
Connected tree-width

Malte Müller

December 3, 2012

Abstract

The connected tree-width of a graph is the minimum width of a
tree-decomposition whose parts induce connected subgraphs. Long
cycles are examples of graphs of small tree-width but large connected
tree-width.

We show that finite graphs have small connected tree-width if and
only if they have small tree-width and contain no long geodesic cycle.

We further prove a qualitative duality theorem for connected tree-
width: a finite graph has small connected tree-width if and only if it
has no bramble whose connected covers are all large.

1 Introduction

Let us call a tree-decomposition (T, (Vt)t∈T) of a graph G connected if its
parts Vt are connected in G. For example, the standard minimum width
tree-decomposition of a tree or a grid has connected parts. The connected
tree-width ctw(G) of G is the minimum width that a connected tree-decom-
position of G can have.

Obviously tw(G) ≤ ctw(G), because every connected tree-decomposi-
tion is a tree-decomposition. So having large tree-width is a reason for a
graph to have large connected tree-width. But it is not the only possible
reason.

The parts of a (nontrivial) connected tree-decomposition of a cycle are
paths. The intersection of two adjacent parts of a tree-decomposition always
separates the graph, so the connected tree-decomposition of a cycle that
has minimum width consists of only two parts each covering just over half of
the cycle. If this cycle is contained geodesically in a larger graph G, its large
connected tree-width will be a lower bound for the connected tree-width of
G: there will be no shortcut that could allow us to break up the cycle into
smaller connected parts. The following main theorem of this paper shows

1

ar
X

iv
:1

21
1.

73
53

v1
 [

m
at

h.
C

O
]

 3
0

N
ov

 2
01

2

that large tree-width and large geodesic cycles are the only two reasons for
a graph to have large connected tree-width.

Theorem 1.1. The connected tree-width of a graph G is bounded above by
a function of its tree-width and the maximum length k of its geodesic cycles.
Specifically

ctw(G) ≤ tw(G) +

(
tw(G) + 1

2

)
· (k · tw(G)− 1).

(If G is a forest, we define k to be 1)
Theorem 1.1 is qualitatively best possible in that the two reasons are

independent: a large cycle (as a graph) contains a large geodesic cycle but
has small tree-width, while a large grid has large tree-width but all its
geodesic cycles are small.

Among the many obstructions to small tree-width there is only one
that gives a tight duality theorem: the existence of a large-order bramble.
A bramble is a set of pairwise touching connected subsets of V (G), where
two such subsets touch if they have a vertex in common or G contains an
edge between them. A subset of V (G) covers (or is a cover of) a bramble B
if it meets every element of B. The order of a bramble is the least number
of vertices needed to cover it.

Tree-width duality theorem (Seymour and Thomas [3]). Let k ≥ 0 be
an integer. A graph has tree-width ≥ k if an only if it contains a bramble
of order > k.

Let the connected order of a bramble B be the least order of a connected
cover, a cover of B spanning a connected subgraph. Since every bramble
is covered by a part in any given tree-decomposition, graphs of connected
tree-width < k cannot have brambles of connected order > k. I conjecture
that the converse of this holds too:

Conjecture 1.2 (connected tree-width duality conjecture). Let k ≥ 0 be
an integer. A graph has connected tree-width ≥ k if and only if it contains
a bramble of connected order > k.

As our second main result we shall prove a qualitative version of this
conjecture:

Theorem 1.3. Let k ≥ 0 be an integer. There is a function g : N → N
such that any graph with no bramble of connected order > k has connected
tree-width < g(k).

2

The proof of Theorem 1.1 goes roughly as follows. We start with a tree-
decomposition of minimum width and enlarge its parts by replacing them
with connected supersets. In order to retain a tree-decomposition, we shall
have to make sure that vertices which are used to make one part connected
also appear in certain other parts of the tree-decomposition (compare axiom
(T3) in the definition of a tree-decomposition, e.g. in [1]). Our task will be
to find extensions whose sizes are bounded by a function in the maximum
length of a geodesic cycle in the graph and its tree-width, regardless of its
number of vertices.

All the graphs we consider in this paper will be finite and nonempty. The
notation and terminology we use are explained in [1], in particular we shall
assume familiarity with the basic theory of tree-decompositions as described
in [1, Ch.12.3.].

The layout of this paper is as follows. In Section 2 we introduce our
main technical tool for finding paths in a graph that can be used to make
disconnected parts of its tree-decompositions connected: a navigational path
system, or navi for short. In Section 3 we introduce tree-decompositions
whose parts cannot be split, we call such tree-decompositions atomic. For
such atomic tree-decompositions we then find cycles in the graph that are
separated by its adhesion sets. In Section 4 we use those cycles to get an
upper bound for the part sizes of our connected tree-decomposition which
completes the proof of Theorem 1.1. In Section 5, this result will be used to
prove Theorem 1.3.

2 Navis

How do we get an upper bound for the connected tree-width of a graph G?
The easiest algorithmic way is to start with a tree-decomposition of min-
imum width and enlarge a part (which does not yet induce a connected
subgraph) by adding a path of G (reducing the number of components).
This might result in a violation of (T3), which can be repaired by adding
the corresponding vertices also to other parts. Now we can go on and make
the next part (a little bit more) connected until we have a connected tree-
decomposition. If we don’t choose the connecting paths carefully, we might
add an unbounded number of vertices to one part while repairing (T3). Take
the graph and tree-decomposition indicated in Figure 1, for instance. If we
choose the path containing xi for making Vti connected (for every i), we will
have to add all the xi to Vt0 while repairing (T3), because Vt0 lies between
the part containing xi and Vti which contains xi as well (after we added the

3

connecting path).

Vt0

x1

x2

x3

Vt1

Vt2

. . .

...

Figure 1: Vt0 might grow arbitrarily.

Obviously we made a bad choice here. If we use the path containing x1
for every Vti we don’t need to enlarge Vt0 arbitrarily often. This is the idea of
the following definition: If we already know a path connecting two vertices
a and b, then we can reuse it whenever we have a path going through a and
b.

Definition 2.1 (navigational path-system (short: navi)). Let G be a con-
nected graph and K ⊆ [V (G)]≤2 a subset of the set of all at most 2-element
subsets of V (G). A system N := (Pxy){x,y}∈K of x–y paths is called sub-
navi, if for every path Pxy in N and for any two vertices a, b on that path
{a, b} is in K and Pab = aPxyb.

A navi is a sub-navi satisfying K = [V (G)]≤2.
If D := (T, (Vt)t∈T) is a tree-decomposition of G, then a sub-navi satis-

fying [Vt]
≤2 ⊆ K ∀ t ∈ T is called a D-navi.

4

A sub-navi is called geodesic if for all x, y ∈ K the length of Pxy

is dG(x, y).
The length of a longest path used in a sub-navi is called the length of

the sub-navi l(N) := max{x,y}∈K ‖Pxy‖.

A navi knows some connection between every two vertices. A sub-navi
might not know all connections, but the known ones are stored in K. If a
sub-navi knows a path connecting x and y, then it knows the connections of
all vertex-pairs on that path (they are induced by the original x–y path). A
D-navi knows the connection of two vertices if they are in a common part of
the tree-decomposition D. A geodesic navi does not only know some path
between the vertices but a shortest possible. Note that Pxy stands for P{x,y},
so Pxy is Pyx and in the case of x = y the path Pxy is trivial. Let us now
see how a navi helps making a tree-decomposition connected:

Theorem 2.2. Let G be a connected graph, D = (T, (Vt)t∈T) a tree-decom-
position of G of width w and N = (Pxy){x,y}∈K a D-navi of G. Define
Wt :=

⋃
{x,y}∈[Vt]≤2 V (Pxy) for all t ∈ T . Then (T, (Wt)t∈T) is a connected

tree-decomposition of G of width ≤ w +
(
w+1
2

)
· (l(N)− 1).

Proof. Since N is a D-navi, all Wt are definined. Vt is a subset of Wt for all
t ∈ T because Pxy contains x and y. So (T1) and (T2) are easy to see. For
(T3) let t1, t2 and t3 be distinct vertices of T with t2 ∈ t1Tt3 and let s be in
Wt1∩Wt3 . We need to show s ∈Wt2 : According to the definition of Wt there
must be some x1 and y1 ∈ Vt1 and some x3 and y3 ∈ Vt3 such that s ∈ Px1y1

and s ∈ Px3y3 . The set Vt2 separates Vt1 from Vt3 , in particular, Vt2 is an
{x1, y1}–{x3, y3} separator. If s ∈ Vt2 , then s is in Wt2 too, as required.
So Vt2 now has to be a separator without using s. This is only possible if
s is separated by Vt2 from at least one of the sets {x1, y1} or {x3, y3} (say
{x1, y1}), since otherwise there would be an {x1, y1}–{x3, y3} path in the
union of the {x1, y1}–s path and the s–{x3, y3} path avoiding Vt2 . Hence
there have to be two vertices x2 and y2 in Vt2 such that x2 ∈ x1Px1y1s and
y2 ∈ sPx1y1y1. By definition of sub-navi Px2y2 = x2Px1y1y2 and therefore
s ∈ V (Px2y2) ⊆Wt2 .

All Wt are connected and their size is bounded by “size of Vt + all
vertices added”. Every Pxy has at most l(N) − 1 vertices besides x and y
and at most

(
w+1
2

)
of those paths Pxy have been added.

In order to construct a connected tree-decomposition of small width we
need to search a D-navi of small length, which is achieved by a geodesic
navi. The existence of an arbitrary navi is easy to show, because a spanning

5

tree gives rise to a navi. A bit more surprising is that it is always possible
to find a geodesic navi.

Theorem 2.3. Every connected graph has a geodesic navi.

Proof. Let G = (V,E) be the connected graph with a fixed linear order of
the vertex set. The set of characteristic vectors of geodesic paths in G is by
lexicographical order again linearly ordered. Since there are no two different
geodesic paths on the same vertex set, there is a 1-1-correspondence between
the characteristic vectors of geodesic paths and the paths themselves. So
the set of geodesic paths is ordered lexicographically too. Note that there is
a geodesic path between any two vertices as G is connected. Hence for every
two vertices x and y in G there is exactly one minimal geodesic x–y path.
Declare this path to be Pxy. Then N := (Pxy){x,y}∈[V (G)]≤2 is a path-system
consisting of geodesic paths.

Assume that N is not a navi. Then there are two vertices x and y in V
and a, b ∈ Pxy such that Qab := aPxyb 6= Pab.

Observe that Qab is a geodesic a–b path and Qxy := xPxyaPabbPxyy is
a geodesic x–y path. So they were considered when declaring Pxy and Pab,
but were not chosen because Pab < Qab and Pxy < Qxy. Since Pxy −Qab =
Qxy − Pab, we can extend Qab to Pxy and Pab to Qxy using the same paths
(i.e. without changing the lexicographical ordering). This is a contradiction,
so N is in fact a geodesic navi of G.

Given a tree-decomposition D = (T, (Vt)t∈T) and a geodesic navi N =
(Pxy){x,y}∈[V (G)]≤2 we can define a geodesic D-navi by collecting only the

needed paths: ND := (Pxy){x,y}∈KD with KD :=
⋃

t∈T
⋃
{x,y}∈Vt

[Pxy]≤2.
The length of this navi ND is bounded by the maximal distance of two
vertices, which live inside a common part of D. The task has now changed
into finding a tree-decomposition of width tw(G) such that two vertices
living inside a common part have a distance bounded by the tree-width of
G and the length of a longest geodesic cycle.

3 Atomic tree-decompositions

In a contradiction proof it might be useful to not be able to refine a tree-
decomposition. Technically this can be achieved by considering the descend-
ing ordered sequences of part-sizes of the possible tree-decompositions of the
graph. A lexicographically minimal such sequence shall be called atomic.
An equivalent version of the same idea that shortens the argument can be
found in [2] (in the proof of Theorem 3 on page 3):

6

Definition 3.1 (atomic tree-decomposition as in [2]). Let G be a graph
and n := |G|. Let the fatness of a tree-decomposition of G be the n-tuple
(a0, . . . , an), where ah denotes the number of parts that have exactly n− h
vertices. A tree-decomposition of lexicographically minimal fatness is called
an atomic tree-decomposition.

Since there always exists a tree-decomposition that has no part of size
> tw(G) + 1 it is clear that an atomic tree-decomposition has width tw(G).

3.1 Rearranging tree-decompositions

Let us introduce some constructions that will reveal useful properties of
atomic tree-decompositions. One possible way of rearranging a tree-decom-
position is contracting an edge in its tree:

Lemma 3.2. Let G be a graph, D = (T, (Vt)t∈T) a tree-decomposition of
G and e = rs an edge of T . Define T ′ := T/e, Wt := Vt ∀t ∈ T − {r, s} and
Wte := Vr ∪ Vs. Then D′ := (T ′, (Wt)t∈T ′) is a tree-decomposition of G.

Proof. (T1) and (T2): Every vertex and every edge of G was inside one Vt,
which now lives inside a Wt. (T3): Let t1, t2 and t3 be distinct vertices of
T ′ with t2 ∈ t1T

′t3. Consider the contracted vertex te: If te /∈ {t1, t2, t3},
then Wt1 ∩Wt3 = Vt1 ∩ Vt3 ⊆ Vt2 = Wt2 . If te = t2, then either r or s has to
be on the path t1Tt3, say r. Since D is a tree-decomposition Wt1 ∩Wt3 =
Vt1∩Vt3 ⊆ Vr ⊆Wt2 follows. In the case te = t1 (and analog te = t3) we know
t2 ∈ rT t3 and t2 ∈ sT t3, which implies Vt2 ⊆ Vr ∩Vt3 and Vt2 ⊆ Vs∩Vt3 . By
taking the union on both sides we get (Wt2 =)Vt2 ⊆ (Vr ∩Vt3)∪ (Vs ∩Vt3) =
(Vr ∪ Vs) ∩ Vt3 = Wt1 ∩Wt3 , completing the proof of (T3).

For atomic tree-decompositions this means, that parts are not contained
in each other:

Corollary 3.3. Let G be a graph and D := (T, (Vt)t∈T) an atomic tree-
decomposition of G, then Vr * Vs for all distinct r, s ∈ T .

Proof. Assume there are two distinct vertices r and s in T with Vr ⊆ Vs. By
(T3) every vertex from Vr ∩ Vs (which is Vr by assumption) is contained in
every part on the path rTs. Especially the neighbor t0 of r in rTs satisfies
Vr ⊆ Vt0 . Contract the edge e = rt0 in the tree-decomposition D using
Lemma 3.2 and note that the contracted part Wte equals Vr ∪ Vt0 = Vt0 .
This means that D′ has exactly one part of size |Vr| less than D (the other
sizes of parts are the same). So D′ has a smaller fatness than the atomic
tree-decomposition D, which cannot be.

7

Another tool is “separating the components of a subtree-decomposition”.
In order to formalize this we need some notation:

Definition 3.4. Let G be a connected graph, D = (T, (Vt)t∈T) a tree-
decomposition of G and e = st0 ∈ E(T). Let T0 be the component of T − e
containing t0 and Ts the other one (containing s). Define G0 := G[

⋃
t∈T0

Vt],
Gs := G[

⋃
t∈Ts

Vt] and X := Vs ∩ Vt0 . Let C = {C1, . . . , Cn} be the set
of components of G0 − X (equivalently, of G − Gs) and N1, . . . , Nn their
neighborhoods (in X) i.e. N(Cj) = Nj , j = 1, . . . , n. Let T1, . . . , Tn be
disjoint copies of T0 and ϕi : T0 −→ Ti be the canonical map, mapping
every vertex t ∈ T0 to its copy in Ti.

Define Gi := V (Ci) ∪Ni and Wϕi(t) := Vt ∩Gi for t ∈ T0 and 1 ≤ i ≤ n.
Set Wt := Vt for t ∈ Ts and furthermore, T ′ := T − T0 + T1 + . . . + Tn +
sϕ1(t0) + . . . + sϕn(t0).

Lemma 3.5. Let the situation of Definition 3.4 be given. Then D′ :=
(T ′, (Wt)t∈T ′) is a tree-decomposition of G.

Proof. (T2): Let e = xy ∈ E(G) be an edge of G, then one part Vt of D
contains both ends of e. If x and y are in Gs, then they are in one unchanged
Vt = Wt (for some t ∈ Ts). If they are not both in Gs, then one of them,
say x, is in one component Ci of G − Gs. Since all the neighbors of x,
in particular y, lie in Ci or in Ni, the ends of the edge e are contained in
Vt ∩Gi = Wϕi(t). This shows (T1) as well.

(T3): Let t′1, t′2 and t′3 ∈ T ′ be given with t′2 ∈ t′1T
′t′3 and let t1, t2

and t3 be their counterparts in T . If there is an index k ∈ {1, . . . , n} with
{t′1, t′2, t′3} ⊆ Ts ∪ Tk ⊆ T ′, then we can find the path t′1T

′t′3 in a canonical
way in T :

• If t′2 is in Ts, then so is at least one of t′1 and t′3, say t′1. (T3) for D
implies Wt′1

∩Wt′3
= Vt1 ∩Wt′3

⊆ Vt1 ∩ Vt3 ⊆ Vt2 = Wt′2
as desired.

• If, on the other side, t′2 ∈ Tk, then so is at least one of t′1 and t′3, say
t′3. This implies Wt′1

∩Wt′3
⊆ Vt1 ∩ (Vt3 ∩ Gk) = (Vt1 ∩ Vt3) ∩ Gk ⊆

Vt2 ∩Gk = Wt′2
as desired.

In the other case there are distinct indices k, l ∈ {1, . . . , n} such that t′1 ∈ Tk

8

and t′3 ∈ Tl. Because the Ni are disjoint from the Ci we get the inclusion:

Wt′1
∩Wt′3

= (Vϕ−1
k (t1)

∩Gk) ∩ (Vϕ−1
l (t3)

∩Gl)

⊆ Gk ∩Gl

= (V (Ck) ∪Nk) ∩ (V (Cl) ∪Nl)

= (V (Ck) ∩ V (Cl)︸ ︷︷ ︸
=∅

) ∪ (V (Ck) ∩Nl︸ ︷︷ ︸
=∅

) ∪ (Nk ∩ V (Cl)︸ ︷︷ ︸
=∅

) ∪ (Nk ∩Nl︸ ︷︷ ︸
⊆X

)

⊆ X

• If t′2 ∈ Ts (which means t′2 = s), then Wt′1
∩Wt′3

⊆ X ⊆ Vs = Wt′2
.

• If t′2 /∈ Ts, then it is without loss of generality in sT ′t′1 (the case
t′2 ∈ sT ′t′3 is analog). Consider the vertices s, t′2 and t′1 and use the
fact, that they are all in Ts ∪ Tk. We therefore already know that
Ws ∩Wt′1

⊆Wt′2
implying Wt′1

∩Wt′3
⊆ X(∩Wt′1

) ⊆Ws ∩Wt′1
⊆Wt′2

This completes the proof of (T3). So D′ is a tree-decomposition of
G.

3.2 Properties of atomic tree-decompositions

Given the situation of Definition 3.4, we say that a part Vt with t ∈ T0 is
split, if |Vt ∩Gi| < |Vt| ∀i ∈ {1, . . . , n}. Note that there is a Gi containing
Vt if and only if Vt is not split: If there is a Gi containing Vt, then Vt ∩ Gi

is Vt, which means that |Vt ∩Gi| is not smaller than |Vt| for this special i,
so Vt is not split. If Vt is not split, then there is an i ∈ {1, . . . , n} such that
|Vt ∩Gi| = |Vt|. Since Vt ∩Gi is a subset of Vt, they can only have the same
size, if Gi contains Vt.

Lemma 3.6. Let the situation of Definition 3.4 be given. If a part Vt with
|Vt| > |X| is split, then the resulting tree-decomposition D′ has a smaller
fatness than D.

Proof. At first let Vr be a part, which is not split (note: r ∈ T0). As we
will see there is at most one k ∈ {1, . . . , n} such that

∣∣Wϕk(r)

∣∣ > |X|: In the
case |Vr| ≤ |X| we even know

∣∣Wϕi(r)

∣∣ ≤ |X| for all i ∈ {1, . . . , n}, since Vr

contains every Wϕi(r). In the other case there has to be at least one vertex
a of G which is in Vr but not in X. This vertex is contained in one of the
components of G0 −X and hence in one Gk. Since Vr is not split we know

9

that there is a k such that Gk contains Vr, hence the intersection of Vr and
a Gi with i 6= k is a subset of X and therefore

∣∣Wϕi(r)

∣∣ ≤ |X| for all i 6= k.
Let Vr now be a part of maximal size that is split (i.e. all the Wϕi(r)

are smaller than Vr). By prerequisites |Vr| > |X|, therefore every part of
D, which has at least size |Vr| and is not split, induces only one part of
its original size and the other induced parts are smaller than X. For the
comparison of the fatnesses (a0, . . . , an) of D and (a′0, . . . , a

′
n) of D′ this

means, that the entries before1 an−|Vr| are equal and that a′n−|Vr| is by at

least one smaller than an−|Vr|. So D′ has a (lexicographically) smaller fatness
than D.

If a “big”2 part Vt is split, then the resulting tree-decomposition is
smaller than the original one, which therefore was not atomic. So in an
atomic tree-decomposition no “big” part is split. In particular the “first
part in G0” Vt0 is such a big part, because it contains Vt0 ∩ Vs = X and at
least one more vertex in G−Gs (since otherwise Vt0 would be a subset of Vs,
contradicting Corollary 3.3). For justification of the term “atomic” we will
show that even “small” parts are not split in an atomic tree-decomposition:

Lemma 3.7. Let the situation of Definition 3.4 be given, where D is an
atomic tree-decomposition. Then Vt is not split for all t ∈ T0.

Proof. Suppose t̃0 is a vertex in T0 corresponding to a split part. Let s̃ be
the neighbor of t̃0 on the path t̃0Ts and ẽ := s̃t̃0. Let T̃0 be the component
of T − ẽ containing t̃0 and T̃s the other one (containing s̃). Define G̃0 :=
G[
⋃

t∈T̃0
Vt] and G̃s := G[

⋃
t∈T̃s

Vt] furthermore X̃ := Vs̃ ∩ Vt̃0
. Let us first

check that every component of G−G̃s is contained in a component of G−Gs:
By choice of s̃ there is an s̃–s path in T − ẽ. Combining this path with

another path connecting s with a vertex of Ts we get a path from every
vertex of Ts to s̃ in T − ẽ, since Ts does not contain t̃0 and therefore cannot
contain ẽ. This means that every vertex of Ts lives in the component of
T − ẽ which contains s̃. So we have Ts ⊆ T̃s which implies Gs ⊆ G̃s. Every
component of G − G̃s is disjoint from G̃s ⊇ Gs. These components are
connected and are therefore contained in a maximal connected subset of
G − Gs. So every component of G − G̃s is contained in a component of
G−Gs. Now we construct another situation as in Definition 3.4 at the edge
ẽ.

By Lemma 3.6 we now know that Vt̃0
, being the “big” part next to Vs̃,

is not split in this new situation. So there is a component C̃ of G − G̃s

1where the parts of size larger than |Vr| are counted
2big means |Vt| > |X|

10

such that V (C̃) ∪ Ñ contains Vt̃0
, where Ñ is the neighborhood of C̃. The

component C̃ is contained in a component C of G−Gs and therefore C ∪N
contains Ñ , where N is the neighborhood of C. There is an i ∈ {1, . . . ,m},
such that V (C)∪N = Gi. Now we know Vt̃0

⊆ V (C̃)∪Ñ ⊆ V (C)∪N = Gi.
So Vt̃0

is not split even in the original situation.

After we have seen that there are no split parts in atomic tree-decom-
position, we shall now see why this is useful.

Lemma 3.8. Let G be a connected graph, D = (T, (Vt)t∈T) an atomic tree-
decomposition of G and e = st0 ∈ E(T). Use the notation of Definition 3.4.
Then the neighborhood of C0, the component of G0 −X meeting Vt0, is all
of X.

Proof. SinceD is an atomic tree-decomposition, Vt0 is not split (by Lemma 3.7).
This means that there is a component Ci such that the corresponding Gi

(which is V (Ci) ∪ Ni) contains Vt0 and since X does not contain all of Vt0

we get an element a in Vt0 ∩ V (Ci). If there would be another component
meeting Vt0 (in b), then Vt0 would be split, because then every Gi misses at
least one of the vertices a or b and therefore every |Vt0 ∩Gi| is smaller than
|Vt0 |. Now we are allowed to speak of “the component C0 meeting Vt0”.

As we have seen Vt0 is a subset of V (C0) ∪ N0, where N0 is the neigh-
borhood of C0. Since Vt0 contains X we know X ⊆ Vt0 ⊆ V (C0)∪N0. This
implies X ⊆ N0 because X is disjoint from the component C0. So every
vertex of X is a neighbor of a vertex in C0.

Given two vertices u and v living inside one common part Vs. If there
is an edge st0 in T such that both vertices live in Vt0 too, then there is
(byLemma 3.8) a u–v path P (going through the component C0), whose
inner vertices are all in G0 − X. Changing the roles of t0 and s we get
another u–v path Q, whose inner vertices are all in Gs − X. Combining
those paths we get a cycle C := P ∪Q containing u and v, which lies “nice”
in G (with respect to the tree-decomposition). An even nicer fact is, that
the used intersection X always exists, if needed.

Lemma 3.9. Let D = (T, (Vt)t∈T) be an atomic tree-decomposition of a
connected graph G. If u and v are two vertices living inside a common part
Vs, then at least one of the following holds:

• uv is an edge of G.

• There is a neighbor t0 of s in T , such that {u, v} ⊆ Vs ∩ Vt0

11

Proof. Assume both statements are false, then there is a part Vs containing
two non-adjacent vertices u and v, such that for every neighbor t of s either
u or v (or both) is missing in Vs ∩ Vt.

Define a new tree-decomposition (T ′,W = (Wt)t∈T ′) by “de-contracting
Vs” as follows:

The new tree lives on V (T ′) := V (T)−s+tu+tv where tu and tv are two
new vertices. Let N be the neighborhood of s in T and U := {t ∈ N : v /∈ Vt}
the set of neighbors lacking v. Let e be the edge tutv then the edge set of
T ′ is E(T ′) := E(T − s) + {ttu : t ∈ U} + {ttv : t ∈ N − U} + e. Since
the old neighbors of s are distributed among tu and tv, we know that T ′

is a tree. Let Wt := Vt ∀ t ∈ T − s, Wtu := Vs − v, Wtv := Vs − u and
D′ := (T ′, (Wt)t∈T ′).

Let Tu be the component of T ′−e containing tu and analog Tv the other
one (containing tv), then every part corresponding to a vertex in Tu does not
contain v (and vice versa): The parts Wt with t ∈ U ∪ {tu} do not contain
v by definition. For the other parts Wt′ we consider the path P := sT t′ in
D and note that it contains a vertex u′ of U by construction. If v would
be in Wt′ = Vt′ , then it would be in Vs ∩ Vt′ but not in Vu′ , which is a
contradiction. The other statement u /∈ Wt ∀t ∈ Tv can be shown in an
analog way. Now we will see that D′ is a tree-decomposition of G.

(T1) holds, because Vs = Wtu∪Wtv . (T2) holds, because u and v are not
adjacent. For (T3) let t1, t2 and t3 be vertices of T ′ with t2 ∈ t1T

′t3 =: P ′.
By contraction of e we get a t1–t3 path P in T containing t2 (we identify tu
and tv in T ′ with s in T and everything else is unchanged): If t2 is none of
tu and tv, then we know Wt1 ∩Wt3 ⊆ Vt1 ∩ Vt3 ⊆ Vt2 = Wt2 . If t2 is tu, then
Wt1 ∩Wt3 ⊆ Vt1 ∩ Vt3 ⊆ Vt2 = Wtu ∪ {v}. This would only be a problem if
v ∈ Wt1 ∩Wt3 , but in this case both vertices t1 and t3 cannot be in Tu. So
they are in Tv, which means that t2 is not on P ′. This contradiction shows
Wt1 ∩Wt3 ⊆Wt2 . The last case t2 = tv is analog.

Hence D′ is a tree-decomposition which has exactly one part of size |Vs|
less than D and two smaller parts are added. So D′ has a (lexicographically)
smaller fatness than the atomic D. This contradiction shows that at least
one of the statements has to be true.

4 C-Closure

Now that we have a suitable (atomic) tree-decomposition and know how to
turn it into a connected tree-decomposition (using a navi), we just have to
show that its width is bounded (by a number only depending on the tree-

12

width and the length of a longest geodesic cycle). The following definition
will be a useful tool, because it exhibits the subgraph that will contain the
desired path of bounded length:

Definition 4.1. Let G be a graph and C a set of cycles in G. Define the
C-Closure of a vertex-set X, to be the union of the cycles in C meeting X.
In signs: Cl(X) :=

⋃
C∈CX C with CX := {C ∈ C : C ∩X 6= ∅}.

If every x ∈ X is on a cycle in C then obviously X ⊆ Cl(X). If, on
the other hand, there is a vertex x in X which misses every cycle in C then
x /∈ Cl(X), consequently X * Cl(X). If X ⊆ Y then CX ⊆ CY and therefore
Cl(X) ⊆ Cl(Y). Since the inclusion Cl(Cl(X)) ⊆ Cl(X) is false in general,
the C-Closure is not a closure-operator. The C-closure of a set helps us
finding an upper bound for the distance of the vertices in that set.

Lemma 4.2. Let G be a graph and C a set of cycles in G whose length is
bounded by k. Let X ⊆ V (G) be a vertex-set with X ⊆ Cl(X). If Cl(X) is
connected then every two vertices in X have a distance ≤ k · (|X| − 1) in G.

Proof. Let us first show that for every bipartition {A,B} of X their C-
closures meet, i.e. Cl(A) ∩ Cl(B) 6= ∅. Since X ⊆ Cl(X) is equivalent to
every vertex in X (which is A∪B) being on a cycle in C, we know A ⊆ Cl(A)
and B ⊆ Cl(B). Every edge xy in Cl(X) lies on a cycle C of C meeting X
(in A or B (or both) since {A,B} is a partition of X). This shows that x
and y are in Cl(A) or Cl(B) (or both), so Cl(X) = Cl(A) ∪ Cl(B).

Choose two vertices a ∈ A and b ∈ B and an a–b path P ⊆ Cl(X) (there
is one, since {a, b} ⊆ A∪B = X ⊆ Cl(X) and Cl(X) is connected). Consider
the the first (i.e. closest to a) vertex y in P which is in Cl(B) (there is one,
since b is a candidate). In the case that y equals a we have found a vertex
in the intersection of Cl(A) and Cl(B). In the other case the predecessor x
of y on P has to be in Cl(A). If Cl(A) contains the edge xy, then y lies in
Cl(A) ∩ Cl(B), in the other case the intersection contains x.

Now construct an auxiliary tree T on X, such that the distance (in
G) of every pair of vertices that are adjacent in T is bounded by k. The
construction begins with an arbitrary vertex of X as a single vertex tree
T0. If the tree Ti is constructed, we can consider the partition {V (Ti), X −
V (Ti)}. Now we know that their C-closures meet, i.e. there are vertices
x ∈ V (Ti) and y ∈ X − V (Ti) and intersecting cycles Cx and Cy in C with
x ∈ Cx and y ∈ Cy. Applying the triangle inequality to x, y and a vertex z
in the intersection of the cycles Cx and Cy, we get an upper bound for the

13

distance between x and y:

dG(x, y) ≤ dCx(x, z) + dCy(z, y) ≤
⌊
k

2

⌋
+

⌊
k

2

⌋
= 2

⌊
k

2

⌋
≤ k

In order to get the tree Ti+1 we add y and the edge xy to Ti.
At the end of this iteration we get a tree T (living on all of X). For every

pair of vertices in X there is a path connecting them in T . This path has
at most |V (T)| − 1 edges and every pair of adjacent vertices has a distance
of at most k in G. Combining this we get dG(x, y) ≤ k · (|X| − 1) for every
two vertices x and y in X.

Now we want to combine the C-closure with the “nice” cycle that we
found in Section 3 (before Lemma 3.9). We will use the cycle space, so
notations like “generate” or “+” have to be read in the sense of the edge
space here (whereas “−” remains set-deletion).

Lemma 4.3. Let G be a graph and {Gs, G0} a separation of G and X :=
Gs ∩G0 the separator. Let C = P ∪Q be a cycle consisting of two x-y paths
P and Q such that P − {x, y} ⊆ G0 − X and Q ⊆ Gs. Let C be a set of
cycles such that C lies in the subspace they generate.

Then there exists an x–y path in the C-closure Cl(X) of X.

Proof. Let us proof the following statement first:

Claim. Let G be a graph, P an x–y path in G and Z an element of the
cycle space of G. Then there is an x–y path in P + Z.

Let e := xy be the (theoretical) edge connecting x and y. In the case
e /∈ (P + e) + Z, we know e ∈ P + Z and hence e is the desired x–y path
in P + Z. In the other case e ∈ (P + e) + Z there are two possibilities: On
the one hand the path P might be just the edge e, then P + e is empty.
On the other hand the path P might be not that edge e, then P (being an
x–y path) does not even contain e so P + e = P ∪ e is a cycle. In both
cases (P + e) + Z is an element of the cycle space of G ∪ e and therefore a
disjoint union of cycles in G∪ e. One of these cycles C ′ has to contain e. So
P ′ := C ′ − e ⊆ ((P + e) + Z)− e ⊆ (G ∪ e)− e ⊆ G is the desired x–y path
in P + Z completing the proof of the claim.

Coming back to the proof of the lemma we write C as a sum of cycles
in C, i.e. C =

∑
i∈I Ci. Divide I into the cycles on the “left”, “right” and

“middle” of X by J0 := {j ∈ I : Cj ⊆ G0−X}, Js := {j ∈ I : Cj ⊆ Gs−X}
and J := {j ∈ I : Cj ∩X 6= ∅}. Since every cycle is connected and {Gs, G0}

14

is a separation of G, every cycle avoiding X lies either in G0−X or in Gs−X
(not in both). Therefore {Js, J, J0} is a partition of I.

By the claim there is an x–y path P ′ in P +
∑

j∈J0 Cj (whose inner
vertices have to lie in G0 −X). Since Q and the Js-cycles are separated by
X from P and the J0-cycles, adding them is taking the disjoint union. So
we have the following inclusion:

P ′ ⊆ P + Q +
∑

j∈J0∪Js Cj

= C +
∑

j∈J0∪Js Cj

=
∑

j∈J0∪J∪Js Cj +
∑

j∈J0∪Js Cj

=
∑

j∈J Cj +∅
⊆ Cl(X)

The last inclusion holds, because all cycles from J hit X and are therefore
contained in Cl(X). So P ′ is the desired path in the C-closure of X.

Now we have all the tools needed to prove the main theorem:

Theorem 1.1. The connected tree-width of a graph G is bounded above by
a function of its tree-width and the maximum length k of its geodesic cycles.
Specifically

ctw(G) ≤ tw(G) +

(
tw(G) + 1

2

)
· (k · tw(G)− 1).

Proof. It is easy to see that the upper bound for the connected tree-width
holds if the graph is a forest and k is defined to be > 0 , so without loss of
generality k > 2 and tw(G) > 1.

It suffices to prove the theorem for 2-connected graphs:
Let G be a (possibly not 2-connected) graph and B be a (2-connected)

block of G. Then the tree-width and the maximum length l of geodesic
cycles of B are bounded above by tw(G) and k, respectively.

So the “2-connected version” of the theorem yields a connected tree-
decomposition of B (for bridges and isolated vertices take a one vertex tree-
decomposition) of width ≤ tw(B) +

(
tw(B)+1

2

)
· (l · tw(B) − 1) ≤ tw(G) +(

tw(G)+1
2

)
· (k · tw(G)−1). We can construct a connected tree-decomposition

of the whole graph, by adding edges (according to the block structure3) to

3For each cutvertex x of the graph we choose for every block Bi, that contains x, one
vertex ti in the tree (of the tree-decomposition of Bi), such that Vti contains x. Then we
add the edges of a (arbitrary) tree in order to connect all the chosen ti vertices. When
this is done, we do the same procedure for the empty cutset (i.e. we connect the tree-
decompositions of the components of the graph).

15

the disjoint union of the trees (of the connected tree-decompositions of the
blocks of the graph) until we get a tree.

So let G be a 2-connected graph (In particular every vertex and every
edge of G lies on a (geodesic) cycle). We know how to construct a connected
tree-decomposition of width ≤ tw(G)+

(
tw(G)+1

2

)
·(l(N)−1) using a navi and

an atomic tree-decomposition D (Theorem 2.2). Because of the existence of
a geodesic navi (Theorem 2.3), the length of the used D-navi is bounded by
the maximum distance of two vertices living in a common part of the used
tree-decomposition.

Let C be the set of all geodesic cycles of G and Vs be a part of D. If we
show that Cl(Vs) is connected, then we know (by Lemma 4.2), that every
two vertices in Vs have a distance of at most k · (|Vs| − 1) ≤ k · tw(G) in G.
So let u and v be two vertices in Vs. By Lemma 3.9 there is either the edge
uv (which is then contained in Cl(Vs)) or there is a neighbor t0 of s in T ,
such that u and v are contained in the intersection X := Vs ∩ Vt0 . In this
case a corollary of Lemma 3.8 is the existence of two u–v paths P and Q,
that form a cycle C = P ∪Q such that P −{x, y} ⊆ G0−X and Q ⊆ Gs (G0

and Gs are defined as in Definition 3.4 and form a separation of G). Since
C, being a cycle, lies in the cycle space which is generated by the geodesic
cycles of G (see exercise 32 of chapter 1 in [1]), we can apply Lemma 4.3
and get a u–v path in Cl(X) ⊆ Cl(Vs). So for every two vertices of Vs there
is a path in Cl(Vs) connecting them. Since the other vertices of Cl(Vs) lie on
cycles which hit Vs, the C-closure of Vs is connected, as required.

Combining all these pieces, we have shown that G has a connected tree-
width of at most tw(G) +

(
tw(G)+1

2

)
· (k · tw(G)− 1).

5 Duality

5.1 Brambles

A useful tool for determining the tree-width of an unknown graph is a bram-
ble:

If we know a tree-decomposition of width k, then we know that the tree-
width of G is ≤ k, but we don’t know how much smaller the tree-width is. If
we additionally know a bramble of order k + 1, then (by tree-width duality
theorem) the tree-width has to be ≥ k, hence it equals k.

Definition 5.1. Two vertex sets are touching if they either intersect or if
there is an edge from one to the other. A bramble is a set of pairwise touching
connected vertex sets. A cover of the bramble is a vertex set which intersects

16

every set of the bramble. The order of the bramble is the smallest size that
a cover of the bramble may have.

The connected order of the bramble is the smallest possible size of a
connected vertex set covering it.

The tree-width duality theorem says that the only reason for large tree-
width is a bramble of large order: It is a reason, because if the graph contains
a bramble of large order (> k), then it has large tree-width (≥ k). And it is
the only one, since if it is gone (no bramble of order > k), then the tree-width
is small (< k), so there can be no other reason which rises the tree-width.

5.2 Making it connected

The obvious thing to try is finding a “connected tree-width duality theorem”,
i.e. write a “connected” in front of “tree-width” and see what fits on the
bramble side. The natural guess is the connected order:

Conjecture 1.2. Let k ≥ 0 be an integer. A graph has connected tree-width
≥ k if and only if it contains a bramble of connected order > k.

The backward-direction is an easy corollary of the (easy part of the)
proof of the tree-width duality theorem, because this direction is shown by
the following claim:

Claim (from the proof of theorem 12.3.9. in [1]). Given a bramble B and a
tree-decomposition D, then there is a part of D which covers B.

This direction can be used to determine the connected tree-width of a
cycle (for example):

Example 5.2. For a cycle of length n let B := [V (Cn)]
bn2 c
c be the set of all

connected subsets of size
⌊
n
2

⌋
. Let us show that B is a bramble of connected

order
⌈
n
2

⌉
+ 1. After deletion of X ∈ B and its neighborhood, there are

at most (exactly)
⌈
n
2

⌉
− 2 vertices left. Because those are less than

⌊
n
2

⌋
vertices, there is no element of B inside this rest (i.e. X touches every other
element of B, which is therefore a bramble). After deletion of a connected
set of size ≤

⌈
n
2

⌉
, there are at least

⌊
n
2

⌋
connected vertices left (containing

a non-covered set of B). One more vertex is sufficient to cover B. So B is
a bramble of connected order

⌈
n
2

⌉
+ 1 (i.e. the connected tree-width of a

cycle of length n is at least
⌈
n
2

⌉
). On the other hand there is a connected

tree-decomposition of that cycle consisting of two connected parts of size
≤
⌈
n
2

⌉
+ 1 which cover it (see figure 2 for an example). So the connected

tree-width of a cycle of length n is
⌈
n
2

⌉
.

17

t1 t2

T

Vt1

Vt2

Figure 2: A connected minimum width tree-decomposition of a cycle.

The difficult direction is not that easy to change into the connected
version.

By Theorem 1.1 the only two reasons for large connected tree-width are
large tree-width and a long geodesic cycle. If we can show that the absence
of a bramble of large connected order prevents both these reasons, then we
know that the connected tree-width is small (which is the difficult direction
of Conjecture 1.2, at least qualitatively). So the next thing to proof is, that
a graph with a long geodesic cycle contains a bramble of large connected
order (i.e. that a long geodesic cycle really is a reason for large connected
tree-width):

Lemma 5.3. If a graph G contains a geodesic cycle C of length n, then G

has a bramble of connected order ≥
⌈
n
2

⌉
+ 1, namely: B := [V (C)]

bn2 c
c , the

set of all connected subsets of C which have size exactly
⌊
n
2

⌋
.

Proof. Let X be a connected vertex set in G covering B. We want to show
|X| >

⌈
n
2

⌉
:

18

1. Case: |X ∩ C| = 2. Then n has to be even and the two vertices x0 and
x1 in this intersection |X ∩ C| have a distance of n

2 in C, because otherwise
there would be a bramble set not covered by X. Since C is geodesic, the
distance of x0 and x1 in G is (at least) n

2 . Because X is connected, there is
an x0–x1 path inside X, which has at least n

2 + 1 vertices, so |X| >
⌈
n
2

⌉
.

2. Case: |X ∩ C| > 2. Then there are three vertices x0, x1 and x2 in
X ∩ C. Let Pi be the xi−1–xi+1 path in C not containing the vertex xi,
i ∈ {0, 1, 2} (indices modulo 3). By minimization of the maximal length
of these paths we can achieve that Pi is the shorter xi−1–xi+1 path in C:
Choose the three vertices in X∩C such that the maximal size m of the three
corresponding paths Pi is minimal. Suppose |P1| = m ≥

⌊
n
2

⌋
+ 2, then there

is enough space for a bramble set on P1 between x0 and x2. This set is not
covered by x0, x1 and x2, so there has to be another vertex in X which takes
care of it. Replacing x1 by this vertex we get three new paths Q0, Q1 and
Q2 which have all less than m vertices. Q0 and Q2 are proper subpaths of
P1 and therefore have less than m vertices. Q1 flipped from P1 to the other
side of the cycle, so there are only n− (

⌊
n
2

⌋
+ 2) + 2 =

⌈
n
2

⌉
<
⌊
n
2

⌋
+ 2 ≤ m

vertices left for it. This contradiction to the minimality of m shows that
|P1| ≤

⌊
n
2

⌋
+1 which means that Pi is the shorter of the two xi−1–xi+1 paths

in C.
Since X is connected there is an x1–x2 path P ⊆ X and an x0–P path

X0 ⊆ X. Let z := P ∩ X0, X1 := x1Pz and X2 := x2Pz. So Xi is
a path inside X starting at xi and ending in z (for every i ∈ {0, 1, 2}).
Since Pi is geodesic and Xi−1 ∪ Xi+1 is another xi−1–xi+1 path, we know
|Xi−1| + |Xi+1| − 1 ≥ |Pi|. Since all the Pi together form the cycle C, we
know |P0|+ |P1|+ |P2| − 3 = n. Combining this, we get:

2(|X0|+ |X1|+ |X2|)− 3

=(|X1|+ |X2| − 1) + (|X0|+ |X2| − 1) + (|X0|+ |X1| − 1)

≥ |P0|+ |P1|+ |P2|
=n + 3

Rearranging this, we get:

(|X0|+ |X1|+ |X2|) ≥
n

2
+ 3

We can use this to estimate the size of X, because all Xi are contained in
X and have only z in common:

|X| ≥ (|X0|+ |X1|+ |X2|)− 2 ≥ n

2
+ 1 >

⌈n
2

⌉
19

This shows, that whenever X is a connected set in G which covers B, its
size has to be larger than

⌈
n
2

⌉
. So B is indeed a bramble of connected order

≥
⌈
n
2

⌉
+ 1.

Note that Lemma 5.3 does not naively extend to arbitrary geodesic sub-
graphs: Let G be the graph indicated in Figure 3 and H = G − x the
considered geodesic subgraph. Then there is a bramble of maximal con-
nected order 5 in H, namely all 9-element connected subsets of the outer
18-cycle C, which has connected order 4 in G.

x

C

Figure 3: A drawing of the example graph G.

It is unknown if there is a graph and a geodesic subgraph such that every
maximal connected order bramble of the subgraph has a smaller connected
order in the whole graph. In the above example, a bramble of maximal
connected order in H whose connected order does not go down in G is the
set of all connected 4-element subsets of an 8-cycle in H.

Now we can show the qualitative version of the difficult direction of
Conjecture 1.2:

Theorem 1.3. Let k ≥ 0 be an integer. There is a function g : N → N,
such that any graph with no bramble of connected order > k has connected
tree-width < g(k).

20

Proof. Let G be a graph which has no bramble of connected order > k.
Since k ≤ 2 implies that G is a forest, we can assume k > 2.

If the graph has a geodesic cycle of length ≥ 2k, then, by Lemma 5.3, it
has a bramble of connected order ≥

⌈
2k
2

⌉
+ 1 = k + 1 (which is a contradic-

tion). So there is no geodesic cycle of length > 2k− 1 in G. The tree-width
of G is bounded too, because:

G has no bramble of connected order > k

⇒ G has no bramble of order > k

⇒ tw(G) < k

The last implication follows from the tree-width duality theorem.
By Theorem 1.1 the connected tree-width of G is bounded by tw(G) +(

tw(G)+1
2

)
· ((2k− 1) · tw(G)− 1) which is smaller than k +

(
k+1
2

)
· ((2k− 1) ·

k− 1) =: g(k), a function only depending on k (note that this function even
works for the cases k ≤ 2).

21

References

[1] R.Diestel. Graph Theory (4th edition). Springer-Verlag, 2010.
Electronic edition available at:
http://diestel-graph-theory.com/.

[2] R.Diestel and P.Bellenbaum. Two proofs concerning tree-
decompositions.
http://www.math.uni-hamburg.de/home/diestel/papers/LeanTDs.pdf.

[3] P. D. Seymour and Robin Thomas. graph searching, and a min-max

theorem for tree-width. J. Combin. Theory Ser. B 58 (1993),

22-33, 1989.

22

	1 Introduction
	2 Navis
	3 Atomic tree-decompositions
	3.1 Rearranging tree-decompositions
	3.2 Properties of atomic tree-decompositions

	4 C-Closure
	5 Duality
	5.1 Brambles
	5.2 Making it connected

