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Introduction

The classical subject of theta functions has a very rich history dating back to the nine-

teenth century. In modern algebraic geometry, they arise as sections of ample line bundles

on abelian varieties, canonically defined after making some discrete choices of data. The

definition of theta functions depends fundamentally on the group law, leaving the impres-

sion that they are a feature restricted to abelian varieties. However, new insights from

mirror symmetry suggest that they exist much more generally, even on some of the most

familiar varieties.

Mirror symmetry began as a phenomenon in string theory in 1989, with the suggestion

that Calabi-Yau manifolds should come in pairs. Work of Greene and Plesser [GrPl] and

Candelas, Lynker and Schimmrigk [CLS] gave the first hint that there was mathematical

justification for this idea, with constructions given of pairs of Calabi-Yau three-folds X ,
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2 MARK GROSS AND BERND SIEBERT

X̌ , with the property that χ(X) = −χ(X̌). More precisely, the Hodge numbers of these

pairs obey the relation

h1,1(X) = h1,2(X̌), h1,2(X) = h1,1(X̌).

In 1991, Candelas, de la Ossa, Green and Parkes [COGP] achieved an astonishing break-

through in exploring the mathematical ramifications of some string-theoretic predictions.

In particular, using string theory as a guideline, they carried out certain period integral

calculations for the mirror of the quintic three-fold in CP4, and obtained a generating

function for the numbers Nd, d ≥ 1, where Nd is the number of rational curves of degree d

in the quintic three-fold.

This immediately attracted attention from mathematicians, and there has followed

twenty years of very rewarding efforts to understand the mathematics underlying mirror

symmetry.

A great deal of progress has been made, but much remains to be done. In this survey

article, we will discuss certain aspects of this search for understanding, guided by a re-

lationship between mirror symmetry and theta functions. In particular, we will discuss

the surprising implication of mirror symmetry that near large complex structure limits in

complex moduli space, Calabi-Yau manifolds also carry theta functions. Roughly speak-

ing, these will be canonically defined bases for the space of sections of line bundles. This

implication was first suggested, as far as we know, by the late Andrei Tyurin, see [Ty99].

The constructions in fact apply much more broadly than just to Calabi-Yau manifolds.

For example, in [GHKII] (see Sean Keel’s lecture [Ke11]), it is proven that some of the most

familiar varieties in algebraic geometry, including many familiar affine rational surfaces,

carry theta functions. In addition, much stronger results apply to the surface case, with

[GHKK3] proving a strong form of Tyurin’s conjecture. However, in this survey we will

focus only on the simplest aspects of the construction.

The discussion here represents a distillation of a number of ongoing joint projects with

varying groups of coauthors. The relationship between integral affine manifolds, degenera-

tions of Calabi-Yau varieties and mirror symmetry discussed here is based on a long-term

project of the authors of this survey. The construction of theta functions as described

here has come out of joint work with Paul Hacking and Sean Keel, while the relationship

between theta functions and homological mirror symmetry is based on forthcoming work

of Mohammed Abouzaid with Gross and Siebert.

This survey is based on a lecture delivered by the first author at the JDG 2011 con-

ference in April 2011 at Harvard University. We would like to thank Professor Yau for

this invitation and the opportunity to contribute to the proceedings. We also thank our

coworkers on various projects described here: Mohammed Abouzaid, Paul Hacking and

Sean Keel.
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1. The geometry of mirror symmetry: HMS and SYZ

There are two principal approaches to the geometry underlying mirror symmetry: Kont-

sevich’s homological mirror symmetry conjecture (HMS) [K95] and the Strominger-Yau-

Zaslow (SYZ) conjecture [SYZ]. Taken together, they suggest the existence of theta func-

tions.

These conjectures are as follows. Consider a mirror pair of Calabi-Yau manifolds, X and

X̌ . To be somewhat more precise, we should consider Calabi-Yau manifolds with Ricci-flat

Kähler metric, so that mirror symmetry is an involution

(X, J, ω) ↔ (X̌, J̌ , ω̌).

Here J is the complex structure and ω the Kähler form on X . One expects that J deter-

mines the Kähler structure ω̌ and ω determines the complex structure J̌ .1 Kontsevich’s

fundamental insight is that the isomorphism that mirror symmetry predicts between the

complex geometry of (X, J) and the symplectic geometry of (X̌, ω̌) can be expressed in a

categorical setting:

Conjecture 1.1 (Homological mirror symmetry). There is an equivalence of categories

between the derived category Db(X) of bounded complexes of coherent sheaves on X and

Fuk(X̌), the Fukaya category of Lagrangian submanifolds on X̌.

There are many technical issues hiding in this statement, the least of which is showing

that the Fukaya category makes sense. In particular, Fuk(X̌) is not a category in the

traditional sense, as composition of morphisms is not associative. Rather, it is an A∞-

category, which essentially means that there is a sequence of higher composition maps

which measure the failure of associativity; we will be more precise shortly.

To first approximation, the objects of Fuk(X̌) are Lagrangian submanifolds of X̌ , i.e.,

submanifolds L ⊆ X̌ with dimR L = dimC X̌ and ω̌|L = 0. We define the Hom between

objects as follows. Let Λ be the Novikov ring, i.e., the ring of power series
∑∞

i=1 aiq
ri where

ai ∈ C, ri ∈ R≥0, ri → ∞ as i→ ∞. Given two Lagrangian submanifolds L0, L1, we define

Hom(L0, L1) =
⊕

p∈L0∩L1

Λ[p],

assuming that L0 and L1 intersect transversally (if not, we can perturb one of them via

a generic Hamiltonian isotopy). In fact, this is a graded Λ-module, with the degree of [p]

being the so-called Maslov index of p. One can then define a series of maps

µd : Hom(Ld−1, Ld)⊗ · · · ⊗ Hom(L0, L1) → Hom(L0, Ld)

1This discussion ignores the B-field.
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for d ≥ 1, L0, . . . , Ld Lagrangian submanifolds of X̌ . Roughly this map is defined by

counting certain holomorphic disks:

µd(pd−1,d, . . . , p0,1) =
∑

p0,d∈L0∩Ld

∑

ψ:D→X̌

±q
∫
D
ψ∗ω̌[p0,d]

where the second sum is over all holomorphic maps ψ : D → X such that there are cyclically

ordered points t0, . . . , td ∈ ∂D with ψ(ti) = pi,i+1, ψ(td) = p0,d, and ψ([ti, ti+1]) ⊆ Li+1 and

ψ([td, t0]) ⊆ L0. Here [ti, ti+1] denotes the interval on ∂D between ti and ti+1. See Figure 1.

The contribution to µd(pd−1,d, . . . , p0,1) from p0,d is only counted if the expected dimension

of the moduli space of disks is zero; this makes µd into a chain map of degree 2 − d. In

suitably nice cases, these operations will satisfy the so-called A∞-relations, which are
∑

1≤p≤d
0≤q≤d−p

±µd−p+1(ad, . . . , ap+q+1, µp(ap+q, . . . , aq+1), aq, . . . , a1) = 0.

This tells us that µ1 turns Hom(L0, L1) into a complex, that µ2 is associative up to homo-

topy, and so on. Since µ2 will play the role of composition of morphisms for us, this means

the Fukaya category is not in general a category, because composition is not associative.

One might now object that Db(X) is a genuine category, so in what sense is it isomorphic

to something which is not a genuine category? It turns out that there is a natural way to

put an A∞-category structure on Db(X) which is really enriching the structure of Db(X);

the statement of HMS then says that we expect Db(X) and Fuk(X̌) to be quasi-isomorphic

as A∞-categories, which is a well-defined notion.

We will not go into more technical details about HMS, as we shall only need a small part

of it. Instead, we move on to discuss the Strominger-Yau-Zaslow (SYZ) conjecture [SYZ],

dating from 1996. This was the first idea giving a truly geometric interpretation of mirror

symmetry. Fix now an n-dimensional Calabi-Yau manifold X with a nowhere vanishing

holomorphic n-form Ω and a symplectic form ω: we say a submanifold M ⊆ X is special

Lagrangian ifM is Lagrangian with respect to ω and furthermore ImΩ|M = 0. This notion
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was introduced by Harvey and Lawson in [HL82]; special Lagrangian submanifolds are

volume minimizing in their homology class. Suppose X has a mirror X̌ , with holomorphic

n-form Ω̌ and symplectic form ω̌. We then have:

Conjecture 1.2 (The Strominger-Yau-Zaslow conjecture). There are continuous maps

f : X → B, f̌ : X̌ → B whose fibres are special Lagrangian, and whose general fibres are

dual n-tori.

This is a purposefully vague statement, partly because we are very far from a proof

of anything resembling this conjecture: see [Gr98],[Gr99],[Gr00] for detailed discussion of

more precise forms of this conjecture. Let us just say at this point that the duality implies

that the topological monodromy of the smooth part of f is the transpose of the topological

monodromy of f̌ .

Early work aimed at understanding the conjecture includes [Gr98],[Gr99],[Hi97]. In

particular in [Gr98], the first author conjectured that Lagrangian sections of f̌ should be

expected to be mirror, under HMS, to line bundles on X . A more precise correspondence

was predicted there, with specific predictions on which topological isotopy class of sections

corresponded to which numerical equivalence class of line bundles. This idea was used in a

number of different situations: for example, work of Polishchuk and Zaslow [PZ98] give an

explicit correspondence between special Lagrangian sections on the obvious SYZ fibration

on an elliptic curve and line bundles on the mirror elliptic curve. We shall say more about

this in §2.

The fundamental idea we shall pursue in this paper is the following. Suppose L0 is a

Lagrangian section of f̌ corresponding to the structure sheaf OX , and L1 is a Lagrangian

section corresponding to an ample line bundle L on X . Then HMS should yield an isomor-

phism Hom(L0, L1) ∼= Hom(OX ,L)⊗C Λ. Here the Hom’s are in the Fukaya and derived

categories respectively, but after taking cohomology, one expects on the right to only get

a contribution from H0(X,L) as all higher cohomology vanishes. If all the intersection

points of L0 and L1 are Maslov index zero, i.e., if somehow the intersection is particularly

nice so that there is no µ1, then one has of course a basis for Hom(L0, L1) given by these

intersection points, and these correspond to elements of H0(X,L).

The moral of this is: suppose we have particularly canonical choices of Lagrangian sec-

tions corresponding to ample line bundles. Then HMS predicts the existence of a canonical

basis of sections of ample line bundles. We are going to call elements of such a canonical

basis theta functions.

To the best of our knowledge, the existence of such a canonical basis was first suggested

by the late Andrei Tyurin; the first author heard him speak about these in a lectures series

at the University of Warwick in 1999: see especially the remark on p. 36 of [Ty99].
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We will first make more precise what these canonical sections should be, and then in

the next section argue in the case of abelian varieties that the corresponding basis indeed

coincides with classical theta functions. Before doing so, we need to explain more structure

underlying the correct way of thinking about the SYZ conjecture.

What is actually most important about the SYZ conjecture are certain structures which

should appear on the base B of the two dual fibrations. Suppose we have fibrations as in

the conjecture. Let ∆ ⊆ B be the set of critical values of f and B0 := B \ ∆, so that

if x ∈ B0, f
−1(x) is a smooth torus. It was first observed by Hitchin in [Hi97] that the

special Lagrangian fibration induces two different affine structures on B0, one induced by ω

(this affine structure arises from the Arnold-Liouville theorem) and one induced by ImΩ.

A precise definition:

Definition 1.3. An affine structure on an n-dimensional real manifold B is a set of coordi-

nate charts {ψi : Ui → Rn} on an open cover {Ui} of B whose transition maps ψj ◦ψ
−1
i lie

in Aff(Rn), the affine linear group of Rn. We say the structure is tropical if the transition

maps lie in Rn ⋊GLn(Z), and integral if the transition maps lie in Aff(Zn).

A (tropical, integral) affine manifold with singularities is a manifold B along with a

codimension ≥ 2 subset ∆ ⊆ B and a (tropical, integral) affine structure on B0 := B \∆.

In fact, the affine structures induced by special Lagrangian fibrations are tropical, so we

obtain tropical affine manifolds with singularities (except for the fact that genuine special

Lagrangian fibrations are expected to have codimension one discriminant loci which retract

onto a codimension two subset, as demonstrated by Joyce in many examples [J03]).

It is convenient now to largely forget about special Lagrangian fibrations, as we don’t

know if they exist, and instead focus on the tropical affine manifolds arising from them.

It is in fact now fairly well understood what such manifolds should look like, even if the

fibrations aren’t known! See for example [Gr09].

In fact, tropical affine manifolds quickly give rise to a toy version of mirror symmetry:

Definition 1.4. If B is a tropical affine manifold, then let Λ be the local system contained

in the tangent bundle TB given locally by integral linear combinations of coordinate vector

fields ∂/∂y1, . . . , ∂/∂yn, where y1, . . . , yn are local tropical affine coordinates. The fact

that transition maps lie in Rn ⋊ GLn(Z) rather than Aff(Rn) says this local system is

well-defined, independently of coordinates. Similarly, let Λ̌ ⊆ T ∗
B be the local system given

locally by integral linear combinations of dy1, . . . , dyn. Set

X(B) := TB/Λ,

X̌(B) := T ∗
B/Λ̌.

We have projections f : X(B) → B and f̌ : X̌(B) → B which are dual torus fibrations.
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Note that X(B) comes along with a natural complex structure. This is most easily

described by specifying the almost complex structure J . There is a natural flat connection

on TB such that sections of Λ are flat sections. At any point in TB, the horizontal and

vertical tangent spaces are both isomorphic to the tangent space to B, and J interchanges

these two spaces, inserting an appropriate sign to ensure J2 = −1. It is easy to see that this

structure is integrable, identifying f−1(U), for U ⊆ B a small open set, with a T n-invariant

open subset of (C∗)n.

Furthermore, X̌(B) carries a natural symplectic structure: as always, T ∗
B carries a canon-

ical symplectic form, and one checks it descends to the quotient.

As a consequence, we can view the correspondence X(B) ↔ X̌(B) as a toy version of

mirror symmetry. In this discussion we see half of mirror symmetry, as we don’t have a

symplectic structure on X(B) or a complex structure on X̌(B).

How close is this correspondence to actual mirror symmetry? If B is compact, e.g.,

B = Rn/Γ for a lattice Γ, then X(B) is a complex torus, and the toy description gives a

completely satisfactory description of mirror symmetry; we shall make use of this in §2.

However, in general, one should work with B a tropical affine manifold with singularities,

in which case one only has a subset B0 ⊆ B with an affine structure. So one can then

ask to what extent can one compactify X(B0) or X̌(B0). One has the following general

observations:

(1) In various nice cases, X(B0) and X̌(B0) can be compactified topologically: see

[Gr01] for the three-dimensional case, and work in progress [GS13] for similar results

in all dimensions. In particular, [Gr01] gives a complete description of the quintic

threefold and its mirror from this point of view.

(2) In various nice cases in dimensions two and three, X̌(B0) can be compactified to

some X̌(B) in the symplectic category, see [CBM09].

(3) As a complex manifold, X(B0) can almost never be compactified. This is a crucial

point for mirror symmetry. There are instanton corrections that one needs to make

to the complex structure on X(B0) before one can hope to compactify this. This

was first explored by Fukaya in [F05], in the two-dimensional (K3) case. That paper

was the first to suggest the philosophy: the corrections to the complex structure on

X(B0) arise from pseudo-holomorphic disks in X̌(B) with boundary on fibres of the

SYZ fibration.

The direct analytic approach of Fukaya suffers from huge technical difficulties and as

such was only a heuristic. To carry out this program in a more practical way, a switch to

an easier category is necessary. Kontsevich and Soibelman used the rigid analytic category,

constructing in [KS06] a rigid analytic K3 surface from a tropical affine surface with 24

singular points. In parallel, we had been working on a program to address this problem

in all dimensions using logarithmic geometry; combining our approach with some ideas of
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[KS06], we provided a solution to this problem in all dimensions, in a somewhat different

category. Roughly, our result shown in [GS11] is as follows.

Theorem 1.5. Suppose given an integral affine manifold with singularities B. Suppose

furthermore that the singularities are “nice” and B comes with a decomposition P into

lattice polytopes. Suppose furthermore given a strictly convex, multi-valued piecewise linear

function ϕ on B. Then one can construct a one-parameter flat family π : X̌ → SpecC[t]

from this data whose central fibre is

X̌0 =
⋃

σ∈Pmax

Pσ,

where Pmax is the set of maximal cells in the polyhedral decomposition, and Pσ is the

projective toric variety defined by the lattice polytope σ. These toric varieties are glued

together along toric strata as dictated by the combinatorics of P. Furthermore, X̌ comes

along with a relatively ample line bundle L.

There are a number of important features of this construction:

(1) It is an explicit construction, giving an order-by-order algorithm for gluing stan-

dard thickenings of affine pieces of the irreducible components of X̌0. This data is

described by what we call a structure, and as we shall see, is really controlled by

counts of holomorphic disks on the mirror side.

(2) There is a notion of discrete Legendre transform which allows one to associate to the

triple of data (B,P, ϕ) another triple (B̌, P̌, ϕ̌). The polyhedral decomposition

P̌ is dual to P, and the affine structure on B̌ is dual to that on B in some precise

sense, see [GS06], §1.4. Then applying the above theorem to the dual data yields

the mirror Calabi-Yau.

(3) The family constructed in Theorem 1.5 can be extended to a flat family of complex

analytic spaces X over a disk D. A general fibre of this family, Xt, has a Kähler

form repesenting c1(L). The expectation is that this symplectic manifold is a

compactification of X̌(B0). Furthermore, as a complex manifold, it should roughly

be a compactification of a small deformation of the complex structure on Xǫ(B̌0),

where Xǫ(B̌0) = TB̌0
/ǫΛ and ǫ > 0 is a real number. See [GS03] for some details of

this; more details will appear in [GS13].

There is one confusing point in this discussion: the role of X(B) and X̌(B) has been

interchanged. We originally said we wanted to compactify X(B0). Instead, we compactified

X̌(B0). This makes sense from several points of view.

First, we have constructed a whole family of complex manifolds, but they are symplecto-

morphic as symplectic manifolds. So it makes sense that we get X̌(B), which comes with

a canonical symplectic structure. The integrality of the affine structure on B guarantees

that the symplectic form on X̌(B) represents an integral cohomology class.
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Second, if one doesn’t like this switch, then one can work with the Legendre dual manifold

B̌. The work of Fukaya [F05] and Kontsevich and Soibelman [KS06] did precisely this. But

it turns out that structures are nicer objects on B than on B̌. On B, the data controlling

the family X̌ , the structure, is essentially tropical in nature, and can be viewed as a union

of tropical trees on B. If one works on B̌, one instead needs to use trees made of gradient

flow lines, and this can produce some technical difficulties. Working on B makes many

aspects of our work effective.

Let us now return to theta functions. We note our construction comes with a canonical

ample line bundle, whose first Chern class is represented by the symplectic form on X̌(B).

Now a line bundle should be mirror to a section of the SYZ fibration, so it is natural to

ask whether X(B) → B comes with a natural section. Since we haven’t given an explicit

description of the compactification in this paper, let us at least answer this question over

B0. There is in fact a whole set of natural sections, indexed by ℓ ∈ Z, given in local integral

affine coordinates by

(1.1) σℓ : (y1, . . . , yn) 7→ −

n∑

i=1

ℓ · yi
∂

∂yi
.

Note that modulo integral vector fields, i.e., sections of Λ, this vector field is well-defined

independently of the choice of integral affine coordinates. Call the image of this section

Lℓ.

Of course there is no symplectic structure on X(B0), so it doesn’t quite make sense to

call these Lagrangian sections, but one can imagine that one can find symplectic structures

which make these sections Lagrangian, and then deduce some consequences.

The most important consequence is the description of the set L0 ∩ Lℓ, namely

f(L0 ∩ Lℓ) = B0

(
1

ℓ
Z

)
,

where the latter denotes the set of points of B0 whose coordinates in any (hence all) integral

affine coordinate charts lie in 1
ℓ
Z.

Let us hypothesize that Lℓ is mirror to the line bundle Lℓ. Since for an ample line bundle

on a Calabi-Yau manifold all higher cohomology vanishes, we are led to the following

conjecture:

Conjecture 1.6. For ℓ > 0, there is a canonical basis of Γ(X̌ ,Lℓ) as a C[t]-module indexed

by elements of B(1
ℓ
Z).

In the sections that follow, we will first explain why theta functions for abelian varieties

fit naturally into such a conjecture. Next, we outline the proof of this conjecture given

in [GHKSΘ], with the precise statement given in Theorem 3.7. We finally explain various

applications of the existence of such a basis.
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2. Theta functions for abelian varieties and the Mumford construction

In the case that B is a torus, our construction in fact recovers Mumford’s description

of degenerations of abelian varieties [M72], see also [AN99]. Theorem 1.5 can be viewed

as a vast generalization of this construction. We will briefly review a simple version of

Mumford’s construction.

The starting data is a lattice M ∼= Zn, MR = M ⊗Z R, N = HomZ(M,Z), a sublattice

Γ ⊆ M , a Γ-periodic polyhedral decomposition P of MR, and a strictly convex piecewise

linear function with integral slopes ϕ : MR → R satisfying a periodicity condition, for

γ ∈ Γ,

ϕ(m+ γ) = ϕ(m) + αγ(m)

for some affine linear function αγ depending on γ. The affine manifold B in Theorem 1.5

will be MR/Γ in this setup.

From this data one builds an unbounded polyhedron in MR ⊕ R:

∆ϕ := {(m, r) |m ∈MR, r ≥ ϕ(m)}.

The normal fan of this polyhedron in NR ⊕R is a fan Σϕ with an infinite number of cones,

defining a toric variety Xϕ which is not of finite type. Note that the one-dimensional rays

of Σϕ are in one-to-one correspondence with the maximal cells σ of P; if nσ ∈ N is the

slope of ϕ|σ, then (−nσ, 1) is the corresponding ray in Σϕ. Further, Γ acts on N ⊕ Z;

indeed, γ ∈ Γ acts by taking (n, r) 7→ (n − r · dαγ, r), where dαγ denotes the differential,

or, slope, of αγ. This action preserves Σϕ.

The projection NR ⊕ R → R defines a map π : Xϕ → A1. The fibres of this map are

algebraic tori (C∗)n except for π−1(0), which is an infinite union of proper toric varieties.

Furthermore, the action of Γ preserves this map, and yields an action of Γ on the irreducible

components of π−1(0).

While the Γ-action is global, it does not act properly discontinuously except on the

subset π−1(D), where D ⊆ A1 is the unit disk. Thus we get a family

π : π−1(D)/Γ → D

whose general fibre is an abelian variety and such that the fibre over zero is a union of

toric varieties.

We would actually prefer to work formally here, and instead consider

A := (XΣ ×A1 SpecC[t])/Γ.

The quotient can be taken by dividing out the formal completion of Xϕ along π−1(0) by the

action of Γ, then showing that there is an ample line bundle on this quotient, and finally

applying Grothendieck existence to get a scheme over SpecC[t]. In fact, the existence of

the ample line bundle will follow from the discussion below.
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The family A → SpecC[t]is precisely the family produced by Theorem 1.5 from the data

B = MR/Γ, polyhedral decomposition given by the image of P in B, and multi-valued

piecewise linear function ϕ as given.

We now would like to understand traditional theta functions in this context. As already

understood in [M72], one observes that the polyhedron ∆ϕ induces a line bundle L on XΣ,

and the bundle L descends to the quotients

Ak := (XΣ ×A1 SpecC[t]/(tk+1))/Γ

of the k-th order thickenings of the central fibre of XΣ → A1. To show L descends, one

just needs to define an integral linear action of Γ on the cone C(∆ϕ) ⊆MR⊕R⊕R defined

as

C(∆ϕ) = {(ℓm, ℓr, ℓ) | (m, r) ∈ ∆ϕ, ℓ ∈ R≥0}.

Note taking the closure just adds {0} × R × {0} to the set. If cγ is the constant part of

αγ and dαγ the differential of αγ, (or equivalently, dαγ is the linear part of αγ), one checks

such an action is given by γ 7→ ψγ ∈ Aut(M ⊕ Z⊕ Z) with

(2.1) ψγ(m, r, ℓ) = (m+ ℓγ, (dαγ)(m) + ℓcγ + r, ℓ).

A basis of monomial sections of Γ(XΣ,L
⊗ℓ) is indexed by the set C(∆ϕ) ∩ (M ×Z× {ℓ}):

for p in this set, we write zp for the corresponding section of L⊗ℓ. The above action on

C(∆ϕ) lifts the Γ-action on XΣ to a Γ-action on each L⊗ℓ. To write down sections of L⊗ℓ

on the quotient, one only need write down Γ-invariant sections of L⊗ℓ on XΣ, and this can

be done by taking, for any m ∈ 1
ℓ
M , the infinite sums

ϑm = ϑ[ℓ]m :=
∑

γ∈Γ

zψγ(ℓm,ℓϕ(m),ℓ).

We use the superscript [ℓ] to indicate the power of L when ambiguities can arise. We call

ℓ the level of the theta function.

To see such an expression makes sense on the formal completion of the zero fibre of

XΣ → A1, one focuses on an affine chart of XΣ defined by a vertex v = (m,ϕ(m)) of ∆ϕ:

this affine chart is SpecC[Tv∆ϕ ∩ (M ⊕ Z)], where Tv∆ϕ denotes the tangent cone to ∆ϕ

at the vertex v. One trivializes the line bundle L⊗ℓ in this chart using z(ℓv,ℓ) 7→ 1, so that

ϑm coincides with the regular function
∑

γ∈Γ

zψγ (ℓm,ℓϕ(m),ℓ)−(ℓv,ℓ).

Observe by the convexity of ϕ that with t = z(0,1) ∈ C[Tv∆ϕ ∩ (M ⊕ Z)], for any k > 0 all

but a finite number of monomials in this sum lie in the ideal (tk+1). Thus ϑm makes sense

as a section of L⊗ℓ on the k-th order thickening of the zero fibre of XΣ → A1, and since

invariant under the Γ-action, descends to a section on Ak.
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Furthermore, one sees that ϑm = ϑm+γ , so if we set B =MR/Γ, we obtain a set of theta

functions indexed by the points of B(1
ℓ
Z). One can show the following facts:

(1) The functions ϑm extend as holomorphic functions to give the usual canonical theta

functions on non-zero fibres of π−1(D)/Γ → D.

(2) The set {ϑm |m ∈ B(1
ℓ
Z)} form a basis for Γ(A,L⊗ℓ) as a C[t]-module.

(3) Denote by P also the polyhedral decomposition of B induced by the Γ-periodic de-

composition ofMR. Assume no cells of P are self-intersecting: this is equivalent to

all irreducible components of the central fibre A0 being normal. Each maximal cell

σ ∈ P (thought of as a subset of B) then corresponds to an irreducible component

of the central fibre A0 isomorphic to Pσ, the projective toric variety determined by

the lattice polytope σ. Then if m ∈ σ, the restriction of ϑm to Pσ is precisely the

section of OPσ(ℓ)
∼= L⊗ℓ|Pσ determined by ℓm ∈ ℓσ. If m 6∈ σ, then ϑm|Pσ = 0.

Thus ϑm can be viewed as a lifting of the natural monomial section of Γ(A0,L
⊗ℓ|A0

)

which is non-zero on those irreducible components indexed by σ ∈ P with m ∈ σ

and is given by ℓm ∈ ℓσ on those components.

This construction is particularly easy to describe as there is a global description coming

from the universal coverMR → B. For more general B, we shall not have such a nice global

construction, and as a consequence, it is beneficial to give here a more local description of

theta functions.

We can in fact use the Γ-action (2.1) on M ⊕ Z⊕ Z to define a local system with fibres

M⊕Z⊕Z on B which we shall call P̃. The monodromy of the local system is given by (2.1);

this uniquely determines the local system. One checks one has the following commutative

diagram of local systems on B:

0

��

0

��

Z

��

=
// Z

��

0 // P

r

��

// P̃

r̃
��

deg
// Z

=

��

// 0

0 // Λ //

��

Aff (B,Z)∗ //

��

Z // 0

0 0

(2.2)

Here Z denotes the constant local system with stalks Z, the map deg is induced by the

projection M ⊕ Z⊕ Z → Z onto the last component, and P is defined to be the kernel of

this map (hence has monodromy given by the restriction of the action (2.1) to the first two
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components M ⊕ Z). The inclusions of Z in P and P̃ are induced by the inclusions Z →

M ⊕Z,M ⊕Z⊕Z into the second component. Here the quotient P/Z is just the constant

sheaf M , and since MR is canonically the tangent space to any point of B, we identify M

with Λ, the local system of integral vector fields onM . Finally, Aff (B,Z) denotes the local

system of integral affine linear functions on B (functions with integral slope and integral

constant part), and Aff (B,Z)∗ denotes the dual local system. To see the identification of

P̃/Z with Aff (B,Z)∗, write Aff(M,Z) = N ⊕ Z, with (n, c) ∈ N ⊕ Z defining the affine

linear map m 7→ 〈n,m〉 + c. Thus M ⊕ Z is canonically Aff(M,Z)∗. The action of Γ on

Aff(M,Z) via pull-back of affine linear functions is given by (n, c) 7→ (n, c + 〈n, γ〉), and

the transpose action on Aff(M,Z)∗ is then precisely the restriction of (2.1) to the first and

third components of M ⊕ Z⊕ Z.

We can then describe a theta function as follows. Let m ∈ B(1
ℓ
Z), and we want to

describe ϑm. We previously described ϑm as a sum of monomials zp with p ∈M ×Z×{ℓ}.

Choose a point x ∈ B. We can identify P̃x withM⊕Z⊕Z by choosing a lift x̃ ∈MR of x, so

we can identify ϑm with a sum of monomials zp with p ∈ P̃x. Note that the choice of lifting

is irrelevant, as a different lifting gives an identification related by the transformation ψγ ,

and ϑm is invariant under the action of ψγ.

We can then write

(2.3) ϑm =
∑

δ

Mono(δ),

where we sum over all affine linear maps δ : [0, 1] → B with the property that δ(0) = m

and δ(1) = x. We define Mono(δ) as follows. We have a canonical element of the stalk of

Aff (B,Z)∗ at m given by ℓ · evm, where evm denotes evaluation of integral affine functions

at the point m. This element can then be lifted to the stalk of P̃m in a canonical way

determined by ϕ: choosing a lifting m̃ of m to MR, we take (ℓm̃, ℓϕ(m̃), ℓ) ∈ M ⊕ Z ⊕ Z;

this defines a well-defined element of P̃m independent of the choice of lift m̃. This element

is indeed a lift of ℓ · evm. We call this element mϕ ∈ P̃m; note that by construction

deg(mϕ) = ℓ. So far this is independent of the choice of δ. But now parallel transport mϕ

along the path δ to get an element mδ
ϕ ∈ P̃x, and define Mono(δ) = zm

δ
ϕ .

It is not hard to check that (2.3) then coincides with our original description of ϑm.

This does not represent anything radical: we are simply reinterpreting the action of

Γ which led to theta functions in terms of the fundamental group of B in the guise of

different choices of paths between m and x (there is one such linear path for every choice

of lift x̃ of x toMR). However, now the description of theta functions will generalize nicely.

In particular, we can see the connection between theta functions and homological mirror

symmetry in a more direct manner.
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To see this, we define a map

vect : Aff (B,Z)∗ → TB

as follows. An element of Aff (B,Z)∗x is an integral linear functional on the vector space

Aff (B,R)x of germs of affine linear functions at x (with no integrality restriction). Re-

stricting to the subspace of functions which vanish at x, one obtains a derivation, yielding

a tangent vector at x. This defines the map.

For example, at m ∈ B(1
ℓ
Z), vect(ℓ · evm) = 0 in TB,m, simply because evm evaluates

functions at m. However, if δ : [0, 1] → B is a path with δ(0) = m, let δ̃ : [0, 1] → MR

be a lifting with δ̃(0) = m̃. Let α(t) denote the parallel transport of ℓ · evm along δ to

Aff (B,Z)∗δ(t). Define

(2.4) v(t) = vect(α(t)).

Then one calculates that v(t) is the tangent vector ℓ(m̃− δ̃(t)). In particular, provided δ is

in fact linear, vect applied to the parallel transport of ℓ · evm provides a vector field along

δ which is always tangent to the path δ, always points towards the initial point of the path,

and increases in length as we move away from the initial point at a rate proportional to ℓ.

The vector field v(t) gives rise to a holomorphic triangle in X(B) via

ψ : [0, 1]× [0, 1] → X(B)

(t, s) 7→ s · v(t) ∈ TB,δ(t) mod Λδ(t).

Note this map contracts the edge of the square {0}×[0, 1], giving the triangle. This triangle

is depicted in Figure 2. Here Lx is the fibre TB,x/Λx of the SYZ fibration X(B) → B. This

triangle can be seen as a contribution to the Floer multiplication

µ2 : Hom(Lℓ, Lx)×Hom(L0, Lℓ) → Hom(L0, Lx).

In particular, it yields a contribution to the product of p ∈ L0 ∩ Lℓ, corresponding to the

point m ∈ B(1
ℓ
Z), with the unique point of Lℓ ∩ Lx.

This can be interpreted on the mirror side using homological mirror symmetry, where we

assume Lℓ corresponds to L⊗ℓ and Lx to the structure sheaf of a point, as the composition

map

Hom(L⊗ℓ,Ox)⊗ Hom(OA,L
⊗ℓ) → Hom(OA,Ox).

Here m determines the theta function ϑm ∈ Hom(OA,L
⊗ℓ) and a non-zero element of

Hom(L⊗ℓ,Ox) can be interpreted as specifying an identification L⊗ℓ ⊗ Ox
∼= Ox. The

composition of ϑm with this identification can then be viewed as specifying the value of

the section ϑm at the point x. Thus the description of ϑm as a sum over paths δ then

corresponds, naturally, via this association of triangles to paths δ, to the Floer theoretic

description on the mirror side.



THETA FUNCTIONS AND MIRROR SYMMETRY 15

0 ∈ TB,x

v(1) ∈ TB,x

0 ∈ TB,m

Lx

L0

Lℓ

Figure 2.

It is also important to describe multiplication of theta functions. Indeed, this allows

us to describe the homogeneous coordinate ring
⊕

ℓ≥0H
0(A,L⊗ℓ). Given mi ∈ B( 1

ℓi
Z),

i = 1, 2, we wish to describe the coefficients of the expansion

(2.5) ϑm1
· ϑm2

=
∑

m∈B( 1

ℓ1+ℓ2
Z)

cm1,m2,mϑm.

It is not difficult to see that the coefficients are given by

cm1,m2,m =
∑

δ1,δ2

tc(δ1,δ2)

where we sum over all straight lines δ1, δ2 : [0, 1] → B connecting m1, m2 to m respectively,

with the property that, if v1, v2 are defined by (2.4) using δ1, δ2 respectively, then v1(1)+

v2(1) = 0. We leave it to the reader to determine the exponent c(δ1, δ2) ∈ N, depending

on δ1, δ2: see [DBr], page 625, in the case of the elliptic curve.

Again, this description of multiplication can be interpreted in terms of Floer homology.

Each pair δ1, δ2 contributing to the sum gives rise to a triangle as depicted in Figure 3.

Here, the triangle is a union of two triangles in X(B), fibering over δ1, δ2, as depicted in

that figure. The triangle on the left is determined by δ1 as before, while the triangle on

the right is the image of the map

ψ : [0, 1]× [0, 1] → X(B)

(t, s) 7→ σℓ1(δ2(t)) + sv2(t),

where σℓ is given by (1.1). The fact that these two triangles match up along the dotted

line, which lies over m, is just the statement that v1(1) + v2(1) = 0. The number c(δ1, δ2)

can be seen to be related (but not equal to) the symplectic area of this triangle, again see

[DBr], pp. 626–628.

The multiplication formula (2.5) can be viewed as a kind of global generalization of a

much simpler rule for multiplying sections of powers of a given ample line bundle on a toric

variety. Indeed, such a line bundle L determines a lattice polytope B ⊂ Rn, and the points
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L0

Lℓ1

Lℓ1+ℓ2

Figure 3.

of B(1
ℓ
Z) correspond to a monomial basis for the global sections of L⊗ℓ. The product of

the sections corresponding to mi ∈ B( 1
ℓi
Z), i = 1, 2, is just the section corresponding to

the weighted average m = (ℓ1m1 + ℓ2m2)/(ℓ1 + ℓ2) ∈ B( 1
ℓ1+ℓ2

Z). This can be interpreted

in terms of paths δ1, δ2 joining m1 and m2 to m, as in (2.5).

3. Singularities, theta functions, jagged paths

We now would like to generalize these constructions to affine manifolds with singularities,

as is necessary if we are to obtain any interesting examples. We will begin with some simple

examples to provide guidance. In particular, we will take B to be a compact affine manifold

with boundary, analogous to the very simple case where B is just a lattice polytope, but

allow a few simple singularities to appear in B. We always assume B is locally convex

along ∂B.

3.1. The basic example. We will revisit some examples introduced in [GSInv]. For now,

we consider the simplest example, the affine manifold B1 given in Figure 4. The points

of B1(Z) are labelled in the diagram as X, Y, Z and W . The affine structure has one

singularity, the point P , and the point P can be chosen freely within the line segment

joining W and Z. The piecewise linear function ϕ takes the value 0 at X,W and Z and 1

at Y .

If we were in the purely toric case, say B1 being either the polygon pictured on the left or

the right in Figure 4, then each integral point would represent a purely monomial section of

the line bundle on the toric variety corresponding to B1. Further, the multiplication law for

monomials would be either XY = Z2 (on the left) or XY = WZ (on the right). Each such

product can be viewed by giving paths δ1, δ2 with initial endpoints X and Y respectively

and terminating at either the point Z or the point 1
2
(W + Z) (viewing these points as

elements of R2 rather than as variables). If we also took into account the polyhedral

decomposition and the choice of ϕ, one obtains a degeneration of one of these two toric

varieties into a union of two planes, given by the equation XY = tZ2 or XY = tWZ in

the two cases, where t is the deformation parameter.
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However, we are not in the purely toric case, and if we follow the philosophy of the

previous section, the description of the sections specified by the points of B1(Z) and their

multiplication rule should be determined by drawing straight lines. Let us first consider

heuristically how lines should contribute to the description of sections, and then consider

how we should think of the product rule.

First looking at the points labelled W or Z, we note that given any reference point

x ∈ B1 \ {P}, there is a unique line segment joining W or Z to x. In analogy with the

abelian variety case, we would expect this to tell us that the corresponding sections are

still represented by monomials at x. Next, consider the point X . If x is contained in

σ1, then there is again a unique line segment joining X and x, so we expect a monomial

representative for this section. On the other hand, if x lies in σ2, we may have either one

or two straight lines, depending on the precise location of x: In Figure 5, there is a line

joining X and x in the first chart but not in the second, as the line drawn in the right-hand

chart crosses the cut. On the other hand, in Figure 6, there are in fact two distinct line

segments joining X and x.

One solution to this ambiguity is to simply include in the sum a contribution from the

line segment in the right-hand chart of Figure 5. However, this is not a straight line: if

drawn in the correct chart, it becomes bent, as depicted in Figure 7.

How do we justify counting this bent line, or as we shall call it, jagged path? The

explanation is that when we introduce singularities, as explained in [GSInv], we need to

introduce walls emanating from the singularity, in this case rays heading in the direction

of the points W and Z. Each ray has a function attached to it; the precise role that this

function plays will be explained later. But the essential point is that we no longer need

to use straight lines to join X and x. We will allow our lines to bend in specified ways

when lines cross walls. In the case of B1, this bending exactly accounts for the jagged

path in Figure 7. As a consequence, we should expect the section corresponding to X will

be represented as a sum of two monomials in any event in a chart corresponding to the

right-hand side of B1, regardless of the position of x.

As we have not yet been very clear what these charts mean and how we are representing

sections in general, it is perhaps more informative to loook at the product XY . This

product should be given as a sum over all suitable choices of paths δ1, δ2. To realise this,

let us first assume the point P lies below 1
2
(W + Z). Then Figure 8 shows two possible

choices of the pairs δ1, δ2, and the product XY should be determined as a sum over these

two ways of averaging X and Y : the presence of the singularity has created this ambiguity.

Taking the PL function ϕ into account, the suggestion then is that we should have the

multiplication rule

XY = t(Z2 +WZ).
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S

Sσ1 σ2

P

W

X Z Y

σ1

P

σ2

Z

W

X

Y

Figure 4. The affine manifold B1. The diagram shows the affine embed-

dings of two charts, obtained by cutting the union of two triangles as indi-

cated in two different ways. Each triangle is a standard simplex.

x

x

S

Sσ1 σ2

P

W

X Z Y

σ1

P

σ2

Z

W

X

Y

Figure 5.

x

x

S

Sσ2

P

W

X Z Y

σ1

P

σ2

Z

W

X

Y

σ1

Figure 6.

x

S

σ1 σ2

P

W

X Z Y

Figure 7.

Note that this gives a family over SpecC[t] whose fibre over t = 0 is a union of two P2’s

in P3 (determined by the two standard simplices σ1 and σ2), and for general t, we obtain

a non-singular quadric surface in P3.

Now this argument depended on the fact that the point P was chosen below the half-

integral point 1
2
(W + Z). Since there is no sense that this singular point has a natural

location, this is not particularly satisfactory. If we move P above this point, the second

choice of δ1, δ2 seems to disappear.
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δ1

δ2

δ1
δ2

S

Sσ1 σ2

W

X Z Y

σ2

Z

W

X

Y

PP

σ1

Figure 8.

The solution again is to use the walls to provide corrections. If P lies above the point
1
2
(W + Z), then we will again obtain two contributions as depicted in Figure 9, where

this time a piece of the wall emanating from P is used to correct for the fact that for the

labelled δ1, δ2, we do not have v1(1)+ v2(1) = 0 (where vi is defined using (2.4)). Rather,

we have v1(1) + v2(1) +w = 0, where w is the unit tangent vector pointing from P to W .

These pictures can be justified heuristically in terms of holomorphic disks contributing

to Floer multiplication. If we think of a space X1 fibering in tori over B1, there is a singular

fibre over P , a two-torus with a circle pinched to a point. We expect that X1 will contain

holomorphic disks fibering over the two walls emanating from P . In particular, for any

point y in B1 \ {P} on the line segment WZ, there is a holomorphic disk in X1 with

boundary contained in the fibre over y. We can use this to build a piecewise linear disk as

follows.

Let δ : [0, 1] → B1 be the parameterized jagged path of Figure 7, bending at time

t0 ∈ (0, 1). Modify the definition of v : [0, 1] → TB1
defined using (2.4) by taking it to

coincide with v of (2.4) for 0 ≤ t < t0 and with v+w for t0 ≤ t ≤ 1. One checks that v(t)

is always tangent to δ.

As in §2, we use v to define a polygon in TB1
, but because of the discontinuity in v we

obtain a picture as in Figure 10. Recall thatX(B1\{P}) is obtained by dividing the tangent

spaces of B1 \ {P} by integral vector fields. If w± = limt→t±
0
v(t), then w+ −w− = w, so

in fact w+ and w− are identified in X(B1 \ {P}). So the line segment joining w+ and w−

becomes a loop. We can then glue in a holomorphic disk emanating from P , attaching its

boundary to the loop. This gives the triangle which is, roughly speaking, the contribution

to Floer multiplication describing the section X .

A similar picture explains the contributions to the product XY : the failure of v1(1) +

v2(1) = 0 is dealt with by gluing in the holomorphic disk.

This is just a heuristic: these disks are not actual holomorphic disks. However, a variant

of this example is considered in great detail in [P11] and the result here agrees with the

actual result from Floer multiplication. The advantage for us is that we can describe

everything combinatorially.

Before looking at some more complex examples, let us give a more precise description

of what we are doing. Unfortunately, doing so requires a number of technical details; we
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X Z Y

δ1 δ2

Figure 9.

w+

w−

Figure 10.

shall try to avoid the most unpleasant aspects, but the reader should be advised in what

follows that the definitions are only approximately correct!

3.2. Structures and jagged paths. Before we get into details, suppose we are given

data (B,P, ϕ), where B is an integral affine manifold with singularities, P is a polyhedral

decomposition of B, and ϕ is an integral multi-valued PL function on B. We then obtain

a generalization of the diagram (2.2) of sheaves on B0. This is a direct generalization of

the torus case. Saying that ϕ is a multi-valued PL function on B means that there is an

open cover {Ui} of B0 such that ϕ is represented by a single-valued function ϕi on Ui, with

ϕi−ϕj affine linear on Ui∩Uj . We then construct the local system P̃ on B0 as follows. On

Ui, P̃ is isomorphic to Z⊕Aff (B0,Z)∗|Ui
, and on Ui ∩ Uj, Z⊕Aff (B0,Z)∗|Ui

is identified

with Z⊕Aff (B0,Z)∗|Uj
via

(ℓ, α) 7→ (ℓ+ α(ϕj − ϕi), α)

for α ∈ Γ(Ui ∩ Uj,Aff (B0,Z)∗) and ℓ ∈ Z. We then have the projection map r̃ : P̃ →

Aff (B0,Z)∗, and dualizing the exact sequence

0 → Z → Aff (B0,Z) → Λ̌ → 0

(with the third arrow given by exterior derivative) gives the bottom row of (2.2). From

this follows the whole diagram, with P defined as the kernel of the map deg.

In [GS11], we gave the definition of a structure for an integral affine manifold with

singularities (B,P). Structures were used for the proof of Theorem 1.5 to encode the
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explicit data necessary to describe the smoothing. ForB of arbitrary dimension, a structure

D is a collection of slabs and walls. These are codimension 1 polyhedra in B which are

either contained in codimension one cells of P (slabs) or contained in maximal cells of

P but not contained in codimension one cells (walls). Slabs and walls carry additional

data, certain formal power series which are used to describe gluing automorphisms. In

order for the gluing to be well-defined, a structure must satisfy the notion of compatibility.

Producing a compatible structure is the main work of [GS11]. This procedure is described

at greater length in [GSInv] and is covered in full detail in [Gr11], Chapter 6 in the two-

dimensional case. Slabs and walls need to be treated somewhat differently in the algorithm

of [GS11] for producing compatible structures for technical reasons, but in the context here

we will essentially be able to ignore these issues.

A number of details of this construction are surveyed in [GSInv]. The crucial points to

know are the following:

(1) The deformation X̌ → SpecC[t] is given order-by-order, with X̌k := X̌ ×
C[t]

C[t]/(tk+1) constructed explicitly from a structure.

(2) X̌k is a thickening of X̌0, and hence has the same set of irreducible components,

indexed by σ ∈ Pmax. The function ϕ determines some standard toric thickenings

of affine open subsets of Pσ for σ ∈ Pmax. Then X̌k is obtained by using the

structure to glue together these standard pieces in non-toric ways.

(3) If x ∈ B0 there is a monoid Px ⊆ Px, defined using ϕ, along with an inclusion

N → Px, yielding a family πx : SpecC[Px] → SpecC[t]. This provides a local model

for the smoothing, as follows. Let τ ∈ P be the smallest cell containing x. There is

a one-to-one correspondence between cells σ ∈ Pmax containing x and irreducible

components of π−1
x (0). Furthermore, the irreducible component corresponding to σ

is isomorphic to the affine open subset of Pσ determined by the face τ of σ. Then

the corresponding irreducible component of SpecC[Px] ×A1 SpecC[t]/(tk+1) is the

standard toric thickening of this affine open subset of Pσ.

(4) In [GHKSΘ], we will explain how the line bundle L⊗d is obtained by gluing standard

line bundles on these standard pieces, again with gluing dictated by the structure.

For any given ℓ, there is a Px-torsor Q
ℓ
x ⊆ P̃x ∩ deg−1(ℓ) defining a line bun-

dle on SpecC[Px]; its restriction to the irreducible components of SpecC[Px] ×A1

SpecC[t]/(tk+1) describes these standard line bundles.

The definition of the monoid Px is discussed in [GSInv], §3.1; the details will not be so

important here. The Px-torsor Q
ℓ
x has not yet been discussed in the literature.

As most of the conceptual issues are already present in the two-dimensional case, instead

of using walls and slabs, we can use rays, much as [KS06] had done. For precise details of

what follows, see [Gr11], Chapter 6.

Assume B is two-dimensional. Roughly, a ray consists of:
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(1) a parameterized ray or line segment d : [0,∞) → B or d : [0, 1] → B, with image a

straight line of rational slope. A ray will continue until it hits a singularity or the

boundary of B; otherwise it continues indefinitely.

(2) A formal power series

fd = 1 +
∑

p

cpz
p

where p runs over the set of global sections of d−1P with the property that r(p)

is always tangent to the image of d, negatively proportional to the derivative d′.

There are more constraints on fd necessary to guarantee convergence of the gluing

construction considered below, but we won’t worry about these technical details as

all examples considered here will be quite simple.

A structure D is then a collection of rays {(d, fd)}.

Example 3.1. In the basic example of §3.1, the relevant structure consists of two rays: d1,

a line segment from P to W , and d2, a line segment from P to Z. Since ϕ is single-valued,

we can write P = Z⊕ Λ, and we take

fd1 = 1 + z, fd2 = 1 + w,

where z and w are the monomials corresponding to (0, (0,−1)) and (0, (0, 1)) respectively.

Note applying r to these two elements gives the primitive tangent vectors to the segment

ZW pointing towards Z and W respectively. We shall by abuse of notation refer to these

tangent vectors as z and w also. �

Note that a point m ∈ B(1
ℓ
Z) defines an element ℓ · evm of Aff (B0,Z)∗m as in §2. In

addition, choosing a local representative ϕm for ϕ in a neighbourhood of m gives a splitting

P̃ = Z⊕Aff (B0,Z)∗ in a neighbourhood of m, and we define an element mϕ ∈ P̃m by

mϕ = (ℓ · ϕm(m), ℓ · evm) ∈ Z⊕Aff (B0,Z)
∗
m.

One notes this is independent of the choice of ϕm. In fact, mϕ lies in the Pm-torsor Q
ℓ
m,

and hence defines a local section of the line bundle L⊗ℓ.

For example, in the case of B = B1, the points X, Y, Z and W define elements of the

stalks P̃X , . . . , P̃W of degree 1. However, as parallel transport of X and Y is not well-

defined because of monodromy of the local system P̃ around P , we cannot directly view

these as defining global sections of L.

To do so requires the precise notion of jagged path. This definition will appear in

[GHKSΘ].

Definition 3.2. A jagged path in B with respect to a structure D consists of the following

data:

(a) A continuous piecewise linear path γ : [0, 1] → B.



THETA FUNCTIONS AND MIRROR SYMMETRY 23

(b) For every maximal domain of linearity L ⊆ [0, 1] of γ we are given a monomial

mL = cLz
qL ∈ C[Γ(L, γ−1(P̃)|L)]

satisfying the following two properties:

(1) If t ∈ (0, 1) is a point contained in the interior of L a maximal domain of linearity,

then γ′(t) is negatively proportional to vect(r̃(qL)), where r̃ is defined in (2.2).

(2) Let t ∈ (0, 1) be a point at which γ is not affine linear, passing from a domain of

linearity L to L′, with y = γ(t). Let {(dj, xj)} be the set of pairs dj ∈ D, xj in

the domain of dj such that dj(xj) = y. Let ndj ∈ Aff (B0,Z)y be the germ of a

primitive integral affine linear function which vanishes on the image of dj near y

and is positive on the image of L near y. We assume that n = ndj can be chosen

independently of j; this is an assumption on the genericity of γ and can always be

achieved by perturbing the endpoint γ(1). Expand

(3.1)
∏

j

f
〈n,r̃(qL)〉
dj

as a sum of monomials with distinct exponents. Note each monomial can be viewed

as an element of C[Py] ⊆ C[P̃y].

Then there is a term czq in this expansion with

mL′ = mL · (czq) = cLcz
qL+q.

There are several important features of this definition. First, item (1) says the monomial

attached to the line segment always tells us the direction of travel of the line segment. Since

(2) tells us how these monomials change at bends, it also tells us precisely how jagged paths

bend.

Second, the exponents in (3.1) are by construction always non-negative. This is impor-

tant as fdj need not be invertible in the relevant rings. In fact, more naive approaches to

writing down sections of L founder on precisely this point.

Definition 3.3. For m ∈ B(1
ℓ
Z) and x ∈ B0 general, a jagged path from m to x is a jagged

path satisfying

(1) γ(0) = m;

(2) γ(1) = x;

(3) If L is the first domain of linearity of γ, then mL = zmϕ .

Example 3.4. Let’s examine this in detail with B = B1, D as in Example 3.1. Take

m = X ∈ B1(Z). If x ∈ Int(σ1), there is one jagged path from X to x, which just serves

to parallel transport mϕ to x.

On the other hand, to be explicit, let’s take x to be the point with coordinates (1/8, 1/4)

in σ2, in the left-hand chart of Figure 4, assuming Z, Y and W have coordinates (0, 0),
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(1, 0) and (0, 1) respectively. Suppose a jagged path from X to x crosses the segment WZ

below P (which we will take to lie at (0, 1/2) to be explicit). Then we are crossing the ray

d2, and we take nd2 to be the linear function (a, b) 7→ −a. Then r̃(mϕ) = evX takes the

value 1 on nd2 , precisely because nd2 takes the value 1 at X . Thus (3.1) is just given by

1 + w. So we can take czq = 1, in which case there is no change to the monomial and no

bend in the jagged path; this just yields the parallel transport of X into σ2. Otherwise,

we take czq = w. This replaces X with Xw, and changes the direction by noting that

vect(evX + w) = vect(evX) + w. Recall here that we are using the same notation w for

the tangent vector and corresponding monomial. In particular, at the point of intersection

of the segment WZ with the jagged path, say at (0, h), we have

vect(evX) = (−1, 0)− (0, h) = (−1,−h),

so the new direction is −(−1,−h + 1). In order for this path to then pass through x, we

need to take h = 1/3.

A bit of experimentation shows that as we move the point x around inside σ2, we always

have precisely two jagged paths from X to x, and the sum of the final attached monomials

is independent of the location of x. However, it is possible that both such jagged paths are

in fact straight, when viewed in the correct charts, as happens in Figure 6. To describe

this sum, let us continue to denote by X the monomial parallel transported from σ1 into

σ2 below P . (Parallel transport is carried out in the local system P̃). Then the sum is

X +Xw.

It is this invariance which is the crucial property of jagged paths. To get our hands on

this invariance, we use:

Definition 3.5. Let m ∈ B(1
ℓ
Z). For a jagged path γ from m to x, let Mono(γ) ∈ C[P̃x]

be the monomial attached to the final domain of linearity of γ. Let

Liftx(m) :=
∑

γ

Mono(γ)

be the sum over all distinct jagged paths from m to x. Here we view two jagged paths to

be the same if they just differ by a reparametrization of their domains.

Given a path γ in B0 connecting two points x1 and x2, we can define a transformation

θγ,D which, roughly speaking, is a map C[P̃x1 ] → C[P̃x2 ] which is given by parallel transport

and a composition of wall-crossing automorphisms: if we cross a ray d at time t, we apply

the transformation

zq 7→ zqf
〈nd,r̃(q)〉
d

for q ∈ P̃γ(t), nd a primitive integral affine linear function vanishing along the image of d

near γ(t) and positive on γ(t− ǫ).
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Definition 3.6. A structure D is consistent if for any path γ from x1 to x2 general points

in B0, m ∈ B(1
ℓ
Z),

Liftx2(m) = θγ,D(Liftx1(m)).

In particular if γ does not cross any ray of D, then Liftx(m) is invariant under parallel

transport.

If we have a consistent structure D, we can then use the lifts Liftx(m) to define a global

section ϑm of L⊗ℓ. We can write down well-defined local descriptions of the section on the

various affine pieces of the irreducible components of X̌k, and consistency then guarantees

that these local descriptions glue.

A main result of [GHKSΘ] is then:

Theorem 3.7. (1) The compatible structures constructed in [GS11] are in fact consis-

tent.

(2) Given a compatible and consistent structure, giving a formal degeneration X →

Spf C[t], the above construction gives for every m ∈ B(1
ℓ
Z) a section ϑ

[ℓ]
m of the line

bundle L⊗ℓ. This section has the property that for any σ ∈ Pmax, ϑ
[ℓ]
m |Pσ is 0 if

m 6∈ σ and otherwise coincides with the monomial section of OPσ(ℓ) defined by m.

These are our theta functions. We call ϑ
[ℓ]
m a theta function of level ℓ. Keeping in mind

that m can lie in B(1
ℓ
Z) for various ℓ, ϑ[ℓ]m may depend on the level. However, we will write

ϑm when not ambiguous.

The proof of this result is a fairly straightforward extension of arguments given in [GHKI]

and [CPS].

We can also use jagged paths to describe multiplication. In general, for m1 ∈ B( 1
ℓ1
Z),

m2 ∈ B( 1
ℓ2
Z), we should have a multiplication rule

(3.2) ϑ[ℓ1]m1
· ϑ[ℓ2]m2

=
∑

m∈B( 1

ℓ1+ℓ2
Z)

cm1,m2,mϑ
[ℓ1+ℓ2]
m .

As before, the coefficient should be determined as a sum over pairs of jagged paths δ1, δ2,

with δi a jagged path from mi to m, and with balancing v1(1)+v2(1) = 0. There is a slight

subtlety which we have already seen in §3.1: since m is not free to be chosen generally,

it may lie on a ray of D. Indeed, this happens in §3.1. So it is possible that balancing

fails, and this is corrected by using a contribution from the ray. Essentially, this can be

accomplished by perturbing the point m a little bit, so that one of δ1 or δ2 has a chance

to have an addditional bend along that ray. This needs to be done with a bit of care, so

we omit the details of this.

3.3. Additional examples. In [GSInv], we considered a number of other two- and three-

dimensional examples. Here, we will describe their homogeneous coordinate rings in terms

of jagged paths.
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Example 3.8. The affine manifold B2 is depicted in two left-hand diagrams in Figure 11.

The required structure D is exactly as in the case of B1, with two rays, one from P to

W and one from P to U . We write X instead of ϑX etc. for the theta functions of level

1. One sees that the products of theta functions WY and UZ each correspond to the

theta function of level 2 determined by the barycenter of the square σ2, so one obtains

the purely toric relation WY − ZU = 0. Much as in the case of B1, one obtains products

XY = t(U2 + UW ) and XZ = t(W 2 + WU); the two choices of pairs of jagged paths

contributing to the latter product are indicated in the right-hand diagram of Figure 11, if

we assume that the singular point occurs below the midpoint of the segment WU .

Example 3.9. In Figure 12, we have an example with two singularities, with both charts

shown. Note here we have four rays in the relevant structure, two each emanating from

the singular points. We take the functions attached to the rays to be 1 + u and 1 + r

as appropriate, where r and u are the monomials corresponding to the tangent vectors

(0, 1) and (0,−1) respectively. We also take ϕ to take the value 0 on the square and the

value 1 at X and Y . One sees easily, using the same strategies as above, various quadratic

relations on the level 1 theta functions. First, we have the purely toric relation RV = SU ,

as neither of these products involve jagged paths which cross rays. Next, the products XS,

XV , RY and UY all behave as in the previous example, and we can write

XS = t(R2 + UR), XV = t(U2 + UR), RY = t(S2 + SV ), UY = t(V 2 + V S).

Finally, the product XY is the most interesting, with four contributions,

XY = t2(UV + US +RV +RS).

Figure 13 shows all four pairs of jagged paths contributing to these terms. Note in [GSInv],

Example 3.4, this relation was obtained from the previous ones by saturation of ideals.

Example 3.10. We consider next B3 of §4.2 of [GSInv], see Figure 14. There are two

singularities; the second diagram shows the affine embedding of an open set containing the
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Figure 13. Two of the pairs of jagged paths contributing to XY are drawn

in each chart. Contrary to appearances, none of the eight jagged paths

appearing here bend!

two cuts of the first chart. Here ϕ takes the value 0 at U,Z and X , and the value 1 at Y

and W .

The structure D defining the deformation is as follows. Each singularity produces two

rays contained in the line segments containing them; thus two of these rays intersect

at U . Because of this intersection, an extra ray, p as drawn, is necessary to produce

compatibility. The function attached to p is fp = 1 + t2x−1z−1, where x and z are the

monomials corresponding to the tangent vectors (1, 0) and (0, 1) respectively. The relations

are then given by

XY = t(U2 + UW ), ZW = t(U2 + Y U).

The term U2 in the expression for XY and ZW is the expected toric one from the first

chart; the left-hand diagram of Figure 15 exhibits the diagrams for the other two relations.

In this figure we take the singularities to be closer to the boundary of B3 than to U .

More interesting in this case is how consistency arises. Let us consider jagged paths

from Y into the chamber between the ray p and the segment UX . In particular, consider

a jagged path that bends at p, e.g., δ1 as depicted in the right-hand diagram of Figure

15. If we take U to be the origin, and if δ1 hits p at the point (r, r), then the direction of

the jagged path after the bend is (r + 2, r + 1), and hence always has slope ≥ 1/2. Thus

such a jagged path can never end at a point of the chamber in question below the line

of slope 1/2 passing through the origin. In order for the lift of Y to be independent of

the endpoint inside this chamber, there must be some other jagged paths contributing the

same monomial at points below the slope 1/2 line. One sees that a path of type δ2 does

the trick. Note also that if we had omitted the ray p, the jagged path δ2 would still exist,
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but consistency would fail because there would be no substitute for δ1 above the slope 1/2

line.

Example 3.11. Our final surface example is as depicted on the left-hand diagram of Figure

16; the singularities along the edges are of the same type as the previous example. We

take ϕ to have value 0 at X , Y , and U , and 1 at Z. There are 9 elements of the structure:

six of these are the usual ones emanating from the singularities (the dotted lines in the

figure indicates those rays emanating from the singularities which pass into the interiors of

two-cells), and three additional rays emanate from U in the directions of X , Y , and Z, to

produce a consistent structure. For example, there is a ray stretching from U to X with

attached function 1 + yz. See [GSInv], Examples 4.3 and 4.4, for the details. We would

like to determine an equation for this family in P3 by computing the product XY Z. Keep

in mind that we are using the notation X, Y, etc. for ϑ
[1]
X , ϑ

[1]
Y etc. We do this in two steps.

First we compute, say, XY . There will be two level two theta functions contributing to

this product, which we shall write as ϑ
[2]
(X+Y )/2, the theta function given by the mid-point

of the line segment XY , and ϑ
[2]
U , the degree two theta function corresponding to the point

U , thought of as a half-integral point. In this notation, we in fact have

XY = ϑ
[2]
(X+Y )/2 + tϑ

[2]
U .
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One checks that U2 = ϑ
[2]
U (such a statement need not in general be true). We then compute

ϑ
[2]
(X+Y )/2 · Z, and find this has four terms:

(t + t2)ϑ
[3]
U + t(ϑ

[3]
(2U+X)/3 + ϑ

[3]
(2U+Y )/3) = (t+ t2)U3 + tU2(X + Y ).

The first term tU3 is purely toric; the second term t2U3 appears for the following reason. In

order to correctly compute the product using jagged paths, since U appears on a number

of rays, we need to perturb the endpoint a little bit. If we perturb the endpoint so the

jagged path from Z now crosses the edge UX , we need to consider possible bending along

this line segment. The expression (3.1) arising from crossing the rays on this line segment

near U is (1 + x)(1 + yz) = 1 + x+ yz + t. The monomial t does not change the direction

of the jagged path, but produces the contribution t2U3. The third and fourth terms arise

as shown in the right-hand diagram of Figure 16. Finally, ϑ
[2]
U · Z = U2Z is purely toric.

This gives the equation

XY Z = t
(
(1 + t)U3 + (X + Y + Z)U2

)
.

Example 3.12. We consider one crucial three-dimensional example, see Example 5.2 of

[GSInv]. See Figure 17. As explained in [GSInv], the structure now consists of three slabs,

the two-dimensional cells depicted on the right in the figure. The function attached to the

slabs depends on which connected component of the complement of the discriminant locus

we are on. The crucial point is the function attached to the central component, which can

be written as

f = 1 + x+ y + z + g(xyz).

Here x, y and z are the monomials corresponding to primitive tangent vectors pointing

from W to the points X, Y and Z respectively. The formal power series g is determined

by a procedure called normalization in [GS11]. It must be chosen so that log f is free of

pure powers of t = xyz. This is expressed in terms of power series, i.e., that

∑

k≥1

(−1)k+1

k
(x+ y + z + g(xyz))k ∈ C[x, y, z]
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does not contain any monomial (xyz)l = tl. This determines g uniquely, and one can

compute g(t) inductively:

g(t) = −2t+ 5t2 − 32t3 + 286t4 − 3038t5 + · · · .

One can then use jagged paths to determine products. The product XY Z is purely toric,

giving tW 3, while the product UV can then be written as

UV = t2(X + Y + Z + (1 + g(t))W )W.

Each of these terms correspond to a different term in f .

Those terms of the form gnt
nW 2 will correspond to two jagged paths which do not bend,

the line segments VW and UW . As we know, these two jagged paths should correspond

to a holomorphic triangle in the mirror manifold. As explained in [GSInv], the mirror

manifold is an open subset X of the total space of the canonical bundle of P2. In fact

X contains the zero-section of the canonical bundle, isomorphic to P2. The holomorphic

triangle in question can be seen to intersect the P2 in one point, say x. How then do

we explain the adjustments coming from the terms of g? The point is that P2 contains

many holomorphic rational curves of degree n passing through x; by gluing any one of

these curves to the holomorphic triangle, we get a (degenerate) triangle which should also

contribute to the Floer product of U and V . This led us to conjecture that the coefficient

of td in g should represent a type of 1-point invariant for rational curves of degree d

in P2. This conjecture was supported by the observation that the sequence of numbers

−2, 5,−32, . . . already appeared in several places in the literature. First, they appeared

as Gromov-Witten invariants for certain curve classes on the total space of the canonical

bundle of the blow up of P2 as given in [CKYZ]. Second, they appeared in Table 6 of

[AKV] as open Gromov-Witten invariants for the total space of the anti-canonical bundle

of P2, and these numbers arose precisely from relative homology classes of holomorphic

disks where the holomorphic disks were likely to be represented by a single disk meeting

P2 ⊂ KP2 along with a sphere contained in the P2 attached to the disk.

More recently, this was argued from a different point of view, that of Landau-Ginzburg

potentials, in [CLL]. This conjecture has now been proved by Chan, Lau and Tseng in

[CLT].

3.4. Broken lines and functions on L−1. A jagged path is designed to organize the

propagation of local monomial sections of L⊗ℓ for any ℓ 6= 0. Indeed, a jagged path carries

a section of P̃ , which in turn defines a monomial section of L⊗ℓ in a local chart. At a

bend the changes to the section of P̃ lie in P, the kernel of the degree homomorphism

P̃ → Z. In a local chart for X this means multiplication of the monomial section by a

monomial. Now specializing to the case ℓ = 0 we arrive at the notion of broken lines,

which control the propagation of monomials on X . Broken lines were introduced in the
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Figure 17. The tropical manifold appears on the left, with the central

triangle containing the discriminant locus appearing on the right. These

three cells comprise the slabs.

literature before jagged paths ([Gr10],[CPS],[GHKI]), where they have been used notably

in the construction of Landau-Ginzburg potentials. However, jagged paths first appeared in

discussions between the two authors and Mohammed Abouzaid in 2007. For the following

definition we use the notation from Definition 3.2. We now also admit unbounded jagged

paths, but still with only finitely many bends. The domain of definition of γ is then an

interval I ( R rather than [0, 1]. Note that in the unbounded case there is a unique

maximal unbounded domain of linearity (−∞, t0).

Definition 3.13. A (bounded or unbounded) jagged path
(
γ : I → B, (mL)

)
in B with

respect to the structure D is called a broken line if for one (hence for every) domain of

linearity L ⊂ I it holds deg(mL) = 0.

Broken lines are conceptually somewhat easier since it suffices to work with the sheaf

P rather than with P and P̃. In particular, this removes one layer of notation. Note also

that vect(mL) lies in Λ and stays constant along a domain of linearity. Since vect(mL)

is negatively proportional to γ′(t) this shows that unlike jagged paths, broken lines can

travel only in rational directions.

Now a little trick allows one to completely replace jagged paths by broken lines on the

technical level, and this is what is done at most places in [GHKSΘ]. The trick is based on

the observation that a section of L⊗ℓ over an open set U is the same as a regular function

over the preimage of U on the total space Tot(L−1) that is fibrewise homogeneous of degree

d.

The point is that Tot(L−1) has a simple realization in terms of our program. Let (B,P)

be an integral affine manifold with singularities with polyhedral decomposition P.
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Definition 3.14. The truncated cone over B is the integral affine manifold defined as a

set by

CB := B × [1,∞),

endowed with the following affine structure. For ψ : U → Rn an affine chart for B defined

on an open set U ⊂ B, we define the chart

(3.3) ψ̃ : CU −→ Rn+1, (x, h) 7−→ (h · ψ(x), h)

for CB. The polyhedral decomposition CP is given by the cells Cσ := σ × [1,∞) for

σ ∈ P.

While CB is topologically a product, the affine structure is that of a cone over B with

tip chopped off, see Figure 18. Note that CB has boundary C(∂B) ∪ B × {1}. As a

manifestation of the cone structure let us look at parallel transport of the vertical tangent

vector (0, d) ∈ T(x,h)CB = TxB ⊕ R along a straight line to (y, h) ∈ CB. In a chart (3.3)

centered at x this tangent vector maps to (0, d), but at y the preimage of (0, d) is
(
−dv/h, d)

where v = ψ(y)− ψ(x). For h = 1, this is just the parallel transport underlying the sheaf

Aff (B,Z)∗! To discuss the relation with B let us use CB as index for P and Λ to distinguish

these sheaves from the corresponding sheaves on B. The discussion of parallel transport

shows that ΛCB restricted to B × {1} ⊂ C(∂B) is canonically isomorphic to the sheaf

Aff (B,Z)∗ on B. Similarly, P̃ , viewed as a sheaf on B × {1}, extends to the sheaf PCB.

Diagram (2.2) also has a simple interpretation in terms of CB. While there is no

natural affine map from CB to B, the projection to the R-factor defines an affine map

CB → [1,∞). This induces a homomorphism ΛCB → Z and, by composition with PCB →

ΛCB, a homomorphism PCB → Z. Thus the second column of Diagram (2.2) on B is just

the restriction of the first column on CB to B × {1}. The lower two rows are defined by

projection to [1,∞). The kernel of this projection defines horizontal elements in PCB and

on ΛCB. The left column is thus just the restriction of the middle column to horizontal

elements.

It is then immediate that there is a one-to-one correspondence between broken lines on

CB and jagged paths on B, simply by composing with the projection CB → B along the

lines emanating from the tip of the cone. The geometric interpretation of this correspon-

dence is very transparent on the complex side.
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Proposition 3.15. If π : X̌ → SpecC[t] is a deformation associated to (B,P) from

Theorem 1.5 and L the relatively ample line bundle, then the total space of L−1 can be

constructed by applying our construction to (CB,CP).

To define a regular function via broken lines one needs to look at the asymptotic integral

affine manifold of a non-compact affine manifold, defined by equivalence classes of affine

rays in unbounded cells, the equivalence generated by affine translations, see [CPS]. In the

case of CB the asymptotic integral affine manifold is just B. Then given ℓ ∈ N \ {0} and a

1/ℓ-integral pointm in the asymptotic affine manifold, consider broken lines
(
γ : (−∞, 0] →

CB, (mL)
)
whose unbounded asymptotic direction is m, and for L the unbounded domain

of linearity, mL is a ℓ-fold multiple of an primitive element of vanishing t-order. Note this

fixes mL uniquely. Now the same procedure as in the construction of ϑm (Definition 3.5),

but with jagged paths from m to x replaced by broken lines with the asymptotics defined

by m and ending at x, defines a regular function on the total space of the associated

degeneration of non-compact varieties. In the situation of CB this defines ϑm, viewed as a

regular function on Tot(L−1). Note that this regular function is fibrewise homogeneous of

degree ℓ since for any domain of linearity L, the projection of mL to [1,∞) has length ℓ.

4. Tropical Morse trees

We have seen that jagged paths can be used to compute products of theta functions,

emulating the use of holomorphic triangles to compute the product in Floer homology.

This raises the question as to whether one can compute the higher A∞ operations using

a similar strategy. This is explored in work in progress of Abouzaid, Gross, and Siebert

[AGS]. This idea was already explored in [DBr], Chapter 8 in the case of elliptic curves

(where B = R/dZ for some positive integer d). In that case, as there are no singularities,

one could just use trees composed of straight lines; in the general case, one needs to use

jagged paths. We outline this here.

Let us return to the situation of §1, where given an integral affine manifold with singu-

larities B, we assume we have X(B) → B and sections Lℓ (the image of σℓ) which hopefully

become Lagrangian after a suitable choice of symplectic structure on X(B). Further, we

expect Lℓ to be mirror to L⊗ℓ on X̌ .

Suppose we wish to compute

(4.1) µd : Hom(Lℓd−1
, Lℓd)⊗ · · · ⊗ Hom(Lℓ0 , Lℓ1) → Hom(Lℓ0 , Lℓd)[2− d].

As this should be defined using holomorphic disks, we hope to be able to compute this using

jagged paths instead, using the philosophy that jagged paths correspond to holomorphic

objects which can be glued together. This leads us to the definition of tropical Morse tree.

To give this definition, assume given B and a consistent structure D, so that we can talk

about jagged paths on B with respect to D. Further, recall that a ribbon tree is a tree S
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v0,1 v1,2
v2,3

v3,4
v4,5

v0,5

Figure 19.

with a cyclic ordering of edges adjacent to each vertex. This provides a cyclic ordering of

leaves of the tree, and by choosing one leaf as an output, labelled v0,d, and orienting each

edge towards this output, we obtain a directed tree and canonical labelling of all other

leaves as v0,1, . . . , vd−1,d, see Figure 19. In addition, given a sequence of integers ℓ0, . . . , ℓd,

we can assign an integer ℓe to each edge e of S: for e adjacent to vi,i+1, ℓe = ℓi+1−ℓi. If e is

the outgoing edge at an interior vertex with incoming edges e1, . . . , ep, then ℓe =
∑p

i=1 ℓei.

Definition 4.1. Suppose given distinct integers ℓ0, . . . , ℓd. Then a tropical Morse tree

with respect to the data B,D and ℓ0, . . . , ℓd is a map ψ : S → B with S a ribbon tree

with d+1 leaves whose restriction to any edge is a jagged path (and hence comes with the

additional data of attached monomials). This data should satisfy the following conditions:

(1)

ψ(vi,i+1) = pi,i+1 ∈ B

(
1

ℓi+1 − ℓi
Z

)

and the initial monomial attached to the edge ei,i+1 adjacent to vi,i+1, viewing

ψ|ei,i+1
as a jagged path, is z(pi,i+1)ϕ .

(2) Let v be an internal vertex of S with incoming edges e1, . . . , ep and outgoing edge

eout. Let c1z
m1 , . . . , cpz

mp be the monomials attached to the last linear segment of

each jagged path ψ|e1, . . . , ψ|ep. Then the monomial coutz
mout attached to the initial

linear segment of ψ|eout is
∏p

i=1 ciz
mi .

(3) Let e0,d be the edge adjacent to v0,d, and let c0,dz
m0,d be the monomial attached

to the last linear segment of ψ|e0,d as a jagged path. Then at ψ(v0,d), we have

vect(r̃(m0,d)) = 0.
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Let us note a number of features of this definition. First, morally such a tropical Morse

tree should contribute to µd as in (4.1) where the inputs are intersections points of La-

grangian sections corresponding to p0,1, . . . , pd−1,d. However, because (4.1) is a map of

degree 2 − d, this will always be zero if d > 2 and all inputs are of degree 0. However,

we will allow ℓi+1− ℓi to be negative, so that Hom(Lℓi , Lℓi+1
) ∼= H∗(X̌ ,L⊗(ℓi+1−ℓi)) consists

only of top degree cohomology. Indeed, as L is ample, it follows by Kodaira vanishing and

Serre duality that for d < 0

H i(X ,L⊗ℓ) ∼= HdimB−i(X̌ ,L⊗(−ℓ)) =




H0(X̌ ,L⊗(−ℓ)) i = dimB

0 i < dimB

Thus we can write {ϑp | p ∈ B(1
ℓ
Z)} as a basis of HdimB(X ,L⊗ℓ) Serre dual to the basis

{ϑp | p ∈ B( 1
−ℓ
Z) = B(1

ℓ
Z)} of theta functions for H0(X ,L⊗(−ℓ)). This allows us to treat

negative and positive powers of L, and so we will get non-trivial possibilities for µd for

many different d.

The next point to observe is that if ℓi+1 − ℓi < 0, then in fact ψ|ei,i+1
needs to be viewed

as a trivial jagged path which is just a point rather than a line segment. Indeed, in this

case, near pi,i+1, vect(r̃((pi,i+1)ϕ)) points away from pi,i+1. But property (1) of Definition

3.2 says that this vector must be negatively proportional to ψ′, so it is impossible for such

a jagged path to move away from pi,i+1.

A similar argument show that if ℓd−ℓ0 > 0, then ψ|e0,d must also be a trivial jagged path,

because vect(r̃(·)) gets bigger, not smaller, along jagged paths with attached monomials

being of positive degree. Thus in this case we cannot achieve condition (3) of Definition

4.1 unless ψ|eout is contracted.

Note that the condition that vect(r̃(m0,d)) = 0 implies that r̃(m0,d), thought of as a local

section of Aff (B,Z)∗, is given by (ℓd − ℓ0) · evp0,d. Thus m0,d − (p0,d)ϕ lies in ker(r̃) ∼= Z;

denote this difference by ord(ψ).

Finally, we note that condition (2) of Definition 4.1 imposes a kind of balancing condition

at the vertices, namely,

vect(r̃(mout)) =

p∑

i=1

vect(r̃(mi)).

So the vectors on the incoming edges determine the tangent direction of the outgoing edge.

In theory, we would like to define

µd(ϑpd−1,d
, . . . , ϑp0,1) =

∑

ψ

c0,dt
ord(ψ)ϑp0,d ,

where the sum is over all tropical Morse trees with ψ(vi,i+1) = pi,i+1 and p0,d defined to be

ψ(v0,d). We note the conditions imply that p0,d ∈ B
(

1
ℓd−ℓ0

Z
)
.
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p0,1 p0,3

v0,1

v0,3

v1,2

p2,3
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p1,2

Figure 20.

For d = 2, this formula in fact recovers the theta multiplication formula of (3.2). Indeed,

in this case S is just a trivalent tree with 3 leaves and one vertex; the outgoing edge is

necessarily contracted, and the balancing condition v1(1) + v2(1) = 0 is enforced by (2)

and (3) of Definition 4.1.

There is a problem with this definition for d > 2, however. The moduli spaces of tropical

Morse trees need not be the correct dimension. This happens, for example, even in the

case that B = Rn/Γ is a torus, and all the input points are contained inside a hyperplane

in Rn. As pointed out to us by M. Slawinski, this is already a problem when n = 1, the

case of an elliptic curve, if all inputs are the same point in B. (So in fact the arguments

in [DBr], Chap. 8, are not complete.)

As a consequence, in order to properly define µd for d ≥ 3, one needs to perturb the

moduli problem so we get finite counts of trees when needed. We hope to find a way of

doing this which preserves the combinatorial nature of the construction, allowing for actual

computations of A∞-structures. This will certainly involve choices, but the resulting A∞-

structures should be impervious to these choices, up to quasi-isomorphism.

Once such a choice is made, it should be easy to show that the A∞-precategory whose

objects are powers of L and whose morphisms are given, say, by Čech complexes computing

cohomology of powers of L (see [DBr], §8.4.5 for the elliptic curve case) is quasi-isomorphic

to an A∞-precategory defined using the µd’s along the lines of [DBr]. A much more

challenging problem is to then relate this category to the actual Fukaya category of the

mirror.

We also note that M. Slawinski, in his thesis [Sl12], introduced the notion of tropical

Morse graph with an aim of identifying a quantum A∞-category structure [B07] on the

category of powers of L.

Examples 4.2. (1) Consider the tree in Figure 20 with either B = R or B = R/mZ for

some positive integer m, the latter by considering the lift of ψ to the universal cover. This

tree contributes to the coefficient of p0,3 in µ3(p2,3, p1,2, p0,1). Here we take ℓ0 = 0, ℓ1 = 1,

ℓ2 = 3 and ℓ3 = 2, noting e2,3 and e0,3 are contracted to points.
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p0,4 = (−1,−1/3)

p2,3 = (−1/3, 1/3)

p3,4 = (1/4, 3/4)p1,2 = (−4/8, 2/8)

(−3/4, 1/4) = p0,1

Figure 21.

(2) In Figure 21, we give a two-dimensional example, again in B = R2 or R2/Γ for a

lattice Γ, contributing to µ4. In this example we take ℓ0 = 0, ℓ1 = 4, ℓ2 = −4, ℓ3 = −7,

ℓ4 = −3. Again, e1,2 and e2,3 are contracted. �

5. Applications of theta functions to mirror constructions

Theta functions play a crucial role in extensive new work, partly of the first author

jointly with Hacking and Keel, [GHKI],[GHKII] and partly of both authors again jointly

with Hacking and Keel [GHKSΘ]. We will only discuss this work briefly here, and only

one aspect of this work.

In particular, we explain how theta functions allow us to greatly expand the class of

singularities of affine manifolds we can treat. In this survey, we have almost exclusively

considered only one two-dimensional singularity known from the integrable systems liter-

ature as a focus-focus singularity. This singularity has the feature that the monodromy in

the local system Λ about the singularity is

(
1 1

0 1

)
, and the invariant tangent direction is

tangent to a line passing through the singularity. Further, the singularity must appear in

the interior of an edge, and not at a vertex. In higher dimensions, the allowable singular-

ities are the same generically: Example 3.12 is a typical three-dimensional example, with

trivalent vertices for the discriminant locus. Theorem 1.5 as proved in [GS11] holds for this

sufficiently nice class (and a little more generally), called “simple” in [GS06]. This class of

singularities is related to the structure of the degenerations constructed by Theorem 1.5.

These degenerations are special kinds of degenerations we call toric degenerations. These

are degenerations of Calabi-Yau varieties f : X → D such that the central fibre X0 is a
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union of toric varieties glued along toric strata, and f is given locally in a neighbourhood

of the most singular points of X0 by a monomial in a toric variety.

This is an ideal class of degenerations for studying mirror symmetry, as it exhibits the

greatest level of symmetry (under mirror symmetry, the data of the irreducible components

is exchanged with the structure of the family at the most singular points of the central

fibre). Furthermore, it works very well for complete intersections in toric varieties, see e.g.,

[Gr05]. However, one would ideally like to construct a mirror for any maximally unipotent

degenerating family X → D, and it might be difficult to find a birationally equivalent

family which is a toric degeneration. Thus it is desirable to expand the class of allowable

degenerations, and this is equivalent to expanding the class of allowable singularities that

our program can handle.

Let us consider the setup of [GHKI] by way of example. Consider (Y,D) with Y a non-

singular projective rational surface and D ∈ | − KY | a cycle of rational curves. We call

such data a Looijenga pair. We can construct an integral affine manifold homeomorphic

to R2 with one singularity associated to (Y,D), as follows. Let D = D1 + · · ·+Dn, with

D1, . . . , Dn cyclically ordered.

For each node pi,i+1 := Di ∩ Di+1 of D we take a rank two lattice Mi,i+1 with basis

vi, vi+1, and the cone σi,i+1 ⊂Mi,i+1 ⊗Z R generated by vi and vi+1. We then glue σi,i+1 to

σi−1,i along the rays ρi := R≥0vi to obtain a piecewise-linear manifold B homeomorphic to

R2 and a decomposition

Σ = {σi,i+1 | 1 ≤ i ≤ n} ∪ {ρi | 1 ≤ i ≤ n} ∪ {0}.

We define an integral affine structure onB\{0}. We do this by defining charts ψi : Ui → MR

(where M = Z2). Here

Ui = Int(σi−1,i ∪ σi,i+1)

and ψi is defined on the closure of Ui by

ψi(vi−1) = (1, 0), ψi(vi) = (0, 1), ψi(vi+1) = (−1,−D2
i ),

with ψi linear on σi−1,i and σi,i+1. The idea behind this formula is that we are pretending

that (Y,D) is in fact a toric pair. Given a ray in a two-dimensional fan generated by

(0, 1) corresponding to a divisor C, with adjacent rays generated by (1, 0) and (−1,−D2
i )

respectively, one has C2 = −D2
i . In particular, if (Y,D) were in fact toric, the above

construction would just yield B ∼= R2 as an affine manifold, with Σ the fan defining Y . If

(Y,D) is not toric, B has a non-trivial singularity at the origin.

The reader can check a simple example: if Y is a del Pezzo surface of degree 5, one can

find a cycle of 5 −1-curves on Y giving D. In this case, the monodromy of Λ about the

resulting singularity is

(
1 1

−1 0

)
; see [GHKI], Example 1.8 for details.
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Here (B,Σ) can be thought of as a dual intersection complex of (Y,D). If one reinterprets

(B,Σ) as an intersection complex for a degeneration, one would hope to find a flat family

X̌ → Spf C[t]whose central fibre is a union of n copies of A2. Specifically, X̌0 should be

the n-vertex, the union of coordinate planes (if n ≥ 3)

Vn = A2
x1,x2

∪ A2
x2,x3

∪ · · · ∪ A2
xn,x1

⊆ An,

where the subscripts denote the non-zero coordinates on each plane.

One can attempt to use the techniques of [GS11] to produce such a deformation. The

problem is there is no local model for a smoothing in a neighbourhood of 0 ∈ Vn, and

the arguments of [GS11] work by gluing together local models, which are required in

codimension ≤ 2. However, if we throw away 0 ∈ Vn, a choice of a strictly convex piecewise

linear function ϕ on B gives rise to a k-th order deformation of Vo
n := Vn \ {0}, denoted

X̌ o
k → SpecC[t]/(tk+1). This deformation looks purely toric in a neighbourhood of each

connected component of Sing(Vo
n). Since Vn is affine, we can try to recover a k-th order

deformation X̌k of Vn as follows. Suppose the coordinates x1, . . . , xn on Vn lift to functions

on X̌ o
k . Then we can embed X̌ o

k into An × SpecC[t]/(tk+1) using these lifts, and take the

closure of the image to be X̌k. The problem is that for the naive family X̌ o
k , the xi won’t

lift.

The solution is to modify the construction of X̌ o
k via a structure as in [GS11]: this

structure should consist of lines radiating from the origin. The functions attached to

these lines determine automorphisms, and these automorphisms are then used to modify

the standard gluings, giving a different deformation X̌ o
k . Any structure will provide such

a deformation, as there is no meaningful compatibility of automorphisms which can be

checked at the origin, as we have deleted the origin. If we had not deleted it, there is no

local model for a smoothing there in which we could have checked such compatibility.

However, one can instead insist on using a structure which is consistent, which allows

us to define theta functions on X̌ o
k , which yield lifts of the variables xi. To do so requires

one to make a careful guess for the structure. In [GHKI], we define a canonical choice

of structure motivated by [GPS]: this structure encodes certain relative Gromov-Witten

invariants of the pair (Y,D). Importantly, one needs the original surface to construct the

structure; it depends on more than just the singularity. In particular, it is possible to have

two different pairs (Y,D), (Y ′, D′) giving rise to the same affine singularity but to different

structures.

This allows one to construct the deformations X̌k → SpecC[t]/(tk+1), and taking the

limit, one obtains a formal deformation X̌ → Spf C[t].

The following is a more precise statement of the main result of [GHKI]:

Theorem 5.1. Let (Y,D) be a Looijenga pair and let σP ⊆ H2(Y,R) be a strictly convex

rational polyhedral cone containing the Mori cone (the cone of effective curves) of Y . Let
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P = σP ∩ H2(Y,Z), and mP the monomial ideal in C[P ] generated by {zp | p ∈ P \ {0}}.

Let Ĉ[P ] be the formal completion of C[P ] with respect to mP . Then there is a formal

smoothing of the n-vertex X̌ → Spf Ĉ[P ] canonically associated to (Y,D). This family can

be viewed as the mirror family to the pair (Y,D).

If D supports a divisor ample on Y , then we can take σP to be the Mori cone, and the

mirror family extends to a family X̌ → SpecC[P ].

Example 5.2. The cubic surface with a triangle of −1-curves as D provides a particularly

attractive example. In this case the monodromy of the singularity is minus the identity.

The relevant structure controlling the deformation is extremely complicated, with there

being a non-trivial ray of every possible rational slope. Nevertheless, it can be shown

that the theta function lifts of x1, x2, x3 satisfy a very simple cubic algebraic equation, see

[GHKI], Example 5.12. Taking the closure of this family in P3 gives a universal family of

cubic surfaces constructed by Cayley.

The above results have an application to a conjecture of Looijenga [L81] predating mirror

symmetry, concerning the deformation theory of cusp singularities. A cusp singularity is

a normal surface singularity whose minimal resolution has exceptional divisor a cycle of

rational curves.

It had been observed that cusp singularities come in dual pairs. This can be explained

as follows.

Let M = Z2. Let T ∈ SL(M) be a hyperbolic matrix, i.e., having a real eigenvalue

λ > 1. Let w1, w2 ∈MR be eigenvectors with eigenvalues λ1 = 1/λ, λ2 = λ, chosen so that

w1∧w2 > 0 (in the standard counter-clockwise orientation of R2). Let C̄, C̄ ′ be the strictly

convex cones spanned by w1, w2 and w2,−w1, and let C,C ′ be their interiors, either of

which is preserved by T . Let UC , UC′ be the corresponding tube domains, i.e.,

UC := {z ∈MC| Im(z) ∈ C}/M ⊂MC/M =M ⊗Gm.

T acts freely and properly discontinuously on UC , UC′. The holomorphic hulls of the quo-

tients UC/〈T 〉, UC′/〈T 〉 are normal surface germs. These are each a cusp singularity, and

they are considered dual to each other. All cusps (and their duals) arise this way.

We then obtain a proof of Looijenga’s conjecture concerning smoothability of cusp sin-

gularities:

Theorem 5.3. A germ of a cusp singularity (X, p) is smoothable if and only if there is a

Looijenga pair (Y,D) along with a birational morphism Y → Ȳ contracting D to the dual

cusp singularity.

Looijenga proved smoothability of (X, p) implies the existence of (Y,D). This is done

by realising a cusp singularity and its dual inside an Inoue surface, and then deforming

the Inoue surface so that p smooths but the dual cusp remains untouched. The resulting
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surface resolves to (Y,D). The converse is proved in [GHKI], by studying the mirror family

to (Y,D). One can show with some additional effort that the family extends (analytically)

to one which contains as a fibre the dual cusp to p. Since the mirror family is a smoothing,

the dual cusp is thus smoothable.

There are also connections between this construction and cluster varieties associated

to skew symmetric matrices of rank 2 (see [FG06] for definitions). In particular, theta

functions suggest a vast generalisation of the (conjectural) Fock-Goncharov dual bases

for cluster varieties. In particular, the above construction leads to a proof of the Fock-

Goncharov conjecture for the X-cluster variety associated to such a rank 2 skew-symmetric

matrix.

The ideas used to prove Theorem 5.1 can currently be generalized to the K3 case. One

starts with a one-parameter maximally unipotent degeneration Y → D of K3 surfaces. We

assume Y is non-singular and the map to D is normal crossings and relatively minimal.

We can then build a dual intersection complex (B,P) of this degeneration, where P is

a decomposition of B into standard simplices. All the singularities of B now lie at ver-

tices, reflecting the geometry of the irreducible components of Y0. The mirror family is

constructed by first building a union X̌0 of projective planes whose intersection complex

is (B,P). We smooth by constructing a suitable structure on B. This will define defor-

mations of X̌ o
0 obtained from X̌ by deleting zero-dimensional strata. The correct choice of

structure will be consistent, yielding well-defined theta functions on these deformations,

enabling us to compactify the deformations much as before. As a consequence, we obtain

theta functions on K3 surfaces which enjoy many nice properties; see [GHKK3] for details.

Crucially, we can show that theta functions are essentially independent of the choice of

birational model of Y → D. This leads to a proof of a strong form of Tyurin’s conjecture.

This general construction of mirrors for K3 surfaces gives encouragement that a simi-

lar construction will work in all dimensions. At the moment, the techniques available rely

heavily on [GPS], which is a two-dimensional result. However, we anticipate that a suitable

understanding of log Gromov-Witten invariants [GSlog],[Ch],[ACh] will allow us to create

consistent structures in general. Certain types of Gromov-Witten invariants associated

to the degeneration Y → D will be used to construct the structure defining the mirror.

Morally, these Gromov-Witten invariants will count holomorphic disks with boundary con-

tained in fibres of the SYZ fibration, but we expect a purely algebro-geometric description

of these invariants.
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