N N
rL(rL(F,y[k]), rL(ED Fplki))) = rLED Fplkil)s-
i=1 i=1

Thus we get the free restricted Lie-algebra on N generators in degree k and the operations
reduce to a restricted Lie-structure on g. O

Part 2. Examples
7. En+1—HOMOLOGY OF FREE GRADED COMMUTATIVE ALGEBRAS

In the following, we will consider free graded commutative algebras on one generator. For
the general case note that working over a field ensures that E,-homology of a tensor product
of graded commutative algebras can be computed from the E,-homology of the tensor factors:
if A, B, are two graded commutative algebras, then E,,-homology of A, ® B, can be identified
with Hochschild homology of order n with coefficients in the ground field k:

HE (A, B.) = HH (A, © B.; k)

which is defined as the homotopy groups of some simplicial set arising as the evaluation of a
certain I'-module L(A, ® By; k) on the simplicial n-sphere,

HHY, (A. @ Bisk) 2 1o n £(AL © B k)(S7).

The latter is isomorphic to

Tatn(L(As k) (S") @ L(By; k)(S"))
14



and hence the Kiinneth theorem expresses this in terms of tensor products of Hochschild ho-
mology groups of order n. For more background on Hochschild homology of order n see [P00]
or [LR11l p. 207].

7.1. Characteristic zero, n > 1. Let A = Q[z] with the generator = being of degree zero,
thus H, A = A. L

We know that F,ii-homology of the non-unital algebra Q[z] is isomorphic to the shifted
Q-homology of K(Z,n + 1) (see [C54] or [LR11]):

HE™ M (Qf]) & Heynr (K (Z,n +1),Q).

We know that rationally the cohomology of K(Z,n + 1) is an exterior algebra on a generator
in degree n + 1 if n 4+ 1 is odd and is a polynomial algebra on a generator of degree n + 1 for
even n + 1 and thus by dualizing we get the answer for H,p+1(K(Z,n+1),Q).

For odd n + 1 the polynomial algebra Q[z] is actually a free n-Gerstenhaber algebra be-
cause the bracket [x,z]| has to be trivial. Therefore the derived functors of n-Gerstenhaber
indecomposables are trivial but in degree zero where we obtain the Q-span of x and thus

Bt iy o JQ *=0
H, " (Qx]) = ’ ’
P @) {0, o
and this agrees with the above result.

Proposition 7.1. The free graded commutative algebra S(xz;) on a generator x; of degree j € Z
has as Ey1-homology:

an«kl (rx])) o~ @7 * = j'7

0, *#J,

for 7 +n even and
@N0@7 *:_n_lzja
Q, j#*F-—n—1x=s(j+n+1)+7j forans=>0,
0, otherwise

12

HE™ (S(x;))

for 7 +n odd.

Proof. The E?-term of the resolution spectral sequence can be identified with

~ S(Tptj ~ QS
Eiq >~ T01r§4(_1 +J)(@,Q)q+n =S +1(35n+j [1])q+n-

The internal degree of x4 ;[1] is still n+j but for forming the free graded commutative algebra,
S(n+5[1]), Tnyj[1] is viewed as a generator in degree n+j+1. By S**! we denote the monomials
of length s + 1. Powers of x4 ;[1] are trivial if n + j is even thus we get a single contribution
from s = 0 of internal degree n+ j = q + n.

In the odd case, we obtain the condition that the internal degree of z,4;[1]*T! has to be
q + n, thus (s + 1)(n + j) = ¢ + n. Therefore we get that s + g has to be sn+ sj + s+ j as
claimed. (]

7.2. Characteristic two. For a generator, zg, in degree zero, we have that Es-homology of
the non-unital polynomial algebra on z( over a field k is (up to a 2-shift in degree) the homology
with k-coefficients of K(Z,2) = CP*°. It turns out that shifting the degree of the polynomial
generator down to degree minus one, trades the complex numbers for the reals. More generally,
we compute Eo-homology for every polynomial algebra Fy[z,,] with a generator of degree n € Z.
We always assume that the 1-restricted Lie structure on the polynomial algebra is trivial. Note
that the suspension of a 1-restricted Lie algebra is a restricted Lie algebra, similar to (.3l

Proposition 7.2. Up to a shift, E5-homology of a polynomial algebra Fo[z_1] is isomorphic to
the homology of RP*>:
HEP?(For 1)) = Ho1 (K (Z/27,1); Fy).
15



Proof. According to our E%-term is given by
Ei,q = ((LlerL)(F2x—1))q-
Using the suspension, we obtain from the Fo-analogue of [5.4] that
Y(LpQurr)(Faz—1) = (LyQrr) (XF2x 1) = (LyQr1) (Fazo)

where z( is a generator in degree zero.
As the restricted Lie-structure on Foxg is trivial, its restricted enveloping algebra is

8, (Fao) = Falzo] /25 = F2[Ch].
Therefore
(LsQrr) (Fawo) = Tor 2™ (Fa, Fa) & Hyy1(Cos Fo) = Husr (RP; F).
Hence the E2-term is concentrated in bidegrees (s+1, —1), thus Hg,1(RP>;Fs) is isomorphic

to HP2(Fo[z_41]). a
In broader generality we can determine Es-homology of F|x,| for arbitrary degree n € Z.
Proposition 7.3.
On, F2,  ifn=-2,x=-2,
H (Fala,]) = | Fa, forn # =2« =s(n+2)+n,s >0,

0 otherwise.
Proof. As above we get that
S(LsQurr) (Foarn) 2 (LsQrr) (Faarntn) = Torss 2"+ (Fy, Fy).

As the Lie-structure on Fox,, 11 is trivial, the enveloping algebra is again a truncated polynomial
algebra. We take the projective resolution of Fy over Fa[z,41] that starts with

S R[] /g = Falwnta] /254

where X1 is sent to x,,1 and X"z, 1 goes to zero. We extend this resolution to the left,
obtaining

el Eg(n+1)F2[xn+1]/x,'2,L+l — ... EnJrle[.%',H_l]/x%Jrl — Fg[xn_i_l]/x%Jrl.

Tensoring this with Fy over Fa[z,,11]/22_, gives a chain complex with " +DF, in degree ¢
and trivial differential.

Therefore
Torilﬁﬁnﬂ)(FQ, Fy) = R+,
and this is concentrated in bidegree (p, q) = (s, (s+1)(n+1)—1) and contributes to total degree
p+qg=sn+2)+n. O

8. REDUCED HOCHSCHILD COCHAINS

Normalized Hochschild cochains C*(A, A) of an associative k-algebra A constitute an algebra
over an unreduced FEs-operad [MS02]. The induced 1-Gerstenhaber structure on Hochschild
cohomology was already described in [Ge63]. Unfortunately the augmentation inherited from A
via C%(A, A) = A — k is not compatible with the Ep-structure: Applying the brace operations
as described by McClure and Smith to cochains in the augmentation kernel might yield the unit
element in C°(A, A). Hence we are led to consider the following subalgebra of the Ej-algebra
C*(A, A): Denote by C*(A, A) the cochain complex given by

C*(4, A),k > 0,

CH(A, 4) = {CO(A,A),k =0,

and set the braces to be zero whenever one of the arguments is equal to 1 € C%(4, A). One
easily checks that this is an Fs-subalgebra of C*(A, A) and that the augmentation respects the
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Es-structure. The augmentation ideal of these reduced Hochschild cochains is C*(A, A). i.e.,
the normalized cochain complex computing Hochschild cohomology of A with coefficients in A.

Note that we consider Hochschild cochains, so with respect to cohomological grading the Lie
bracket on cohomology is of degree —1. In the following we consider Hochschild cochains as
a non-positively graded chain complex, so that we get an ordinary 1-restricted Gerstenhaber
structure on the homology.

8.1. Hochschild cochains for k[z]. The following is a standard result.
Lemma 8.1. For A = k[x] reduced Hochschild cohomology is
HHO (klz), Wa]) = HH (kla], K[e]) = ¥[a].

In order to exploit our spectral sequence, we have to understand the induced structure on
Hochschild cohomology. Hochschild cohomology is concentrated in degrees zero and one, so the
multiplication (cup-product) gives rise to a square-zero extension.

A derivation f € Der(k[x], k[x]) can be identified with f(z). We denote by p’ the formal
derivative of a polynomial p € k[z]. Observe that the product of p’ with ¢ € k[z] is again in
Lemma 8.2. The Lie bracket

HH' (k[x], k[2]) © HH' (k[z], k[a]) — HH' (k[z], k[2])
s given by the usual Lie bracket of derivations, i.e.,
[f.9l=gof—Ffog=df— [
whereas for o € k[x] = HH®(k[z], k[z]) and f € HH'(k[z], k[z]) the bracket is given by
[f, 0] == fla) = df.
For k = Fy the restriction & : HH (Fo[x], Folz]) — HH'(Fo[z], Folx]) sends f to f'f.
Proof. The first facts can be found in [Ge63]. A direct calculation shows that £ satisfies the

properties of a restriction. To this end note that second derivatives of polynomials in charac-
teristic two vanish. We also know that we actually have a (1-restricted) Gerstenhaber structure

on HH*(Fy[z],Fo[x]), so the restriction is determined by £(z). Then
§()'g +&()g" = [§(x), 9] = [, [z, 9]l = g + xg', for all g

implies that £(x) = x, so our choice of £ is a unique restriction on HH*(Fq[z], Fa[z]). O

Note that the Lie-bracket is trivial on HH® x HH? and so is the restriction on HH®. In
particular, HH* is far from being a free (restricted) 1-Gerstenhaber algebra.
Let k = Q. The Hochschild cohomology groups in question are

HE*(Qle), Qla])+ = Qo] ® Aly-1,

where x is identified with 2 € HH°(Q[z], Q[z]) and y_; with » € HH'(Q[z], Q[z]). The 1-Lie
structure described in Lemma corresponds to setting [y_1,xo] = ¢, all other brackets can
then be determined by using the Poisson relation. Hence applying 5.1l yields the following.

Theorem 8.3. For Q[z] the Ey-homology of the totally reduced Hochschild cochains on Q|x] is
concentrated in degree —1 with

HE (C*(Qla), Qlz)) = Q.
Proof. According to [5.1] the E2-page of the spectral sequence we consider is given by
E]aq = (LpQ12(W))q
with 1-Lie structure on W = Q(zo, y_1) given by [y_1,x0] = x¢. Using the equivalence between

the category of 1-Lie algebras and the category of Lie algebras this yields

~ - HEW
E}%,q = (E 1Tbrp—(|—1 )(@7(@))(17
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where now YW = Q(z1,y0). We use the resolution for graded Lie algebras given by May in
[Ma66]: Set

Q@ 8 @ UEW), i >0,

1—17 "%

o {u(zW), i =0,

with lower indices indicating the internal degree of the elements. Define P, — Py by aél) ®1 — yo

and bgl) ®1 + x1. Define P; — P,_1 by agi)l Q1 bz(:l) ®yo+ (i— l)bgi_ll) ®1— al(-i:;) ®2x1 and
bgz) ®1— bz(:l) @ x1 for i > 1. This is a U(XW)-free resolution of Q, and hence E2 , vanishes

expect for p =0 and g = —1. O

8.2. Group algebras. Let G be a discrete group and k be a field. There is an identification
of Hochschild cohomology of the group algebra k|G| with group cohomology

HH ([G], K[G]) = H* (G5 KIGT),
where k[G]" denotes k[G] with the k[G]-action being induced by the conjugation action of G on

G. We will consider cases where Hochschild cohomology results in an étale algebra, so we need
the following result.

Lemma 8.4. Let k be a field of characteristic zero or two and let A be an augmented étale
k-algebra. Then A has trivial derived 1-(restricted) Gerstenhaber indecomposables and trivial
FEs-homology.

Proof. As A is étale, it has trivial indecomposables, thus Q,(P.) has trivial homotopy groups
in all degrees. Therefore the constant bisimplicial 1-(restricted) Lie algebra which is zero in all
bidegrees is a valid resolution of Qg (Fs). O

Hochschild cochains on some group algebras have trivial 2-fold algebraic delooping:

Proposition 8.5. Let G be a finite group. If

(a) either G is abelian, the order of G is odd and k = FFa,
(b) or if k is algebraically closed and of characteristic two and the order of G is odd,
(c) or if k is algebraically closed and of characteristic zero,

then
HE2(C*(K[G), k[G])) = 0, for all x> 0.

Proof. If G is finite and if the characteristic of k is prime to |G| or the characteristic is zero,
then H*(G, k[G]) = HY(G,k[G]) = (k[G]")® = Z(k|G]). The multiplication induced by the
Es-action is the usual one. In the first case this center is Fo[G]. As G is finite abelian, it suffices
to consider the case C)r for an odd prime p. But Fo[Cr] is étale over Fs.

In the last two cases k[G] is isomorphic to a product of matrix rings (Wedderburn) and hence
the center is Z(k[G]) = ]|, k, where r is the number of conjugacy classes of G. This is again
an étale k-algebra. O

9. ON THE HODGE DECOMPOSITION FOR HIGHER ORDER HOCHSCHILD HOMOLOGY

Over the rationals the operad E, is formal, i.e., there is a quasi-isomorphism between E,
and the operad of (n — 1)-Gerstenhaber algebras (see [LVoq| for a nice overview on formality).
As every Q[X,]-module G,,—1(r) is projective, this quasi-isomorphism induces an isomorphism
of operadic homology theories between E,-homology and G,,_1-homology. As a consequence,
our resolution spectral sequence has to collapse at the E?-term and we obtain

3) P LpQu-1)c(A))g = H™(A).
p+q={
For an augmented commutative Q-algebra A, we can identify E,-homology with Hochschild
homology of order n:
(4) HE(A) = HHY,(A,Q).
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The latter groups possess a Hodge decomposition [P00, Proposition 5.2]. For odd n the Hodge
summands of Hochschild homology of order n are a re-indexed version of the Hodge summands
for ordinary Hochschild homology:

(5) HHY) (AQ) = @ HHY(4Q).
i+nj=~,+n

However, for even n the summands are only described in terms of functor homology:

(6) HAY (4Q) = @ Torl (07, £(A,Q)).

i+nj=~0+n
For j = 1 the terms consist of André-Quillen homology:

Torir( o1 L(A,Q)) = AQ,;(A|Q; Q).

For i = 0 one obtains 67 @ L(4,Q) 2 Q®4 SymA(Q}M@) the j-th symmetric power generated
by the module of Kahler differentials.

Theorem 9.1. Let A be a commutative augmented Q-algebra. For all £,k > 1 and m > 0:
[ ]

HHW?H(A Q) = (LinQ2kcA) (—1)2%

Tory, ¢11(0 L(4;Q)) = (LnQ2k—1)c-A) (—1)@2k—1)-
Thus the Hodge summands of higher order Hochschild homology can be identified with Gersten-
haber homology groups.

Of course, the convention is that negatively indexed Tor-groups vanish.
Note, that the case £ = 1 comes for free: The first Hodge summand is André-Quillen homol-
ogy;
HH, 4 (4:Q) = <A\@'@) > Tory, (6", L(4; Q)
and this in turn is L,,Qxrg(A)o for all m > 0, k >
In order to prove Theorem [0.1] we need a Stablhty result. For the remainder of this section
A — Q is an augmented commutative Q-algebra.

Lemma 9.2. The derived functors of Gerstenhaber indecomposables are stable in the following
sense:

(Lm QnGA)qn = (LmQ(n—l—Z)GA)q(n—i—Z) .

Proof. We consider the standard resolution that calculates (]Lan(;f_l). In simplicial degree ¢
and internal degree r this is (nG)**1(A),. This resolution is concentrated in degrees of the
form r = gqn because iterated n-Lie brackets on degree zero elements are concentrated in these
degrees. We can identify the terms (nG)**1(A),, with the terms ((n + 2)G)”1(A)q(n+2) where
we just exchange n-Lie brackets by (n + 2)-Lie brackets and adjust the internal degrees.
This yields an isomorphism of resolutions and hence an isomorphism on the corresponding
homology groups.
O

Remark 9.3. Note that there is no stability result when one passes from n to n + 1: Take for
instance A = Q[x]. For even n this is a free n-Gerstenhaber algebra but for odd n it is not.

Proof of Theorem [I1]. As the claim is clear for £ = 1, we do an induction on the label of the
Hodge summands. We start with the Qk—Gerstenhaber case. Thus assume that we know the

claim for all Hodge summands HH U) for all 1 < j < £ and all p > 1. Lemma [0.2] allows us to
choose k such that 1 < m < 2k and to consider H f;klg(A)
A Y E A Y
D LoQuo(d), = H 5 (A) = D HH);(A:Q).
pt+qg=m+2kl i+j(2k+1)=m~+2k({+1)+1
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The summands L, op¢—)Q2kc(A)2kr for 7 < £ are already identified with Hodge summands.
The remaining non-trivial summand in H gfgklg(ﬁ) is Ly, Qarc (A)are and in the Hodge decom-
position we still have the summand for j = £ 4+ 1. In this case

i+ (l+1)2k+1)=m+2k(l+1)+1.

Hencei=m+1—({+1)andi+j=m+ 1.
For the (2k — 1)-Gerstenhaber case the argument is similar, but the degree count is different:
For j =0+ 1 we get
i+ (l+1)2k—-2)=m—L+2(k—-2)(+1)
and thus i = m — /. U

Remark 9.4. A posteriori Theorem yields a description of derived functors of 2k-Gersten-
haber algebras in terms of (higher) André-Quillen homology: A classical spectral sequence

argument allows an identification of HH;?_H (A, Q) with D%)Jrlig(A; Q) [Lo97, 3.5.8,4.5.13] which
in turn is Hm+1,g((A§3* le*‘(@) ®p, Q)) Hm+175(AZ(Q})*‘Q ®p, Q)). Here P, is a free simplicial

resolution of A in commutative Q-algebras, for instance P; = (SI)°**+1(A). Thus we obtain
Hmeg(AK(Q}M@ ®@p, Q) =2 (LinQarcA) (- 1)2%-

We show in the following that the identification of the Hodge summands follows independently
from an easy spectral sequence argument. We are also able to prove an analoguous result for
the even case:

Theorem 9.5. For every augmented commutative Q-algebra A we can identify the Hodge sum-
mands of Hochschild homology of order 2k for k > 1 as

(1) Torpy1-e(0° L(A;Q)) = (LinQ2k-1)A) 2k-1)(6=1) = Hm—41(Sym‘ (2, 1o ©p. Q).
We also recover the identification for Hodge summands of Hochschild homology of odd order:

HHY, (4;Q) 2 LinQora(A)ar(e—1) = Hp—er1(A(Qp, g @P. Q).

Remark 9.6. The functor homology terms Tor, (6, £L(A;Q)) also describe the homology of
the ¢th homogeneous layer in the Taylor tower of the I'-module £(A;Q), Dy(L(4;Q))[1], [Ri01,
Proposition 4.7]:

H.(De(£(A;Q))[1]) = Tor. (6, £(4;Q)).
Thus our results identifies these homology groups with derived functors of n-Gerstenhaber

indecomposables for odd n and with the homology of the £th symmetric power of the module
of derived Kahler differentials.

Proof of Theorem[I. Let D, . be the bicomplex with D, = (nG)°U+D((SI)°(+1(A)). Tak-

~

ing n-Gerstenhaber indecomposables yields another bicomplex C, ., with C; s = Qna(Dys) =
(nG)°((ST)*=TD(A)):

() (A) e (nG)((ST)°P(A)) & (nG)°P((SI)°*P) (4)) — ..

(S1)°P (A) —— (nG)((ST)°®)(A)) e—— (nG)°P((S1)°P)(A)) +— ...

(SI)(A) ¢ (nG)((ST)(A)) +——— (nG)°P((SI)(A)) &—— ...
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Taking vertical homology, H?, first and then horizontal homology, H”, gives
Hﬁ(H:(C*,*)) = LrQnG(A)

concentrated in the (s = 0)-line: the vertical homology groups are trivial but for s = 0 because
(SI)°(**+1D(A) is a resolution of A.
Switching the roles of vertical and horizontal homology gives

HY(H!C..)) 2 HoLyQug (ST)°CHD(A).

We know by Corollary that L,Qnq(ST)°*t1(A) is isomorphic to LsQ,r(SI)°*)(A) and
using the suspension correspondence between n-Lie algebras and graded Lie algebras we get

LsQna(ST)°*TV(A) 2 57"L,QLE"(SI)°) (A).
Since X"(SI)°(*)(A) carries a trivial Lie structure we can identify these groups as

s Torl (YO0 (@, Q) = worss (s AlL)).

Recall that $"(ST)°(®) A[1] is still concentrated in internal degree n, but for the free graded
commutative algebra generated by it, S(X"(ST)°(*) A[1]), we consider its elements as being of
degree n + 1, thus the total internal degree of elements in X ~"S5T1(X7(ST)°(®) A[1]) is sn.

For n = 2k we therefore obtain

HHY, (4;Q) 2 LinQorc(A) k(o1 = Hpp 1 (A (Qp, 0 @P. Q)
because
(S1)°M(A) = Qq((ST)° 1) (4)) = O} 1 ®p, Q

with Py = (ST)°(t+1(A).
For n = 2k — 1 however, we get symmetric powers of the Kéhler differentials and have

Tory, 1 1-(0% £(4;Q)) = (LinQer—1)cA) @2k-1)(=1) = Hm—r1(Sym*(2p, g ©p, @)
again with P, = (S1)°t+1(A). O

Remark 9.7. The Hodge summands illustrate the difference between derived functors of n-Lie
indecomposables and the E2-term of the Blanc-Stover spectral sequence:

The n-Lie structure on AQ,(A|Q;Q) is trivial for every augmented commutative Q-algebra
A. The derived functors of @, applied to AQ,(A|Q;Q) are therefore given as the n-fold
desuspension of symmetric or exterior powers of X" AQ,(A|Q; Q) depending on the parity of n.
If the E?-term in the Blanc-Stover spectral sequence consisted of these terms we would get that
the Hodge summands are given by symmetric or exterior powers of André-Quillen homology,
depending on the parity of n, whereas they are the homology of the symmetric or exterior
powers of derived Kéhler differentials.
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