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Abstract. In this paper we show that Gerstenhaber brackets, BV opera-
tors and related master equations arise in a very natural way when consid-
ering odd operads and their generalizations.

We show that many known examples such as BV operators in the Calabi–
Yau setting, brackets in string field theory, the master equation in that
setting, the master equation for Feynman transforms come from this type
of setup.

We give a systematic and comprehensive treatment of all the usual setups
involving (cyclic/modular) operads and PROP(erad)s including new results.
Further generalizations and categorical constructions will be presented in a
sequel.

Introduction

In recent years there have been many algebraic constructions which in their
background have some operadic origin. Perhaps the most prominent are Lie
brackets, Gerstenhaber brackets and master equations. The Lie algebras of
Kontsevich [K,CV] as well as Deligne’s conjecture [KS,McCS,V,BF,T,K2], its
cyclic generalization [K3] and its A∞ version which was studied in [TZ, KSch,
Wa, K6], and notably string topology [CS] are of this type, especially when
considered in the algebraic framework [TZ, K2, K3]. Among master equations
the relevant constructions go back to Sen and Zwiebach [SZ, KSV] and newer
ones include [ASZK,Schw,HVZ,Bar,MMS,S1–S3]. There is a plethora of further
incidences which would fill pages.

This paper is a systematic study of these algebraic operations, i.e. brackets
and BV operators ∆ their occurrence in master equations and the origin of these
equations. Without being too specific in this introduction there are several
incarnations of the master equation going by various names.

{S • S} = 0, dS +
1

2
{S • S} = 0, dS + ∆(S) +

1

2
{S • S} = 0. (0.1)

The first is a type of classical master equation, with the differential the equation
is sometimes called Maurer-Cartan equation and with ∆ is called the quantum
master equation. Of course, one has to —and we will— specify where S lies
and what the definition of { · }, ∆ is.

The mantra we provide for all these constructions is that

Metatheorem 1. Odd non–self–gluings give rise to Gerstenhaber brackets.
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Metatheorem 2. Odd self–gluings give rise to BV operators.

Metatheorem 3. Algebraically, the master equation classifies dg algebras over
the relevant (co)–bar construction.

Metatheorem 4. Topologically, the master equation drives the compactifica-
tion.

The first two statements are scattered throughout many places e.g. [G, GV,
KM, KSV, Schw, MMS, Bar]. Usually the emphasis is not on the odd, but on
even structures which differ by a suspension in the operdic/PROP(eradic) case.
That this reverses the logic is one of the main points we argue. In fact, as we
show, even classically the odd point of view explains why the signs and degrees
in Gerstenhaber’s original construction [G] of the bracket on the Hochschild
complex appear naturally when considered in the odd operadic framework. The
third statement has an incarnation in [Bar]. The last statement is actively
researched [HVZ,S1–S3] among others and goes back to [SZ].

We will gather these type of constructions in a systematic fashion. In order to
reach a broader audience, we present the most important cases here, gradually
increasing the technical level. The text is aimed to be fairly self–contained and
balanced between exposition and technical details. There are basically three
stages, those of operads, cyclic operads and modular operads. The cases of
PROPs, properads, wheeled PROPs and properads [MMS] fit in between. We
will make the metatheorems above concrete in each of these setups. The op-
erad case is classical albeit spread out through the literature, while our analysis
of the cyclic operad case is to our knowledge new. The modular operad case
was studied in [Bar]. Even in the known cases, there is a slight subtlety here
about which multiplicative structure is meant when using the terminology Ger-
stenhaber or BV. Without a multiplicative structure one only has an odd Lie
algebra and respectively a differential.

Taking the cue from [SZ,Schw,HVZ], we show that there is a natural way to
add a multiplication by going to the “non connected” version of the operadic
type construction, which are new operadic gadgets that we define.

Another possibility is that there already exists an internal multiplication.
This situation is a priori very different and the resulting equations are up to
homotopy. We comment on this in §6.3.

We also would like to mention several points that have been somewhat con-
founded in the literature. The existence of the bracket and BV operators relies
solely on the odd gluing structures. Examples come from generalized symplec-
tic structures [K,CV,Gi], but a symplectic structure is not necessary. Another
type of example of these odd versions arises via the relevant (co)bar construc-
tions or Feynman transform. In these examples the structures are free if one
disregards the dg structure. Again, this need not be the case for the bracket
and BV operator to exist.

A further desideratum is to put all these constructions under one roof. That
is to provide a language in which the metatheorems become actual theorems.
As we are dealing with several operadic structures of different natures such
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as cyclic operads, modular operads, twisted modular operads, PROPs, etc. at
the same time a great deal of abstraction is required for this. It is furnished
by our new categorical constructions revolving around our new perspective on
operad type structures called Feynman categories. The plus side is that then
all the various theorems have a common root and more applications, such as
the open/closed case [HVZ] etc. are covered as well. The drawback is that since
the setting is quite general it is equally technical.

So for the exposition we are faced with the problem, that either the state-
ments or their context becomes rather complicated. To cut the Gordian knot,
we separate the results into two papers. This first part contains the examples
and theorems most relevant for the “practicing mathematician or physicist” in
an accessible form, and the categorical constructions which provide an under-
lying layer in [Fey] for the experts and interested. This also has the benefit of
letting one specify which bar construction is the relevant one for the consider-
ations at hand.

In this paper, we will show that there is an odd generalization of the clas-
sical structures of operads, (anti)–cyclic operads and modular operads. Going
through this list we show that odd non–self gluing will lead to an odd Poisson
bracket and odd self–gluing gives rise to a differential operator ∆. These results
then readily extend to other odd settings such as odd (wheeled) PROP(erad)s
or nc odd modular operads, which we define. When disconnected graphs are
allowed, the operator ∆ becomes a BV operator.

The modular operad case is in this respect the most difficult as the in-
put/output distinction is lifted — as basically is already done in the cyclic
case — and gluing procedures along general graphs are allowed. In order to
obtain the odd gluing, one has to go up one layer of abstraction and introduce
twisted operads. With hindsight all the constructions presented before can be
better understood in this generality. Before passing to the modular situation,
the odd versions can be obtained by certain shifts and to make the exposition
more accessible and transparent we introduce them in this way in §§1–3.

Although one can still define modular operads via basic gluing operations it
is not possible to describe their odd counterparts in this fashion. The correct
formalism is furnished by K–modular operads of [GeK2]. The even version,
which we call anti-modular is then actually still twisted.

In order to define the twisted versions of modular operads one needs to first
pass to another equivalent definition of operads involving triples of functors.
One can then twist these triples with what are called co–boundaries. The idea
of triples nicely ties in with the fact that given an operad there are unique
compositions along rooted trees and composing them corresponds to gluing
rooted trees at their leaves, resulting again in a rooted tree. For each of the types
of operads we have encountered there is a corresponding set of graphs. We do
not wish to go through the tedious set theoretical definition of graphs and their
morphisms in the main text and thus refer to the appendix or [BoM,MSS,Fey]
for even more details.
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The main reason to go to triples is that the twisted versions are necessary for
the odd self–gluings of Metatheorem 2, so although the ideas and constructions
are basically of the same order of complexity as in the previous section, we need
to use more technical or less widely known language. Being aware of this, we
review the salient features of these constructions in §4.

As we show below the cyclic bracket comes from odd gluings s◦t. These are
non–self gluings as they involve two different elements. These type of gluings
(brackets and nested brackets) in graph language only involve trees. For trees,
one can describe the twists in a simpler fashion, and we will, in terms of anti–
cyclic and odd operads.

If we are able to self–glue elements, then we can again ask if there is an
operation if these self–gluings are odd. Indeed this is the case and the origin
of the BV operator, which will be treated subsequently in §5, see also 3.4.1 for
the wheeled PROP(erad) case. The most commonly known example of self–
gluings occurs in modular operads. This is however not odd. To get an odd
gluing, as we explained one has to consider K–modular operads. These arise
naturally as the Feynman transform of a modular operad; viz. the relevant
(co)bar construction which in the case of modular operads is called Feynman
transform. We review this construction in §7.

This type of BV operator also occurs in the hom spaces between operads that
differ by a twist by K. This is what allows us to put the result on BV algebras
in [MMS, Theorem 3.4.3] into a broader framework.

With all the technical assumptions in place, Metatheorem 1 and 2 transform
to:

Theorem A. The direct sum of coinvariants of (nc) (cyclic/modular) oper-
ads or (wheeled) PROP(erad)s or chain level EMOs, the sum over all non–self
gluings gives an odd Lie bracket, which is Gerstenhaber in the presence of a
horizontal composition.1

Theorem B. On the direct sum of coinvariants of (nc) (modular) operads,
wheeled PROP(erad)s or linear EMOs, the sum over all self gluings gives a
differential ∆, which is BV in the presence of a horizontal composition.

In these theorems, which coinvariants to take is subtle and depends on the
type of operadic gadget. Also whether or not the Lie bracket comes from a pre–
Lie structure depends on the particular situation. We give precise theorems in
the text. The cyclic bracket of an odd cyclic operad is new to our knowledge.

Metatheorem 3 takes the concrete form
Theorem C. Metatheorem 3 is true for (cyclic/modular) operads and (wheeled)

Properads. It furthermore holds for pairs of a D twisted Feynman transform
and a DK−1 twisted structure.

For the non–connected versions the statement means that the horizontal com-
position is not resolved by the relevant (co)bar construction/Feynman trans-
form. An example of this is the wheeled PROP classifying solutions of the
master equation found in [MSS].

1For PROPs the non–self gluings refer to the dioperadic gluings.
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Finally, we analyze the geometric situation in §8. Here Metatheorem 4 turns
into a definition for the Feynman transform. We give several examples of this.

Theorem D.The blowups M
KSV
g,n of [KSV], MHV Z b,~m

g,n of [HVZ] as well as

the Stasheff associahedra and the complex K1 for the little discs [KSch] are
compactifications satisfying the master equation

In the sequel [Fey] we will give a general setup where all of the above type of
operadic structures, for which there is not yet even a common name, as functors
from so–called Feynman categories. This lets us abstractly treat all the cases
at once including the twists. Making these concrete one is again led to the
constructions we present here.

The Appendix contains more detailed definition of graphs and the definition
of the algebras used in the text.
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Conventions

For convenience, we usually work in the in the category gVect of graded
vector spaces over a fixed ground field k of characteristic 0. Some constructions
lie in dgVect.

For most constructions, this is not necessary and one can generalize to any
additive category (or better a category enriched over graded Abelian groups)
which is cocomplete. Or even less, where the particular colimits we use exist.

Sometimes we however use the isomorphism between Sn invariants and Sn
co–invariants for all n. In this case, we need characteristic 0. Usually this step
is again convenient but not strictly necessary and it can be omitted at the price
of less succinct statements.

We will also use the notion of disjoint union of sets. Here one has to be
a bit careful what one means. Either the usual definition, which is neither
symmetric nor associative, or its strictification. By this we mean the q gives a
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symmetric monoidal structure on the category of finite sets with set maps and
according to MacLane’s coherence theorem [McL2] we can replace the category
by a strict monoidal one. We usually choose the latter or alternatively, we
implicitly assume the use of associators and commutators. Apart from this
remark we do not wish to burden the reader with these details.

Finally to make the analogies more clear, we will use common notation for
all the animals in the bestiary. That is O will be an operad, cyclic operad,
modular operad, PROP, wheeled PROP, properad, wheeled properad and their
twisted versions. Likewise we will use T for triple again regardless of the specific
details. This fits well with [Fey] where O is just a monoidal functor in each
case and T is the standard triple from a natural forgetful and the adjoint free
functor.

1. Classical theory: Operads and Gerstenhaber’s bracket

In this section, we start by collecting together the facts about operads and
brackets. The main example is furnished by the Hochschild complex and the
Gerstenhaber bracket. At the end, we take a slightly different point of view in
accordance with our mantra by switching from operads to odd operads —which
we define. The benefit is that this gives agreement of the signs and grading from
the operadic and the Hochschild point of view. Another thing which is special
in the case of operads is that the bracket has a pre–Lie structure. This traces
back to the fact that for operads one is dealing with rooted trees.

1.1. Basic Background.

1.1.1. Canonical Example. For a finite dimensional vector space V set
End(V )(n) = Hom(V ⊗n, V ). Notice that these spaces are again vector spaces.
Another way to say this is that there is an internal hom in the category. These
spaces have an obvious Sn action by permuting the variables (factors of V )
of the multilinear functions. There are composition maps ◦i: End(V )(n) ⊗
End(V )(m)→ End(V )(n+m−1); f⊗g 7→ f ◦ig which are given by substituting
g in the i–th place of the function f . There is a unit for these compositions
which is the identity function id : V → V . These compositions are associative
and equivariant under the action of the relevant symmetric groups in a natural
universal manner. That is for every pair of permutations (σ, σ′) ∈ Sn×Sm there
is a unique permutation σ ◦i σ′ ∈ Sn+m−1 s.t. σf ◦i σ′g = (σ ◦i σ′)f ◦σ−1(i) g.

1.1.2. Operads. We will briefly recall the salient features of the definition
of an operad, which is an abstraction of the example above. A full definition
can be found in [MSS]. Technically we will be dealing with pseudo operads,
but with the exception of this subsection, we will not mention the “pseudo”
any more. A unital (pseudo) operad is given by a collection {O(n)} in gVect
or more generally in a symmetric monoidal category C together with:

(1) operadic compositions or gluing maps

◦i : O(n)⊗O(m)→ O(m+ n− 1) : 1 ≤ i ≤ n
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(2) an Sn action for each O(n) .
(3) and a unit id ∈ O(1)

Such that the gluing maps satisfy the associativity relations

(O(n) ◦i O(m)) ◦j O(l) =
CO(m),O(l)(O(n) ◦j O(l)) ◦i+l−1 O(m) if 1 ≤ j < i

O(n) ◦i (O(m) ◦j−i+1 O(l)) if i ≤ j ≤ i+m− 1
CO(m),O(l)(O(n) ◦j−m+1 O(l)) ◦i O(m) if i+m ≤ j

(1.1)

where C is the commutator map in the symmetric monoidal category. In the
category gVect C is given by C(a⊗ b) = (−1)deg(a)deg(b)b⊗ a, where deg is the
degree.

The unit satisfies

∀a ∈ O(n), 1 ≤ i ≤ n : id ◦1 a = a; a ◦i id = a

and the gluing maps are required to be Sn equivariant. We omit the rather
lengthy formal definition of the equivariance in favor of the canonical example
above from which it can be easily abstracted; see also [MSS] for a definition.

The collections of Sn modules O(n) is called an S–module.

1.1.3. Rooted trees. The associativity means that any planar rooted tree
τ with leaves labeled by 1, . . . , n determines a unique composition by using it
as a flow chart. Here associativity says that the order of the compositions is
irrelevant. If we add the S equivariance, then any rooted tree gives an operation.
More in §4.

1.1.4. Algebras over operads. The operad End(V ) plays a special role.
An algebra V over an operad is an operadic morphism from O to End(V ) (of
degree 0). Here operadic morphism is the straightforward notion obtained by
requiring that all the compositions and Sn actions are respected.

The operad End(V ) can also be generalized to any closed symmetric monoidal
category C where now V is an object.

1.1.5. Weaker structures. Dropping the unit from the data and axioms
yield the notion of a non–unital pseudo–operad. The distinction between pseudo
or not is irrelevant in the unital case as these notions are equivalent; see [MSS].
Dropping the Sn action and the Sn equivariance, we arrive at the definition of
a non–Σ operad.

Notation 1.1. Given an operad O = {O(n)} we set O⊕ =
⊕

n∈NO(n).
If a ∈ O(n) with (internal) degree deg(a), we set ar(a) = n and |a| =

deg(a) + ar(a).
We will also consider the co–invariants O(n)Sn and set O⊕S :=

⊕
n∈NO(n)Sn .

There is a natural map O(n)→ O(n)Sn and we denote it as follows a 7→ [a].
This induces a map O⊕ → O⊕S which we denote by the same symbol.
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1.2. Lie bracket. There is a natural Lie bracket on O⊕ [GV, K2] and on its
coinvariants [KM] O⊕S .

Theorem 1.2. Given an operad {O(n)} in gVect. Set

a ◦ b :=

ar(a)∑
i=1

a ◦i b (1.2)

then ◦ is a pre–Lie multiplication and hence

[a ◦ b] := a ◦ b− (−1)deg(a)deg(b)b ◦ a (1.3)

defines a Lie bracket on O⊕. This Lie bracket descends to a Lie bracket on O⊕S
— for the grading deg.

Furthermore the pre–Lie and Lie structures already exist for non–Σ operads.

Proof. The proof is a straight-forward calculation checking the pre–Lie property
of the operation ◦, that is the 2–3 symmetry of the associator. The fact that
the bracket descends to coinvariants is checked by setting [a] ◦ [b] = [a ◦ b] and
remarking that this is well defined (viz. independent of choices). This due to
the S–equivariance of the operadic compositions ◦i. The last claim follows from
the fact that neither the formula nor the verification of the conditions use the
Sn action. That check is basically the proof found in [G]. �

It is the Lie algebra on the coinvariants that Kapranov and Manin [KM]
identified as the Lie algebra of derivations of the respective tensor functor.
This provides a point of contact with the Maurer-Cartan formalism.

1.3. Odd Lie bracket. In Gerstenhaber’s original work [G] the bracket is not
Lie but odd Lie. This is because he introduces certain signs in the summation.
We will show that these signs can be understood in terms of suspensions and
shifts. Although they are defined in a bit of an ad hoc fashion, they are indeed
the natural deeper structure as one can view from the bigger picture provided
by the metatheorems.

In particular, doing an operadic suspension one almost gets the signs. That
is after one more shift, the signs are the ones of the Hochschild complex. What
seems prima vista unfortunate, namely that a näıve shift of an operad ceases
to be an operad, is actually completely natural, as according to the mantra the
bracket should come from an odd gluing. Let us formalize this.

1.3.1. Shifts and odd Lie brackets. Given a graded vector space V =⊕
i V

i, we set ΣV := V [−1] this means that (ΣV )i = V i−1 and call it the
suspension of V . The inverse operation of suspension is called desuspension.
We set (Σ−1V )i = V i+1

If | . | is the grading of V , we set s(a) := |a|+1 then s(a) is the natural degree
of a thought of as an element in ΣV .

Definition 1.3. A bilinear map { • } on graded vector space V with grading
| . | is an odd Lie bracket if
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(1) odd anti–symmetry

{a • b} = −(−1)s(a)s(b){b • a}
(2) odd Jacobi

0 = {a • {b • c}}+ (−1)s(c)(s(a)+s(b)){c • {a • b}}+ (−1)s(a)(s(b)+s(c)){b • {c • a}}

Alternatively, a direct calculation yields the following useful characterization.

Lemma 1.4. { • } is an odd Lie bracket on V if and only if it is a Lie bracket
on ΣV . �

1.3.2. Shifted compositions and Gerstenhaber’s bracket. Following
Gerstenhaber, given O in gVect we define new composition maps •i as follows.

a •i b := (−1)(i−1)s(b)a ◦i b (1.4)

Set

a • b =

ar(a)∑
i=1

a •i b (1.5)

Remark 1.5. Notice that even if all the ◦i are even then ◦ : O(n)⊗O(m)→
O(n + m − 1) does not preserve the total degree | . |. However in the same
situation • does preserve degree for the shifted grading s(a) := |a| − 1.

Analogously to the Lie situation, set

{a • b} := a • b− (−1)s(a)s(b)b • a (1.6)

With this definition one readily verifies that:

Proposition 1.6. [G, GV, KM, K2] The bi–linear operation { • } is an odd
Lie bracket and it descends to co–invariants O⊕S . �

Remark 1.7. Since we are dealing with signs only, the shift in degree can be
made to be +1 or −1.

1.4. Signs an essential Remark. There are two ways in which to view the
signs

(1) Simply as the shifted signs which may seem rather odd.
(2) By setting deg(a) = |a|, deg(•) = 1 and using the Koszul rule of sign for

when permuting symbols.2 Here the symbols “{” and “}” are assigned
degree 0. That is as a Z/2Z graded operation • is odd.

The relevant calculation equating both sign formalisms for the odd Lie property
is that:

s(a)s(b) + 1 = (|a| − 1)(|b| − 1) + 1 ≡ |a||b|+ |a|+ |b| mod 2 (1.7)

This is essentially, why we can shift instead of using a triple, see §4.

2In the geometric considerations the • indeed often comes from an S1 action, which one
can consider the • to represent.
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Remark 1.8. In the operad or anti–cyclic operad case (see the next section) the
first version is viable, while in the modular (see section 4) or more general case
the second version is preferable and in a sense necessary. Thus with hindsight,
we will see that the second version is actually natural also in the non–modular
context.

1.5. Suspensions and Shifts for Operads. Let sgnn be the one–dimensional
sign representation of Sn.

Definition 1.9. Given an operad O we define sO, the operadic suspension of
O, to be the graded S–module sO(n) = Σn−1(O(n) ⊗ sgnn) with the natural
induced operad structure. We will use the standard isomorphism identifying
O(n)⊗ k ' O(n)

Denote the induced operadic compositions for sO by •i. Explicitly: set •1
Σar(a)−1a •1 Σar(b)−1b := Σar(a)+ar(b)−2(a ◦1 b) (1.8)

then by S–equivariance the •i are necessarily given by

Σar(a)−1a •i Σar(b)−1b = (−1)(i−1)(ar(b)−1)Σar(a)+ar(b)−2(a ◦i b) (1.9)

Notice that in this operad the operations •i are of degree 0. The operations
•i satisfy the following associativity relations.

(a •i b) •j c =


(−1)(|b|−1)(|c|−1)(a •j c) •i+l−1 b if 1 ≤ j < i

a •i (b •j−i+1 c) if i ≤ j ≤ i+m− 1

(−1)(|b|−1)(|c|−1)(a •j−m+1 c) •i b if i+m ≤ j
(1.10)

These relations are the correct graded associativity equations for the grading
by s(a) — it is off from the grading | . | by one though. Hence we obtain:

Proposition 1.10. The operadic suspension sO of an operad O together with
the compositions •i is an operad in gVect for the grading s. �

Proposition 1.11. Identifying elements of O with their counterparts in sO,
the Gerstenhaber’s bracket { • } is the natural Lie bracket [ ◦ ] for the shifted
operad sO.

Proof. Indeed the Gerstenhaber’s bracket is odd Lie for the grading | . | and
hence using Lemma 1.4 is Lie for the natural grading s of sO which is obtained
from | . | by one näıve shift. �

1.5.1. Motivational example for sO. Consider the endomorphism operad
End(V ) with End(V )(n) = Hom(V ⊗n, V ) having degree 0.

The operadic shift then comes about if one considers V [1] instead of V . A
map of degree 0 from V ⊗n → V gives a map of degree n − 1 from (V [1])⊗n =
V ⊗n[n] → V [1]. One has that End(V [1]) ' sEnd(V ) (see e.g. [MSS]). And in
general:

Proposition 1.12. [MSS] V is an O–algebra if and only if V [1] is an sO
algebra.
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a ∈ natural degree of a
O(n) deg(a)
sO(n) s(a) = deg(a) + n− 1
ΣsO(n) |a| = deg(a) + n

Table 1. Natural degrees in suspensions and shifts

1.5.2. Degrees in the Hochschild complex. If A is an associative algebra
End(A) actually is a complex, the Hochschild cochain complex CH∗(A,A). It
is given by CHn(A,A) = Hom(A⊗n, A) with the Hochschild differential, which
is immaterial at the moment. As vector spaces CHn(A,A) = End(A)(n), but
it is put in degree n, however. Thus an element a ∈ CH∗(A,A) has natural
degree |a|. This is not the natural operadic grading however which is either
deg(a) in End(A) or s(a) in sEnd(A) = End(A[1]).

So although the operadic shift sEnd(V ) of End(V ) is a graded operad and
it provides Gerstenhaber’s signs as the signs of the natural Lie bracket, as a
graded vector space it is still one shift short from the Hochschild complex.

Adding one more näıve shift Σ, we obtain the right grading, so that CH∗(A,A)
is a graded algebra with respect to the cup product and the bracket has Ger-
stenhaber’s signs, that is CH∗(A,A) = ΣsEnd(A); formal definitions can be
found below.

1.5.3. Näıve shifts and odd operads. One thing that is somewhat dra-
matically altered is that when we do a näıve shift we are not dealing with an
operad any more, but an odd operad which will formalize now.

Definition 1.13. For an S–module O its suspension ΣO is the S–module
{ΣO(n)}. Likewise we define Σ−1O.

Definition 1.14. An odd operad O in gVect is an S–module with operations
•i such that Σ−1O together with the •i is an operad.

Notice this means that in O the operations satisfy the equations 1.10 where
| . | is now just the degree in O.

Proposition 1.15. Given an odd operad O, the vector space O⊕ carries an
odd bracket { • }.

Proof. This follows directly from Lemma 1.4. �

Corollary 1.16. Given an operad O the odd operad ΣsO naturally carries an
odd Lie bracket, which is the shift of the natural Lie bracket on sO.

1.5.4. The Hochschild complex as an odd operad. To sum up this
section, the most natural way to think about the Hochschild complex is as an
odd operad CH∗(A,A) = ΣsEnd(A). This provides all the correct signs and
degrees. Furthermore in this fashion one can generalize the bracket to the cyclic
and modular cases.

We briefly collect together the relevant degrees in Table 1.
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1.6. Monoidal structure and tree picture and twisted Operads. One
may be tempted to introduce a new monoidal structure on gVect where ⊗ is of
degree 1. That is an element a ⊗ b has degree deg(a) + deg(b) + 1. Then the

natural commutativity constraint would be C(a⊗b) = −(−1)(deg(a)−1)(deg(b)−1).
It turns out that this constraint however does not satisfy the Hexagon Axiom
for the usual associator. In the standard way of defining tensors there is no way
to remedy the situation without violating the Pentagon Axiom.

One way to think about odd operads is that in the normal picture of operads
the trees have been replaced by rooted trees whose internal edges and root edge
each have weight one. This is the same as giving the vertices weight one as in
a rooted tree every vertex has a unique outgoing edge.

If we allow tensor products on rooted trees, then the associators can be fixed
by just enumerating the symbols⊗ according to the vertex they correspond to in
the tree picture for the bracketing. We get a sign according to the permutation
of the respective vertices.

An even better picture is to place the symbols ⊗ on the edges in the tree
picture for operations, see §4. To fast–forward a bit, this is one reason to
introduce more general operads. In the case of modular operads this is simply
captured by the notion of K–modular operad. In the present case, we could
introduce twisted operads. Then indeed, such a change of sign is described by
a twisting cocycle for a triple as we show in §4. This point of view would give
an alternative definition; see Theorem 4.13.

These twists are also naturally incorporated in the setup of Feynman cate-
gories [Fey].

2. Cyclic, Anti–cyclic operads and a cyclic bracket

The first generalization we will give is for the cyclic case. We briefly recall the
definitions in terms of operads with extra structure and in terms of arbitrary
finite sets.

2.1. The Sn+ definition of cyclic operads. In an operad one can think
of O(n) as having n inputs and one output. The Sn action then permutes
the inputs. The idea of a cyclic operad is that the output is also treated
democratically, i.e. there is an action of Sn+1 on O(n) which also permutes the
output. Usually one labels the inputs by {1, . . . , n} and the output by 0. In
order to formalize this we follow [GeK2] and define Sn+ to be the bijections of
the set {0, 1, . . . , n}. Then Sn is naturally included into Sn+ as the bijections
that keep 0 fixed. As a group Sn+ ' Sn+1 and it is generated by Sn and the
long cycle τ = (01234 · · ·n). Let Cn+ ⊂ Sn+ be the cyclic group generated by
τ .

Given an Sn+ module (M,ρ) we denote the action of τ by T , i.e. for m ∈M .
T (m) = ρ(τ)(m). We also define the operator N = 1 + T + · · ·+ Tn on O(n).

Definition 2.1. [GeK1] A unital operad O is a cyclic operad if there is a Sn+

action on each O(n) which extends the action of Sn such that the following
conditions are met



THE ODD ORIGIN OF GERSTENHABER, BV AND THE MASTER EQUATION 13

(1) T (id) = id where id ∈ O(1) is the operadic unit.

(2) T (a ◦1 b) = (−1)|a||b|T (b) ◦ar(b) T (a)

The collection of objects O(n) together with their Sn+ action is called a cyclic
S–module. In order to get the same indexing for the symmetric groups and the
operad one sets O((n)) := O(n − 1). Here, morally, n is the number of inputs
and outputs.

Example 2.2. The standard example of a cyclic operad is End(V ) where V
is a (graded) vector space of finite type with a (graded) non–degenerate even
bilinear form 〈 , 〉. The operation T on f ∈ End(n) is then defined via 〈 , 〉 by

〈v0, Tf(v1 ⊗ · · · ⊗ vn)〉 = ±〈vn, f(v0 ⊗ · · · ⊗ vn−1)〉 (2.1)

where in the graded case ± is the sign given by the Koszul sign rules. Another
way to phrase this is as follows. 〈 , 〉 gives an isomorphism between V and its
dual space V̌ . Thus

End(V )(n) = Hom(V ⊗n, V ) ' V̌ ⊗n ⊗ V 〈 , 〉−→ V̌ ⊗n+1 (2.2)

Now on the last term there is an obvious Sn+ action permuting the factors and
this action can be transferred to End(V )(n) via the isomorphism.

Definition 2.3. [GeK1] A unital operad O is an anti–cyclic operad if there is a
Sn+ action on each O(n) which extends the action of Sn such that the following
conditions are met

(1) T (id) = −id where id ∈ O(1) is the operadic unit.

(2) T (a ◦1 b) = −(−1)|a||b|T (b) ◦ar(b) T (a)

Example 2.4. The standard example of an anti–cyclic operad is furnished
by the endomorphism operad of a symplectic vector space. That is End(V )
where now V has a symplectic form ω. The action is then given as in the last
example. The extra minus sign comes from the fact that the symplectic form
is skew symmetric.

Remark 2.5. The last two examples can be unified using the notion of operadic
correlation functions from [K5]. Here the correlation functions are given on V̌ ⊗n

and the propagators by the Casimir elements of 〈 , 〉, where now these elements
encode the signs. This fits well with the tree picture and Feynman diagrams
since the propagators are associated to the edges and not the vertices.

2.1.1. Algebras over (anti)–cyclic operads. An algebra over a cyclic
respectively anti-cyclic operad O is a vector space V together with a non–
degenerate even symmetric form or respectively a non–degenerate even skew
symmetric form and a morphism of cyclic, respectively anti–cyclic operads from
O to End(V ).

2.2. Forgetful functor. By simply forgetting the Sn+ structure and only re-
taining the Sn structure on O(n), we get back an operad.
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2.3. Products. For operads there are several products. We will be concerned
with the näıve product defined as follows. Let {O(n)} and {P(n)} be operads
then set (O ⊗P)(n) := O(n)⊗ P(n) with the diagonal Sn action.

For (anti–)cyclic operads, we use the diagonal Sn+ action.
The product of two cyclic operads or two anti–cyclic operads is a cyclic

operad while the product of a cyclic and an anti–cyclic operad is anti–cyclic.

Example 2.6. Given a cyclic operad O and a symplectic vector space V the
operad O ⊗ End(V ) is anti–cyclic.

Examples of cyclic operads are given by the cyclic extension of the operads
Comm, Lie and Assoc. These are the operads whose algebras are precisely
associative and commutative, Lie and associative algebras [CV,K].

Example 2.7. Given an anti–cyclic operad O and a vector space V with a
symmetric non–degenerate pairing the operad O ⊗ End(V ) is still anti–cyclic.
Here a natural candidate is pLie the operad for pre–Lie algebras. The fact that
this and several other operads are anti–cyclic is found in [Ch].

2.4. Suspension for (anti)–cyclic operads.

Definition 2.8. The operadic suspension sO of an (anti)–cyclic operad is given
by the operad sO with the Sn+ module structure on sO(n) given by the diagonal
Sn+ action on O(n) ⊗ sgnn+1. Here we used that both sgnn and sgnn+1 are
both isomorphic to k as k–modules

An easy computation shows that

Lemma 2.9. The operadic suspension of a cyclic operad is an anti–cyclic op-
erad and vice–versa.

Example 2.10. In the case of End(V ) for a pair (V, 〈 , 〉), we have the isomor-
phism End(V [1]) ' sEnd(V ). Now 〈 , 〉 gives a pairing between V [1] and V [−1]
so that we get an isomorphism End(V [1])(n) ' (V̌ [−1])⊗n ⊗ V [1]. This space
has natural degree n − 1 and has a natural Sn+ action. Since all the degrees
are shifted by one, we see that if 〈 , 〉 is symmetric, sEnd is anti–cyclic and if
it is skew sEnd is cyclic.

2.5. Näıve suspension and odd versions. We can again use a näıve shift
like in 1.5.3. Just like in that section we define an odd cyclic operad to be the
result of the näıve shift of an anti–cyclic operad. This terminology ensures that
ΣsO is odd cyclic.

2.6. (Cyclic) Coinvariants. Given a (anti)–cyclic operad O we define its
space of coinvariants to be O⊕S+

:=
⊕
O(n)Sn+ .

We will also consider just the cyclic coinvariants O⊕C :=
⊕
O(n)Cn+ where

Cn+ is the cyclic subgroup generated by T in Sn+.

2.6.1. Non–Σ cyclic operad. A weaker structure than that of cyclic operad
is that of a non–Σ cyclic operad. Here one only requires an action of Cn+, the
cyclic subgroup of Sn+, on O(n).
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2.7. Cyclic operads via arbitrary indexing sets. A nice way to think
about cyclic operads is to look at operads in arbitrary sets. We think of the
inputs and the output labeled by a set S. That is we get objects O(S) for any
finite set S together with isomorphisms φ∗ : O(S) → O(S′) for each bijection
φ : S → S′. As well as structure maps

s◦t : O(S)⊗O(T )→ O((S \ {s})q (T \ {t})) (2.3)

these maps are equivariant with respect to bijections and associative in the
appropriate sense.

The cyclic or anti–cyclic condition then translate to

a s◦tb = ±(−1)deg(a)deg(b)bt◦sa (2.4)

where the extra minus sign is present in the anti–cyclic case.

2.8. Moving between the two pictures. We do not want to go into all these
details about the correspondence between the two pictures and refer to [MSS]
for full details.

Given a cyclic operad O, one sets

O(S) =

 ⊕
bijections S↔{0,1,...,|S|−1}

O(|S| − 1)


Sn+

(2.5)

Where Sn+ acts diagonally on both the sum, by acting on the bijections, and
the summands. Given the full finite set version, the version using the natural
numbers is basically given by inclusion.

For operads switching from O(n) to O(X) corresponds to switching from
the category of finite sets with bijections to its skeleton, the category with
objects the natural numbers and only automorphisms, where n represents the
set {1, . . . , n} and Aut(n) = Sn. For cyclic operads n actually represents the
set {0, 1, . . . , n} and Aut(n) = Sn+.

Following Markl, we will call the skeletal version involving only the natural
numbers the biased version. The finite set version is then the un–biased one.

Caveat 2.11. Here there is one serious caveat. When composing, for operads
one can identify the set n\{i}qm with n+m−1 by first enumerating the first
n elements until i is reached then enumerating the m elements of the second
set and the rest of the elements of the first set. That is the set above has a
natural linear order.

On the other hand, in the cyclic case, the set n \ {i}qm \ {j} does not have
a canonical linear order, but only a cyclic one. If j = 0 and i 6= 0, then we are
in the case above and we do have such an order. Likewise if i = 0 and j 6= 0,
we again can make a linear order by switching the factors. This is essentially
equivalent to the condition in the definition of a cyclic operad.

Notice that things are completely unclear where both i = 0 and j = 0. More
on this below; see §2.11.
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2.8.1. Categorical formulation for S–modules. Consider the category
Fin of finite sets with bijections. Then an S–module is just a functor from
that category to gVect or the fixed category C. Now Fin has as a skeleton
the natural numbers in either the form {1, . . . , n} or the form {0, . . . , n}. The
former is used for operads and the latter for cyclic operads. That is for an
operad O(n) = O({1, . . . , n}) while for a cyclic operad O(n) =: O((n + 1)) =
O({0, . . . , n}). The equivalence on this level is then obvious.

2.8.2. Tree picture. One way to consider the relationship is that operads
correspond to rooted trees whereas cyclic operads correspond to trees. There is
an obvious forgetful functor from rooted trees to trees, which gives the inclusion
of the operations corresponding to a rooted tree into those of a cyclic operad.
The conditions on a cyclic operad vice–versa guarantee that the operation of a
rooted tree is equivariant under changes of the root.

On the other hand given just a tree, to make it rooted, there is a choice of a
root and there is no canonical choice. The only thing to do is to sum over all
of these choices. In the S–module operad picture this corresponds to using the
operator N . All these considerations appear naturally in the realm of Feynman
categories where these operations are realized by pull–backs and push–forwards
given by Kan–extensions.

2.8.3. Coinvariants. Things become nicer on the level of coinvariants. Here
it suffices to take O⊕S+

. The categorical proof is that this represents the colimit

over the category of finite sets with bijections of O viewed as the functor that
assigns O(S) to a set S.

A pedestrian way to say this is that taking coinvariants, we can first identify
sets which are in bijection with each other and then only have to mod out by
automorphisms. For each finite set S we can choose {0, . . . , |S| − 1} as such a
representative.

2.9. The bracket in the anti–cyclic case.

Definition 2.12. Let O be an anti–cyclic operad For a ∈ O(S) and b ∈ O(T )
we define

[a� b] :=
∑

s∈S,t∈T
a s◦tb (2.6)

Proposition 2.13. [ � ] is anti–symmetric and satisfies the Jacobi identity for
any three elements in the sense that for a ∈ O(S), b ∈ O(T ), c ∈ O(U)

[a� b] = −(−1)deg(a)deg(b)[b� a] ∈
⊕

s∈S t∈T
O((S \ s)q (T \ t))

(−1)deg(a)deg(c)[a�[b�c]]+(−1)deg(a)deg(b)[b�[c�a]]+(−1)deg(c)deg(b)[c�[a�b]] = 0

∈
⊕

s∈S,t∈T,u∈U
O((S \ s)q (T \ t)q (U \ u)) (2.7)
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Proof. The proof is a straightforward calculation. The first equation directly
follows from the antisymmetry of the operations s◦t for an anti–cyclic operad.

Checking the Jacobi identity is straight forward: (−1)deg(a)deg(c)[a� [b�c]] =

(−1)deg(a)deg(c)
∑

t′∈T
∐
U\{t,u}

s∈S

∑
t∈T
u∈U

as◦t′(bt◦uc)

= (−1)deg(a)deg(c)
∑

t′∈T\{t}
s∈S

∑
t∈T
u∈U

as◦t′(bt◦uc) + (−1)deg(a)deg(c)
∑

t′∈U\{u}
s∈S

∑
t∈T
u∈U

as◦t′(bt◦uc)

= (−1)deg(a)deg(c)
∑

t′∈T\{t}
s∈S

∑
t∈T
u∈U

(as◦t′b)t◦uc− (−1)deg(a)deg(b)
∑

t′∈U\{u}
s∈S

∑
t∈T
u∈U

(bt◦uc)t′◦sa

= −(−1)deg(b)deg(c)
∑

t′∈T\{t}
s∈S

∑
t∈T
u∈U

cu◦t(as◦t′b)− (−1)deg(a)deg(b)
∑

t′∈U\{u}
s∈S

∑
t∈T
u∈U

bt◦u(ct′◦sa)

= −(−1)deg(b)deg(c)[c� [a� b]]− (−1)deg(a)deg(b)[b� [c� a]]

�

Notice that in this statement, we use the conventions stated in the beginning.
In view of §2.8.3 the following theorem is now straightforward.

Theorem 2.14. If O is an anti–cyclic operad then [ � ] induces a Lie bracket
on O⊕S+

.

�
We will denote this Lie bracket by the same symbol.

Remark 2.15. Notice that unlike in the operad case, this bracket is not the
anti–symmetrization of a pre–Lie structure. It is actually the choice of the root
that gives this extra structure in the operad case through the linear orders on
the compositions. Here no such consistent choice for linear orders exists. See
also 2.11 and §2.11.

Example 2.16. [K, CV] Fixing a sequence of vector spaces of dimension 2n
with a symplectic form on them, we immediately get three sequences of Lie
algebras from the anti–cyclic operads Comm ⊗ End(V n), Lie ⊗ End(V n) and
Assoc ⊗ End(V n). These are exactly the three sequences considered by Kont-
sevich in his seminal paper [K] and further studied by [CV]. There is also the
generalization of this construction to cyclic quadratic Koszul operads [Gi].

Example 2.17. Likewise we can fix a sequence of dimension n vectors spaces
V n with a symmetric non–degenerate bilinear form and consider the sequence
of Lie algebras obtained pLie⊗ End(V n).

This begs the

Question 2.18. What is the underlying geometry in the pLie case? Or in the
other cases of [Ch]?
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Example 2.19. Of course by §2.3 and §2.4 any suspension of a cyclic operad
will yield an anti–cyclic one and hence a Lie algebra and any tensor product
of a cyclic operad with an anti–cyclic one will give and anti–cyclic operad and
hence a Lie algebra.

2.10. Lift to the cyclic co–invariants, non–Σ version. As mentioned be-
fore, the set n \ {i} qm \ {j} has no canonical linear order, but it does have
a cyclic order. Hence we can identify it with n + m − 1 up to the action of
Cn+m−1+. Using this identification, we can restrict to the Cn+ coinvariants of
the sets n to obtain a bracket on the cyclic co–invariants and since we are only
taking Cn+ coinvariants it actually suffice to take a non–Σ cyclic operad.

Theorem 2.20. If O is an anti–cyclic operad then [ � ] induces a Lie bracket
on the cyclic co–invariants O⊕C :=

⊕
O(n)Cn+.

The same result holds true for O a non–Σ anti–cyclic operad.

Example 2.21. The necklace Lie algebra of Bocklandt and Le Bruyn [BLB,Sch]
is an example of such a Lie algebra structure. Here the cyclic operad structure
is on the oriented cycles and the necklace words are the cyclic invariants.

2.11. The bracket in the biased setting and compatibilities. Using the
above description, we can relate the original brackets to those arising in the
operad setting. The obstruction is that the two brackets lift to different spaces,
but we can use the operator N which maps O(n) to O(n)Cn+ to make the
connection.

We first introduce the operations

ai◦̄jb = T 1−ia ◦1 T−jb (2.8)

Notice that a ◦i b = ai◦̄0b and b ◦j a = aj ◦̄0b

Proposition 2.22. [N(a) ◦ N(b)] is in the image of N . Moreover, if we set
c =

∑
i,j ai◦̄jb then [N(a) ◦N(b)] = N(c).

The map N induces a map of Lie algebras from O⊕C with bracket [ � ] to O⊕
with bracket [ ◦ ] via [a] 7→ N(a).
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Proof.

[N(a) ◦N(b)] =

 n∑
i=0

T i(a),

m∑
j=0

T j(b)


=

n∑
i=0

T i(a) ◦
m∑
j=0

T j(b)−
m∑
j=0

T j(b) ◦
n∑
i=0

T i(a)

=

n∑
x=1

 n∑
i=0

T i(a) ◦x
m∑
j=0

T j(b)

− n∑
y=1

 m∑
j=0

T j(b) ◦y
n∑
i=0

T i(a)


=

n∑
x=1

n∑
i=0

m∑
j=0

(
T i(a) ◦x T j(b)

)
−

n∑
y=1

m∑
j=0

n∑
i=0

(
T j(b) ◦y T i(a)

)
=

n∑
x=1

T x−1
n∑
i=0

m∑
j=0

(
T i−x+1(a) ◦1 T j(b)

)
−

n∑
y=1

T y−m
m∑
j=0

n∑
i=0

(
T j+m−y(b) ◦m T i(a)

)
=

n∑
x=1

T x−1
n∑
i=0

m∑
j=0

(
T i−x+1(a) ◦1 T j(b)

)
+

m∑
y=1

T y−m−1
m∑
j=0

n∑
i=0

(
T i(a) ◦1 T j+m−y+1(b)

)
=

n−1∑
x=0

T x
n∑
i=0

m∑
j=0

(
T i−x(a) ◦1 T j(b)

)
+

−1∑
x=−m

T x
m∑
j=0

n∑
i=0

(
T i(a) ◦1 T j−x(b)

)
(2.9)

(2.10)

=
n−1∑
x=1

T x
n∑

i′=0

m∑
j′=0

(
T−i

′+1(a) ◦1 T−j
′
(b)
)

+
−1∑

x=−m
T x

m∑
j′′=0

n∑
i′′=0

(
T−i

′′+1(a) ◦1 T−j
′′
(b)
)

=
n−1∑
x=−m

T x
n∑
k=0

m∑
l=0

(
T−k+1(a) ◦1 T−l(b)

)
=

n−1∑
x=−m

T x(al◦̄kb) =

n−1∑
x=−m

T xc = N(c)

To go from line (2.9) to the next line one needs to re–index, which is possible
since for a fixed x the interior double sum takes all combinations of [n]× [m].

To get the second statement we remark that the image of c in the co–
invariants satisfies [c] = [[a]� [b]]. �

To compare the brackets on the cyclic invariants we will use the standard
isomorphism between invariants and coinvariants, so let the characteristic we
are working in be 0. Consider the usual sequence of invariants and coinvariants.

0 // O(n)Cn+

i // O(n)
1

n+1
N

oo

p // O(n)Cn+
s

oo // 0 (2.11)
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where i is the inclusion, p is the projection and s([a]) = 1
n+1Na.

Plugging in, we get

Corollary 2.23. For a ∈ O(n) and b ∈ O(m):

p[s([a] ◦ s([b])] =
n+m− 2

(n+ 1)(m+ 1)
[[a]� [b]] (2.12)

That is on the cyclic coinvariants the two brackets coincide up to a coboundary
2–cocycle.

2.12. The odd Lie bracket and odd cyclic operads. We can now adapt
Gerstenhaber’s construction to the cyclic operad setting. We first note the
following.

Proposition 2.24. If O is a cyclic operad then sO is an anti–cyclic operad
with a Lie bracket [ � ]. This Lie bracket yields an odd Lie bracket { � } on
O⊕S+

when using the degree | . |. More precisely it is an odd Lie bracket on the

odd cyclic operad ΣsO.

Proof. The only thing to check is that the signs are correct. This follows from
the fact that the degree of a in sO is indeed s(a) = |a| − 1. In particular [ � ]
is a Lie bracket for the grading s and hence after applying a shift, again by
Lemma 1.4, it is odd Lie for the grading | . | which is given by an additional
näıve shift. �

3. (Wheeled) PROPs and Properads.

There are several further generalizations of operad structures. For an operad
O it is natural to consider O(n) as having n–inputs and one output. The first
generalization is to include multiple inputs and outputs. The next general-
ization is to allow non–connected graphs. Using both of them one arrives as
PROPs, which where actually first historically [McL1,BV]. Restricting back to
the connected graphs, one arrives at the notion of properads [Va].

The next step, which will take us to the realm of Metatheorem 2 is to allow
self–gluings. This leads to the notions of wheeled PROPs and wheeled prop-
erads [MMS]. Here it will become apparent that the odd gluing is essential.
For the wheeled cases there is still a shift, which will allow to make the gluings
odd. This is intimately related to the fact that PROPs just like operads have
distinct inputs and outputs.

Finally, wheeled PROPs as they deal with non–connected graphs are the
first instance, where a multiplication for the BV operator and the Gerstenhaber
bracket naturally appears.

3.1. PROPs. A unital PROP in the biased definition has an underlying se-
quence of objects O(m,n) of C or say dgVect which carry an Sn × Sm action.
For this collection of bimodules to be a PROP, it has to have the following
additional structures.

(1) Vertical compositions � : O(n,m)⊗O(m, k)→ O(n, k) which are equi-
variant
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j
i

Figure 1. The dioperadic compositions

(2) Horizontal compositions � : O(n,m)⊗O(k, l)→ O(n+ k,m+ l) which
are compatible in the sense that (a� b) � (c� d) = (a� c) � (b� d)

(3) Unit. 11 ∈ O(1, 1), s.t. (11 � · · ·� 11) � a = a� (11 � · · ·� 11) = a

The collection of objects O(n,m) together with the Sn × Sm action is called
an S–bimodule.

The graphs that one can compose along are not necessarily connected ori-
ented graphs without oriented loops.

We define the compositions a i◦jb by adding identities in all slots other than
into the input slot i of a and the output slot j of b and gluing i and j to-
gether. These operations, gluing one input to one output, are called dioperadic
operations i◦j : O(n,m)⊗O(k, l)→ O(n+ k − 1,m+ l − 1)

In the unbiased version one has a functor O from Fin×Fin to C. Using the
unit, one obtains compositions s◦t : O(U, S)⊗O(T, V ) → O(U q T \ {t}, V q
(S \ {s}).

Example 3.1 (Endomorphism PROP). The canonical example is the endo-
morphism PROP End(V )(n,m) = Hom(V ⊗n, V ⊗m) with the obvious Sn × Sm
action permuting the variables and functions together with the obvious compo-
sitions.

Remark 3.2. Every PROP contains an operad given by the O(n, 1) and the
dioperadic operations i◦1 =: ◦i.

Example 3.3 (PROP generated by an operad). An operad can be thought of
as giving a sequence O(n, 1). Setting

O(n,m) :=
⊕

(n1,...,nm):
∑
ni=n

O(n1)⊗ · · · ⊗ O(nm)

we obtain a PROP by defining � to be essentially the identity, i.e. just tensoring
together the two factors followed by the inclusion of the summand. The Sm
action permutes the factors and the Sn action acts via the identification of the
disjoint union of the sets {1, . . . , ni} with the set {1, . . . , n} by first enumerating
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them one after another in the order given by i. This is a good example of a
non–connected generalization treated in §6.1.

3.1.1. Properads. Looking at the definition of a PROP one can see that
the associativity implies that there are compositions defined for any oriented
graph Γ.

Restricting to the situation where compositions are defined for non all con-
nected oriented graphs one obtains the notion of a properad [Va]. For instance
the horizontal composition � is dropped.

3.1.2. Algebras. An algebra over a PROP(erad) O is then a vector space
V together with a morphism of PROP(erad)s O → End(V )

3.1.3. Coinvariants. We letO⊕S be the sum over the coinvariantsO(n,m)Sn×Sm .

3.2. Poisson–Lie bracket. Analogously to the structure of the Lie bracket
for operads, we can define for a ∈ O(n,m) and b ∈ O(k, l)

a ◦ b :=
∑
i,j

a i◦jb, [a ◦ b] := a ◦ b− (−1)deg(a)deg(b)b ◦ a (3.1)

As before we let O⊕ =
⊕

n,mO(n,m) and O⊕S :=
⊕

n,mO(n,m)Sn×Sm . In
the case of a PROP, we also have a natural multiplicative structure given by �.

Theorem 3.4. For a PROP(erad) O, the product above is pre–Lie on O⊕ and
hence induces a Lie bracket [ ◦ ]. This Lie bracket descends to O⊕S .

For a PROP O The induced Lie bracket on O⊕S is Poisson w.r.t �.
The Lie bracket for operad induces a Poisson bracket on the PROP generated

by that operad coinciding with the natural Poisson bracket above.

Proof. The proof of the pre–Lie and hence Jacobi–identity can be adapted from
the operad case. To show the Poisson property, we see that a ◦ (b � c) =

(a◦b)�c+(−1)deg(a)deg(b)b� (a◦c) up to symmetric group actions depending if
an output of a is glued to b or c, where the sign comes from the commutativity
constraint in gVect. The last statement follows by the definition of the Poisson
property and Example 3.2. �

Adding a vertical composition formally to Properads, by using not necessarily
connected graphs, we end up back with PROPs. For cyclic operads things are
a bit more complicated, and we have to first introduce the notion of non–
connected cyclic operads. This is done in §6.1.

3.3. Odd versions. The odd versions of the concepts above can again be de-
fined by using shifts and suspensions.
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3.3.1. Suspension. The suspension of a PROP O is the PROP sO whose
S–bimodule is

Σn−mO(n,m)⊗ (sgnn ⊗ sgnm) (3.2)

Just like for operads we have the following version of Proposition 1.12:

Proposition 3.5. [MMS] sO is indeed a PROP and V is an O–algebra if and
only if V [1] is an sO algebra.

This explains both the shift and the sign representations.

3.3.2. Näıve/output shift. Now the näıve shift is a bit more complicated
than before. We can again take End as a guide. Naively shifting it as an operad
and then taking the PROP it generates we see that we are led to the following
definition.

Given an S–bimodule O, we let soutO be the bimodule

soutO(n,m) = ΣmO(n,m)⊗ sgnm (3.3)

Just like in the case of operads (which is a subcase), one obtains slightly differ-
ent signs in the associativity equations than one would expect for the induced
operations.

Definition 3.6. An odd PROP(erad) is the näıve shift of a PROP. That is O
is an odd PROP(erad) if and only if s−1

outO is a PROP.

Example 3.7. An example of such an odd PROP(erad) is given by

P(n,m) = V̌ ⊗n ⊗ Σm(V ⊗m ⊗ sgnm) (3.4)

with the natural Sn × Sm action. The vertical composition given by the nat-
ural pairing are given by the natural pairing V̌ ⊗ V → k and the horizontal
composition is induced by tensoring together the factors..

We will also consider the suspension given by sinO(n,m) = Σnsgnn⊗O(n,m).
With this notation, we see that s = sins

−1
out.

With these notions in place, we can extend Metatheorem 1 and due to the
existence of � the resulting bracket is even Gerstenhaber.

Theorem 3.8. An odd PROP(erad) O carries an odd (pre)–Lie bracket on O⊕
and O⊕S . The odd Lie bracket is Gerstenhaber w.r.t. � for an odd PROP on

O⊕S . The odd Lie bracket on an odd operad induces an odd Lie bracket on the
odd PROP generated by that operad and it is a Gerstenhaber bracket there.

Proof. The only thing to check is that the effective shift for the dioperadic
operations is indeed one. This is the case, since before the dioperadic operation,
the total shift is n+m and after the shift it is n+m− 1. �
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3.4. Wheeled versions. The dioperadic operations and � are not quite enough
to recover the PROP structure. After one such operation, to get to the oper-
ation � one would have to do self–gluings of one input to an output. This is
precisely what is allowed in the wheeled version.

That is in the unbiased version a wheeled PROP has the operations �, s◦t
and self–gluing operations ◦st : O(S, T )→ O(S\{s}, T \{t}) which again satisfy
natural equivariance, associativity and compatibility.

The compositions are defined for not necessarily connected oriented graphs
with wheels.

Dropping the horizontal composition � one obtains the notion of a wheeled
properad. The compositions are defined for non–connected oriented graphs with
wheels.

Example 3.9. The PROP(erad) EndV (n,m) ' V̌ ⊗n⊗V ⊗m has such a natural
wheeling by simply contracting tensors for the self–gluings.

3.4.1. Wheeled odd PROP(erad)s. The odd versions are described just
as above. These are by definition the images under the suspension sout. Again,
we denote the image of the compositions i◦j and ◦ij by i•j and •ij .

Lemma 3.10. In on odd wheeled PROP(erad), we have •ij •kl a = −•k′l′ •i′j′a,
where i′, j′, k′, l′ are the names of the appropriately renumbered flags.

Proof. This is due to the shift. Now if we interchange the order, we interchange
outputs j and l resulting in a minus sign. Since the inputs are unaltered,
switching i and k gives no sign. �

This is the first time we encounter odd–self gluings, and we indeed find the
first occurrence of Metatheorem 2.

Theorem 3.11. For an odd wheeled PROP(erad) O, the operator ∆ defined
on each O(n,m) by

∆(a) :=
∑
ij

•ij(a) (3.5)

satisfies ∆2 = 0.
Moreover on the cyclic coinvariants for a PROP the operator ∆ is a BV op-

erator on O⊕S for the multiplication � and its associated bracket (see Appendix)
is the Gerstenhaber bracket induce by { • }.

Proof. The reason for the vanishing of ∆ is Lemma 3.10. For the BV bracket
we notice that ∆(a � b) splits into four sums depending on the gluing. The
inputs of a glued to the outputs of a, this gives ∆(a)b, the inputs of b to the
outputs of b, the term a∆(b), the outputs of a to the inputs of b and vice–versa,
which gives a • b and b • a respectively — all up to permutations.

The only thing that remains to be checked is that the signs that work out
which they do by a straightforward computation. ∆ has degree 1 since each •ij
has degree 1 after the shift. Finally, the structures descend as we sum over all
possible gluings. �
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Remark 3.12. Notice that there is no BV in the unshifted case. We need the
odd composition to get a differential. This also shows that the Gerstenhaber
bracket is actually the deeper one and the regular Lie bracket is actually a shift
of the odd one rather than vice–versa.

4. Modular operads, triples and twisting

We will now turn to self–gluings for operads. This leads to the notion of
modular operads. This is the first notion, where the odd version is not given
by a simple shift. It is rather a twist, namely what is know as a K–modular
operad. For this we will need to introduce triples. With hindsight, we will see
that all the other odd versions also arise from twisted triples. We will deal
with the triples for twisted modular operads quite explicitly and against this
background will be more casual for the other triples.

4.1. Modular operads. We will introduce modular operads in the unbiased
setting.

A modular operad is a collection O(g, S) bi–indexed by finite sets and the
natural numbers, usually taken with the condition that 2g+2−|S| > 0 together
with gluing maps

s◦t : O(g, S)⊗O(g′, T )→ O(g + g′, S \ {s} q T \ {t}) ∀s ∈ S, t ∈ T (4.1)

and self gluing maps

◦ss′ : O(g, S)→ O(S \ {s, s′}, g + 1) for all distinct s, s′ ∈ S (4.2)

which are compatible associative and equivariant with respect to bijections.
The details of these conditions are straightforward, but tedious and we refer
to [GeK2,MSS]. An alternative definition utilizing of triples is below; see §4.

Example 4.1. The motivating example are the Deligne–Mumford compactifi-
cations M̄g,S of curves of genus g with |S| punctures labeled by the set S.

A linear example is then given by the H∗(M̄g,n).

For the biased version, just like in the cyclic case, one uses the sets {0, 1, . . . , |S|−
1} and the notation O((g, n)) := O(g, n− 1).

4.2. Triples. Before delving into the categorical depth of triples, we will con-
sider a relevant example in the case of operads. The main idea connecting the
definition via triples to the previous ones is that the associativity of the glu-
ing operations ◦i (or ◦s in the unbiased case) guarantees that each S–labeled
rooted tree τ gives a unique composition ◦τ from O(τ) (defined by equation
(4.3) below) to O(s).

4.2.1. Forgetful and Free Functor. Given an operad O we can forget the
gluing maps and only retain the S–module. This gives a functor G between the
respective categories. The functor G has a left adjoint functor F which is the
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type graphs for triple local sets at a vertex v
operad rooted trees incoming flags
non–Σ operad planar rooted trees incoming flags
cyclic operads trees flags
non–Σ cyclic operad planar trees flags
modular operad stable graphs (flags, g(v))
PROP not necessarily connected (incoming flags,

directed graphs outgoing flags)
properad connected directed graphs (incoming flags,

outgoing flags)
wheeled PROP not necessarily connected (incoming flags,

directed graphs with wheels outgoing flags)
wheeled properad connected directed graphs (incoming flags,

with wheels outgoing flags)
Table 2. Types of operads and the graphs underlying their triples

free functor. Explicitly, given an S–module V, the free operad F (V) on V is
constructed as follows. For a rooted tree τ one sets

V(τ) =
⊗

v vertex of τ

V(In(v)) (4.3)

where In(v) is the set of flags or half edges at incoming at v. Recall that in a
rooted tree there is a natural orientation towards the root and this defines the
outgoing edge or flag at each vertex. All other flags are incoming.

The composition ◦τ is obtained by contracting all edges, that is for each edge
we perform ◦i operation where i is the input flag of the edge.

Rooted trees whose tails are labeled by a set S form a category IsoRT (S),
by allowing isomorphism of labeled rooted trees as the only morphisms. The
free operad is the given by the S–module

F (V) = colimIsoRT (n)V =
⊕

τ∈RT (n)

V(τ)/ ∼ =
⊕

[τ ] iso classes

V(τ) (4.4)

where ∼ is the equivalence under push–forward with respect to isomorphism.
The operad structure on the F (V)(S) is given summand by summand. If there
are two summands indexed by τ in F (V)(S) and τ ′ in F (V)(T ) under the
composition ◦s their tensor product maps to the summand τ ◦s τ ′ which is the
tree where τ ′ is glued onto τ at the leaf indexed by s.

4.3. Operads as triples. Let T = GF which is an endo–functor from S–
modules to S–modules. Since F and G are an adjoint pair, there are natural
transformations ε : FG → id and η : id → GF . In our particular case, the
first is given by sending the summand of τ to its image under the composition
◦τ . This is well defined up to isomorphism because of the equivariance of the
gluings. The second is just inclusion of the summand given by the S labeled
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tree with one vertex. Actually, one can prove that they indeed form an adjoint
pair using these natural transformations; see e.g. [GM].

4.3.1. Triples. Using these on T one gets the following natural transfor-

mations µ : TT → T via G(FG)F
ε→ GF and η : id → T. These natural

transformation satisfy the equations of an associative unital monoid. In gen-
eral a triple is an endo–functor T together with µ and η which satisfies just
these equations. Our triple was constructed using an adjoint pair and it is a
fact that all triples actually arise this way [EM,Kl].

4.3.2. Operads. Now if O is an operad, we also get a map α : TO → O
by sending each summand O(τ) indexed by an S–labeled tree τ to O(S) using
◦τ . Due to the associativity these maps satisfy the module equations when
considering the two possible ways to map TTO to O.

Vice–versa, given an S–module V if we are given a morphism α : TV → V, we
have equivariant maps ◦τ and moreover if they satisfy the module equations,
then these ◦τ decompose into elementary maps ◦s, where the ◦s come from
rooted trees with exactly one internal edge. It is straightforward to check that
the ◦s define an operad structure on the V(S).

The natural transformation µ also has a nice tree interpretation. Let τ0 be
the tree index of the first application of T, then in the next application one
picks up a collection of indices τv, one for each vertex v of τ0. In order to show
the associativity, one can see that the corresponding summand of TTV is the
same as V(τ1) where τ1 is obtained from τ0 by blowing up each vertex v into
the tree τv. Vice–versa, τ0 is obtained from τ1 by contracting the subtrees τv to
a vertex. One sometimes writes τ1 → τ0 since this is a morphism in the näıve
category of graphs.

4.3.3. Algebras over triples. In general an algebra over a triple T is an
object V of the underlying category together with a map α : TV → V such that
α, µ and η satisfy the axioms of a module over an algebra with a unit; see [MSS]
for the precise technical details.

From the above, we obtain:

Proposition 4.2. Operads are precisely algebras over the triple T of rooted
trees. �

4.4. Other cases. The method is now set to define all the other cases as alge-
bras over a triple. We only have to specify the triple. Taking the cue from above,
we have to (1) fix the type of graph and the category of isomorphisms (2) fix
the value of V on each graph, i.e. the analogue of equation (4.3); in all common
examples this is local in the vertices. And (3) set F (V) = colimIsoGraphV where
the colimit is taken over the category of isomorphisms of S–labeled graphs of
the given type. (4) give µ via gluing the graphs together by inserting the graphs
indexed by a vertex into that vertex. Think of this as the blow–up which is
inverse to the operation of contracting the subgraph.
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For (1) we use Table 2 where we take the S–labeled version of the respective
graphs. For (2) we use the general formula

O(Γ) =
⊗

v vertex of Γ

O(loc(v)) (4.5)

where loc(v) is the local set at v given in Table 2, and for (4) we use the gluing
together of flags; see appendix.

Notice that in each of the examples the underlying objects are graphs of
some sort. These form a näıve category of graphs, by allowing isomorphisms
and contractions of edges, with the respective change of data. For modular
operads for instance, when contracting a loop edge, one also has to increase the
genus by one.

Proposition 4.3. [MSS, Mar, MMS, Va, GeK2] The types of operads listed in
Table 2 are precisely algebras over the respective triple defined above.

We will make this explicit for modular operads. Here the graphs are stable
S–labeled graphs, which means that they are arbitrary graphs together with a
labeling by S of the tails and a genus function g from the vertices of the given
graph Γ to N, such that 2g(Γ) − 2 − |S| > 2 where g(Γ) =

∑
vertices v g(v) +

dimH1(Γ) is the total genus of the graph. The basic gluings s◦t come from trees
with one edge where s and t are the flags of the unique edge and the gluings
◦ss′ come from the one vertex graph with one loop whose flags are indexed by
s and s′.

For various gradings the following formula is useful for an S–labeled Γ∑
v

(|Flags(v)| − 2 + g(v)) = 2g(Γ)− 2 + |S| (4.6)

4.5. Twisted modular operads. The idea is to get new notions of operads
by twisting the triple T. In order to do this one alters the definition of F by
using O(Γ)⊗D(Γ) and then again takes the colimit.

VD(Γ) = V(Γ)⊗D(Γ)

TDV(g, S) = colimΓ∈IsoGraphmod(S)V

'
⊕

Γ∈IsoGraphmod(S)

V(Γ)⊗D(Γ)/ ∼

'
⊕
[Γ]

(V(Γ)⊗D(Γ))Aut(Γ) (4.7)

where here Graphmod(S) are S–labeled stable graphs with a genus function and
the last sum is over isomorphism classes of such graphs. Taking coinvariants
with respect to the automorphism group is new, since the automorphism groups
of rooted S–labeled trees are trivial.

In order for this to work D has to be what is called a hyper–operad in [GeK2].
The relevant problem being that if we do the inverse of contracting edges along
subgraphs —so as to build the composition along a graph— we have to know
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how D behaves. So let Γ1 be a stable graph and Γ0 a graph obtained from Γ
by contracting subtrees Γv, where v runs through the vertices of Γ0 and Γv is
the preimage of v under the contraction. This is also what is needed to define
the transformation TDTD → TD.

The datum of D is given by specifying all the D(Γ) and maps

D(Γ0)⊗
⊗

v vertices of Graph
D(Γv)→ D(Γ1) (4.8)

for each morphism Γ1 → Γ0 which again have to satisfy some natural asso-
ciativity, see [MSS, GeK2]. One also fixes that D(∗g,S) = k, where ∗g,S is the
graph with one vertex of genus g and S tails. These are necessary to show
that the twisted objects are again triples with unit. Notice that there might
be no contractions of edges in Γ1 → Γ0. For this subcase we have that D is
compatible with the Sn action.

4.5.1. Compositions in twisted modular operads. A good way to un-
derstand twisted modular operads is as follows. For a modular operad the
algebra over a triple picture says that for each S–labeled graph Γ with total
genus g there is a unique operation ◦Γ from O(Γ)→ O(g, S). Now for a twisted
modular operad this ceases to be the case. One actually has to specify more
information on the graph. One way to phrase this is that D(Γ) is a vector space
of operations for each graph Γ and we get a well defined operation when we
specify an element of that vector space. Of course basis elements suffice. To
make this precise, we use adjointness of ⊗ or in other words the fact that the
category is closed monoidal.

Lemma 4.4. Being an algebra over a D twisted triple in a closed monoidal
category is equivalent to having equivariant, compatible composition maps

◦ord,Γ : O(Γ)→ O(g, S) (4.9)

for each S–labeled Γ of total genus g and each element ord ∈ D(Γ).

Proof. The triple gives compatible compositions maps φ : D(Γ) ⊗ O(Γ) →
O(g, S) that is

φ ∈ Hom(D(Γ)⊗O(Γ),O(g, S)) ' Hom(D(Γ), Hom(O(Γ),O(g, S)))

In other words if ord ∈ D(Γ) then we get a composition ◦ord,Γ : O(Γ)→ O(g, S)
and the collection of these compositions is equivalent to φ. �

4.6. Standard Twists. Table 3 lists some of the standard twists and the op-
erads they correspond to.

Here given a (graded) finite dimensional vector space V or an edge e com-
posed of two flags s and t:

Det(V ) = Σ−dim(V )Λdim(V )V (4.10)

Or(e) = Σ2Det({s, t}) = span(Σ2(Σ−1(s) ∧ Σ−1t)) (4.11)
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Name Value on Γ appears in
Det Det(H1(Γ))
K Det(Edge(Γ)) Feynman transform
T Det(

⊕
e∈EΓ

Or(e)) anti-symmetric of degree 1

L Det(Flag(Γ))Det−1(Tail(Γ))
Table 3. Standard twists for operads

The most important feature about Det is:

Det(
⊕

Vi) =
⊗
i

Det(Vi) (4.12)

Our main interest here are K–modular operads, which are the correct odd
version of operads. They turn up naturally in two situations. The first is as
the Feynman transform of a modular operad, (see §7) and the second is on the
chain and homology level of modular operads with twist gluing or a degree one
gluing; see §8.

The twists L and T occur for endomorphism operads with (anti)–symmetric
bilinear forms. The twist Det is trivial on trees and is the main difference
between the tree or oriented case and the higher genus modular case as we will
explain below.

4.6.1. Odd edge interpretation of K. The interpretation which explains
why K–modular operads are the odd version of modular operads is that in a
K–modular operad each edge gets weight −1 and so permutations of the edges
give rise to signs. Also permuting the vertices of an edge, gives the shifted sign.
These are exactly the Gerstenhaber signs as we discuss below §4.7.2.

4.6.2. Twisted endomorphism operads and algebras over twisted
modular operads. Some of these twists appear when one considers the exten-
sion of the operad End(V ) to the modular case. Much as in the cyclic case one
has to add a non–degenerate form. As an S–module, one sets E((g, n)) = V ⊗n.

The composition is then given by contracting with the form as in the cyclic
case. If the form is of degree l and symmetric or anti–symmetric the result-
ing operad structure is a twisted modular operad where the twists are; (see
e.g. [Bar]):

K⊗l if the form is symmetric of degree l

K⊗l−2L if the form is anti-symmetric of degree l (4.13)

These operads are then the natural receptacle in the formulation of an algebra
over an operad. That is an algebra over a K⊗l or K⊗l−2L twisted modular operad
O is a map of twisted modular operads from O to E(V ) (of degree 0), where V
is a vector space with a non degenerate symmetric respectively anti–symmetric
form of degree l.

In the cyclic operad case one uses the isomorphism Hom(V ⊗n, V ) ' V ⊗n+1.
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Name Value on ∗((g,n)) appears in

s Σ−2(g−1)−nsgnn operadic suspension
s̃ Σ−nsgnn shifts of E
Σ Σk näıve shift

Table 4. List of coboundary twists and their natural habitats
Here n refers to the standard notation O((n)) = O(n− 1) with
S(n−1)+ ' Sn action in the cyclic/modular case.

4.6.3. Coboundaries. A special type of twist is given by a functor from the
one vertex graphs to invertible elements in the target category. In the main ap-
plication, this means a one–dimensional vector space in some degree. That is a
collection of l(∗v) for each possible vertex type functorial under automorphisms;
in the modular case the vertex types are given by (g, S) and the automorphisms
are S|S|.

If Γ has total genus g and tails S, then

Dl(Γ) = l(g, S)⊗
⊗
v∈Γ

l((g(v), F lag(v))−1

The most common coboundaries are listed in Table 4.
These coboundaries behave nicely with respect to conjugation: if l is the

functor of tensoring with l then

l ◦ TD ◦ l−1 ' TD⊗Dl
(4.14)

This equation also proves

Proposition 4.5. The categories of algebras over the triple TD and algebras
over the triple TDDl

are equivalent, with the equivalence given by tensoring with
l. �

This is the underlying reason for the form of our definition of odd operads
and PROP(erad)s; see §4.7.2.

Remark 4.6. It is important to notice that although l determines Dl, it can
happen that different l give rise to the same twist D. For instance Ds2 ' 11
[GeK2].

4.6.4. Relations. The standard twists are not independent, but rather they
satisfy the relations:

K ' T⊗Ds (4.15)

Det ' T⊗D−1
Σ ' K⊗Ds

−1 ⊗D−1
Σ (4.16)

Ds ' L−1 ⊗ K⊗2 (4.17)

Ds̃ ' L−1 (4.18)

(4.19)

Remark 4.7. Notice that in case the graph Γ is a tree, we see that Det is
trivial and hence K ' Ds ⊗DΣ and T ' DΣ.
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Remark 4.8. We also see that K⊗2 = DsD
−1
s̃ and hence twists by K and K−1

are equivalent.
Also K⊗2(Γ) = Σ−2|E(Γ)|. This also means that if we are only looking at the

Z/2Z degree then K = K−1

4.6.5. Suspension: Shifting V . If V has a symmetric/anti-symmetric form

B of deg l then V [1] carries a anti-symmetric/symmetric induced form B̃ of

degree l − 2 where B̃(x[1], y[1]) = (−1)|x|B(x, y).
As a twisted modular operad E(V [1])((g, n)) := V [1]⊗n is additionally s̃

shifted.
We wish to point out that the difference between E and End gives different

answers to what suspension is natural. Before we had s as the usual suspension;
now it is s̃. Likewise, the operadic suspension s is actually s−1 in the case of a
cyclic operad. The same for operads and PROP(erad)s. All these are natural,
depending on the definition of the endomorphism operad, and it is a matter of
choice which ones to use, see in particular Proposition 4.6 and Remark 4.8

4.6.6. Tensor products.

Lemma 4.9. If O is a D twisted modular operad and O′ is a D′ twisted modular
operad then (O⊗O′)((g, n)) := O((g, n))⊗O′((g, n)) is a DD′ twisted modular
operad. �

4.7. Generalization of twists. The theory of twisted triples works equally
well for the other triples in Table 2. In all these cases one has to specify the
following things. First, what the category of graphs is. This is given by contrac-
tions of edges and in the non–connected case also by so called mergers, where
two vertices are fused together keeping all inputs and outputs; see Appendix.
Furthermore one has to specify a vertex type ∗Γ for each graph, such that the
component [Γ] of the morphism TO → O yields ◦Γ : O(Γ) → O(∗Γ). Equiva-
lently the morphism TT→ T expands a vertex ∗Γ to all graphs with that vertex
type.1 In all the cases there is a canonical choice given by the result of a total
contraction of all edges followed by a total merger [BoM].

Again as in Lemma 4.9, tensoring together twisted versions tensors the twists.

4.7.1. Odd and anti– as coboundaries. Notice that the twists K always
make sense and s for the cyclic situation. If we restrict K to trees, we find that
the twist by K is precisely the twist by DΣDs. But the shift Σs was exactly what
we associated to the grading of the Hochschild complex. Hence with hindsight,
we could have worked with K twisted operads and K twisted cyclic operads.

More precisely we have the list of operad–like types given in Table 5, which
could equivalently be defined as algebras over twisted triples.

For (cyclic) operads, we have already clandestinely encountered these twists.
Namely, the odd (cyclic) operads are nothing but algebras of the triple of rooted
trees, (respectively trees), twisted by DΣ. And one can check that indeed anti–
cyclic operads are equivalent to algebras over the triple twisted by Ds which
by the previous considerations agrees with the twist by L−1⊗K⊗2. See Lemma
4.10 for the proofs.
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Type defining value (of l on isomorphic twist
twist if coboundary)

odd operad DΣ Σk ∗n DΣs ' K

operad 11 k ∗n KD−1
Σ

odd cyclic operads DΣs Σn−1sgnn ∗((n)) K

anti–cyclic operads Ds = Ds−1 Σn−2sgnn ∗((n)) Ds ' KD−1
Σ

odd PROP(erad) Dsout Σmsgnm ∗n,m K

PROP(erad) 11 k ∗n,m KD−1
Σout

K–modular K Det(Edge) Γ K

anti–modular Det Ds Σ−1Det(Edge) Γ KD−1
Σ

Table 5. Types of operads defined by certain twisted triples
via Proposition 4.5

Lemma 4.10. We have the following isomorphisms: For operads Ds ' 11 and
all the isomorphisms listed in Table 5

Proof. Ds is concentrated in degree 0 and the Sn action is trivial. Indeed for
an n–tree the shift is n− 1 +

∑
v(1− ar(v)) = n− 1 + |V | − |Eint|+ n = 0.

For DΣs the value on an S labeled rooted tree is DΣs(T ) = Det−1(S) ⊗⊗
vDet(In(v)) ' Det(Edge) = K(T ).
For the cyclic operad case, we have K ' DsDΣ by Remark 4.7
Finally, for the PROP(erad)s for Γ of type (n,m) that is n inputs and m

outputs Dsout(Γ) = Det−1(Tailout(Γ))⊗
⊕

vDet(Flagout(v)) ' Det(Edge) ' K
where we used that the set of non–tail flags is in bijection with the edges. �

Lemma 4.11. Notice that for PROP(erads) by an analogous argument Dsout '
Dsin ' K so that Ds ' DsinD

−1
sout ' 11. Thus a suspended PROP(erad) is a

PROP(erad). �

Remark 4.12. In [MMS] the following cocycles are also used: s = s−1, w =
K−1s. It seems although stated differently, that in [MMS] they use Ds−1

out
' K−1

to twist, which is equivalent since the categories of the twisted PROP(erad)s
are equivalent by Proposition 4.5

4.7.2. Odd operads and anti–cyclic operads as twisted operads and
their relation to K. Now we can make the Metatheorem 1 precise by using
K twisted instead of odd.

Theorem 4.13. All K twisted versions in Table 5 carry a natural odd Lie
bracket on the direct sum of their coinvariants. Their Σ−1

out shifts accordingly
carry a Lie bracket.

Proof. The first statement is just a rephrasing of our previous results, using
Proposition 4.5 and Lemma 4.10 except for the case of K–modular operads
which for the bracket reduces to the case of odd cyclic, since the gluing is only
along trees. �
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Notice that we included anti–modular in the list. This is the natural can-
didate to carry the even bracket and we see that this is as twisted as the K–
modular operad. The main point is that the cocycle Det is not a coboundary
in the modular version.

5. Odd self–gluing and the BV differential

In this paragraph, we deal with Metatheorem 2. For this we need odd–self
gluings. We have already treated odd wheeled PROP(erads). We now turn to
K–modular operads.

The most important fact that we need is that K–modular operads have an
odd self–gluing structure that is the operations •ss′ : O(S) → O(S \ {s, s′})
such that for four element subsets {s, s′, t, t′} ⊂ S and a ∈ O(S)

•ss′ •tt′(a) = − •tt′ •ss′(a) ∈ O(S \ {s, s′, t, t′}) (5.1)

Using the language of graphs, the two different operations correspond to a
graph with one vertex flags indexed by S and two pairs of flags {s, s′} and {t, t′}
joined together as edges e1 and e2, the two compositions however correspond
to ◦e1∧e2,Γ and ◦e2∧e1,Γ in the notation of Lemma 4.4, which differ by a minus
sign.

Proposition 5.1. The operator ∆ defined on each O(g, S) defined by

∆(a) =
∑

{s,s′}∈S,s6=s′
•ss′(a) ∈

⊕
{s,s′}∈S,s6=s′,g+1

O(S \ {s, s′}) (5.2)

satisfies ∆2a = 0 for any a ∈ O(g, S).

Proof. We consider the component S \ {s, s′, t, t′} for fixed s, s′, t, t′. It will get
six contributions which appear pairwise. Each pair corresponds to an ordered
partition {a, b} q {c, d} of {s, s, t, t′} and the two terms appear with opposite
sign. These are the compositions for the S \ {s, s′, t, t′}–labeled graph with one
vertex and two edges in both orders of the two edges. �

Remark 5.2. Here we chose to index by two element subsets of S. If we index
by tuples (s, s′) and we are in characteristic different from two then we obtain
the more familiar form:

∆(a) =
1

2

∑
(s,s′)∈S,s6=s′

•ss′(a) ∈
⊕

{s,s′}∈S×S,s6=s′
O(S \ {s, s′})

Passing to coinvariants, we obtain an instance of Metatheorem 2

Proposition 5.3. ∆ induces a differential on O⊕S that is ∆2 = 0. This differ-
ential lifts to the cyclic invariants and to the biased setting.

Proof. On O⊕S the equality follows directly from (5.1). For the lifts, we remark

that {0, . . . î, . . . ĵ, . . . n} has a natural cyclic and linear order. �

Remark 5.4. In the biased setting as shown in [SZ, Schw] it is sufficient to
lift ∆ to •n−1n on O(n). The compatibility follows from the standard sequence
(2.11).
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Now we have Metatheorem 2 in the form:

Theorem 5.5. The K twisted version of modular operads, wheeled PROP(erad)s
and the chain level Schwarz EMOs carry a differential ∆ on their coinvariants.

Where the EMOs are discussed in 8.1.3.

6. Multiplication, Gerstenhaber and BV

So far for cyclic and modular operads, we have only constructed (odd) Lie
brackets and differentials. In order to upgrade them to Gerstenhaber respec-
tively Poisson algebras and BV operators, we need an additional multiplicative
structure.

Following [SZ,Schw,HVZ] we show that there is a natural external multipli-
cation one can introduce by going to disconnected graphs. It is the external
multiplication that is natural to consider in the master equation as that equa-
tion is a linearization of an equation involving an exponential.

There is a second type of multiplicative structure that is possible. This is an
internal product; that is an element µ ∈ O(2) which is associative. Although
a little bit outside the main focus of the paper, we deal with the second type
of multiplication in order to contrast it with the one above. This second type
of structure appears in Deligne’s conjecture [KS,McCS,V,BF,T,K2], its cyclic
generalization [K3]. A last possibility is an A∞ version which was studied
in [TZ,KSch,Wa,K6], but that goes beyond the scope of this paper.

6.1. Non–connected versions. A priori an operad of the above kinds has no
multiplication. We can however add a generic one, by passing from connected
graphs to non–connected ones. The cue to use this type of multiplication comes
from [SZ,Schw,HVZ].

6.1.1. Non–connected (odd) operads. For operads the notion of the non–
connected (nc) generalization exists and is called the PROP generated by the
operad. To get the triple one should look at the appropriate subcategory for
PROPs. Namely,the non–connected version is given by forests of rooted trees.
For an algebra over such a triple we need a new composition � : O(S)×O(T )→
O(S q T ) called a horizontal composition. This needs to be compatible in the
obvious way with the other compositions. In particular we take the categoryRF
to be the category of rooted forests where now we have the additional morphism
coming from the disjoint union q. In categorical terms this is nothing but a free
monoidal category based on RT , the category of rooted trees. The elements are
collections of rooted trees, with the obvious isomorphisms and other morphisms
given by combining collections and contracting edges.

In order to achieve the correct odd notion, we again have to twist the triple.
The twist is now by K as previously. We call an algebra over such a triple a
non–connected odd operad. Notice that { • } is well defined as the sum over
the non–self gluings.
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Theorem 6.1. Given a non–connected odd operad, the odd Lie bracket { • } is
Gerstenhaber with respect to �.

Proof. This just boils down to the fact that before anti–symmetrizing on the
left hand side of (A-1), we have a summand corresponding to connecting the
inputs/output of a to any element of the set SqT if b ∈ O(S) and c ∈ O(T ) say.
The ones connecting the root to S are the first term, while the ones connecting
the root to T are the second term of the rhs. �

6.1.2. NC–cyclic. For cyclic operads and modular operad the non–connected
notions have not appeared in the literature yet — as far as we are aware.
The relevant triples are those of forests (collections of trees). We will call
the algebras over these triples nc–cyclic operads. Again the relevant mor-
phisms are given by isomorphisms, contracting edges and combining collec-
tions. The combining of two one vertex graphs gives a horizontal composition
� : O(S)⊗O(T )→ O(S q T ). The twist by K makes sense and we obtain the
notion of odd–nc–cyclic operad.

Theorem 6.2. Given an odd nc–cyclic operad, the odd Lie bracket { � } is
Gerstenhaber with respect to � on the coinvariants O⊕S .

Proof. This just boils down to the fact that on the left hand side of (A-1), we
have a summand corresponding to connecting the root of c to any element of
the set S q T . The ones connecting to S are the first term, while the ones
connecting to T are the second term of the rhs. �

6.1.3. NC–modular operads. For NC modular operads the basic underly-
ing triple will be non–connected graphs. We must however deal with the genus
labeling. Since the graphs are not connected one should replace g by χ where
χ is the Euler characteristic. For any graph, its Euler characteristic is given by
the Euler characteristic of its realization. Viewing it as a 1–dimensional CW
complex and contracting any tails, we get that

χ(Γ) = b0(|Γ|)− b1(|Γ|) = |vertices of G| − |internal edges of Γ|;
If Γ is connected then 1− χ(Γ) = g.
We replace the genus labeling by the labeling by γ. That is a function γ :

vertices of Γ→ N.
The total γ is now

γ(Γ) = 1− χ(Γ) +
∑

v vertex of Γ

γ(v)

This means we get non–self gluing s◦t for which γ is again additive in γ and
self–gluings ◦ss′ increase γ by one. There is also the collecting together which
gives a horizontal map � : O(γ, S)⊗O(γ′, T )→ O(γ + γ′, S q T ).

The triple is now given as usual. Just as in the modular case, the multipli-
cation in the triple expands the vertices into graphs of the corresponding type
(Flags(v), γ(v)).
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Figure 2. The tree terms for checking the BV property

The twist by K makes sense and we obtain the notion of an nc–K–modular
operad.

Again ∆ is well defined as the sum over all self–gluings.

Theorem 6.3. For an nc–K–modular operad O, the sum over non–self gluings
gives an odd Lie bracket { � } on the coinvariants (both cyclic and full) which
is Gerstenhaber for the horizontal multiplication on O⊕S .

The differential ∆ given by summing over the self–gluings is a BV operator
for the horizontal multiplication on O⊕S and its Gerstenhaber bracket is the
bracket induced by { � }.

Proof. The proof can either be done by direct calculation or by the following
argument which is essentially an adaption of that of [HVZ]. If we look at the
equation (A-2) then taking ∆(a � b) decomposes into three terms. All self–
gluings of a, all self–gluings of b and all non–self gluings between a and b, which
if one is careful with the signs give all the gluings. A pictorial representation
is given in Figure 2. Again one has to be careful that one uses coinvariants,
which is where { � } satisfies the Jacobi identity. �

6.1.4. NC–extension. Just like there is the PROP generated by an operad,
a cyclic or (twisted) modular operad generates an nc version.

Here the operation � is just taken to be ⊗ and one sets

Onc((γ, n)) =
⊕
k

⊗
(n1, . . . , nk) :

∑
i ni = n

(g1, . . . , gk) :
∑

1− gi = γ

O((ni, gi))

6.2. K –twisted Realization of the Mantra. We can now formulate Metathe-
orem 2 in this context.

Theorem 6.4. For the nc–versions of odd cyclic operads and K twisted modular
operads as well as for K–twisted version of wheeled PROPs the operator ∆ is
a BV operator on the coinvariants which induces the previously constructed
Gerstenhaber bracket.

6.3. Operads with multiplication. Let µ ∈ O(2), s.t. µ ◦1 µ = µ ◦2 µ. An
operad together with such an element is called an operad with multiplication.
Indeed on O⊕, µ defines a graded associative multiplication via a ⊗ b 7→ (µ ◦2
b) ◦1 a.

Such an element also gives rise to a differential da := {a • µ}
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Theorem 6.5. [G] For an operad with multiplication the odd bracket { • } is
odd Poisson, aka Gerstenhaber up to homotopy, that is the equations hold up
to im(d).

In the cyclic situation for an operad with a unit 1 ∈ O(0) for µ, one can
define degeneracy maps via si(a) := a ◦i 1

Then one can define the operator B = s(1 − t)N on the complex O⊕ with
the differential d (or the sum of the internal differential and d). On the reduced
complex is just sN . The calculation in [K3] shows that

Theorem 6.6. For a cyclic operad, B is a differential on the reduced complex
and descends to a BV operator for µ on the cohomology. Moreover the induced
bracket agrees with the one coming from the Gerstenhaber structure.

This type of BV operator is internal and has a priori nothing to do with
the external ∆ we considered above. They also yield different Gerstenhaber
brackets, namely { • } and { � }.

Thus taking coinvariants, they are related a posteriori. Moreover if µ is
cyclic, then the gluing can be thought of as composing both elements with µ
and putting in a co–unit. The precise relationship and interplay between the
two BV formalisms is an interesting open problem.

7. (Co)bar constructions and Feynman transform and the master
equation

For an algebra there is a standard resolution given by the co–bar bar con-
struction. Here one takes a (dg) algebra and makes it into a dg–coalgebra
and then into a dg–algebra which is a free resolution for the first algebra. For
operads there is a similar story, although one usually takes duals so that the
operation goes operad to dg–operad to dg–operad. In the first step the operad
is actually free as an operad, but not as a dg–operad. This is sometimes called
quasi–free. The difference is exactly measured by the master equation in its
various guises. For modular operads this was first proved in [Bar].

Since in the end one always ends up with a differential on the structure one
should allow to start with one. This is why in this section we work in the
category dgVect.

7.1. (Co)bar construction aka Feynman transform. The underlying op-
erad of the dualizing complex D(O) of a (cyclic) operad O is FDΣDs(GO)∗

[GiK,MSS] that is the free operad on the Σ⊗ s twisted S–module which is the
dual of the underlying S–module (GO)∗(S) = Hom(O(S), k) of O.3 By our
previous results on twists we could regard this operad not as an operad, but as
a free K twisted or odd operad.

This is exactly the way one proceeds in the case of modular operads. For a
modular operad the underlying K–modular operad of the Feynman transform is
FK(GO)∗ where FK is the free functor for K–modular operads and is called the

3As before F and G are the free and forgetful functors.
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Feynman transform. The underlying cyclic operad is Cyl(FO) = ΣsBCylO =
D(Cyl(O))4.

We will now consider only the modular version. The cyclic case is just a sub-
case and the original operad case is simply given by an analogous construction.
All of them can be found in [MSS].

More generally FDO of a D modular operad, where D is invertible, is the
free Ď = K⊗D−1 modular operad in the dual of the underlying S–module.

The fact that we took duals gives a differential in all cases this is dual to the
composition given by contracting an edge. This is actually only the external
part of the differential. The total differential on FDO is the sum dF = ∂O∗ + ∂
where ∂O∗ is the internal differential induced from the differential on the O(S)
by dualizing and taking tensors, and ∂ is a new external differential whose
value on the term (D−1(Γ)⊗ K(Γ)⊗O∗(Γ))Aut(Γ) is given as follows. Consider

Γ̂ together with an edge e such that Γ̂/e ' Graph. Then there is a map

◦e : D(Γ̂) ⊗ O(Γ̂) → D(Γ) ⊗ O(Γ) which composes along e. Since O is an
algebra over T for such a pair there is a map

∂Ĝ,e : K(Γ)⊗D−1(Γ)⊗O∗(Γ)
εe⊗◦∗e−→ K(Γ̂)⊗D−1(Γ̂)⊗O∗(Γ̂) (7.1)

where εe is the multiplication by the basis element [e] of Det({e}). Now the

matrix element ∂ between (D−1(Γ̂)⊗K(Γ̂)⊗O∗(Γ̂))Aut(Γ̂) and (D−1(Γ)⊗K(Γ)⊗
O∗(Γ))Aut(Γ) is the sum over all ∂ ˆGraph,e for which ˆGraph/e ' Graph. If there

is no such edge, then the matrix element is zero.
The reason to introduce the twist by K into the picture is to make ∂ into a

differential. Indeed applying it twice inserts two edges in all possible ways and
each term appears twice: once with each possible ordering of the two edges.
Due to the presence of the tensor factor Det(Edges) these terms differ by a
minus sign and cancel.

Remark 7.1. The Feynman transform actually does give a resolution if applied
twice; see [GeK2]. We will not need this important fact however.

7.2. Algebras over the bar construction, the Feynman transform and
the Master Equation. One has to distinguish: As an operad the transform
is free as a dg operad it is not.

Since F(O) is free and the free functor is adjoint to the forgetful functor, a
mere algebra V over F (O), ignoring the dg–structure, is fixed by the maps of
S–modules O∗((g, n))→ End(V )((g, n)). This means that the algebra structure
is given by Sn–equivariant maps m̂g,n

m̂n,g ∈ HomSn(O∗((g, n)), E(V )((g, n))) ' (V ⊗n ⊗O((g, n)))Sn 3 mg,n

or isomorphically Sn invariant elements mg,n where the action is the diagonal
one. Summing up these elements to a formal series

S :=
∑
g,n

mg,n (7.2)

4see Remark 7.6 below
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it determines the structure of an algebra over the operad FDO, ignoring the dg–
structures. Also since the morphisms are degree preserving, S has degree 0 and
vice–versa any such degree 0 series gives rise to a morphism. Now O((g, n))⊗
V ⊗n = O ⊗ E(V )((g, n)) is a K twisted operad, since E(V ) is K twisted by
definition. Thus its co–invariants carry { � } and the operator ∆ using the
standard isomorphism between invariants and co-invariants.

Theorem 7.2. [Bar] The series S defines a dg–algebra over FDO if and only
S satisfies the quantum master equation

dS + ∆S +
1

2
{S � S} = 0. (7.3)

where dm = ((−1)|m|+1dF + dV )m, the sum of the differential on the Feyn-
man transform, suitably dualized and the internal differential of V . This gives
a bijective correspondence between degree 0 solutions to the quantum master
equation and dg–algebra structures of V over FDO.

The theorem is basically an unraveling of definitions. The fact that the two
terms ∆ and { � } appear is because the differential is the sum over inserting
edges. Namely, each such edge corresponds to a self or a non–self gluing.

Remark 7.3. If one wishes, one can keep track of the genus, since { � } leaves
it invariant and ∆ increases it by one, for S(λ) :=

∑
g,n λ

gmg,n we get

dS + λ∆S +
1

2
{S � S} = 0. (7.4)

7.2.1. NC–generalization. In the nc extension of the above situation the
solutions to the master equations are also exactly the solutions of

(d+ λ∆S)eS = 0 (7.5)

Here the exponential is formal for the product given by �. This is in accordance
with quantum field theory, where the exponential gives the sum over all not–
necessarily connected Feynman graphs.

7.2.2. Extension to other targets. There was actually nothing special
about the target operad E we used, except that the tensor product of the
original operad and the target was K–modular. That is fix O and P to be two
twisted operads in dgVect, such that O ⊗P is K–modular.

Theorem 7.4. The dg morphisms Homdg(FO,P), P considered with its in-

ternal differential, are given by solutions S of (7.3) for S ∈ (O⊗P)S⊕, of degree
0.

7.3. (Cyclic) operad version. For the case of operads and cyclic operads we
have the analogous statements. Here S ∈

⊕
n(O(n)⊗V ⊗n+1)Sn or respectively

S ∈
⊕

n(O((n))⊗ EndV (n))Sn
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Theorem 7.5. An algebra over the (cyclic) operad D(O) given by S (of degree
0) is a dg algebra if and only if it S satisfies:

dS +
1

2
{S • S} = 0 (7.6)

dS +
1

2
{S � S} = 0 (7.7)

�

Notice that O((n)) ⊗ V ⊗n is again a cyclic operad namely just the operad
product of O and End(v) and as such there its direct sum is a Lie algebra.
In other words, the possible algebra structures are in 1–1 correspondence with
Maurer–Cartan elements in that Lie algebra. The analogous statement holds
true for operads.

Remark 7.6. Strictly speaking the original definition of the dualizing complex
of an operad D(O) yields that D(O) = F sΣGO [MMS], where as before G and
F are the forgetful and free functors. This is up to the final twist (sΣ)−1 a K−1

twisted operad. But since K⊗2(T ) = Σ−2|E(T )| = Σ2|V (T )|−2 = DΣ−2(T ) we see
that these structures only differ by a twist on trees and hence all categories of
triples are equivalent.

7.4. Feynman transform in the (wheeled)PROP(erad) case. Here we
deal with the other structures, we have encountered. Although the paper [MMS]
is very thorough it seems to have missed Theorem 7.9, which we now furnish.
In [MMS] with the use of the cocycle w−1 a (co)–bar construction was given.
Dually we give the Feynman transform here. This is what allows us to put the
result on BV algebras in [MSS][Theorem 3.4.3] into a broader framework.

As for modular operads the Feynman transform for invertible twists D pro-
duces a KD−1 twisted PROP(erad). In particular the Feynman transform of
a wheeled PROP(erad) is a K-wheeled PROP(erad). In general, just like for
modular operads if D is an invertible twist, then the Feynman transform FD

turns D twisted PROP(erads) into KD−1 twisted PROP(erads).

Definition 7.7. Given a D twisted (wheeled) PROP(erad) O, we let FD(O)
be the free KD−1 twisted (wheeled) PROP(erad) with the differential that is
the sum of the differential induced by the one on O and the external differential
which is defined by “insertion of all possible edges of weight −1” which is made
precise by matrix elements as defined in §7.

Remark 7.8. There are a several versions of the Feynman transform for PROP-
(erad)s. The first —and this is the one we use here— is essentially the dioperadic
resolution [Ga]. This corresponds to the bracket we have introduced.

The second version is more complicated uses the resolution of [Va] and an
accordingly changed bracket. We defer that discussion to [Fey], where we in-
troduce transforms depending on a fixed set of generators.

For the quantum master equation, we never want to resolve the horizontal
composition. This operation yields the multiplication for the Gerstenhaber/BV
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structure and is inherent in the definition of eS which is the physically relevant
exponentiated action [SZ,ASZK]; see e.g. equation (7.5).

Theorem 7.9. Let O be a (wheeled) PROP(erad) and let P be a K- twisted
(wheeled) PROP(erad). Then there are one to one correspondences

Homdg(F(O),P)
1−1↔ (Q)ME((O ⊗P)S⊕)

Where for the non–wheeled case ME are the degree 0 solutions to the master
equation (7.6), and for the wheeled case QME is the is the set of degree 0
solutions to the quantum master equation (7.3).

More generally using FD the same holds true for a pair of a D twisted O and
KD−1 twisted P. In particular this works for O being D = K–twisted and P
being untwisted.

Proof. The proof is completely analogous to the modular case. Since the F(O)
is free when forgetting the differential, we get the series S. Now looking at
the differential part, we have the two internal differentials and the external
differential packed into d. Without the external one the equation for a dg–
morphism would just be dS = 0. The external part, suitably dualized, just
adds edges. If these are self–gluings they appear in the term with ∆ if not they
appear in the term with { • }. �

It should be noted that one important example of this theorem has been
proved in [MMS]. In particular they define a wheeled PROP PolyV � :=
FK−1(Com) = K−1F(Com) where Com is the S bimodule with the trivial
representation in each bi–degree, and also its obvious extension to a wheeled
PROP. Here K = sout is used in its form as a coboundary and F is the free
PROP. In our language this is equivalent to being in the image of the Feynman
transform. The differential defined in [MMS] in this interpretation is exactly
the one induced by the Feynman transform.

Using the theorem above one can recover.

Proposition 7.10 ( [MMS]). The PolyV � algebra structures on a finite di-
mensional complex (M0, d0) are in bijective correspondence with the symmetric
ME solutions in the dgBV algebra ∧•TM , where M = ΠΩ1M0 (Π is the par-
ity reversal see e.g. [MMS] or [ASZK]). The first fact is immediate from the
definitions.

Proof. Since PolyV � = K−1F(Com), we see that its morphisms to EndM =
KK−1EndM are equivalent to those of F(Com)→ K−1End(M0)). By the theo-
rem above These are given by solutions in (Com⊗End(M0))S⊕

∼= (K−1EndM )S⊕ =

(∧•TM )S. �

Actually, in [MMS] the symmetry of the tensor is implicit in the representa-
tion and they work in the category of Z/2Z–graded spaces which goes through
in the same way. Notice that in this case actually K = K−1 and S has to be
even.
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8. Geometric examples

In this section we give some geometric examples which lead to occurrences
of Metatheorem 4. There are basically two kinds: open and closed. These are
motivated by the constructions of [HVZ] and [KSV], and ultimately by [SZ].
Informally speaking the common feature of the following closed examples is an
S1–action on the outputs, which can be transferred to a twist gluing. Such
a twist gluing will be an S1 family. Passing to homology or chains this 1–
parameter family gives degree 1 to the gluing making the gluing odd.

The other type of gluing is a gluing at boundary punctures. In order for it
to be odd one must consider orientations and for it to get degree one, one has
to pick a grading by codimension as we explain below. The paradigm for this
is contained in [HVZ], but was previously also inherently present in Stasheff’s
associahedra and more recently in [KSch] for the Gerstenhaber operad.

8.1. Topological Sn o S1 modular operads. Suppose we have a topological
modular operad O. We also assume that O((g, n)) has an (S1)×n action which
together with the Sn action gives an action of Sn o S1. For φ ∈ S1 = R/Z let
ρi(φ)a = (0, . . . , 0, φ, 0, . . . )(a) where the non–zero entry is in the i–th place.

Definition 8.1. A topological S1–modular operad is a modular operad O with
an S o S1 action that is balanced which means that

ρi(φ)(a) i◦jb = a i◦jρj(−φ)(b) and ◦ji ρi(φ(a)) = ◦ji (ρj(−φ(a)) (8.1)

Likewise we define the S1–twisted versions of (cyclic) (twisted) operads and
(wheeled) (twisted) PROP(erads) or also di–operads, etc.

Notation 8.2. To shorten the statements, we will call any O belonging to any
of the categories in the previous sentence of composition type.

Definition 8.3. The twist gluing i◦S
1

j of a and b is the S1 family given by

ρi(S
1)a i◦jb

This type of twist gluing does not give a nice operad type structure on the
topological level, unless as suggested by Voronov, one uses the category of
suitable spaces with correspondences as morphisms. It does however give nice
operations on singular chains and hence on homology.

Namely, given two chains α ∈ Sk(O(n)) and β ∈ Sl(O(m)) we define the
chains

α i•jβ := S∗( i◦j)EZ S∗(id× ρj)(α× ρi × β) (8.2)

as chains parameterized over ∆k × ∆1 × ∆l pushed forward with ρj and the
Eilenberg Zilber map to give a chain in Sk+l+1(O(n) × S1 × O(m)). Here ∆1

maps to the fundamental class [S1]. Likewise we define

•ij α := S∗(◦ij)S∗(ρi)([S1]× α) (8.3)

This type of operation of course generalizes and restricts to all O of compo-
sition type.
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Theorem 8.4. The chain and homology of any S1–twisted O of composition
type are K–twisted versions of that type.

Proof. We see that the compositions are along the graphs of the triple, where
the edges are now decorated by the fundamental class of S1. This lives in degree
1 and hence the compositions get degree +1. If we now shift the source of the
morphisms by −1 we get operations of degree 0 and hence we get composition
morphisms for the K twist of O(Γ).

�

8.1.1. Examples: Arc, framed little discs and string topology. One
example is given by the Arc operad of [KLP], which has such a balanced S1

action. The twist gluing and BV operator are discussed in [K7]. The Arc
operad contains the well known operad of framed little discs [K1] which is a
cyclic S1 operad.

A rigorous topological version of the Sullivan PROP was given in [K4] this
structure is actually a quasi–PROP which is only associative up to homotopy,
but it has a cellular PROP chain model. Just like in the Arc operad there is
an action of S1 on the inputs, as these are fixed to have arcs incident to them.
Thus we can twist glue by gluing in the S1 families.

8.1.2. Co–invariants. Given an S1–twisted O of composition type, we can
consider its S1–coinvariants. For concreteness we will treat modular operads,
the other types work analogously. Here OS1((g, n)) := O((g, n))(S1)×n . Let
[ ] : O → OS1 denote the projection.

Then the twist gluings provide a natural family of gluings on the coinvariants:
Namely if [α] and [β] are two classes in the coinvariants, we can set

[α] i•j [β] := [α i◦S
1

j β] •ij ([α]) := [◦S1
ij α] (8.4)

Proposition 8.5. These operations are well defined and furnish a K twisted
composition structure on the chain and homology level.

Proof. The fact that this is well defined follows from the fact that the action is
balanced. The second part is as above. �

Remark 8.6. The co–invariants of the Sullivan PROP are also what gives rise
to an L∞ structure [CS], which seems to be true in general.

8.1.3. MO and EMO. There are other early examples like the Schwarz–
modular operads MO [Schw] where there are only self–gluings and a horizontal
composition. In order to get an odd operation on the chain level Schwarz
considers so called EMOs (extended modular operads), these carry just as above
an S1 action which gives an Sn o S1 action on each O((n)).

8.2. The paradigm: Real blow–ups and the Master equation.
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8.2.1. Closed version [KSV]. A particularly interesting type of situation
occurs if one augments an operad with an S1 action. The prototype for this

is the collection M
KSV
g,n of real blow ups of the Deligne–Mumford spaces along

their compactification divisors as defined in [KSV].
Here, before the blow–up, the spaces Mg,n form a modular operad — even the

archetypical one. The gluing of two curves is given by identifying the marked
points and producing a node. One feature of the compactification is that the
compactification divisor is composed of operadic compositions. More precisely
for each genus labeled graph Γ of type ((g, n)) there is a map M(Γ) → Mg,n

where M(Γ) = ×v∈V (Γ)M(g(v),F lag(v)) and in particular the one–edge trees define
a normal crossing divisor.

Now after blowing up, the spaces M
KSV
g,n do not form a modular operad

anymore, since one has to specify a vector over the new node. This is the origin
of the twist gluing. One could have also added tangent vectors at each marked
point and the nodes. This would give a modular operad. The KSV–construction
is then just the twist gluing on the co–invariants.

The master equation now plays the following role. Let S =
∑

g,n[M
KSV
g,n /Sn],

where one sums over fundamental classes in a suitable sense. One such frame-
work is given in [HVZ] where geometric chains of Joyce [J] are used.

The boundary in this case is essentially the geometric boundary of the fun-
damental class viewed as an orbifold with corners. Notice that while in the
DM setting the compactification was with a divisor i.e. of complex codimen-
sion one, after blowing up in the KSV setting the compactification is done by a
real codimension one bordification. Thus dS is the sum over these boundaries,
which are exactly given by the blow ups of the divisors and these correspond
exactly to the surfaces with one double point, either self glued or non–self glued.
Working this out one finds that S satisfies the master equation.

8.2.2. Open gluing case/orientation version. Likewise there is a con-
struction in the open/closed case in [HVZ]. Here the relevant moduli spaces

are the real blow–upsMKSV b,~m
g,n of the moduli spaceMb,~m

g,n introduced in [Liu].
These are the moduli spaces of genus g curves with n marked labeled points, b
boundary components and ~m marked labeled points on the boundary. In the
closed case the blow up inherits an orientation because before compactifying
the moduli space has a natural complex structure. In the open/closed case one
can define iteratively the orientation by lifting or pushing the natural orienta-

tion of M
HV Zb,(1,...,1)
g,n (see [IS]) along fibre bundles that at the end reach any

open/closed moduli space
Whereas the degree 1 in the closed case came from the fundamental class,

here the grading comes from a grading by codimension in the corresponding
moduli space. This agrees with the geometric dimension concept in the closed
case.

For instance, if a geometric chain has degree d and it is constructed from

MKSV
g,n , the real blow-up of the DM-compactification of the moduli space as
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−→ ←−

−→ ←−

Figure 3. Boundary degenerations for the open case.

in [HVZ], we assign it a new degree: 6g − 6 + 2n − d. In this new grading
we also obtain a degree one map. Indeed, if we have two chains of degrees d1

and d2 constructed from MKSV
g1,n1

and MKSV
g2,n2

respectively, their corresponding
codimensions are 6g1−6−2n1−d1 and 6g2−6−2n2−d2. After twist gluing we

obtain a chain of degree d1 +d2 +1 which lives inMKSV
g1+g2,n1+n2−2 and therefore

has codimension

6g1 +6g2−6−2n1−2n2−4−d1−d2−1 = 6g1 +6g2−2n1−2n2−d1−d2−11.

However, the sum of the original codimensions is 6g1 + 6g2 − 2n1 − 2n2 − d1 −
d2 − 12 which shows that the change in degrees is exactly 1. In the self-twist
gluing picture something similar happens and the change in degree is 1 as well.

This grading by codimension may seem odd but it is exactly what we need in
the open case. Recall that the twist gluing appeared in the closed case because
of the different choices one has to attach surfaces along labeled points in the
interior of the surface (different angles). This is not the case for labeled points
in the boundary.

If we consider surfaces with at least one marked point in all boundary com-
ponents we have essentially two cases for the boundary degeneration shown in
Figure 3. In the first one we have two labeled points in different boundary
components and in the second we have two labeled points in the same bound-
ary component. The surface on the center is the result of attaching the labeled
points represented on the left. The surface on the right is the desingularized
version of the one in the center. Since there are no ambiguities in how to attach
the labeled points this operation induces a degree zero map. However, grading
by codimension is a completely different story. In the first case we have two
chains of dimensions d1 and d2 respectively. Recall that the dimension of the

moduli space MHV Z b,~m
g,n is 6g − 6 + 2n + 3b + m where b correspond to the

number of boundary components and m is the number of labeled points in this
boundary as in [HVZ]. The codimensions are then 6g1−6+2n1 +3b1 +m1−d1

and 6g2 − 6 + 2n2 + 3b2 +m2 − d2 respectively and their sum is

6g1 + 6g2 + 2n1 + 2n2 + 3b1 + 3b2 +m1 +m2 − d1 − d2 − 12.
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After attaching, the new chain lives in MHV Z b1+b2−1, ~m′

g1+g2,n1+n2
, where ~m′ has m1 +

m2 − 2 components, and therefore its codimension is

6g1 + 6g2 − 6 + 2n1 + 2n2 + 3b1 + 3b2 − 3 +m1 +m2 − 2− d1 − d2

which is equal to

6g1 + 6g2 + 2n1 + 2n2 + 3b1 + 3b2 +m1 +m2 − d1 − d2 − 11

and therefore we get a degree one map again. Similar calculations take care of
the self attaching operation and the second case.

Geometrically, the grading reflects the chosen orientations. And it is this
choice of orientation [HVZ] that makes the gluing odd.

Intuitively, in the closed case there is an extra vector being added in the
tangent bundle due to the circle. But there is also another vector being added
in the normal bundle. In the open case there is an additional vector being added
only in the normal bundle so grading by codimension gives us an odd gluing.

8.2.3. Open/closed interaction; adding a derivation. This idea is also
the guide if we consider surfaces without marked points in some of their bound-
ary components. In this case there is a new phenomenon that occurs in the
boundary. Namely, as a boundary component degenerates it actually turns
into something that looks like a marked point (a puncture in fact). Therefore
it is essential to consider a new operation that simply re-labels a marked point
as a degenerate boundary component in order to balance the quantum master
equation.

If we make the same computation we did before for chains using codimension
we also encounter a degree one map. However it is very clear in this case that
we are not really changing the chain, we are just placing it in a different moduli
space and hence changing the codimension. This is an interesting interaction
between the closed and open operations and it is like twist gluing a surface
at an interior (closed) marked point with a disc with only one interior marked
point at such point giving a sort of degenerate boundary.

This open/closed interaction given by this degeneration leads to a contribu-
tion ∆oc which is not only a derivation, but also a derivation of degree 1. Of
course adding a degree 1 derivation to a BV operator which anti–commutes
with it results in a new BV operator.

8.2.4. Metatheorem 4. In the above cases, we see that the fact that S
which is composed out of fundamental classes, satisfies the QME is equivalent
to the fact that the boundary divisors are either given by twist gluing two curves

i•j or self–gluing the curves •ij or the open gluing.

Question 8.7. What is the meaning of the ME or QME in the context of the
Arc operad, the framed little discs and the Sullivan PROP?

There are two things which have to be solved (1) what kind of chains (2)
what is the correct notion of fundamental chains.
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For Arc there is a partial compactification, while the Sullivan PROP retracts
to a CW complex, so one can use cellular chains. A clue might be provided by
the Stasheff polytopes and the A∞ Deligne conjecture [KSch], see below §8.3.

It seems that a fundamental role for the Arc or Sullivan PROP is played
exactly by the arc families whose arcs do not quasi–fill the surface. Recall that
an arc family quasi–fills the surface if its complement are finitely many polygons
which contain at most one puncture, see [K4,K5].

8.3. Other examples: A∞ and A∞ Deligne. The Stasheff polytopes are also
a geometric incarnation of the master equation. This follows e.g. from [HVZ],
where discs with boundary points are used. But even classically the boundary
of an associahedron, is precisely given by all possible compositions of lower
order associahedra. This is precisely the compactification one would get for the
non–sigma bracket and the corresponding master equation.

The link to the algebraic world is then to take a chain model where the usual
power series of fundamental classes rel boundary gives a solution to the ME,

This is taken a step further in [KSch] where a product of cyclohedra and as-
sociahedra was given as the topological operad lying above the minimal operad
of [KS] which in our framework is a Feynman transform of the Poisson operad
Assoc ◦ Lie.

8.4. Topological Feynman transform? One question that remains is what
is the general theory of a topological Feynman transform.

For the closed type the set could be:

FO((g, S)) =
⊔

colim(Graph(g,S)↓∗g,S)

⊔
v∈VGraph

O(∗v)
⊔

e∈EGraph

S1 (8.5)

This could be considered as a real blow up of the DM compactification.
However, it is the way that this set is topologized, which is not clear.

Furthermore there are the open examples, where the S1 factors disappear
in favor of more structure at the vertices. In all one could make the following
tentative definition.

Definition 8.8. A topological Feynman transform of a modular operad O is
a collection of spaces O((g, n)) with O((g, n)) ⊂ Ō((g, n)) such that there are
fundamental classes coming from the relative fundamental classes which satisfy
the quantum master equation.

Examples are then the moduli spaces above and the associahedra as well as
the topological model for the minimal operad of Kontsevich and Soibelman [KS].

This is essentially equivalent to the cut–off view of Sullivan [S1–S3]. Here
the cut off is given by removing a tubular neighborhood of the compactification
divisor which amounts to a real blow–up of that divisor.

Remark 8.9. Notice that in more involved cases, like the open/closed version,
there might be several terms in the master equation. Basically there is one term
for each type of elementary operation. Closed self–, closed non–self–, open self–,
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open non–self–gluing and open/closed degeneration. This theme is explained
in [Fey] where we define a Feynman transform relative to a set of generating
morphisms.

Remark 8.10. Considering the master equations from the chain level, the
master equation here could be interpreted as giving a morphism to the trivial
modular operad. This of course can be viewed as pushing forward to a point,
which is what integration is.

A. Appendix: Graphs

A.1. The category of graphs.

A.1.1. Abstract graphs. An abstract graph Γ is a quadruple (VΓ, FΓ, ıΓ, ∂Γ)
of a finite set of vertices VΓ a finite set of half edges or flags FΓ and involution
on flags ıΓ : FΓ → FΓ; ı2Γ = id and a map ∂Γ : FΓ → VΓ. We will omit the
subscripts Γ if no confusion arises.

Since the map ı is an involution, it has orbits of order one or two. We will
call the flags in an orbit of order one tails. We will call an orbit of order two
an edge. The flags of an edge are its elements.

It is clear that the set of vertices and edges form a 1–dim simplicial complex.
The realization of a graph is the realization of this simplicial complex.

Example A.1. A graph with one vertex is called a corolla. Such a graph only
has tails and no edges. Any set S gives rise to a corolla. Let p be a one point
set then the corolla is ∗p,S = (p, S, id, ∂) where ∂ is the constant map.

Given a vertex v of Graph we set Fv = Fv(Γ) = ∂−1(v) and call it the flags
incident to v. This set naturally gives rise to a corolla. The tails at v is the
subset of tails of Fv.

As remarked above Fv defines a corolla ∗v = ∗{v},Fv
.

Remark A.2. The way things are set up, we are talking about finite sets, so
changing the sets even by bijections changes the graphs.

An S labeling of a graph is a map from its tails to S.
An orientation for a graph Γ is a map FΓ → {in, out} such that the two flags

of each edge are mapped to different values. This allows one to speak about
the “in” and the “out” edges, flags or tails at a vertex.

Example A.3. A tree is a contractible graph. It is rooted if it has a distin-
guished vertex, called the root. A tree has an induced orientation with the out
edges being the ones pointing toward the root.

As usual there are edge paths on a graph and the natural notion of an oriented
edge path. An edge path is a (oriented) cycle if it starts and stops at the same
vertex and all the edges are pairwise distinct. An oriented cycle with pairwise
distinct vertices is sometimes called a wheel. A cycle of length one is a loop.
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A näıve morphism of graphs ψ : Γ→ Γ′ is given by a pair of maps (ψF : FΓ →
FΓ′ , ψV : VΓ, VΓ′) compatible with the maps i and ∂ in the obvious fashion. This
notion is good to define subgraphs and automorphism.

It turns out that this data is not enough to capture all the needed aspects for
composing along graphs. For instance it is not possible to contract edges with
such a map or graft two flags into one edge. The basic operations of composition
in an operad viewed in graphs is however exactly grafting two flags and then
contracting. There is a more sophisticated version of maps given in [BoM]
which we will use in the sequel [Fey]. For now we wish to add the following
morphisms.

Grafting. Given two graphs Γ and Γ′, a tail s of Γ and a tail t of Γ′ then
Γ s◦tΓ′ is the graph with the same vertices, flags, ∂, but where ı(s) = t, and the
rest of i is unchanged.

The contraction of an edge e of Γ is the graph where the two flags of e are
omitted from the set of flags and the vertices of e are identified. It is denoted
by Γ/e.

Merger. Given two graphs Γ and Γ′ merging the vertex v of Γ with the
vertex v′ of Γ′ means that these two vertices are identified and the rest of the
structures just descend.

Remark A.4. One thing that is not so obvious is how S–labeling behave
under these operations. If S are arbitrary sets (the unbiased case) this is clear.
If one uses enumerations however (the biased case), one must specify how to
re–enumerate. This is usually built into the definition of the composition type
gadget.

A.2. Standard algebras. For the readers’ convenience, we list the definition
of the algebras we talk about. Let A be a graded vector space over k and let
|a| be the degree of an element a. Let’s fix char k = 0 or at least 6= 2.

(1) Pre–Lie algebra. (A, ◦ : A×A→ A) s.t.

a ◦ (b ◦ c)− (a ◦ b) ◦ c = (−1)|a||b|[a ◦ (c ◦ b)− (a ◦ c) ◦ b]
(2) Odd Lie. (A, { • } : A⊗A→ A)

{a • b} = (−1)|a|−1)(|b|−1){b • a} and Jacobi with appropriate signs

(3) Odd Poisson or Gerstenhaber. (A, { • }, ·) is odd Lie plus another as-
sociative multiplication for which the bracket is a derivation with the
appropriate signs. (Sometimes Gerstenhaber also is defined to be super–
commutative.)

{a • bc} = {a • b}c+ (−1)(|a|−1)|b|b{a • c} ∀ a, b, c ∈ A (A-1)

(4) (dg)BV. (A, ·,∆). (A, ·) associative (differential graded) supercommu-
tative algebra, ∆ a differential of degree 1: ∆2 = 0 and

{a • b} := (−1)|a|∆(ab)− a∆(b)− (−1)|a|∆(a)b (A-2)

is a Gerstenhaber bracket.
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An equivalent condition for a BV operator is

∆(abc) = ∆(abc)∆(ab)c+ (−1)|a|a∆(bc) + (−1)(|a|−1)|b|b∆(ac)−∆(a)bc

−(−1)|a|a∆(b)c− (−1)|a|+|b|ab∆(c) (A-3)

(5) (dg)GBV. This name is used if a priori there is a BV operator and
a given Gerstenhaber bracket and a posteriori the given Gerstenhaber
bracket coincides with the one induced by the BV operator.
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