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THE CLIQUE DENSITY THEOREM.

CHRISTIAN REIHER

Abstract. Consider the following question: Fix an integer r > 3 as well as a

real parameter � 2 [0, 1/2) and let n be a large integer. How many cliques of

size r must a graph on n vertices with at least �n2 edges necessarily contain?

As n tends to infinity, the answer turns out to be of the form

Fr(�) · nr +O(nr�2)

for some constant Fr(�) the precise value of which has been conjectured by

Lovász and Simonovits in the 1970s. Despite of some impressive progress

by Bollobás and these two authors themselves, their conjecture has remained

widely open until very recently when Razborov and Nikiforov managed to

solve the cases r = 3 and r = 4, respectively. In the present paper we prove

this Clique Density Conjecture inductively for all values of r. An interesting

corollary to this result asserts that the graphs that are extremal with respect

to this problem do not depend much on r – a fact that can be made precise by

talking about graphs with weighted vertices.

1. Introduction.

Given an integer r > 3 and a graph G with n vertices and �n2 edges, where

0 6 � < 1
2 , how many cliques of size r must G necessarily have? This question

presents itself almost naturally once one knows about Turán’s classical theorem

([11]), which informs us in particular of the mere existence of such cliques as soon as

� becomes larger than r�2
2(r�1) and that this bound is indeed sharp. In awareness of

the structure of the unique graphs which are extremal with respect to the absence

of r–cliques, namely complete (r � 1)–partite graphs the sizes of whose vertex

classes are as close to one another as possible, it is quite tempting to propose the

following construction for guessing the answer to the more general question we are

just discussing: Form for some positive integer s a complete (s+1)–partite graph

all of whose vertex classes except for one perhaps substantially smaller one are

of equal size in such a way that the number of its edges is about �n2 and count

the number of r–cliques the graph thereby obtained possesses. Speaking rather
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2 CHRISTIAN REIHER

roughly, ignoring for a moment the phenomenon that not all real numbers are

integers and interpreting the word “about” in the foregoing sentence as meaning

“precisely”, this can be accomplished in exactly one way: Namely, one determines

an integer s > 1 for which � 2
h
s�1
2s ,

s

2(s+1)

i
, takes ↵ 2 ⇥

0, 1
s

⇤
to be a solution of

� = s

2(s+1)(1�↵2) and arranges the s larger vertex classes of the multipartite graph

one intends to exhibit to consist of exactly n(1+↵)
s+1 vertices, whereas the remaining

one comprises just n(1�s↵)
s+1 vertices. The resulting graph is easily computed to

contain
1

(s+ 1)r

✓
s+ 1

r

◆
(1 + ↵)r�1 (1� (r � 1)↵) · nr

cliques of size r. This calculation motivates the clique Clique Density Conjecture

proposed by Lovász and Simonovits (see [6]), which is the main result of this

paper, an that reads as follows:

Conjecture 1.1. If r > 3 and � 2 ⇥
0, 12

�
, then every graph on n vertices with at

least �n2
edges contains at least

1

(s+ 1)r

✓
s+ 1

r

◆
(1 + ↵)r�1 (1� (r � 1)↵) · nr

cliques of size r, where s > 1 is an integer for which � 2 [ s�1
2s ,

s

2(s+1) ] and ↵ 2 [0, 1
s

]

is implicitly defined by � = s

2(s+1)(1� ↵2).

Before we start to prove this, a few historical and mathematical remarks are in

order and to make the former ones more perspicuous we start with the latter ones.

First one observes that if s 6 r � 2, then the binomial coe�cient
�
s+1
r

�
vanishes,

which means that in accordance with Turán’s result no r–cliques are guaranteed

to exist whenever � 6 r�2
2(r�1) . As soon as � passes this threshold value by an

absolute positive amount however tiny, the minimal number of r–cliques starts to

become proportional to nr. Second, if � happens to be of the form t

2(t+1) for some

positive integer t, then there are two legitimate choices for the pair (s,↵), namely

(t, 0) and (t + 1, 1
t+1). Yet it is not hard to verify that both of these give rise to

the same lower bound of
1

(t+ 1)r

✓
t+ 1

r

◆
· nr

on the number of r–cliques. Incidentally, as we shall see below, these boundary

cases are the easiest to deal with. Third, it should be clear in the light of the con-

siderations sketched above that this claim, if true, is asymptotically best possible

when we think of r and � as being fixed and of n as tending to infinity. In other
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words, the bizarre expression appearing in the above formula before the multipli-

cation dot is insofar “correct” as it is the best possible one not depending on n.

On the much more ambitious question where one also regards n as being fixed

and asks for the minimal number of r–cliques in an absolute sense, we will not

say anything intelligent in this paper going beyond Conjecture 1.1. It neverthe-

less appears worth while to mention at this point an observation apparently due

to Nikiforov ([7]) without giving further details here: If one repeats the above

calculation more carefully, i.e. using real integers instead of their approximations,

one may see that for fixed values of � and r the error inherent in the above formula

is of a lower order than one would perhaps guess at first, i.e. it is not only O(nr�1),

but even O(nr�2).

We now turn to some historical comments: The apart from Turán’s work first

attempt to bound the number k
r

(G) of r–Cliques contained in a graph G from

below was undertaken by Goodman ([5]) who proved k3(G) > 1
3�(4� � 1)n3

whenever G has n vertices and at least �n2 edges. This was extended by Lovász

and Simonovits ([6]) to

k
r

(G) > 1

r!
· 2�(4� � 1)(6� � 2) · . . . · (2(r � 1)� � (r � 2)) · nr

for all r > 3 and � > r�2
2(r�1) . It might be helpful to observe that this lower bound

agrees with Conjecture 1.1 whenever � = t

2(t+1) where t > r�2 denotes an integer,

and that it is piecewise convex as a function of � between these values. The first

and in this generality as far as we know hitherto never defeated improvement over

this result was obtained by Bollobás ([1], see also section 1 of chapter VI from

[2]), who devised a miraculous argument demonstrating that the piecewise linear

function interpolating between these boundary values also serves as a lower bound

of k
r

(G). The first person who almost achieved a whole continuum of cases of

Conjecture 1.1 was Fisher ([3]) who attacked the case r = 3 and s = 2 by means

of ideas belonging to the spectral theory of graphs and relying on a then unproved

hypothesis regarding the zeros of clique polynomials he managed to solve this case;

the conjecture on which he relied has later been established by Goldwurm and

Santini ([4]). An altogether di↵erent proof of this case has later been given by

Razborov in the fifth section of [9]. The approach described there is of a highly

infinitary nature and is based upon what one might call the “di↵erential calculus

of flag algebra homomorphisms”, which in turn constitutes an important part of

Razborov’s flag algebraic investigations that are designed to provide us with a
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framework for thinking about problems from extremal combinatorics in general

in a much more systematic fashion than it has ever been accomplished before.

Shortly afterwards, Razborov dedicated a whole paper to the application of his

calculus to the minimal triangle density of graphs with given edge density in which

he entirely proved the case r = 3 of Conjecture 1.1. His argument proceeds by

induction on s. Upon seeing it, Nikiforov realized that one could get finitary

analogues of some of Razborov’s equations in a setting similar to the one utilized

by Motzkin and Strauss in their alternative proof of Turán’s theorem ([8])

by exploiting Lagrange multipliers and this insight allowed him to give another

proof of this result in a more structural spirit and dealing with all values of s at

the same time. With some modifications, this proof applies to the case r = 4 as

well ([7]). Given these quite rapid recent developments, we may think of ourselves

as “standing on the shoulders of giants”, as Sir Isaac Newton would express

it. Slightly less informally, we shall try to explain below how to emulate still

more substantial fragments of Razborov’s flag algebraic di↵erential calculus in

the finitary analytical setting used by Nikiforov and then perform a technically

more elaborate version of Razborov’s original argument on triangles.

It should be pointed out at this occasion, however, that the preference we have

given to a rather concrete presentation over entirely abstract manipulations ex-

clusively serves expository purposes and is in no way enforced by the structure of

our argument itself. On the contrary, the reader who has seriously studied [9] and

[10] will have no di�culty whatsoever in recasting the relevant passages of this

paper in terms of flag algebra homomorphisms.

2. Weighted Graphs.

Given a set X and a positive integer r, we use X(r) to denote the collection of

all r–element subsets of X. Also, if n refers to a positive integer, then [n] is, by

definition, shorthand for {1, 2, . . . , n}. By a weighted graph of order n, we mean

a pair consisting of a sequence (x1, x2, . . . , xn

) of non–negative real numbers the

sum of which is equal to 1 and a function A : [n](2) �! [0, 1]. Whenever G is such

a weighted graph of order n and r is a positive integer, we set

G(K
r

) =
X

M2[n](r)

Y

E2M(2)

A(E)
Y

i2M

x
i

.

Notice for instance that

G(K1) = x1 + x2 + . . .+ x
n

= 1.
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The following variant of Conjecture 1.1 is, as we are soon going to see, equivalent

to it and has to the best of our knowledge first been formulated explicitly by

Nikiforov.

Claim 2.1. Let r > 3 denote an integer and G a weighted graph. Suppose that

a positive integer s and a real number ↵ 2 ⇥
0, 1

s

⇤
are chosen in such a way that

G(K2) =
s

2(s+1)(1� ↵2). Then

G(K
r

) > 1

(s+ 1)r

✓
s+ 1

r

◆
(1 + ↵)r�1 (1� (r � 1)↵) .

To see that this indeed entails Conjecture 1.1, take a graph G and an integer

r > 3 about which you want to know the latter statement, label the vertices of G
arbitrarily as {v1, v2, . . . , vn} and construct a weighted graph G 0 of order n by the

stipulations x1 = x2 = . . . = x
n

= 1
n

and

A({i, j}) =
8
<

:
1 if v

i

and v
j

are joined in G by an edge,

0 otherwise

for all {i, j} 2 [n](2). Plainly G has exactly G 0(K2) ·n2 edges and G 0(K
r

) ·nr cliques

of size r, which proves the desired implication.

As we shall not need the converse direction, we only give a sketch of its proof.

Given a weighted graph of order n specified by the sequence (x1, x2, . . . , xn

) of

real numbers as well as a function A : [n](2) �! [0, 1], take a very large integer k

and form a graph H whose vertices fall into n independent classes V1, V2, . . . , Vn

whose sizes are approximately kx1, kx2, . . . , kxn

, respectively and in which for each

{i, j} 2 [n](2) roughly a proportion of A({i, j}) among all possible edges from V
i

to

V
j

is present in a su�ciently quasirandom way. Such a graph H can in particular

be arranged to have k vertices, G(K2) · k2 ±O(k) edges and G(K
r

) · kr ±O(kr�1)

cliques of size r, so letting k tend to infinity we might in fact derive Claim 2.1

from Conjecture 1.1.

Throughout the rest of this paper, we follow Nikiforov’s suggestion to think

about the clique density problem in terms of weighted graphs, as this allows us to

apply our knowledge concerning continuous and piecewise di↵erentiable or convex

functions rather directly without necessitating the usage of flag algebraic circum-

locutions. In other words, among all possible limits of graphs one could refer to

in terms of flag algebra homomorphisms we only exploit a few somewhat special

ones that are rather easily visualized.
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3. The bound obtained by Lovász and Simonovits.

We are now going to provide an analogue of the inequality due to Lovász and

Simonovits formulated in the language of weighted graphs. Although it is clearly

weaker then Claim 2.1 and thus soon going to be superseded, we are nevertheless

needing it for two purposes. First, it gives an optimal result if � = t�1
2t for some

positive integer t and our later arguments do not apply to that case – basically

because the function by means of which G(K
r

) is going to be estimated in terms

of � is not di↵erentiable at those values. Second, it will tell us that if we choose

a counterexample to Claim 2.1 that is extremal in a sense on which we shall

elaborate below, then it still cannot be wicked to such an extent that the analytical

estimates we intend to apply later on are precluded from leading to the envisaged

contradiction – despite the fact that they are in some sense only “locally true”.

Clearly the easiest way to obtain the inequality stated as Proposition 3.1 below

would have been to accept the result of Lovász and Simonovits as a matter

of fact and then to argue that the proposition itself follows from it by using the

same construction we have indicated at the end of the previous section. Yet there

is a reason which makes us thinking that it might be useful to include the argu-

ment presented below into this paper. Namely in section 5 the reader is going to

encounter a very similar but technically somewhat more demanding computation.

So what we are doing here might be regarded as a helpful preparation for other

things that follow.

Proposition 3.1. Given a weighted graph G and an integer r > 2 such that the

quantity � = G(K2) is not smaller than

r�2
2(r�1) , we have

G(K
r

) > 1

r!
· 2�(4� � 1)(6� � 2) · . . . · (2(r � 1)� � (r � 2)) .

Proof. Notice that this follows by means of an easy induction on r from the fol-

lowing statement:

(⇤) If a weighted graph G satisfies � = G(K2) > r�2
2(r�1) for some r > 2,

then

G(K
r

) > 2(r � 1)� � (r � 2)

r
· G(K

r�1) and G(K
r�1) > 0.

.

For this reason, it su�ces to verify (⇤) instead, which will again be done by

induction on r. The case r = 2 of (⇤) is obvious in view of G(K1) = 1. So suppose
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now that G is a weighted graph satisfying � = G(K2) > r�1
2r > r�2

2(r�1) for some

r > 2 and

r · G(K
r

) > (2(r � 1)� � (r � 2)) · G(K
r�1) as well as G(K

r�1) > 0.

For the induction step, we cursorily remark that these assumptions trivially entail

G(K
r

) > 0 so that it only remains to estimate G(K
r+1) from below in terms of

G(K
r

). Let n denote the order of G and suppose that G is given by the sequence

(x1, x2, . . . , xn

) of reals as well as the function A : [n](2) �! [0, 1].

For each M ✓ [n] we write

A
M

=
Y

E2M(2)

A(E) and X
M

=
Y

i2M

x
i

.

Now consider any M 2 [n](r+1) and define

B
M

=
X

E2M(2)

Y

F2M(2)�{E}

A(F ),

as well as

C
M

=
X

N2M(r)

A
N

.

We claim that these expressions satisfy

(�) 2B
M

� C
M

6 (r2 � 1)A
M

.

To see this, we note that our inequality is linear in each of its variablesA(E), where

E 2 M (2), which entails that we only need to look at the case where A(E) 2 {0, 1}
for all E 2 M (2). Now if additionally K = #{E 2 M (2) | A(E) = 0} is at least 2,

then A
M

= B
M

= 0 and C
M

> 0; if K = 1 then A
M

= 0, B
M

= 1, C
M

= 2, and

finally if K = 0 then A
M

= 1, B
M

= 1
2r(r + 1) and C

M

= r + 1. This completes

the proof of (�).

Multiplying our estimate by X
M

and summing over all possibilities for M , we infer

(~)
P

M2[n](r+1)

(2B
M

� C
M

)X
M

6 (r2 � 1)G(K
r+1).

Setting

⌘
L

=
X

i2[n]�L

x
i

Y

`2L

A({i, `})

for all L 2 [n](r�1), we now investigate the sum
X

L2[n](r�1)

A
L

X
L

⌘2
L

.
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Expanding the squares, we get several purely quadratic terms whose sum may in

view of the inequality A(E)2 6 A(E), that is valid for all E 2 [n](2), be bounded

from above by
X

Q2[n](r)
A

Q

X
Q

⇣
1�

X

i2[n]�Q

x
i

⌘
= G(K

r

)�
X

M2[n](r+1)

C
M

X
M

.

Moreover, we get several mixed terms that sum up to

2 ·
X

M2[n](r+1)

B
M

X
M

.

Combining this with (~), we get
X

L2[n](r�1)

A
L

X
L

⌘2
L

6 G(K
r

)+
X

M2[n](r+1)

(2B
M

�C
M

)X
M

6 G(K
r

)+(r2�1)G(K
r+1).

Substituting this together with
X

L2[n](r�1)

A
L

X
L

⌘
L

= r ·
X

Q2[n](r)
A

Q

X
Q

= r · G(K
r

)

and X

L2[n](r�1)

A
L

X
L

= G(K
r�1)

into the inequality
 

X

L2[n](r�1)

A
L

X
L

⌘
L

!2

6
X

L2[n](r�1)

A
L

X
L

·
X

L2[n](r�1)

A
L

X
L

⌘2
L

,

which is an instance of the Cauchy–Schwarz–Inequality, we deduce

r2G(K
r

)2 6 G(K
r�1)

�G(K
r

) + (r2 � 1)G(K
r+1)

�
.

Invoking now the induction hypothesis, we obtain, after a permissable cancelation

of G(K
r�1),

(2(r � 1)r� � r(r � 2))G(K
r

) 6 G(K
r

) + (r2 � 1)G(K
r+1)

and hence indeed

(2r� � (r � 1))G(K
r

) 6 (r + 1)G(K
r+1),

which completes the induction step. This finally proves (⇤) and thus the proposi-

tion. ⇤

Remark 3.2. The reader may find it both instructive and amusing to rewrite this

argument in terms of flag algebra homomorphisms.
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We would now like to make those consequences of Proposition 3.1 explicit that we

shall really utilize in the sequel.

Corollary 3.3. Suppose that r and s are integers satisfying r > 2 and s > r� 1.

Then for every weighted graph G satisfying � = G(K2) >
s�1
2s one has

G(K
r

) >
1

s
·
✓
s

r

◆
·
✓

2�

s� 1

◆
r�1

.

Proof. Clearly s�1
2s > r�2

2(r�1) , wherefore Proposition 3.1 tells us

G(K
r

) > 1

r!
· 2�(4� � 1)(6� � 2) · . . . · (2(r � 1)� � (r � 2)) .

Now for each i 2 {1, 2, . . . , r � 1} we have

2i� � (i� 1) > 2�

✓
i� s(i� 1)

s� 1

◆
=

2�(s� i)

s� 1
> 0

and hence

G(K
r

) >

✓
2�

s� 1

◆
r�1

· (s� 1) · . . . · (s� r + 1)

r!
=

1

s
·
✓
s

r

◆
·
✓

2�

s� 1

◆
r�1

.

⇤

Corollary 3.4. Under the additional assumption ↵ 2 �
0, 1

s

 
, Claim 2.1 holds.

Proof. As we have already seen in the introduction, we have in these cases � =
t

2(t+1) for some non–negative integer t. If t 6 r � 2 our claim is obvious, which

means that we may suppose t > r � 1 from now on. Thus � is large enough for

Proposition 3.1 to be applicable and the desired result follows. ⇤

4. Some analytical preparations.

Now we intend to provide a thorough analysis of the function occurring in Claim 2.1.

All of the observations we are going to make are rather easily established, but the

amount of calculation on which some of them rely is not negligible. So in order

to help the main proof of this paper to appear a bit shorter than it actually is, it

seems to be advantageous to gather these rather routine computations in a sepa-

rate section, the present one. The lazy and trustful reader who just wants to know

how the clique density problem may be solved without digesting every mundane

detail can safely take all the statements he finds here on belief and ignore their

occasionally laborious verifications. We would also like to precaution the reader

that we did not even attempt to motivate what is going to happen in the following

pages. It might therefore be a sensible idea to interrupt the reading of this section
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once the function H makes its first appearance. Thereafter one may directly jump

to the next and hopefully more interesting section large portions of which should

be fairly understandable then and whose remaining places should o↵er an intrinsic

explanation of why certain properties of F
r

and related entities to be found here

are worth our while to know about.

Throughout this section, we fix integers r > 3 and s > r � 1 as well as a real

number M > 1 satisfying
✓
s� 1

s

◆
r�2

>
s� r + 1

s� 1
·M r�2.

Define the function F
r

:
⇥
0, 12

� �! ⇥
0, 1

r!

�
as follows: Given � 2 ⇥

0, 12
�
, choose the

unique positive integer t for which � 2
h
t�1
2t ,

t

2(t+1)

⌘
, determine the real number

↵ 2 �
0, 1

t

⇤
solving the equation � = t

2(t+1)(1� ↵2) and set

F
r

(�) =
1

(t+ 1)r

✓
t+ 1

r

◆
(1 + ↵)r�1 (1� (r � 1)↵) .

In terms of this function, the statement of Claim 2.1 can be shortened to the

inequality G(K
r

) > F
r

(G(K2)), that is allegedly valid for all weighted graphs

G. We have more or less already seen earlier that F
r

is continuous and clearly

it is piecewise di↵erentiable as well. Moreover, F
r

is identically vanishing on

the interval
h
0, r�2

2(r�1)

i
and if � 2

⇣
t�1
2t ,

t

2(t+1)

⌘
for some integer t > r � 1, then

di↵erentiating the equation locally defining F
r

(�) with respect to ↵, we infer

� t↵

t+ 1
· F 0

r

(�) = �(r � 1)r

(t+ 1)r

✓
t+ 1

r

◆
↵(1 + ↵)r�2.

As ↵ > 0, it follows that

F 0
r

(�) =
(r � 1)r

t(t+ 1)r�1

✓
t+ 1

r

◆
(1 + ↵)r�2 > 0.

Thus F
r

is strictly increasing on the interval
h

r�2
2(r�1) ,

1
2

⌘
and as

lim
��!1/2

F
r

(�) = lim
t�!1

1

(t+ 1)r

✓
t+ 1

r

◆
=

1

r!

it possesses an inverse F�1
r

:
⇥
0, 1

r!

� �!
h

r�2
2(r�1) ,

1
2

⌘
. Moreover, the above expres-

sion for F 0
r

(�) decreases as ↵ decreases, whence F
r

is in an obvious sense piecewise

concave. Note that the identity function F2 on
⇥
0, 12

�
has essentially the same

properties as F
r

. This concludes our discussion of the most elementary properties

of these functions.
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Next we propose to look at the function H :
⇥
r�2
r�1 ·M,M

⇤ �! R+
0 given by

⌘ 7�! 1

sr�1

✓
s

r � 1

◆
· (r � 1)⌘ � (r � 2)M

⌘r�1
.

Claim 4.1. The function H is strictly increasing and satisfies

F
r�1

✓
s� 2

2(s� 1)

◆
< H(M) 6 F

r�1

✓
s� 1

2s

◆
.

Proof. If ⌘ 2 ⇥
r�2
r�1 ·M,M

�
, then

H 0(⌘) =
(r � 2)(r � 1)

sr�1

✓
s

r � 1

◆
· M � ⌘

⌘r
> 0,

which entails the first part of our claim. Furthermore, by our smallness condition

imposed on M , we have

H(M) =
1

sr�1

✓
s

r � 1

◆
· 1

M r�2
>

s� r + 1

s(s� 1)r�1

✓
s

r � 1

◆
=

1

(s� 1)r�1

✓
s� 1

r � 1

◆
,

i.e.

H(M) > F
r�1

✓
s� 2

2(s� 1)

◆
.

Finally, using M > 1, we get

H(M) =
1

sr�1

✓
s

r � 1

◆
· 1

M r�2
6 1

sr�1

✓
s

r � 1

◆
= F

r�1

✓
s� 1

2s

◆
.

⇤

Notice in particular that the composed function F�1
r�1 � H is defined everywhere

on the interval
⇥
r�2
r�1 ·M,M

⇤
and that its range is contained in

h
r�3

2(r�2) ,
s�1
2s

i
, which

in turn lies in
⇥
0, 12

�
. For t 2 {r � 2, r � 1, . . . , s � 1} there exists a unique real

number #
t

2 ⇥
r�2
r�1 ·M,M

⇤
satisfying H(#

t

) = F
r�1

�
t�1
2t

�
. The number #

s�1 will

play a special role later and sometimes it will just be denoted by #. Evidently one

has

r�2
r�1 ·M = #

r�2 < #
r�1 < . . . < #

s�1 = # < M.

Later on we shall need some rudimentary knowledge concerning the magnitude of

these numbers.

Claim 4.2. If the integer t belongs to the interval [r� 2, s� 2], then #
t

6 t

t+1 ·M .

In addition, we have # > s�1
s

·M .
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Proof. Whenever t belongs to the specified interval, we have H(#
t+1) 6 H(M),

i.e.
1

(t+ 1)r�1

✓
t+ 1

r � 1

◆
6 1

sr�1

✓
s

r � 1

◆
1

M r�2
.

Multiplying this by (t � r + 2)(t + 1)r�2/tr�1 we infer H(#
t

) 6 H( t

t+1 ·M), thus

proving the first part of our claim. Similarly but slightly easier we infer from

M > 1 that H( s�1
s

·M) 6 H(#), which leads to the second part of the claim. ⇤

Claim 4.3. If ⌘ 2 ⇥
r�2
r�1 ·M,M

⇤
and ⌫ = (F�1

r�1 � H)(⌘), then the function Q :

[0, ⌫] �! R defined by

� 7�! (r � 1)

✓
s

r � 1

◆
� � sr�1⌘r�2F

r

(�)

attains its global maximum at � = ⌫.

Proof. Choose an integer t 2 [r� 2, s� 1] as well as a real number � 2 [0, 1
t

] such

that ⌫ = t

2(t+1)(1��2). Since Q is piecewise convex and as convex functions attain

their global maxima at boundary values, it su�ces to establish the following two

statements:

(A) The function Q is increasing on
⇥
t�1
2t , ⌫

⇤
.

(B) If d 2 [t� 1], then Q(d�1
2d ) 6 Q( t�1

2t ).

For the proofs of both of these subclaims, we use

(C) M r�2 · 1
t

r�1

�
t

r�1

�
6 1

s

r�1

�
s

r�1

�
,

which is an obvious consequence of H(#
t

) 6 H(M). Now, to verify (A), take any

� 2 �
t�1
2t , ⌫

�
and write � = t

2(t+1)(1 � ↵2), where ↵ 2 �
�, 1

t

�
. Multiplying (C) by

(r � 1)sr�1 one obtains

sr�1M r�2 (r � 1)r

t(t+ 1)r�1

✓
t+ 1

r

◆✓
t+ 1

t

◆
r�2

6 (r � 1)

✓
s

r � 1

◆
.

In view of ⌘ 6 M and ↵ 6 1
t

this implies

sr�1⌘r�2F 0
r

(�) 6 (r � 1)

✓
s

r � 1

◆
,

whence Q0(�) > 0. Thereby we have proved assertion (A).

Let us now turn our attention to (B). If t 6 r�1, then F
r

vanishes at all relevant

numbers and our claim is obvious. So henceforth we may suppose t > r and for

similar reasons d > r � 1 as well. The function � :
⇥
1
t

, 1
r�1

⇤ �! [0, 1] defined by

x 7�! (1� x)(1� 2x) · . . . · (1� (r � 1)x)
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is obviously convex, wherefore

�
�
1
t

�� �
�
1
d

�

1
d

� 1
t

6 ��0 �1
t

�
.

Since

��0 �1
t

�
=

⇢
t

t� 1
+

2t

t� 2
+ . . .+

(r � 1)t

t� r + 1

�
�
�
1
t

�
6 (r � 1)rt

2(t� r + 1)
�
�
1
t

�
,

it follows that

1

tr

✓
t

r

◆
� 1

dr

✓
d

r

◆
6
✓
1

d
� 1

t

◆
(r � 1)r

2(t� r + 1)
· 1

tr�1

✓
t

r

◆

= (r � 1)

✓
t� 1

2t
� d� 1

2d

◆
· 1

tr�1

✓
t

r � 1

◆
.

Multiplying this by

sr�1⌘r�2 · 1

tr�1

✓
t

r � 1

◆
6
✓

s

r � 1

◆
,

which is a consequence of (C) as ⌘ 6 M , we deduce

sr�1⌘r�2

⇢
1

tr

✓
t

r

◆
� 1

dr

✓
d

r

◆�
6 (r � 1)

✓
s

r � 1

◆✓
t� 1

2t
� d� 1

2d

◆
,

which is easily seen to be equivalent to (B). ⇤

The following will only be used for k = 2 and k = r, but the general case is not

really harder.

Claim 4.4. For each integer k > 2 the function J : [ r�2
r�1 ·M,M ] �! R defined by

⌘ 7�! ⌘k(F
k

� F�1
r�1 �H)(⌘)

is concave or convex on the intervals [#
t

,#
t+1], where t = r � 2, r � 1, . . . , s � 2,

as well as [#,M ] depending on whether k > r � 1 or k 6 r � 1.

Proof. Treating both cases for k at the same time, we select any t 2 {r � 2, r �
1, . . . , s� 1} and intend to verify that the second derivative of J has the expected

sign on (#
t

,#
t+1), where for convenience #

s

= M . Utilizing that x 7�! 2x�1
x

2 is

strictly increasing on (0, 1) we may define a function S : (#
t

,#
t+1) �! �

t

t+1 , 1
�

such that

(F�1
r�1 �H)(⌘) =

t

2(t+ 1)
· 2S(⌘)� 1

S(⌘)2

holds for all ⌘ 2 (#
t

,#
t+1). Since the right hand side may be rewritten as

t

2(t+ 1)
⇥
(
1�

✓
1

S(⌘)
� 1

◆2
)
,
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we have

1

sr�1

✓
s

r � 1

◆
· (r � 1)⌘ � (r � 2)M

⌘r�1
=

1

(t+ 1)r�1

✓
t+ 1

r � 1

◆
· (r � 1)S(⌘)� (r � 2)

S(⌘)r�1
.

Di↵erentiating with respect to ⌘ and dividing by (r � 2)(r � 1), we find

1

sr�1

✓
s

r � 1

◆
· M � ⌘

⌘r
=

1

(t+ 1)r�1

✓
t+ 1

r � 1

◆
· 1� S(⌘)

S(⌘)r
· S 0(⌘),

and the combination of both equations yields

S 0(⌘) =
S(⌘)(M � ⌘) [(r � 1)S(⌘)� (r � 2)]

⌘(1� S(⌘)) [(r � 1)⌘ � (r � 2)M ]
.

Furthermore

J(⌘) =
1

(t+ 1)k

✓
t+ 1

k

◆
· kS(⌘)� (k � 1)

S(⌘)k
· ⌘k.

Di↵erentiating and using the above formula for S 0(⌘), we get

J 0(⌘) =
1

(t+ 1)k

✓
t+ 1

k

◆
· k⌘

k�1 [(r � 1)S(⌘)⌘ � (k � 1)⌘ + (k � r + 1)S(⌘)M ]

S(⌘)k [(r � 1)⌘ � (r � 2)M ]
.

A repetition of that argument leads to

J 00(⌘) =
1

(t+ 1)k

✓
t+ 1

k

◆
· k(k � 1)(r � k � 1)⌘k�2 [S(⌘)M � ⌘]2

S(⌘)k (1� S(⌘)) [(r � 1)⌘ � (r � 2)M ]2
,

which entails the desired conclusion in view of the presence of the factor r� k� 1

in the numerator. ⇤

Claim 4.5. For each ⌘ 2 ⇥
r�2
r�1 ·M,M

⇤
the di↵erence

(r � 1)

✓
s

r � 1

◆
⌘2⌫ � sr�1⌘rF

r

(⌫)

is at most

r � 2

(s� 1)(s+ 1)

✓
s+ 1

r

◆
· �12(r � 1)s#2 � (r � 1)s#M + r(s� 1)M⌘

�
,

where ⌫ = (F�1
r�1 �H)(⌘).

Proof. The di↵erence under consideration, which we shall denote by T (⌘) in the

sequel, is piecewise convex by Claim 4.4. Using the definition of # it is not hard

to see that for ⌘ = # one has equality in the inequality we seek to establish and

for these reasons it su�ces to prove the statements

(A) If r � 2 6 t 6 s� 2, then lim
⌘�!#

+
t

T 0(⌘) > (r � 2)
�

s

r�1

�
M

and

(B) lim
⌘�!M

�
T 0(⌘) 6 (r � 2)

�
s

r�1

�
M ,
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where the superscripted plus or minus signs below the limit are intended to signify

that ⌘ is supposed to approach the boundary value in question from the right or

from the left, respectively. Throughout the computations that follow we use the

function S as well as the formulae for J 0(⌘) corresponding to k = 2 and k = r

from the foregoing proof.

To verify (A), we divide into two cases.

First Case: t = r � 2

Note that the hypothesis of (A) yields s > r, wherefore H(#
r�1) 6 H(M), i.e.

1

(r � 1)r�1
6 1

sr�1

✓
s

r � 1

◆
· 1

M r�2
.

Now let ⌘ 2 (#
r�2,#r�1) be arbitrary. Then

1

(r � 1)r�1
· (r � 1)S(⌘)� (r � 2)

S(⌘)r�1
6 1

sr�1

✓
s

r � 1

◆
· (r � 1)S(⌘)� (r � 2)

S(⌘)r�1
· 1

M r�2
,

which by the definition of S and H yields H(⌘) 6 H(S(⌘)M), and thus ⌘ 6
S(⌘)M . Also, ⌘ 2 �

r�2
r�1 ·M,M

�
gives

⌘ > (r � 1)⌘ � (r � 2)M > 0,

which by S(⌘) 6 1 may be weakened to

⌘ > S(⌘) ((r � 1)⌘ � (r � 2)M) .

Consequently

⌘ (S(⌘)M � ⌘) > S(⌘) (S(⌘)M � ⌘) ((r � 1)⌘ � (r � 2)M) ,

i.e.

⌘ [(r � 1)S(⌘)⌘ � ⌘ � (r � 3)S(⌘)M ] > MS(⌘)2 [(r � 1)⌘ � (r � 2)M ] .

Multiplying by (r � 2)
�

s

r�1

�
S(⌘)�2 [(r � 1)⌘ � (r � 2)M ]�1 we infer

T 0(⌘) > (r � 2)

✓
s

r � 1

◆
M,

as required.

Second Case: r � 1 6 t 6 s� 2.

Notice that Claim 4.2 entails

(r � 2)(M � #
t

)(M � t+1
t

#
t

) > 0,
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whence

#
t

⇥
(r � 2� 1

t

)#
t

� (r � 3)M
⇤
> (M � 1

t

#
t

) ((r � 1)#
t

� (r � 2)M) .

By t > r � 2 the second factor of the right hand side is positive, wherefore

#
t

· (r � 2� 1
t

)#
t

� (r � 3)M

(r � 1)#
t

� (r � 2)M
> M � 1

t

#
t

.

Multiplying by (r � 1) and subtracting M � r�1
t

#
t

we obtain

(r � 1)#
t

· (r � 2� 1
t

)#
t

� (r � 3)M

(r � 1)#
t

� (r � 2)M
� (M � r�1

t

#
t

) > (r � 2)M.

If we now multiply by
�

s

r�1

�
and use

lim
⌘�!#

+
t

S(⌘) =
t

t+ 1

as well as the definition of #
t

, we get indeed

lim
⌘�!#

+
t

T 0(⌘) > (r � 2)

✓
s

r � 1

◆
M.

This completes the verification of (A).

So let us now continue with (B). From H(M) > F
r�1

⇣
s�2

2(s�1)

⌘
one deduces easily

S(M) >
s� 1

s
> r � 2

r � 1
,

where we have made the obvious definition

S(M) = lim
⌘�!M

�
S(⌘).

This entails
(s� r + 1)S(M)

(r � 1)S(M)� (r � 2)
6 s� 1,

which in turn implies

(r � 1)

⇢
(s� r + 1)S(M)

(r � 1)S(M)� (r � 2)
� (s� 1)

�✓
1� S(M)

S(M)

◆2

6 0.

Adding (r � 2)s and rearranging our terms, we infer

(r � 1)(s� 1)
2S(M)� 1

S(M)2
� (s� r + 1) (rS(M)� (r � 1))

S(M) ((r � 1)S(M)� (r � 2))
6 (r � 2)s.

Multiplying this by M

s

· � s

r�1

�
and exploiting the equation

1

M r�2
=

(r � 1)S(M)� (r � 2)

S(M)r�1
,
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that follows easily from the definition of S, one gets assertion (B), whereby

Claim 4.5 has finally been proved. ⇤

5. Clique densities.

We now come to the unique central section of this paper in which we are going to

provide a proof of Claim 2.1, thus solving the clique density problem.

Theorem 5.1. Whenever G denotes a weighted graph and r > 2 an integer, we

have G(K
r

) > F
r

(G(K2)). To say the same thing more verbosely, the estimate

G(K
r

) > 1

(s+ 1)r
·
✓
s+ 1

r

◆
· (1 + ↵)r�1 (1� (r � 1)↵)

holds, where s refers to a positive integer for which � = G(K2) belongs to the

interval

h
s�1
2s ,

s

2(s+1)

i
and ↵ 2 ⇥

0, 1
s

⇤
is required to satisfy � = s

2(s+1)(1� ↵2).

Proof. Since F2 is the identity function confined to
⇥
0, 12

�
, this is clear for r = 2.

Arguing indirectly, let r > 3 denote the least integer for which this can fail⇤ and

take n to be the least order that counterexamples can possibly have. As we have

already mentioned earlier, the function F
r

:
⇥
0, 12

� �! ⇥
0, 1

r!

�
is continuous. Now

the totality of all weighted graphs of order nmay in an obvious fashion be regarded

as a compact topological space, which implies that the continuous function defined

on it by

G 7�! G(K
r

)� F
r

(G(K2))

attains an absolute minimum. Now fix once and for all a weighted graph G of

order n for which this minimal value occurs and choose an integer s > 1 as well

as a real number ↵ 2 ⇥
0, 1

s

⇤
such that the number � = G(K2) can be written as

� = s

2(s+1)(1� ↵2). By the hypothesized failure of our theorem, we have

G(K
r

) <
1

(s+ 1)r
·
✓
s+ 1

r

◆
· (1 + ↵)r�1 (1� (r � 1)↵) ,

which clearly can only happen if s > r � 1. Also, Corollary 3.4 tells us that

↵ 2 �
0, 1

s

�
, wherefore the function F

r

is in particular di↵erentiable at �. As we

have seen in Section 4, its derivative � = F 0
r

(�) is given by

� =
(r � 1)r

s(s+ 1)r�1

✓
s+ 1

r

◆
(1 + ↵)r�2.

⇤By the results of Razborov and Nikiforov ([10], [7]) we could assume r > 5 here, but

actually there is no need for doing so.
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Let G as usual be presented by the sequence (x1, x2, . . . , xn

) of non–negative reals

summing up to 1 as well as the function A : [n](2) �! [0, 1]. Having thereby

explained how to select that potential counterexample towards whose investigation

we will direct our whole e↵orts, we hope to render the still rather lengthy remainder

of the proof more intelligible by dividing it into five steps.

First Step: Exploiting extremality.

Clearly each of the numbers x1, x2, . . . , xn

has to be positive, for if one among

them vanished there existed another counterexample of lower order than n. For

{i, j} 2 [n](2) it is sometimes convenient to write A
ij

instead of A({i, j}). Given a

sequence i1, i2, . . . , im of distinct integers from [n] as well as another integer ⇢ > 1,

we set

G
i1,i2,...,im(K⇢

) =
X

M2I(⇢)

Y

(k,j)2[m]⇥M

A
ik,j

Y

E2M(2)

A(E)
Y

j2M

x
j

,

where for typographical reasons we have temporarily written I instead of [n] �
{i1, i2, . . . , im}. Note that for m = 0 this coincides with our earlier notation, so

no confusion can arise. Since (x1, x2, . . . , xn

) is an interior point of the simplex

{(⇠1, ⇠2, . . . , ⇠n) 2 [0, 1]n | ⇠1 + ⇠2 + . . .+ ⇠
n

= 1},

Lagrange’s Theorem concerning the extremal values of multivariate functions

reveals the existence of a certain real constant µ such that

G
i

(K
r�1) = �G

i

(K1)� µ

holds for all i 2 [n]. The impact that extremality has on A is studied in

(⇤) For each {i, j} 2 [n](2) one has A
ij

(�� G
ij

(K
r�2)) > 0.

This is obvious whenever A
ij

vanishes, so let us suppose now that this number is

positive. If ⌘ denotes any su�ciently small positive real number, we may construct

a weighted graph G⌘ agreeing entirely with G except for the stipulation A⌘

ij

=

A
ij

�⌘. Clearly one has G⌘(K2) = ��⌘x
i

x
j

and G⌘(K
r

) = G(K
r

)�⌘x
i

x
j

G
ij

(K
r�2),

wherefore

G⌘(K
r

)� F
r

(G⌘(K2)) = G(K
r

)� F
r

(�) + ⌘x
i

x
j

(�� G
ij

(K
r�2))±O(⌘2),

which in view of the assumed extremality of G entails � > G
ij

(K
r�2) and hence (⇤).

Second Step: A morally flag algebraic consideration.
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As in the proof of Proposition 3.1, we set

A
M

=
Y

E2M(2)

A(E) and X
M

=
Y

i2M

x
i

for all M ✓ [n]. This time, however, we need the further stipulations

B
M

=
X

i2M

⇣ X

j2M�{i}

A
ij

⌘
A

M�{i},

C
M

=
X

Q2M(r)

A
Q

and

D
M

=
X

i2M

X

{j,k}2(M�{i})(2)
(1�A

ij

)(1�A
ik

)A
M�{i}

for all M 2 [n](r+1). What we shall need to know about these expressions is:

(�) If M 2 [n](r+1)
, then B

M

� (r � 1)C
M

+D
M

> (r + 1)A
M

.

To see this, we note again that our inequality is linear in each of its variables, for

which reason we may suppose A(E) 2 {0, 1} for all E 2 M (2). Form a graph H
with vertex set M by putting an edge between i, j 2 M exactly if A

ij

= 1. If H
is free from cliques of size r, then A

M

= B
M

= C
M

= D
M

= 0. If H contains a

unique such clique and i further edges, where 0 6 i 6 r�2, then A
M

= 0, B
M

= i,

C
M

= 1 and D
M

=
�
r�i

2

�
, wherefore indeed B

M

�(r�1)C
M

+D
M

=
�
r�i�1

2

�
> A

M

.

If the graph H possesses exactly two cliques of size r, then it misses precisely one

edge and A
M

= 0, B
M

= 2(r � 1), C
M

= 2 as well as D
M

= 0. Finally, if H
happens to be a clique, then A

M

= 1, B
M

= r(r + 1), C
M

= r + 1 and D
M

= 0.

This analysis proves (�) in all possible cases.

Multiplying the inequality just obtained by X
M

and summing over M , we deduce

(~)
P

M2[n](r+1)

(B
M

� (r � 1)C
M

+D
M

)X
M

> (r + 1)G(K
r+1).

Next, we propose to ponder the sum
X

i2[n]

x
i

G
i

(K1)Gi

(K
r�1).

Expanding the product, we get a plethora of terms involving each of the variables

x1, x2, . . . , xn

at most linearly and their sum is easily seen to equal
X

M2[n](r+1)

B
M

X
M

.
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The remaining “quadratic” terms sum up to

X

{i,j}2[n](2)
(x2

i

x
j

+ x
i

x2
j

)A2
ij

G
ij

(K
r�2).

Utilizing the inequality (⇤) from our first step, this sum is estimated to be

>
X

{i,j}2[n](2)
(x2

i

x
j

+ x
i

x2
j

)A
ij

G
ij

(K
r�2)� ��,

where for brevity

� =
X

{i,j}2[n](2)
(x2

i

x
j

+ x
i

x2
j

)(A
ij

�A2
ij

).

The first of these sums may also be written as

(r � 1)
X

Q2[n](r)
A

Q

X
Q

⇣
1�

X

q2[n]�Q

x
q

⌘
= (r � 1)G(K

r

)� (r � 1)
X

M2[n](r+1)

C
M

X
M

Thus we have altogether

X

i2[n]

x
i

G
i

(K1)Gi

(K
r�1) > (r � 1)G(K

r

) +
X

M2[n](r+1)

(B
M

� (r � 1)C
M

)X
M

� ��.

Exploiting (~) the right hand side can further be bounded from below by

(r � 1)G(K
r

) + (r + 1)G(K
r+1)� ���

X

M2[n](r+1)

D
M

X
M

.

Now notice that trivially

X

M2[n](r+1)

D
M

X
M

6
X

i2[n]

X

{j,k}2([n]�{i})(2)
A

jk

(1�A
ij

)(1�A
ik

)x
i

x
j

x
k

G
jk

(K
r�2).

Hence writing

V{i,j,k} = A
jk

(1�A
ij

)(1�A
ik

) +A
ik

(1�A
ij

)(1�A
jk

) +A
ij

(1�A
ik

)(1�A
jk

)

for all {i, j, k} 2 [n](3) and applying (⇤) again, we obtain

(r � 1)G(K
r

) + (r + 1)G(K
r+1)� ��� �

X

T2[n](3)
V
T

X
T

6
X

i2[n]

x
i

G
i

(K1)Gi

(K
r�1).

The Lagrange equations entail the right hand side to equal

�
X

i2[n]

x
i

G
i

(K1)
2 � 2�µ
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and in view of the by now straightforward calculation
X

i2[n]

x
i

G
i

(K1)
2 =

X

{i,j}2[n](2)
(x2

i

x
j

+ x
i

x2
j

)A2
ij

+ 2
X

{i,j,k}2[n](3)
(A

ij

A
jk

+A
jk

A
ki

+A
ki

A
ij

)X{i,j,k}

= ��+
X

{i,j}2[n](2)
x
i

x
j

A
ij

⇣
1�

X

k2[n]�{i,j}

x
k

⌘

+
X

{i,j,k}2[n](3)
(A

ij

+A
jk

+A
ki

)X{i,j,k}

�
X

T2[n](3)
V
T

X
T

+ 3G(K3)

= ���
X

T2[n](3)
V
T

X
T

+ � + 3G(K3)

we finally arrive at the main estimate of this step, namely

(r � 1)G(K
r

) + (r + 1)G(K
r+1) 6 �(� + 3G(K3))� 2�µ.

Third Step: Introducing and estimating M .

Let us now define a real number M such that

µ =
(r � 2)r

(s+ 1)r

✓
s+ 1

r

◆
(1 + ↵)r�1M.

Since

r · G(K
r

) =
X

i2[n]

x
i

G
i

(K
r�1) =

X

i2[n]

x
i

(�G
i

(K1)� µ) = 2��� µ,

we have

G(K
r

) =
1

(s+ 1)r

✓
s+ 1

r

◆
(1 + ↵)r�1 [1� (r � 1)↵� (r � 2)(M � 1)] ,

which in view of the presumed smallness of the left hand side gives M > 1.

Eventually we shall prove M 6 1 as well, thereby reaching a final contradiction,

but before we can realistically hope to do so we first need to provide a much weaker

upper bound on M , so that the results from our fourth section become available.

This is our next immediate task. To achieve it, we find it convenient to introduce

the abbreviations

A =
r

s(s+ 1)r�1

✓
s+ 1

r

◆
,

B =
(r � 2)r

(s+ 1)r

✓
s+ 1

r

◆
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and

C = r�2

s
(2�A)r�1

r · G(K
r

)
.

Notice that the last of these stipulations is permissible, as Proposition 3.1 entails

G(K
r

) > 0 in view of � > s�1
2s > r�2

2(r�1) . Applying the inequality between the

arithmetic and geometric mean of r � 1 positive real numbers, one of which is

equal to r · G(K
r

) while each of the remaining r � 2 numbers equals C(1 + ↵)r�1,

we get

r · G(K
r

) + (r � 2)C(1 + ↵)r�1 > 2(r � 1)A�(1 + ↵)r�2 = 2�� = r · G(K
r

) + µ

and hence (r � 2)C > BM . Rising both sides to their (r � 2)nd powers we infer

after some easy simplifications
✓
2�

s

◆
r�1

·
✓
s+ 1

r

◆
> (s+ 1)G(K

r

)M r�2.

Using now Corollary 3.3, we obtain
✓
s� 1

s

◆
r�2

>
s� r + 1

s� 1
·M r�2,

as desired.

Fourth Step: Induction on n.

By (⇤) we have for each i 2 [n] the inequality

(r � 1)G
i

(K
r�1) =

X

j2[n]�{i}

x
j

A
ij

G
ij

(K
r�2) 6

X

j2[n]�{i}

�x
j

A
ij

= �G
i

(K1)

and hence by the Lagrange equation

(r � 1) (�G
i

(K1)� µ) 6 �G
i

(K1),

i.e.

G
i

(K1) 6 (r�1)µ
(r�2)� = s

s+1(1 + ↵)M.

Thus if we define the real number ⌘
i

to obey G
i

(K1) =
s

s+1(1+↵)⌘
i

, then ⌘
i

6 M .

Similarly but easier we have

0 6 G
i

(K
r�1) = �G

i

(K1)� µ,

whence G
i

(K1) > µ

�

, so that altogether we get ⌘
i

2 ⇥
r�2
r�1 ·M,M

⇤
.

The main objective of this step is the verification of
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(�) For each i 2 [n] one has

�G
i

(K2)� G
i

(K
r

) 6 (r � 2)s(1 + ↵)r

(s� 1)(s+ 1)r+1

✓
s+ 1

r

◆

⇥ �
1
2(r � 1)s✓2 � (r � 1)s✓M + r(s� 1)⌘

i

M
�
.

Plainly it su�ces to show this for i = n and for brevity we are henceforth going to

write ⌘ instead of ⌘
n

. As G
n

(K1) is positive, we may construct a weighted graph

G⇤ of order n � 1 specified by the numbers x⇤
i

= Ainxi
Gn(K1)

for i = 1, 2, . . . , n � 1 as

well as the restriction of A to [n � 1](2). Our minimal choices of r and n entail

G⇤(K
r�1) > F

r�1(�) and G⇤(K
r

) > F
r

(�), where � = G⇤(K2). By our construction

of G⇤ and the Lagrange equation for i = n, we have

G⇤(K
r�1) =

G
n

(K
r�1)

G
n

(K1)r�1
=

�G
n

(K1)� µ

G
n

(K1)r�1
.

Expressing the right hand side in terms of r, s, M and ⌘, this simplifies to

G⇤(K
r�1) = H(⌘), where H refers to the function defined just before Claim 4.1.

Stipulating therefore ⌫ = F�1
r�1(H(⌘)), as in the hypothesis of Claim 4.3, we have

� 6 ⌫. Now in view of

G⇤(K2) =
G
n

(K2)

G
n

(K1)2
and G⇤(K

r

) =
G
n

(K
r

)

G
n

(K1)r
,

we get

�G
n

(K2)� G
n

(K
r

) =
s(1 + ↵)r⌘2

(s+ 1)r
⇥
⇢
(r � 1)

✓
s

r � 1

◆
� � sr�1⌘r�2G⇤(K

r

)

�
.

By our bound on G⇤(K
r

), the di↵erence in curly braces is at most Q(�), where Q

signifies the function introduced in Claim 4.3, and by that claim itself this is in

turn at most Q(⌫). Estimating now the product ⌘2Q(⌫) by means of Claim 4.5

we finish proving (�).

Fifth Step: An excellent finish.

Notice that

s

s+ 1
(1 + ↵)

X

i2[n]

x
i

⌘
i

=
X

i2[n]

x
i

G
i

(K1) = 2� =
s

s+ 1
(1� ↵2),

wherefore X

i2[n]

x
i

⌘
i

= 1� ↵.
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Thus multiplying (�) by x
i

and adding up the n resulting inequalities we conclude

3�G(K3)� (r + 1)G(K
r+1) 6

(r � 2)s(1 + ↵)r

(s� 1)(s+ 1)r+1

✓
s+ 1

r

◆
⇥

�
1
2(r � 1)s✓2 � (r � 1)s✓M + r(s� 1)(1� ↵)M

�
.

Combining this with the main result from our second step and plugging in the

formulae expressing �, �, µ and G(K
r

) in terms of r, s and M from the first and

third step we get an estimate that on first sight looks rather lengthy. After massive

cancelations, however, it just reads

(1� ↵)� 2M 6 (1 + ↵)s2

s2 � 1
(#2 � 2M#).

Since # 2 ⇥
s�1
s

M,M
⇤
by Claim 4.2, we have

#2 � 2M# = (M � #)2 �M2 6 � s

2�1
s

2 ·M2,

whence

(1� ↵)� 2M 6 �(1 + ↵)M2,

i.e.

(1�M)((1� ↵)� (1 + ↵)M) 6 0.

But ifM really was greater than 1, as suggested by our third step, then both factors

of the left hand side were negative. This contradiction finally proves Theorem 5.1.

⇤
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