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Abstract

Higher genus partition functions of two-dimensional conformal field theories have to be in-
variants under linear actions of mapping class groups. We illustrate recent results [4, 6] on the
construction of such invariants by concrete expressions obtained for the case of Drinfeld doubles
of finite groups. The results for doubles are independent of the characteristic of the underlying
field, and the general results do not require any assumptions of semisimplicity.
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1 General results

To start, let us sketch the incentive for our work from two-dimensional conformal field the-
ory (CFT). The building blocks for CFT correlators with given chiral data are the conformal
blocks, which form vector bundles with projectively flat connection over the moduli space of
complex curves with marked points. It is fairly well understood that essential properties of
the monodromies of these connections are encoded in the structure of a ribbon category C. In
many applications to physical systems, it is unnatural to require C to be semisimple. Indeed,
non-semisimple ribbon categories arise in logarithmic conformal field theories, a topic of much
recent activity and with many applications, in particular to statistical systems.

In this note we consider linear representations of the mapping class groups of Riemann
surfaces of genus g with m holes, for arbitrary values of g and m, on complex vector spaces
that are specific morphism spaces of a finite ribbon category C. Recall that a finite tensor
category is a rigid monoidal category with finite-dimensional morphism spaces and finitely
many isomorphism classes of simple objects, each of which has a projective cover, and with
every object having finite length; a ribbon category is a rigid monoidal category endowed with
a compatible braiding and twist.

A central idea in quantum field theory is the one of “summing over all intermediate states”.
Beyond the semisimple setting, one cannot give a naive mathematical meaning to this by
restricting the summation by hand to, say, simple or indecomposable or projective objects. The
idea is, however, appropriately implemented by the categorical notion of a coend

∫ X∈C
G(X,X)

of a certain functor G : Cop ×C→D. The coend can be seen as a formalization of the idea to
sum over all possible states, in a way that is consistent with the morphisms in the category.
We have [9, 8]

Theorem 1 Let C be a finite ribbon category.
(i) The coend

L(C) :=

∫ U∈C

U∨ ⊗ U (1)

of the functor Cop ×C→C that acts on objects as (U, V ) 7→U∨⊗V exists.

(ii) The coend L(C) carries a natural structure of a Hopf algebra in C. It is endowed with an
integral and with a Hopf pairing ̟L(C) : L(C)⊗L(C)→ 1.

(iii) Via the rigidity of C, every object of C carries a natural structure of right comodule over
L(C).

Proposition 2 [6, Rem. 2.3] For C a finite ribbon category, every object of C carries a natural
structure of left-right Yetter-Drinfeld module over L(C), with the right comodule structure being
the one of Theorem 1(iii) and the left module structure obtained via the braiding of C.
This provides a fully faithful embedding of C into the category of left-right Yetter-Drinfeld mod-
ules over L(C).

A factorizable finite ribbon category is a finite ribbon category C for which the Hopf pairing
̟L(C) is non-degenerate; for such a category the integral of the Hopf algebra L(C) is two-sided
and L(C) also has a two-sided cointegral (see e.g. Proposition 5.2.10 and Corollary 5.2.11 of
[8]). In the sequel we restrict our attention to a specific subclass of such categories. We denote
by k an algebraically closed field of characteristic zero and by H ≡ (H,m, η,∆, ε, s, R, v) a fini-
te-dimensional ribbon Hopf k-algebra. Here m, η, ∆, ε and s are the product, unit, coproduct,
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counit and antipode of H , R∈H ⊗k H is the R-matrix and v∈H the ribbon element of H .
Such a Hopf algebra has, uniquely up to scalars, a non-zero left integral Λ∈H and a right
cointegral λ∈H∗; the antipode of H is invertible. We denote by Q :=R21 ·R∈H ⊗k H the
monodromy matrix and by fQ= (dH ⊗ idH) ◦ (idH∗ ⊗Q) : H∗→H the Drinfeld map.

We also assume that the Hopf algebra H is factorizable, meaning that the Drinfeld map fQ
is invertible. In this case the integral Λ is two-sided (in other words, the Hopf algebra H is
unimodular), and the Drinfeld map sends the cointegral λ to a non-zero multiple of the integral.
We can (and do) normalize them such that λ ◦Λ=1 and fQ(λ) =Λ.

Complex Hopf algebras with structure very close to the one considered here arise in the
description of representation categories of chiral algebras that are not semisimple, see e.g.
[2, 3, 11, 13, 12].

Now denote by H-Mod the category of (finite-dimensional, left) H-modules. The following
is an immediate consequence of well-known results:

Proposition 3 The category H-Mod carries a natural structure of a factorizable finite ribbon
category. Specifically, the tensor product of H-Mod is obtained by pull-back of the coproduct
∆ of H, the left and right dualities come from the antipode of H and its inverse, the braiding
comes from the R-matrix R, and the twist comes from the ribbon element v.

The category H-Bimod of finite-dimensional H-bimodules can be treated very much in the
same vein, giving (see [4])

Corollary 4 The category H-Bimod of finite-dimensional H-bimodules has a natural structure
of a factorizable finite ribbon category.

Remark 5 (i) It is worth pointing out that the relevant monoidal structure is not the one
for which the tensor product is taken over H (and thus treats the Hopf algebra H just as an
algebra). Braidings for that other monoidal structure are discussed in [1].
(ii) We can use the ribbon structure on H to equip the category H-Bimod (endowed with the
relevant monoidal structure) with a natural structure of a ribbon category. To this end, we
can use the simultaneous left action and right action of either the R-matrix and the ribbon
element, or else the inverse R-matrix and inverse ribbon element. Altogether this results in
four structures of ribbon category on H-Bimod; these are pairwise isomorphic. For our purpose
it is crucial to take one of the two ribbon structures in which mutually inverse elements are
used on the left and on the right; for concrete expressions see the formulas (3.3) and (4.19)
of [4]. This is precisely the ribbon structure that makes H-Bimod, for factorizable H, braided
equivalent to the Drinfeld center of H-Mod.

As shown in Appendix A.2 of [4], there is an equivalence

H-Modrev ⊠ H-Mod
≃

−→ H-Bimod (2)

of ribbon categories, where ⊠ is the Deligne tensor product of abelian categories and the reverse
category Crev of a ribbon category C is obtained from C by inverting the braiding and the twist
isomorphisms. We use this equivalence to tacitly identify these two categories. In particular,
we think of the coend L(H-Modrev

⊠H-Mod), as introduced in (1), as an H-bimodule. We
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denote this bimodule by K; its structure as an H-bimodule and as a Hopf algebra in H-Bimod
are described in detail in Appendix A.3 of [4].

The simplest partition function in the semisimple case is the charge conjugation modular
invariant; this is of Peter-Weyl form and thus a direct sum of terms in bijection with the isomor-
phism classes of simple H-modules. In the non-semisimple case, the direct sum gets again gen-
eralized to a coend, this time of a functorGH : H-Modop ×H-Mod→H-Bimod. The functorGH

in question is the one obtained by composing the functorH-Modop ×H-Mod→H-Modrev ⊠H-Mod
that acts on objects as U ×V 7→U∨

⊠V with the equivalence (2). The coend of GH implements
in a consistent manner the idea to pair left and right movers in the form of charge conjugation
on all representations.

Proposition 6 [4, Propos.A.3] The coend F of the functor GH : H-Modop ×H-Mod→H-Bimod
exists. Its underlying object – also denoted by F – is the coregular bimodule, i.e. the vector
space H∗ dual to H endowed with the duals of the left and right regular actions of H on itself.

Similarly as the coend K, also the coend F turns out to carry important additional algebraic
structure internal to H-Bimod:

Theorem 7 [5, Theorem2] The coend F carries a natural structure of a commutative sym-
metric Frobenius algebra with trivial twist in the ribbon category H-Bimod. The algebra and
coalgebra structural maps are given by

mF := ∆∗ , ηF := ε∗ , εF := Λ∗ and

∆F := [(idH ⊗ (λ ◦m)) ◦ (idH ⊗ s⊗ idH) ◦ (∆⊗ idH)]
∗
,

(3)

with Λ and λ the integral and cointegral of H, respectively.

We now turn to the action of mapping class groups. The results in [9] imply that for any
triple of non-negative integers g, p and q, the morphism space Vg;p,q =HomH|H(K

⊗g ⊗F⊗q, F⊗p)
naturally carries a projective representation πg;p,q of the subgroup Mapg;p,q of the mapping class
group of Riemann surfaces of genus g with p+ q holes that leaves two selected subsets of sizes
p and q separately invariant. For details see Propos. 2.4 and Remark 2.6 of [6]. πg;p,q is in fact
a genuine linear representation, see Remark 5.5 of [4].

In applications to CFT, F is a candidate for the bulk state space, and the spaces Vg;p,q play
the role of genus-g conformal blocks with p incoming and q outgoing insertions of the bulk state
space. The corresponding correlation functions are specific elements in those spaces that have
to be invariant under the mapping class group action and be compatible with sewing.

We now present elements Corg;p,q ∈Vg;p,q that are candidates for these correlation functions.

Denote by m
(r)
F and ∆

(r)
F multiple products and coproducts of F , respectively, and by ρKF the

natural action (see Propos. 2) of the Hopf algebra K ∈H-Bimod on the H-bimodule F , and
set

Cor0;1,1 := idF , Cor1;1,1 := mF ◦ (ρKF ⊗ idF ) ◦ (idK ⊗∆F ) ,

Corg;1,1 := Cor1;1,1 ◦ (idK ⊗Corg−1;1,1) for g > 1 ,

Corg;p,q := ∆
(p)
F ◦ Corg;1,1 ◦

(

idK⊗g ⊗m
(q)
F

)

.

(4)

Theorem 8 The element Corg;p,q of Vg;p,q is invariant under the action πg;p,q of the group
Mapg;p,q.
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This statement is the main result of [6]. It provides yet another instance of a surprising
conspiracy of algebraic structures – in the case at hand, finite-dimensional factorizable Hopf
algebras – and geometric ones – here, the fundamental groups of moduli spaces of complex
curves. We find it remarkable that semisimplicity of the categories involved is needed neither for
producing mapping class group representations nor for the construction of physically motivated
invariants.

2 Drinfeld doubles

Associated to any finite group G there is the quasitriangular Hopf algebra DG, called the
(Drinfeld) double ofG. As a vector space, DG=k(G)⊗k k[G] with k(G) the algebra of functions
on G and k[G] the group algebra over an (algebraically closed) field k. From here on we do not
assume any longer that k has characteristic zero, and thus do not require DG to be semisimple.
A natural basis of DG is given by bg|x := δg ⊗ bx with g, x∈G, where δg and bx are the usual
natural bases of k(G) and k[G]. In terms of this basis the Hopf algebra structure of DG reads

bg|x · bh|y = δg,xhx−1 bg|xy , η(1) = b1|e =
∑

g∈G
bg|e , ε(bg|x) = δg,e ,

∆(bg|x) =
∑

h∈G
bh|x⊗ bh−1g|x , s(bg|x) = bx−1g−1x|x−1 . (5)

Note that s2= idDG. The Hopf algebra DG is factorizable quasitriangular, with R-matrix and
associated monodromy matrix given by

R =
∑

g∈G
bg|e ⊗ b1|g and Q =

∑

g,h∈G
bh|g ⊗ bg|g−1hg . (6)

DG is also ribbon, with ribbon element ν =
∑

g∈G bg|g−1 , and it has a two-sided integral and a
two-sided cointegral, given (upon choice of normalizations) by Λ=

∑

g be|g and by λ=
∑

g βg|e ∈DG∗,
where {βg|x} is the basis of the dual space DG∗ dual to {bg|x}. The integral satisfies ε ◦Λ= |G|;
accordingly, by Maschke’s theorem the category DG-Mod of left DG-modules is semisimple iff
the characteristic of k does not divide the order |G|.

3 Invariants from Drinfeld doubles

Let us apply some of the general results from Section 1 to the factorizable Hopf algebraH =DG.
First, the Hopf algebraK in DG-Bimod is (DG∗)⊗k (DG∗) as a vector space, with the coadjoint
left and right DG-actions on the first and second tensor factor, respectively, and its Hopf algebra
structure is easily expressed in terms of the dual basis {βg|x}. The Hopf algebra structure of
K ∈DG-Bimod, expressed in terms of the dual basis {βg|x}, is given by

(βg|x⊗βh|y) · (βp|u⊗βq|v) = δpx,up δqvy,vqv βpg|u⊗ βv−1qvhv−1q−1vq|v ,

∆K(βg|x⊗ βh|y) =
∑

u,v∈G
βg|v ⊗ βu−1hu|u−1y ⊗ βv−1gv|v−1x⊗ βh|u ,

1K =
∑

x,y∈G
βe|x⊗ βe|y , εK(βg|x⊗ βh|y) = δx,e δy,e ,

sK(βg|x⊗βh|y) = βx−1g−1x|x−1g−1x−1gx ⊗ βh−1y−1h−1yh|h−1y−1h . (7)
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The Frobenius algebra F in DG-Bimod is DG∗ as a vector space, with the coregular left and
right DG-actions. The Frobenius algebra structure is obtained by specializing formula (3) to
the present situation; we find

ηF =
∑

x∈G
βe|x , mF (βg|x, βh|y) = δx,y βhg|x ,

εF (βg|x) = δg,e , ∆F (βg|x) =
∑

h∈G
βh−1g|x⊗ βh|x .

(8)

Now consider the action ρKF of the Hopf algebra K on the Frobenius algebra F , which is a
linear map from (DG∗)⊗k3 to DG∗. We obtain

ρKF (βg|x⊗βh|y⊗βk|z) = δz,xzy δk,x βg−1xg|g−1zy−1hy . (9)

We can now insert the specific expressions (8) and (9) into the general formula (4). We restrict
our attention to the case p=1= q; the extension to general values of p and q is straightforward.
At genus 1 we have

Cor1;1,1(βg|x⊗βh|y⊗βk|z) = δy−1,z−1xz δy−1hy,z−1gz βk[x,g]|z , (10)

with [x, g] =x−1g−1xg the group commutator. By iteration we arrive at

Corn;1,1(β
(n)

gh|xy⊗βk|z) =
∏n

i=1
δy−1

i
,z−1x

i
z δy−1

i
h
i
y
i
,z−1g

i
z βk[xn,gn]···[x1,g1]|z

, (11)

where we introduced the short-hand notation

β
(n)

gh|xy := βg1|x1
⊗ βh1|y1

⊗ βg2|x2
⊗ βh2|y2

⊗ · · · ⊗ βgn|xn
⊗ βhn|yn . (12)

According to Theorem 8 the morphisms (12) are invariant under the action of Mapg;p,q if k
has characteristic zero. But we actually expect that this remains true for general characteristic,
including the case that the characteristic divides the order of G so that DG is non-semisimple.

Indeed, we have verified that the torus partition function Cor1;0,0 is modular invariant
irrespective of the characteristic of k. The action of the S- and T-transformation on Cor1;0,0 is
given by precomposition with the morphisms SK and TK depicted in (4.3) of [6], which in the
case at hand read

TK(βg|x⊗βh|y) = βg|gx ⊗ βh|h−1y (13)

and
SK(βg|x⊗βh|y) = βg−1xg|g−1 ⊗ βy−1|y−1hy . (14)

Checking mapping class group invariance of correlators with field insertions and at higher genus
amounts to specializing various expressions from [6, Sect. 5]; this would be straightforward, but
some of the computations involved tend to be lengthy.
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