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Orbifolds of two-dimensional quantum field theories have a natu-
ral formulation in terms of defects or domain walls. This perspective
allows for a rich generalisation of the orbifolding procedure, which
we study in detail for the case of topological field theories. Namely,
a TFT with defects gives rise to a pivotal bicategory of “worldsheet
phases” and defects between them. We develop a general framework
which takes such a bicategory B as input and returns its “orbifold
completion” Borb. The completion satisfies the natural properties
B ⊂ Borb and (Borb)orb ∼= Borb, and it gives rise to various new equiva-
lences and nondegeneracy results. When applied to TFTs, the objects
in Borb correspond to generalised orbifolds of the theories in B. In the
example of Landau-Ginzburg models we recover and unify conven-
tional equivariant matrix factorisations, prove when and how (gener-
alised) orbifolds again produce open/closed TFTs, and give nontrivial
examples of new orbifold equivalences.
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1 Introduction and summary

Orbifolding is a basic construction in (quantum) field theory, string theory, al-
gebraic geometry, and representation theory. The conventional setup is some
“theory” (about which we will be less vague soon enough) together with a sym-
metry group. Gauging this symmetry amounts to restricting to the invariant
sectors while simultaneously adding new twisted sectors. In this way the orb-
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ifold theory is constructed from the original one, and it often inherits desirable
properties from the symmetry group.

A slightly different look at the usual orbifold procedure allows for an imme-
diate generalisation. This alternate point of view arises in the framework of
two-dimensional field theories with defects. Later we will deal with this notion
rigorously, but in the next few paragraphs we shall argue heuristically and develop
some intuition. In this vein, let us consider a set of theories a1, a2, . . . that govern
various domains or phases of a two-dimensional worldsheet. The different phases
are separated from one another by one-dimensional oriented manifolds. These
are called domain walls or defect lines X1, X2, . . ., and they come with data that
encodes to what extent they allow transfers between the theories of neighbouring
phases. A typical patch of worldsheet with defects and field insertion points looks
as follows:

a1

a2

a3 a4

a5

X1

X2
X3

X4

X5

X6

X7

X8

(1.1)

What a field theory wants to do is to compute correlators, i. e. the expectation
values 〈. . .〉 of fields inserted on points of worldsheets with defects. For simplicity,
let us restrict to topological theories, meaning that the value of the correlators
depends only on the isotopy classes of defect lines and field insertions. The
precise functorial definition of such 2d TFTs with defects [RS, DKR] is reviewed
in Section 3.1.

To make contact with orbifolds let us consider two theories a and b, and a defect
X : a→ b between them. Our goal is to compute all correlators in theory b only
from knowledge of theory a and the defect X . To achieve this, we make the
additional assumption that X has invertible quantum dimension, which means
that

〈

b
φ1

φ2
〉

and

〈
X

φ1

φ2

a

b

〉
(1.2)

are equal up to a nonzero factor for all correlators. After an appropriate rescaling
we may assume that the two correlators in (1.2) are actually equal. Of course
we can also insert more than one “island” of theory a in the “sea” of theory b,
bounded by copies of the defect X . Since the defects are topological we may let
the islands expand until their boundaries nearly meet. What once were a-islands
in b-sea is now a-land partitioned by b-rivers, and the correlators in (1.2) are
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equal to

〈 〉
=

〈 〉
. (1.3)

Note that whenever two parallel defect lines are close to each other, they have
opposite orientation. Denoting the image of the field φi under the action of the
defect X by Φi, the orientation-flipped defect by X† and the fusion product of
defects by ⊗, we find that correlators in theory b can be computed as correlators
in theory a, together with a network of defects A := X† ⊗ X (that we draw in
green) and trivalent junction fields:

〈

φ1

φ2

b

〉
=

〈

Φ1

Φ2

a

〉
. (1.4)

This construction can also be turned around [FFRS]: one can start from a
defect A together with two junctions, subject to certain properties detailed in
Section 3.3, and define the correlator on the left of (1.4) by the correlator on
the right. The collection of correlators obtained in this way will be called the
generalised orbifold of theory a by the defect A (with junctions).

If a group of symmetries of theory a is implemented by the action of defects,
these can be assembled into a “symmetry defect” A. Together with a choice
of junctions one recovers in this way ordinary orbifolds (see Section 7.1 for an
example). But in general A does not have to arise from a group, thus indeed
generalising the concept of orbifolds; concrete examples of this phenomenon will
be discussed in Sections 7.2 and 7.3.

In the present paper we mould the above ideas into precise terms and study
some of their consequences. To set the stage for a summary, we first organise
theories, defects, and fields as the objects, 1-morphisms, and 2-morphisms of a
bicategory B. Orientation reversal endows this bicategory with adjoints for all
1-morphisms as well as a pivotal structure. In Section 2.1 we recall the relevant
definitions, and in Section 3.2 we review how to extract such a bicategory from
the data of the functorial description of a 2d TFT with defects.

Let now B be any pivotal bicategory whose 1-morphism categories are idempo-
tent complete (a technical assumption we need). In the categorical language the
relevant properties of the defect A : a → a above will lead us to consider a cer-
tain kind of algebra objects A ∈ B(a, a), namely separable symmetric Frobenius
algebras (see Section 2.2).
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In the motivational paragraphs above we considered the special case A = X†⊗
X for a defect X : a→ b with invertible quantum dimension. This allowed us to
obtain theory b from the pair (a, A). Generalising even further, we construct a
new bicategory Borb whose objects are pairs (a, A) with a ∈ B and A ∈ B(a, a) a
separable symmetric Frobenius algebra. 1- and 2-morphisms in Borb are defined
to be 1- and 2-morphisms in B with suitable extra structure (namely bimodules
and bimodule maps, see Section 2.2). As shown in Section 4.1, Borb is again
pivotal.

We can think of Borb as the theory of generalised orbifolds of B. As expected B
fully embeds into Borb since unit 1-morphisms Ia are naturally endowed with the
structure to make (a, Ia) an object in Borb for each a ∈ B. Typically B is not
equivalent to Borb, but in Proposition 4.2 and (5.2) we will show that the full
embedding Borb ⊂ (Borb)orb gives an equivalence

Borb
∼= (Borb)orb . (1.5)

Thus Borb deserves the name orbifold completion: while the set of objects (= the-
ories) in B may not be large enough to close under taking generalised orbifolds,
the bicategory Borb is complete in this sense.

We can now state one of the central results in the theory of generalised orbifolds
(Theorems 4.3 and 4.4). Let B be a pivotal bicategory as before, and let X ∈
B(a, b) have invertible quantum dimension. Then

X : (a,X† ⊗X) −→ (b, Ib) (1.6)

is an isomorphism in Borb. Put differently and in terms of our TFT interpretation,
theory b is equivalent to the (X† ⊗ X)-orbifold of theory a – just as we argued
in (1.4). This result is a defect-inspired variant of the monadicity theorem.

In fact the equivalence (1.6) holds in an even bigger bicategory Beq which is
obtained from Borb by relaxing the conditions on the objects (a, A); to wit, A does
not necessarily have to be symmetric. We call Beq the equivariant completion of B
since in the examples discussed later, Beq is already sufficient to recover ordinary
equivariant constructions.

A result that only holds in Borb concerns the existence of nondegenerate pair-
ings. This is a structure that has to be present in the original bicategory B if it is
to describe a 2d TFT with defects. More precisely, let us assume that there are
linear maps 〈−〉a : EndB(Ia) → C (the “one-point correlators on a sphere”). They
induce pairings on EndB(Ia) which we interpret as two-point bulk correlators of
theory a. Furthermore, for any X ∈ B(a, b) we define the “defect pairing”

〈Ψ1,Ψ2〉X =

〈

Ψ2

Ψ1

X

〉

a

(1.7)
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where we employ standard string diagram notation as reviewed in Section 2.1.
In Corollary 5.3 we will prove that if the symmetry property

〈

Ψ

X

〉

a

=

〈

Ψ

X

〉

b

(1.8)

holds for all 2-morphisms Ψ : X → X in B, then nondegeneracy of 〈−,−〉X in B
implies nondegeneracy of the induced pairing in Borb.

The condition (1.8) appears naturally in the setting of topological field theory.
In particular, we will see that if a ∈ B gives rise to an open/closed TFT in the
way explained in [CM, Sect. 9] and Section 6.3, then (a,X†⊗X) ∈ Borb also gives
rise to an open/closed TFT; this in particular entails a Calabi-Yau category of
boundary conditions, and that the Cardy condition is satisfied.

Let us turn to a brief discussion of applications of the general theory outlined
so far. This means that we have to identify interesting pivotal bicategories B
with idempotent complete 1-morphism categories. As already mentioned one
obvious class of examples can be constructed from functors defining 2d TFTs
with defects. More generally this construction also works for topological defects
in non-topological 2d QFTs [DKR], or, for that matter, in QFTs of any dimension
by inflating defect bubbles until the worldvolume is filled with a defect foam.

The examples that we will study in some detail are Landau-Ginzburg models.
They form a bicategory LG whose objects are potentials W (i. e. certain poly-
nomials), and 1-morphisms are matrix factorisations X of potential differences
[BR1, BFK, KRS, CM]. In [CM] it was established that LG has all the proper-
ties we need, including in particular a simple residue formula to easily compute
quantum dimensions (even by hand if need be).

Given a finite group G that acts on polynomials and leaves W invariant, one
can try to gauge this symmetry. This is the conventional theory of orbifold
Landau-Ginzburg models and equivariant matrix factorisations. We will show in
Section 7.1 that one naturally recovers this theory by considering a particular
orbifold (W,AG) ∈ LGeq, where AG is the sum of all G-twists of the identity
defect IW .

Assume now that (W,AG) is in LGorb and not only in LGeq, i. e. AG is symmet-
ric. In addition to reformulating ordinary Landau-Ginzburg orbifolds in terms of
defects, we also present a general proof that equivariant matrix factorisations form
a Calabi-Yau category in this framework. Even better, by applying the general
result (Theorem 6.5) that every (W,A) ∈ LGorb gives rise to an open/closed TFT,
we find (Theorem 7.4) that the unorbifolded Kapustin-Li pairing [KL2, HL] in-
duces a nondegenerate pairing on G-equivariant matrix factorisations. Similarly,
we give a conceptual, non-technical proof of the G-equivariant Cardy condition,
independent of the proof in [PV, Thm. 4.2.1].
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It is clear from our general discussion that the procedure of orbifold comple-
tion goes beyond ordinary orbifolds. In the case of Landau-Ginzburg models we
will illustrate this by giving two examples of equivalences of type (1.6): in Sec-
tion 7.2 we explain how to prove Knörrer periodicity as a generalised orbifold
equivalence, and in Section 7.3 we discuss defects between the categories of ma-
trix factorisations of A- and D-type singularities. In particular, we construct a
matrix factorisation Ad ∈ LG(W (A2d−1),W (A2d−1)) where W (A2d−1) = x2d−y2 such
that its modules are equivalent to matrix factorisations of W (Dd+1) = xd − xy2:

hmf(C[x, y],W (Dd+1))ω ∼= mod(Ad) . (1.9)

We expect that many other such equivalences can be found as a generalised
orbifold construction.

Another class of examples to which our orbifold theory can be immediately
applied are B-twisted sigma models. The relevant bicategory is that of spaces
and Fourier-Mukai kernels, which by the work of [CW] has all the properties we
need. Similarly, one would expect A-twisted sigma models to provide another
manifestation of orbifold completion. The relevant bicategories are studied in
[WW, MWW], but it is presently not known if or how they are pivotal.1 On
the other hand, by including defects in the discussion of homological mirror sym-
metry, one would expect an equivalence of (the orbifold completion of) A- and
B-models as monoidal pivotal bicategories with additional enrichments general-
ising the Calabi-Yau A∞-structure.

Finally, a class of non-supersymmetric theories to which orbifold completion
is applicable are bosonic sigma models with symmetry defects. The classical
action on a worldsheet with defect network can be defined in terms of gerbes and
1- and 2-morphisms between them [Ste, Wal, FSW, RS]. For invertible defects
one can formulate defect fusion via composition of (invertible) 1-morphisms. In
this way one obtains a 2-groupoid which can serve as the input for our orbifold
construction (after completion with respect to direct sums).
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2 Algebraic Background

In this section we review several types of algebra objects and their (bi)modules,
in the setting of bicategories with adjoints. Throughout we employ the efficient
language of string diagrams, which make manifest the natural interpretation of
modules as boundary conditions, and algebras and bimodules as defect lines.

2.1 Bicategories with adjoints

We begin by recalling the basic definitions and fix our notation. The data of
a bicategory B is as follows. There is a class of objects a, for which we write
a ∈ B. For all pairs a, b ∈ B there is a category B(a, b) whose objects and
arrows are called 1-morphisms and 2-morphisms, respectively. 1-morphisms can
be composed using the functors

κabc : B(b, c) × B(a, b) −→ B(a, c) (2.1)

for every a, b, c ∈ B. For X,X ′ ∈ B(a, b), Y, Y ′ ∈ B(b, c) and 2-morphisms
φ : X → X ′, ψ : Y → Y ′ we write Y ⊗X = κabc(Y,X) and ψ ⊗ φ = κabc(ψ, φ).
This product is associative and unital in the following sense: for any triple of
composable 1-morphisms X, Y, Z there is a 2-isomorphism αXY Z : (X⊗Y )⊗Z →
X⊗ (Y ⊗Z), called the associator, which is natural with respect to 2-morphisms
in all three arguments. Furthermore, for every a ∈ B there is the unit 1-morphism
Ia ∈ B(a, a) together with natural isomorphisms

λX : Ib ⊗X −→ X , ρX : X ⊗ Ia −→ X (2.2)

for every X ∈ B(a, b), called (left and right) unit actions. These data satisfy two
coherence axioms which are e. g. written out in [Bor, (7.18), (7.19)].

We are interested in bicategories which have additional structure such as duals
on the level of 1-morphisms. More precisely, we say that a bicategory B has left
adjoints if for every 1-morphism X ∈ B(a, b) there exists †X ∈ B(b, a) together
with 2-morphisms

evX : †X ⊗X −→ Ia , coevX : Ib −→ X ⊗ †X (2.3)

which are subject to the constraints

ρX ◦ (1X ⊗ evX) ◦ αX†XX ◦ (coevX ⊗1X) ◦ λ−1
X = 1X , (2.4)

λ†X ◦ (evX ⊗1†X) ◦ α−1
†XX†X

◦ (1†X ⊗ coevX) ◦ ρ−1
†X

= 1†X . (2.5)

Similarly, B has right adjoints if there is X† ∈ B(b, a) together with 2-morphisms

ẽvX : X ⊗X† −→ Ib , c̃oevX : Ia −→ X† ⊗X (2.6)
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satisfying relations analogous to those in (2.4), (2.5).
The conditions imposed on the evaluation and coevaluation maps are conve-

niently presentable in the diagrammatic notation introduced in [JS]. We recall
that (in obvious analogy to punctured worldsheets with defects) for this purpose
objects in B are associated to two-dimensional regions on the plane, 1-morphisms
label lines separating these regions, and 2-morphisms correspond to vertices in
the resulting network of lines. In this way any 2-morphism can be represented
by such a string diagram, for which we adopt the convention that composition
and tensoring are denoted vertically and horizontally, respectively, and we always
read diagrams from bottom to top and from right to left. For a detailed discussion
of string diagrams we refer e. g. to [Lau].

Using the diagrammatic language, the adjunction maps are given by

evX =

X†X

, coevX =
X †X

, ẽvX =

X†X

, c̃oevX =
X† X

,

(2.7)
where we follow the rule to typically not display the units Ia, Ib. The defining
properties (2.4), (2.5) for ev, coev translate to

X

X

=

X

X

,

†X

†X

=

†X

†X

(2.8)

and their analogues for ẽv, c̃oev read

X

X

=

X

X

,

X†

X†

=

X†

X†

. (2.9)

Note that in these Zorro moves [McC] we do not label the cups and caps; rather,
which adjunction map they depict must be read off from the labels X , †X or
X† of the arc, and the orientation of the associated arrow. We will follow this
convention for most string diagrams; the only deviation that we allow is the case
of closed loops in string diagrams, which as in (2.11) below we simply label by
the 1-morphism associated to their upward-oriented part.

It is natural to ask for the relation between left and right adjoints. One case
of interest is when they coincide, i. e. †X = X†. Under this assumption we call a
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bicategory B pivotal if

Z†

X†

φ =

Z†

X†

φ ,

Y †X†

(Y ⊗X)†

=

Y †X†

(Y ⊗X)†

(2.10)
whenever these diagrams make sense. One can show that in a pivotal bicategory
there are natural monoidal isomorphisms {δX} between the functor (−)†† and the
identity on B(a, a), see e. g. [CR2, Sect. 2.3].

Given a 1-morphism X ∈ B(a, b) with †X = X† and a 2-morphism φ : X → X ,
we define the latter’s left and right trace to be the 2-morphisms

trl(φ) = φ

X

, trr(φ) = φ

X

, (2.11)

which are elements of End(Ia) and End(Ib), respectively. The special cases
diml(X) := trl(1X) and dimr(X) := trr(1X) are the left and right quantum
dimensions of X .

2.2 Algebras and bimodules

Let C be a monoidal category, whose unit we denote I. In our later discussions C
will be of the form C = B(a, a) for some bicategory B.

An object A ∈ C is an algebra if it comes with an associative product and a
unit, i. e. with maps

µ = : A⊗ A −→ A , η = : I −→ A (2.12)

which satisfy

= , = = . (2.13)

Note that we reserve a distinguished appereance for algebras in string diagrams.
This allows us to refrain from displaying labels for arcs. Since we will never have
to display more than one algebra per object a ∈ B at a time, this will be no
source of confusion.

Dually, we call A a coalgebra if it comes with maps

∆ = : A −→ A⊗ A , ε = : A −→ I (2.14)

10



that satisfy the conditions (2.13) turned upside-down.

Definition 2.1. Let A ∈ C have both an algebra and a coalgebra structure.

(i) A is Frobenius if

= = . (2.15)

(ii) A is ∆-separable if

= . (2.16)

By slight misuse of language, in the following we will refer to this property
simply as separable.

(iii) Suppose C is pivotal. Then we call A symmetric if

= (2.17)

as maps A→ A†.

From now on we assume that we are given a bicategory B and an algebra
object A in C = B(a, a) for some a ∈ B. A left A-module is a 1-morphism
X ∈ B(b, a) for some b ∈ B, together with a left action of A compatible with
multiplication:

X

X

: A⊗X −→ X ,

X

X

=

X

X

,

X

X

=

X

X

. (2.18)

A 2-morphism φ : X → Y between left A-modules is called a module map if it
satisfies

X

Y

φ
=

X

Y

φ . (2.19)

11



We denote the subset in HomB(b,a)(X, Y ) of all module maps by HomA(X, Y ).
If A is also a coalgebra we can consider the map

πA : φ 7−→

X

Y

φ
(2.20)

which acts on all 2-morphisms φ : X → Y between left A-modules. Under the
right circumstances this map projects to the space of module maps:

Lemma 2.2. If A is a separable Frobenius algebra then π2
A = πA and im(πA) =

HomA(X, Y ).

Proof. πA acts as the identity on module maps. Indeed, for such a map φ we
have

πA(φ) =

X

Y

φ
(2.19)
=

X

Y

φ

(2.18)
=

X

Y

φ

(2.16)
=

X

Y

φ

(2.18)
= φ . (2.21)

It remains to show that every image under πA is a module map:

X

Y

φ
(2.18)
=

X

Y

φ
(2.15)
=

X

Y

φ

(2.18)
=

X

Y

φ

. (2.22)

Similarly one can work with right A-modules and their module maps. We do
not spell out the details as they are obtained by simply reflecting all of the above
diagrams at the line labelled by the module X .

AB-A-bimodule over two algebras A ∈ B(a, a) and B ∈ B(b, b) is a 1-morphism
X ∈ B(a, b) that is simultaneously a right A-module and left B-module, together
with the compatibility condition

X

X

AB

=

X

X

AB

. (2.23)
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Given two B-A-bimodules X, Y , a 2-morphism φ : X → Y is called a bimodule
map if it is both a map of left and right modules. We denote the subspace in
HomB(a,b)(X, Y ) of all bimodule maps by HomBA(X, Y ). Analogously to (2.20),
the projector to HomBA(X, Y ) is given by

πBA : φ 7−→

X

Y

φ
. (2.24)

2.3 Tensor products

Let A ∈ B(a, a) be an algebra as before, and let X ∈ B(a, b), Y ∈ B(c, a) be right
and left A-modules, respectively. We denote the actions of A by ρX : X⊗A→ X
and ρY : A⊗ Y → Y . The tensor product of X and Y over A, X ⊗A Y ∈ B(c, b),
is defined to be the coequaliser of r = ρX ⊗ 1Y and l = (1X ⊗ ρY ) ◦αXAY . Recall
that this means that X ⊗A Y is equipped with a map ϑ : X ⊗Y → X ⊗A Y with
ϑ ◦ l = ϑ ◦ r such that for all φ : X ⊗ Y → Z with φ ◦ l = φ ◦ r there is a unique
map ζ : X ⊗A Y → Z with ζ ◦ ϑ = φ:

(X ⊗A) ⊗ Y X ⊗ Y X ⊗A Y

Z

r

l

ϑ

φ
ζ (2.25)

In general, the tensor product over a given algebra A may not exist. The
following lemma provides a simple existence criterion, which will be sufficient for
our purposes.

Lemma 2.3. Suppose that idempotent 2-morphisms split in B and that A is
separable Frobenius. Then X ⊗A Y exists for all modules X, Y and can be
written as the image of the idempotent

πX,Y
A =

X Y

. (2.26)
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Proof. We compute

X Y

(2.18)
=

X Y

(2.15)
=

X Y

(2.16)
=

X Y

(2.27)
and thus find (πX,Y

A )2 = πX,Y
A . Hence there are splitting maps ξ : X⊗AY → X⊗Y

and ϑ : X⊗Y → X⊗AY with ϑξ = 1 and ξϑ = πX,Y
A , and ϑ satisfies the universal

coequaliser property.

3 Two-dimensional topological field theory with

defects

In this section we briefly review the functorial approach to two-dimensional topo-
logical field theories in the presence of defects [DKR] and the application of defects
to the construction of orbifold models. Once formulated in terms of defects, the
orbifold construction immediately generalises beyond the group case [FFRS].2

The present section is mainly meant to describe the conceptual origins of our
constructions in later sections. The rest of this paper can be read independently
of the material presented here, though knowing the original motivations and in-
tuition is surely useful.

3.1 TFTs with defects as symmetric monoidal functors

We assume that the reader has some familiarity with the formulation of a closed
2d TFT as a symmetric monoidal functor from two-dimensional bordisms to
vector spaces [Dij, Abr, Koc]. Enlarging the bordism category to include surfaces
with unparametrised (“free”) boundaries leads to open/closed 2d TFTs [Laz, AN,
LP1, MS]. Here we discuss a different enlargement of the bordism category in
terms of defects [RS, DKR]. The description of bordisms with defects is a bit
lengthy, but we will need these details to explain the orbifold construction in
Section 3.3.

A typical patch of worldsheet with phases and domain walls is shown in (1.1).
To describe the bordism category for such worldsheets precisely, we first introduce
two label sets, then the objects and morphisms of the bordism category, and
finally two maps s, t on the label sets that constrain the allowed assignments of
labels to different components of a worldsheet.

2In fact, the only place where we will meet groups is the example of matrix factorisations
which are equivariant with respect to a group action, to be discussed in Section 7.1.
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Sets of defect conditions: Fix two sets D2 and D1. We refer to elements of D2 as
phases, and to those of D1 as domain wall types or defect conditions.

Objects of the bordism category: Objects are one-dimensional, oriented, compact
manifolds without boundary and with extra decoration. Concretely, an object U
has underlying manifold ∅ or S1 × {1, . . . , n} for some n > 1, i. e. an ordered
disjoint union of unit circles in R2. On each circle there is a finite number of
marked points, each labelled by a pair (x, ε), where x ∈ D1 and ε ∈ {±1}. The
open intervals between two marked points are labelled by elements a ∈ D2. We
write |U | = n for the number of copies of S1 contained in U and U(k) for the
k-th copy together with its decoration. An example for an object with n = 1 is

(x1,+)

(x2,+)

(x3,−)

a1

a2

a3 . (3.1)

Morphisms of the bordism category: Let U, V be objects as above. A morphism
M : U → V is either a permutation or a bordism:

• Permutation: Suppose |U | = |V | = n. Then M can be a permutation
σ ∈ Sn such that V (σ(k)) = U(k) for all k ∈ {1, . . . , n}.

• Bordism: M can be (the equivalence class of) a two-dimensional, oriented,
compact manifold together with a parametrisation of its boundary3 by maps
φ : U → M and ψ : V →M and a defect graph. The defect graph consists
of a one-dimensional oriented submanifold M1 build from non-intersecting
defect lines (intervals or circles), each labelled by an element of D1. If a
defect line ends on the boundary of M it has to do so transversally. The
complement M2 = M \M1 consists of two-dimensional connected patches,
each of which is labelled by an element from D2. The parametrisations φ
and ψ respect the phases and defect lines, i. e. the intersection of ∂M with
M2 and M1. Our orientation convention is illustrated in [DKR, Fig. 3].

The maps s, t: Since the bordisms and the defect lines are oriented, we can speak
of a region immediately to the left and to the right of a segment of defect line. The
maps s, t : D1 → D2 (“source” and “target”) describe which worldsheet phase is
allowed to the left and right of a given defect type; our orientation convention is

s(x)t(x) x . (3.2)

3To be precise, φ and ψ are germs of smooth injections. On each component S1 of U (resp.
of V ), the “incoming (resp. outgoing) parametrisation” φ (resp. ψ) is defined on some open
neighbourhood of S1 intersected with |z| > 1 (resp. |z| 6 1).
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The labelling of objects and morphisms has to be compatible with s, t.
Since for objects the marked points are labelled by pairs (x, ε), where ε encodes

the orientation of the intersecting defect line, it is convenient to define

s(x,+) = s(x) , t(x,+) = t(x) and s(x,−) = t(x) , t(x,−) = s(x) . (3.3)

Using this, we call a sequence of defect types (x1, ε1), . . . , (xn, εn) composable
if s(xk, εk) = t(xk+1, εk+1) and cyclically composable if in addition s(xn, εn) =
t(x1, ε1). The labelling of the marked points and intervals in an object is now
such that the interval in clockwise direction of a marked point (x, ε) is labelled by
s(x, ε) and that in counter-clockwise direction by t(x, ε). For example, in (3.1)
this means that a1 = s(x1,+) = s(x1), a2 = t(x3,−) = s(x3), etc.

As usual, composition is given by gluing or composition with the permuta-
tion, the tensor product by disjoint union and the symmetric structure by the
permutation morphisms. This completes the description of the bordism category
Borddef

2,1 (D2, D1) of bordisms with defects.4

We can now state that a two-dimensional oriented topological field theory with
defects is a symmetric monoidal functor

τ : Borddef
2,1 (D2, D1) −→ Vect (3.4)

which depends on objects and morphisms only up to isotopy; for objects, the
isotopy is restricted not to move marked points across the point 1 of each unit
circle.

Remark 3.1. We will in the following always silently complete D1 with respect
to formal direct sums. That is, if x, y have coinciding source and target, we
include x ⊕ y into D1 by taking direct sums of state spaces for objects and by
adding the values of τ for morphisms.

In a maybe more familiar variant of the bordism category one would not include
permutations into the sets of morphisms. A technical subtlety in the present
definition is that the identity morphism on an object U is the identity permutation
and not the cylinder over U . As a consequence, τ maps such a cylinder to an
idempotent on the state space τ(U) and not necessarily to the identity. We say
that τ is nondegenerate if this idempotent is the identity for all U . The distinction
between degenerate and nondegenerate TFTs (rather than just excluding the
former case) is useful in the description of orbifolds.

Remark 3.2. (i) A closed 2d TFT is a special case of a 2d TFT with defects
in which D1 = ∅ (no domain walls) and D2 = {•} has just a single element.
Similarly, an open/closed 2d TFT is a special case of a 2d TFT with defects

4In [DKR] the bordism category includes 0-dimensional defects called junctions and labelled
by a set D0. We recover the present setting from [DKR] by choosing D0 to be the empty set.
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where this time D1 is the set of boundary conditions, and D2 = {•, ◦},
where the phase ◦ stands for the trivial theory. The map s maps all of D1

to ◦ (say) and t maps D1 to •.

(ii) “Proper” examples of 2d TFTs with defects, i. e. examples not of the form
in part (i), can be obtained via a lattice construction, see [DKR, Sect. 3].
There, the worldsheet phases are described by certain Frobenius algebras
and the domain walls by bimodules. It is clear that the lattice construc-
tion does not cover all defect TFTs since it even fails to do so for closed
or open/closed TFTs [BP, FHK, LP2]. Conjecturally, Landau-Ginzburg
models and matrix factorisations (see Section 6) give rise to a defect TFT;
this defect TFT does in general not have a lattice description.

3.2 Bicategory of worldsheet phases

A 2d TFT with defects τ gives rise to a strict bicategory (i. e. a 2-category) with
adjoints [DKR, Sect. 2.4]. Its objects and 1-morphisms are build from the sets D2,
D1 and from the maps s, t : D1 → D2, while the functor τ defines the 2-morphism
spaces, compositions, and the adjunction maps. In detail, this bicategory Dτ is
defined as follows.

Objects: The objects of Dτ are simply given by the set of worldsheet phases D2.

1-morphisms: Let a, b ∈ Dτ . The set of 1-morphisms from a to b consists of
composable sequences of defect conditions,

Dτ (a, b) =
{ (

(x1, ε1), . . . , (xn, εn)
)

composable
∣∣n > 0 , s(xn) = a , t(x1) = b

}
,

(3.5)

as well as formal sums thereof, cf. Remark 3.1. The identity 1-morphism Ia is the
empty sequence (n = 0). Horizontal composition is concatenation of sequences
and will be written as ⊗.

2-morphisms: Let us abbreviate X =
(
(x1, ε1), . . . , (xn, εn)

)
for composable se-

quences. Define the adjoint X† of such a sequence as

X† =
(
(xn,−εn), . . . , (x1,−ε1)

)
. (3.6)

Let Z be cyclically composable. By O(Z) we mean the object of Borddef
2,1 (D2, D1)

which consists of a single S1 with n marked points labelled (z1, ε1), . . . , (zn, εn)
starting in clockwise direction after −1 ∈ S1.
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Given X, Y ∈ Dτ , the space of 2-morphisms is given by

τ(O(Y ⊗X†)) = τ




(y1, ν1)

(y2, ν2)

. . .

(ym−1, νm−1)

(ym, νm)

(x1,−ε1)
(x2,−ε2)

. . .

(xn−1,−εn−1)
(xn,−εn)




, (3.7)

i. e. the state space for an S1 labelled in clockwise direction starting after −1 ∈ S1

by (y1, ν1), . . . , (ym, νm), (xn,−εn), . . . , (x1,−ε1). The identity 2-morphism, and
the horizontal and vertical composition of 2-morphisms are obtained by applying
τ to the (expected) special bordisms given in [DKR, Fig. 6]. Using invariance of τ
under isotopy it is straightforward to verify the properties of a strict bicategory.

Adjunctions: The four adjunction maps evX , ẽvX , coevX , c̃oevX described in
Section 2.1 (where here †X = X†) are given by evaluating τ on the bordisms in
[DKR, Fig. 7]. The Zorro moves hold by isotopy invariance of τ . It is equally
immediate that Dτ is pivotal, in fact strictly pivotal as X†† = X and we choose
δX = 1X . The identities in (2.10) again amount to isotopy invariance.

The above construction is summarised in the following theorem.

Theorem 3.3. A 2d TFT with defects τ : Borddef
2,1(D2, D1) → Vect gives rise to

a strictly pivotal 2-category Dτ with objects and morphism categories as above.

Remark 3.4. An analogous theorem holds for non-topological two-dimensional
field theories [DKR, Sect. 2.4]. In this case one has to restrict one’s attention
to topological defect types and the 2-morphism spaces are formed by families of
translation and scale invariant states.

Let us come back to the (patch of) worldsheet Σ with phases and domain walls
shown in (1.1). This worldsheet also involves points and defect junctions to be
marked by fields. In the functorial formulation, a point marked by a field φ is
described by cutting out a small disc around the point, resulting in an (incoming)
boundary circle O(X) for some sequence X . The field φ is an element of the state
space τ(O(X)) and is inserted in the corresponding tensor factor when evaluating
τ on Σ\ (discs). In the orbifold construction we make plentiful use of such defect
junctions labelled by elements of the corresponding state space.

3.3 Orbifold TFTs

In the introduction we illustrated the procedure of blowing up bubbles filled with
a phase a inside a worldsheet in phase b. The result was a worldsheet filled with
phase a, together with a network of defect lines. Here we will mimic this procedure
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without a priori knowledge of the phase b and the domain wall separating b from a.
We will do so by describing a new 2d TFT in terms of a tuple (a, A, µ,∆) where
a ∈ Dτ , A ∈ Dτ (a, a), and µ : A⊗A→ A and ∆ : A→ A⊗A, subject to certain
conditions. This is the generalised orbifold construction of [FFRS].

By definition the two maps µ and ∆ are elements in τ(O((A,+), (A,−), (A,−)))
and τ(O((A,+), (A,+), (A,−))), respectively. They therefore label three-fold
junctions of the defect A with two incoming and one outgoing line (for µ) or one
incoming and two outgoing lines (for ∆):

µ
A

A A

aa

a

, ∆

A

A A

aa

a

. (3.8)

We require µ and ∆ to satisfy two sets of conditions of type “bubble omission”
and “crossing”:

τ

( )
= τ

( )
, τ

( )
= τ

( )
.

(3.9)
These identities are shorthand for the set of conditions obtained by putting arrows
on the defect lines in all ways which allow the two junctions to be labelled by µ
or ∆. For example, this includes

τ

(
µ

∆

)
= τ

(

µ

∆

)
= τ

(

µ

∆

)
= τ

( )
,

(3.10)

τ

(
∆

µ

)
= τ

(
µ

∆

)
= τ

(

∆

µ

)
. (3.11)

Define the two morphisms η : Ia → A and ε : A→ Ia as

η = τ

( )
= τ

( )
, (3.12)
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ε = τ

( )
= τ

( )
. (3.13)

That τ gives the same answer for both defining bordisms is due to the bubble
omission property. In more detail, in the case of η one first verifies that each choice
is a one-sided unit for µ; e. g. for the first bordism given for η one computes

τ

( )
(3.11)
= τ

( )
(3.10)
= τ

( )
. (3.14)

Analogously, the second bordism for η is verified to be a right unit. The two
one-sided units then have to be identical (and in particular η is a two-sided unit)
since

τ

( )
= τ

( )
= τ

( )
. (3.15)

Along the same lines one checks that the two bordisms defining ε give the same
2-morphism and that ε is a two-sided counit for ∆. The precise relation between
the properties in (3.9) and Frobenius algebras is stated in the next proposition.

Proposition 3.5. Let a ∈ Dτ , A ∈ Dτ (a, a) and µ : A⊗A→ A, ∆ : A→ A⊗A
be given. The following are equivalent:

(i) A, µ, ∆ together with η, ε as in (3.12), (3.13) form a separable symmetric
Frobenius algebra (see Definition 2.1).

(ii) A, µ, ∆ satisfy the conditions in (3.9).

Proof. (i)⇒(ii): The crossing conditions (3.11) are satisfied by (co)associativity
and by the Frobenius property. The bubble omission with all arrows oriented
to the top of the disc diagram amounts to separability. Bubble omission with
arrows in the loop oriented clockwise follows from symmetry and separability:

(2.15)
=

(2.17)
=

(2.9)
=

(2.15)
=

(2.18)
=

(2.16)
= (3.16)

where all equalities hold after application of τ . The argument for anti-clockwise
oriented arrows is analogous.
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(ii)⇒(i): The (co)unit property of η and ε was checked above. (Co)associativity,
the Frobenius property and separability are immediate from crossing and bubble
omission. For symmetry one computes

(3.13)
=

(2.13)
= =

(2.13)
=

(3.13)
=

(3.17)
where again application of τ is implicit, and in the unmarked step we used isotopy
invariance.

We will refer to a tuple (a, A, µ,∆) satisfying either condition in Proposition 3.5
as an orbifolding defect, and we will abbreviate such a tuple by A. Given an
orbifolding defect A ∈ Dτ (a, a), we can construct a nondegenerate closed 2d
TFT without defects, i. e. a functor

τ orbA : Bord2,1 −→ Vect , (3.18)

in two steps. First, we define a possibly degenerate closed 2d TFT τ̂ orbA . For a
general object in Bord2,1 we set

τ̂ orbA (S1 × {1, . . . , n}) = τ(O(A,+) × {1, . . . , n}) . (3.19)

In words, the state space of the (possibly degenerate) orbifolded theory on a
disjoint union of circles is given by evaluating the unorbifolded theory on the
same set of circles, but with a single marked point (A,+) placed on each circle,
say at the point 1. For a morphism M : U → V in Bord2,1 we define

τ̂ orbA (M) = τ(MA-network) . (3.20)

Here MA-network is M together with a network of defect lines, all labelled by A.
The network is such that it only has three-valent junctions, and each junction
has precisely one or two incoming lines so that they can be labelled by either ∆
or µ. Each boundary circle in the image of U under the parametrisation map
(i. e. an incoming boundary circle) is the starting point of precisely one A-defect
line, and each outgoing boundary circle has precisely one A-line ending on it.
The network also has to be fine enough in the sense that the complement of the
network in M consists of connected components homeomorphic to discs.

It is not too hard to convince oneself that the defining properties of an orbifold-
ing defect A given in Proposition 3.5 guarantee that τ̂(MA-network) is independent
of the choice of defect network, so that the assignment (3.20) is well-defined and
that the following result holds true:

Proposition 3.6. Let A ∈ Dτ (a, a) be an orbifolding defect. Then τ̂ orbA :
Bord2,1 → Vect is a (possibly degenerate) closed 2d TFT.
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This completes the first step in the construction of the nondegenerate orbifold
TFT. The second step consists of making τ̂ orbA nondegenerate, for which there is
a simple general procedure. Namely, for each object U ∈ Bord2,1, the cylinder
over U gets mapped to an idempotent

PU = τ̂ orbA (cylinder over U) . (3.21)

Let eU : im(PU) → τ̂ orbA (U) and rU : τ̂ orbA (U) → im(PU) be the embedding of and
the restriction to the image, respectively. It is straightforward to check that

τ orbA (U) = im(PU) , τ orbA (U
M
−→ V ) = rV ◦ τ̂ orbA (U

M
−→ V ) ◦ eU (3.22)

defines a nondegenerate closed 2d TFT.

Remark 3.7. If we think of orbifolding as gauging a discrete symmetry, the
above procedure has a natural interpretation. The orbifolding defect A describes
the “gauge symmetry”, which however no longer has to be given by a group. The
state space τ̂ orbA (S1) is the sum of all untwisted and twisted states on a circle.
The amplitude τ̂ orbA (M) amounts to “averaging over the gauge symmetry” in the
sense that any two disc-shaped regions in the complement of the defect network
in MA-network can only communicate through A-defects, which we can think of as
implementing the averaging. Finally, in passing to the nondegenerate theory one
has restricted the state space to gauge invariant states.

3.4 Domain walls between orbifolded theories

In introducing the orbifolding procedure we have concentrated on defining a
closed 2d TFT without defects as an orbifold of a 2d TFT with defects. However,
one can also easily describe the domain walls between two orbifolded theories in
terms of the orbifolding defects, as we will now explain.

As before, let τ be a 2d TFT with defects. Let a, b be two worldsheet phases
and let A ∈ Dτ (a, a) and B ∈ Dτ (b, b) be orbifolding defects. Then each B-
A-bimodule X ∈ Dτ (a, b) describes a domain wall from the A-orbifold of a to
the B-orbifold of b. More generally, we can define Dorb

2 to be the set of pairs
(a, A) where a ∈ D2 is arbitrary and A ∈ Dτ (a, a) is an orbifolding defect. Dorb

2

describes the theories which can be reached from τ by the orbifolding procedure,
and we will refer to elements of Dorb

2 as orbifold phases.
The set of domain walls Dorb

1 consists of triples
(
(b, B), X, (a, A)

)
where (a, A)

and (b, B) are orbifold phases in Dorb
2 and X ∈ Dτ (a, b) is a B-A-bimodule. The

source map s : Dorb
1 → Dorb

2 produces (a, A) and the target map t returns (b, B).
We can now define a new 2d TFT with defects in terms of τ , the orbifold

completion of τ . Namely, we construct a functor

τ orb : Borddef
2,1(Dorb

2 , Dorb
1 ) −→ Vect (3.23)
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analogously to the purely closed case discussed in the previous section. To an
object U of Borddef

2,1 (Dorb
2 , Dorb

1 ) it assigns the image of an idempotent PU in τ(U).
If U is a single circle decorated with a B-A-bimodule X and an A-B-bimodule Y
we have

PU = τ

(

a

b

B

A

XY )
(3.24)

where circle segments labelled by A and B correspond to idempotents of
type (2.26); if U has a different number of circles and defect decorations PU

is constructed analogously. When writing τ(U) we implicitly use the forgetful
functor Borddef

2,1 (Dorb
2 , Dorb

1 ) → Borddef
2,1(D2, D1) which forgets the orbifolding de-

fects and the bimodule actions in the labelling of objects and morphisms.
Similar to the purely closed case of Section 3.3, for a morphism M : U → V in

Borddef
2,1 (Dorb

2 , Dorb
1 ) we set τ orb(M) = rV ◦τ(Mnetwork)◦eU , where a fine enough Ai-

network is placed inside each phase labelled (ai, Ai), and the Ai-defect lines can
end on a bounding domain wall via a junction labelled by the bimodule action.
Again it is not hard to check that τ(Mnetwork) is independent of the choice of
network and that τ orb(M) defines a nondegenerate 2d TFT with defects.

We summarise this somewhat sketchy discussion as the following result.

Theorem 3.8. Each 2d TFT with defects τ : Borddef
2,1 (D2, D1) → Vect gives rise

to a nondegenerate 2d TFT with defects τ orb : Borddef
2,1(Dorb

2 , Dorb
1 ) → Vect, called

the orbifold completion of τ .

Remark 3.9. As an instance of such an orbifold completion, we note that the
lattice construction of defect TFTs presented in [DKR, Sect. 3] can be under-
stood as an orbifold completion of the trivial closed 2d TFT τtriv. For the trivial
theory we have D2 = {◦} and D1 = ∅, and before including formal sums (recall
Remark 3.1), τtriv maps all objects to C and all morphisms to the identity map.
The inclusion of formal sums means we have in addition the defects (I◦)

⊕n at
our disposal. For example, the state space of a circle with a single marked point
labelled by (I◦)

⊕n is Cn. The orbifolding defects now correspond to symmetric
separable Frobenius algebras over C and the domain walls to bimodules thereof.

4 Equivariant bicategory

Motivated by the discussion of Sections 1 and 3 we now begin our orbifold con-
struction in the framework of bicategories. It turns out that many results such as
a completeness property and the construction of certain equivalences can already
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be obtained without demanding the algebras involved to satisfy all the condi-
tions of orbifolding defects as defined in Section 3.3. This will be explained in
the present section.

4.1 Definition of Beq

Let B be a bicategory whose categories of 1-morphisms are idempotent complete.
Motivated by the discussion of Section 3 we construct a new bicategory out of B:

Definition 4.1. The equivariant completion Beq of B consists of the following
data:

• Objects in Beq are pairs (a, A) with a ∈ B and A ∈ B(a, a) a separable
Frobenius algebra.

• 1-morphisms (a, A) → (b, B) in Beq are X ∈ B(a, b) with the structure of
an B-A-bimodule.

• 2-morphisms in Beq are 2-morphisms in B that are bimodule maps.

• The composition of 1-morphisms X : (a, A) → (b, B) and Y : (b, B) →
(c, C) is the tensor product Y ⊗B X : (a, A) → (c, C) (which exists by the
assumption of idempotent completeness, see Lemma 2.3). The composition
of 2-morphisms in Beq is that of B, and the associator in Beq is the one
induced from B.

• The unit 1-morphism for (a, A) ∈ Beq is A, and its left and right action
on composable 1-morphisms is given by the left and right action on the
corresponding bimodule, respectively.

A first observation about the equivariant completion is that the original bicat-
egory B fully embeds in Beq. Indeed, it is straightforward to see that the left or
right actions of the units in B make Ia into a separable Frobenius algebra for any
a ∈ B. Thus a 7→ (a, Ia) is a full embedding as every 1-morphism a → b in B is
an Ib-Ia-bimodule, and 2-morphisms are bimodule maps.

If we assume that B has adjoints and is pivotal, then another basic property
of Beq is that it also has adjoints and inherits the pivotal structure from B. For
a 1-morphism X : (a, A) → (b, B) the left adjunction maps are given by

evX =

X†X

◦ ξ , coevX = ϑ ◦

X †X

, (4.1)

where ξ : †X ⊗B X → †X ⊗X and ϑ : X ⊗ †X → X ⊗A
†X are the splitting maps,

cf. Lemma 2.3; the case of right adjoints is analogous.
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The term “completion” in the name equivariant completion will be explained in
the next section while the term “equivariant” will be motivated only in Section 7.1
where we will show how the standard theory of equivariant Landau-Ginzburg
models embeds into the general framework developed here.

4.2 (Beq)eq ∼= Beq

We already saw that B fully embeds into Beq. In order for the latter to deserve the
name equivariant completion it should be invariant under the equivariantisation
procedure. Below we shall give a rigorous argument for this fact, but first we
want to illustrate the intuition behind the technical proof (even if this intuition
is rooted in the stronger assumptions of Section 5).

Let us fix a theory T and an orbifolding defect A in it (cf. Section 3.3). The
idea is that correlators in the A-orbifold theory TA are computed from correlators
in T with a fine enough A-defect network.

Now let B be an orbifolding defect in TA (and consequently also in T ). Cor-
relators in (TA)B are correlators in TA with a fine enough B-network, and hence
correlators in T with fine enough A-networks inside all phases of a fine enough
B-network. But since the B-network is already fine enough we can take the
A-network to be trivial, thus arriving at

〈. . .〉(TA)B = 〈. . .〉TB (4.2)

for all correlators. Analogously we find that Beq is already “complete”:

Proposition 4.2. (Beq)eq ∼= Beq.

Proof. We will show that the full embedding Beq → (Beq)eq is essentially sur-
jective, i. e. for every object in (Beq)eq there is a 1-isomorphism to an object in
the image of Beq. The proof boils down to the statement that for an algebra B
one has B ⊗B B ∼= B as B-B-bimodules; the main difficulty is to not get lost in
notation along the way.

Fix an object
(
(a, A),B

)
in (Beq)eq. Then A is a separable Frobenius algebra in

B(a, a), and we will denote its unit and multiplication maps as ηA : Ia → A and
µA : A⊗A → A. B is an A-A-bimodule in B(a, a), together with unit ηB : A→ B

and multiplication µB : B⊗A B → B, both of which are A-A-bimodule maps, and
analogously for coproduct and counit. Write B = (B, ρl, ρr), where B ∈ B(a, a)
is the underlying object of the bimodule, ρl : A⊗ B → B is the left action, and
ρr the right action.

Denote the canonical projection B ⊗ B → B ⊗A B by r. Then µB := µB ◦ r :
B ⊗ B → B and ηB := ηB ◦ ηA : Ia → B turn B into a unital algebra in B(a, a).
Analogously, the coproduct and counit of B turn B into a separable Frobenius
algebra. B is the unit of the category of B-B-bimodules in B(a, a) and we will
write IB when it is used in this function. The embedding of the object (a, B) ∈ Beq
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into (Beq)eq is
(
(a, B), IB

)
. The proposition is proved once we have established

the following claim:
(
(a, A),B

)
and

(
(a, B), IB

)
are isomorphic in (Beq)eq.

We start with a 1-morphism X :
(
(a, B), IB

)
→
(
(a, A),B

)
. This means, first

of all, an underlying 1-morphism X : (a, B) → (a, A), i. e. an A-B-bimodule X
in B(a, a). Secondly, X has to be equipped with a left action χl : B ⊗A X → X
which is also an A-B-bimodule map. The right action χr : B ⊗B IB → B is by
definition the unit isomorphism. Altogether, X = (X,χl, χr). We choose the A-
B-bimodule X to be (B, ρl, µB), i. e. the left action comes from the A-A-bimodule
structure of B and the right action is the multiplication of B. For the map χl we
take the multiplication µB of B.

Analogously, we construct a 1-morphism Y :
(
(a, A),B

)
→
(
(a, B), IB

)
with

underlying object B, but with interchanged left and right actions.
Next we establish that X and Y are inverse to each other. Consider first X⊗IB

Y.
The tensor product over the tensor unit just produces the tensor product in the
underlying category which is B ⊗B B ∼= B. The B on the right-hand side is
equipped with left and right B-action, and is in fact B as a bimodule over itself.
Finally, Y ⊗B X is again equal to B ⊗B B since the coequaliser of the left and
right B-action Y ⊗A B ⊗A X → Y ⊗A X inside A-A-bimodules in B(a, a) is the
same as the coequaliser Y ⊗ B ⊗ X → Y ⊗X of the left and right B-action in
B(a, a).

4.3 Equivalences in Beq and invertible quantum dimensions

From now on we assume that our bicategory B has adjoints. The following
result is a slight generalisation of a known construction of Frobenius algebras, see
e. g. [Müg, Lem. 3.4], which provides a way of explicitly constructing orbifolding
defects.

Theorem 4.3. Let X be a 1-morphism such that †X = X†. Then A = X†⊗X is
a Frobenius algebra. If dimr(X) is invertible, then A is separable. If B is pivotal,
then A is symmetric.

Proof. The algebra and coalgebra structure on A is given by

=

X†X XX†

XX†

, =
X† X

, =

X X†X† X

X†X

, =

X†X

(4.3)
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Checking the defining properties of Frobenius algebras is straightforward; e. g. for
associativity one observes

= = = . (4.4)

For separability, we first compute

=

X† X

X† X

. (4.5)

If X has invertible right quantum dimension, we can make A separable by rescal-
ing the comultiplication by ⋆ := dimr(X)−1 and the counit by dimr(X):

=

X X†

⋆

X† X

X†X

, =

X†X

◦ (1†X ⊗ dimr(X) ⊗ 1X) . (4.6)

Supposing that B is pivotal, symmetry of A is similarly immediate:

=
(2.10)
= = . (4.7)

Theorem 4.4. Let X ∈ B(a, b) satisfy †X = X†, and let dimr(X) be invertible.
Then for A = X† ⊗X we have that X ⊗AX

† ∼= Ib, and that X : (a, A) → (b, Ib),
X† : (b, Ib) → (a, A) are mutually inverse 1-morphisms in Beq.

Proof. In the diagram (2.25) we set Y = X†, ϑ = ẽvX and

l =

X†XX X†

X X†

, r =

X†X X X†

X X†

. (4.8)
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Then for any φ : X ⊗X† → Z with φ ◦ l = φ ◦ r we observe

X†XX X†

φ

Z

=

X†X X X†

φ

Z

=⇒

X X†

φ

Z

=

X†X

φ

Z

. (4.9)

Composing with dimr(X)−1 reveals that

ζ = φ

Z

◦ dimr(X)−1 (4.10)

makes (2.25) commute, thus proving X ⊗A X
† ∼= Ib.

Remark 4.5. Recall that the motivation for Theorems 4.3 and 4.4 lies in the
defect construction discussed in Section 3. These results may be seen as a vari-
ant of the Eilenberg-Moore comparison functor and the monadicity theorem, see
e. g. [Bal, Sect. 2].5

4.4 Nondegenerate pairings

We continue to take B to be a pivotal bicategory. Let us now furthermore assume
that the categories of 1-morphisms B(a, b) are C-linear, and that for all a ∈ B
there is a linear map

〈−〉a : EndB(Ia) −→ C (4.11)

which allows us to define the bulk pairing 〈−,−〉a via 〈φ1, φ2〉a := 〈φ1φ2〉a. More
generally, for any 1-morphisms X, Y : a → b in B we can consider the defect
pairing

〈−,−〉X : Hom(Y,X) × Hom(X, Y ) −→ C , 〈Ψ1,Ψ2〉X =

〈

Ψ2

Ψ1

X

〉

a

.

(4.12)
Note that the bulk pairing 〈−,−〉a is the same as 〈−,−〉Ia.

If for a pair X, Y the defect pairing in B is nondegenerate, then we would like
to know if it induces a nondegenerate pairing in Beq. In general this will only

5We thank Paul Balmer and Alexei Davydov for making us aware of this parallel.
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be the case if the associated object (a, A) ∈ Beq is contained in a certain full
subbicategory Borb of Beq. We will discuss Borb in the next section, while in the
remainder of the present section we explain how close to nondegeneracy one can
get in Beq.

Let us start by recalling that for any Frobenius algebra A there is the Nakayama
automorphism

γA = , γ−1
A = . (4.13)

It measures how far a Frobenius algebra is away from being symmetric in the sense
that A is symmetric iff γA = 1A, see e. g. [FS]. Keeping this in mind we consider
two objects (a, A) and (b, B) and a 1-morphism X : (a, A) → (b, B) in Beq.
Furthermore we fix Frobenius algebra automorphisms α ∈ Aut(A), β ∈ Aut(B)
and define the two operators βP, Pα on End(X) by

βP : Φ 7−→
Φ

β , Pα : Φ 7−→
Φ

α . (4.14)

Similarly to the argument in Lemma 2.2 one verifies that (βP )2 = βP and (Pα)2 =
Pα. Note that the special cases 1BP and P1A are precisely the projectors to left
and right module maps discussed in Section 2.2. Hence we may call elements in
the image of βP ◦ Pα = Pα ◦ βP β-α-twisted B-A-bimodule maps.

The projectors βP , Pα satisfy the following compatibility with defect pairings:

Proposition 4.6. Let B and X : (a, A) → (b, B) be as above and such that

〈

Ψ

X

〉

a

=

〈

Ψ

X

〉

b

(4.15)

for all Ψ : X → X in B. Then we have

〈
βP (Φ1),Φ2

〉
X

=
〈
Φ1, β−1γBP (Φ2)

〉
X
,
〈
Pα(Φ1),Φ2

〉
X

=
〈
Φ1, Pα−1γ−1

A
(Φ2)

〉
X

(4.16)
for all Φ1 : Y → X and Φ2 : X → Y .
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Proof. We compute

β−1γBP (Φ2) =
Φ2β−1

γB
=

Φ2
β−1

=
Φ2

β−1

=
Φ2β

(4.17)

where in the last step we used that β is an automorphism of Frobenius algebras.
On the other hand, employing cyclicity of the trace and pivotality of B we have

〈
Φ1

Φ2
β 〉

a

=

〈
Φ1

Φ2
β

〉

a

. (4.18)

This proves the first identity in (4.16). With the help of (4.15) the second identity
follows analogously, basically by reflecting all diagrams above along the vertical
XYX-line (which requires the assumption (4.15) in the initial step).

We recall that projectors compatible with nondegenerate pairings lead to such
pairings on the image:

Lemma 4.7. Let 〈−,−〉 be a nondegenerate pairing of two vector spaces U, V ,
and let P ∈ End(U), Q ∈ End(V ) be idempotents such that 〈Pu, v〉 = 〈u,Qv〉
for all u ∈ U and v ∈ V . Then the induced pairing of P (U) and Q(V ) is
nondegenerate.

Proof. Let ũ ∈ P (U) be such that 〈ũ, ṽ〉 = 0 for all ṽ ∈ Q(V ). It follows that
0 = 〈ũ, Qv〉 = 〈P ũ, v〉 = 〈ũ, v〉 for all v ∈ V , and hence ũ must be zero.

In our situation this means that if 〈−,−〉X is nondegenerate in B, then also the
subspaces of β-α-twisted and (β−1γB)-(α−1γ−1

A )-twisted B-A-bimodule maps are
perfectly paired. Setting α = 1A, β = 1B we find that 〈−,−〉X is nondegenerate
also in Beq if the Nakayama automorphisms γA, γB are identities. This the case
iff A,B are both symmetric.

5 Orbifold bicategory

In the previous section we saw how far we can take our orbifold construction with-
out asking the defect algebras involved to be symmetric. Symmetry is required
for the orbifold construction of Section 3.3 and as we just saw it implies that
nondegeneracy is preserved. As an application this will later allow us to prove
that all generalised orbifolds of Landau-Ginzburg models give rise to open/closed
TFTs.
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5.1 Definition and properties of Borb

In the following we assume that B is a pivotal bicategory whose categories of
1-morphisms are idempotent complete, so we can consider its equivariant com-
pletion Beq.

Definition 5.1. The orbifold completion Borb of B is the full subbicategory of Beq

whose objects are pairs (a, A) with a ∈ B and A ∈ B(a, a) a symmetric separable
Frobenius algebra. We refer to objects in Borb as (generalised) orbifolds.

The left and right quantum dimensions of the unit 1-morphisms are equal to the
identity 2-morphism in any pivotal bicategory. It follows (e. g. by the argument
in the proof of Proposition 7.1 below) that Ia is symmetric for all a ∈ B. We
thus have

B ⊂ Borb ⊂ Beq . (5.1)

Note that the results of Sections 4.2 and 4.3 also hold for the orbifold comple-
tion: First of all, the same proof as that of Proposition 4.2 shows that

(Borb)orb ∼= Borb . (5.2)

Let X : a→ b in B be a 1-morphism with dimr(X) invertible. Since B is pivotal,
Theorem 4.3 tells us that X† ⊗ X is a symmetric separable Frobenius algebra,
i. e. (a,X†⊗X) lies in Borb. And since Borb is a full subbicategory, by Theorem 4.4
we have

(a,X† ⊗X)
∼=

−→ (b, Ib) (5.3)

in Borb.

Remark 5.2. In Section 3 we discussed the functorial definition of TFTs with
defects. In contrast to the well-known case of open/closed TFT (which will be
reviewed in Section 6.3), a purely algebraic generators-and-relations description
of TFTs with arbitrary defects has not yet been found. At the very least such
a description would involve a pivotal bicategory B. Furthermore B is expected
to be monoidal (with the trivial theory corresponding to the unit object 0, and
boundary conditions to 1-morphisms with source 0), suitably dualisable, and
subject to additional constraints like the Cardy condition.

5.2 Nondegenerate pairings

Let us again assume that B(a, b) is C-linear and that we have bulk correlators
and defect pairings

〈−〉a : EndB(Ia) −→ C , 〈Ψ1,Ψ2〉X =

〈

Ψ2

Ψ1

X

〉

a

. (5.4)
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as in Section 4.4. From the discussion there it follows that under the right
circumstances nondegenerate defect pairings in B induce nondegenerate pairings
in Borb:

Corollary 5.3. Let B be as above and X : (a, A) → (b, B) in Borb and such that

〈

Ψ

X

〉

a

=

〈

Ψ

X

〉

b

(5.5)

for all Ψ : X → X in B. Then if the pairing 〈−,−〉X is nondegenerate in B, it
restricts to a nondegenerate pairing in Borb.

Proof. Since A,B are symmetric, the Nakayama automorphisms γA and γB are
identities. Choosing α = 1A, β = 1B in Proposition 4.6 shows that the conditions
of Lemma 4.7 hold.

6 Landau-Ginzburg models

From now on we focus on the bicategory LG of Landau-Ginzburg models. In this
section we start by recalling its definition and how all of the assumptions for the
general construction of the previous section are satisfied. After an observation
on the relation between central charges and invertible quantum dimensions, we
review how every object in LG gives rise to an open/closed TFT, and we prove
an analogous result for LGorb.

6.1 Bicategory of Landau-Ginzburg models

By a Landau-Ginzburg model in this paper we mean the topological B-twist of
an N = (2, 2) supersymmetric Landau-Ginzburg model with affine target kn,
see [Vaf2, LL], where we can take k = C or k = C[t1, . . . , td].

6 The bulk sector
of such a theory is described by a potential, i. e. a polynomial W in the ring
R = k[x1, . . . , xn] such that the Jacobi ring Jac(W ) = R/(∂x1W, . . . , ∂xn

W ) is a
finitely generated free k-module and the ∂xi

W form a regular sequence in R. In
the case k = C this simply means that dimC Jac(W ) <∞.

We want to define the bicategory LG of Landau-Ginzburg models. From the
above it is natural that its objects are given by potentials W in R = k[x1, . . . , xn]
for all n ∈ N. If we wish to stress which ring W is an element of, we will denote
the associated object in LG as (R,W ). We will often abbreviate k[x1, . . . , xn] as
k[x], and our notation will follow [CM].

Similar to boundary conditions [KL1, BHLS, HL], defects in Landau-Ginzburg
models are described by matrix factorisations [BR1]; these form the 1-morphisms

6Note that as in [CM] all of our results hold for arbitrary commutative noetherianQ-algebras k.
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in LG. Recall that a matrix factorisation of W ∈ R is a Z2-graded free R-
module X = X0⊕X1 together with an odd R-linear endomorphism dX such that
d2X = W · 1X . A morphism between matrix factorisations (X, dX) and (Y, dY ) is
an even R-linear map φ : X → Y that is compatible with the differentials dX , dY ,
i. e. dY φ = φdX . Two morphisms φ, ψ : X → Y are homotopic if there is an odd
R-linear map λ : X → Y such that dY λ+ λdX = ψ − φ.

Matrix factorisations of W ∈ R are the objects in a category HMF(R,W ),
whose arrows are morphisms modulo homotopy relations. The full subcategory
in HMF(R,W ) of matrix factorisations whose underlying R-modules are of finite
rank is denoted hmf(R,W ). Both categories are triangulated, and we write [1]
for their shift functors. For most practical purposes 1- and 2-morphisms in LG
are given by the categories hmf(S ⊗k R, V −W ); the precise definition below is
motivated by the tensor product of matrix factorisations which we discuss next.

Let W ∈ R, V ∈ S, U ∈ T be potentials and consider matrix factorisations
X ∈ hmf(S ⊗k R, V −W ), Y ∈ hmf(T ⊗k S, U − V ). From this we define the
tensor product matrix factorisation Y ⊗X ∈ HMF(T ⊗k R,U −W ) in terms of
its underlying (T ⊗k R)-module

Y ⊗X =
(
(Y 0 ⊗S X

0) ⊕ (Y 1 ⊗S X
1)
)
⊕
(
(Y 0 ⊗S X

1) ⊕ (Y 1 ⊗S X
0)
)

(6.1)

and differential dY⊗X = dY ⊗ 1 + 1 ⊗ dX . Whenever S 6= k this is an infinite-
rank matrix factorisation over T ⊗k R. However, as explained in [DM2, Sect. 12],
Y ⊗X is (naturally isomorphic to) a direct summand of some finite-rank matrix
factorisation in hmf(T ⊗k R,U −W ).

While the homotopy category of finite-rank matrix factorisations is not nec-
essarily idempotent complete (for an example see [KMvB, Ex. A.5]), this is the
case for HMF(R,W ) (being triangulated and having arbitrary coproducts, see
[Nee, Prop. 1.6.8]). So to make sure that our categories are closed with respect to
the tensor product we are lead to consider the idempotent closure hmf(R,W )ω of
hmf(R,W ) in HMF(R,W ). This means that hmf(R,W )ω is the full subcategory
of HMF(R,W ) whose objects are (isomorphic to) direct summands of finite-rank
matrix factorisations in HMF(R,W ). Accordingly we define 1- and 2-morphisms
in LG via

LG
(
(R,W ), (S, V )

)
= hmf(S ⊗k R, V −W )ω , (6.2)

and the composition (2.1) of 1-morphisms is LG is given by the tensor product.
To make LG into an honest bicategory it remains to specify the associator, the

unit 1-morphism, and its left and right actions. The former is the obvious natural
isomorphism αXY Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) which we will leave implicit
in the following. To discuss the unit 1-morphism IW for a potential W ∈ R =
k[x1, . . . , xn], let us write Re = R⊗kR = k[x, x′] and W̃ = W⊗1−1⊗W ∈ Re. We
also fix n formal symbols θi as a basis of (Re)⊕n. Then the Re-module underlying
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IW ∈ hmf(Re, W̃ ) is the exterior algebra

IW =
∧( n⊕

i=1

Reθi

)
(6.3)

on which the differential is given by

dIW =

n∑

i=1

(
(xi − x′i) · θ

∗
i + ∂[i]W · θi ∧ (−)

)
(6.4)

where ∂[i]W = (W (x′1, . . . , x
′
i−1, xi, . . . , xn)−W (x′1, . . . , x

′
i, xi+1, . . . , xn))/(xi−x′i).

We will sometimes simply write I for IW when there is no danger of confusion.
It is straightforward to verify that the endomorphisms of IW in hmf(Re, W̃ ) are
given by the bulk space Jac(W ), see e. g. [KaR].

Finally, the left and right actions of the unit matrix factorisation on X ∈
hmf(S ⊗k R, V −W ) are the natural maps

λX : IV ⊗X −→ X , ρX : X ⊗ IW −→ X (6.5)

which are the composition of first projecting I to its θ-degree zero component
and then using the multiplication in the rings S and R, respectively. While α
is an isomorphism of free modules, λ and ρ are only invertible up to homotopy.
Explicit expressions for these homotopy inverses will not be needed in the present
paper, but they can be found in [CM, Sect. 4].

In summary, we have specified all the data of the bicategory LG of Landau-
Ginzburg models. That the coherence axioms are indeed satisfied was checked in
[McN, CR1].

Now we turn to adjunctions on the level of 1-morphisms in LG. These were
first constructed in [CR2] in the one-variable case and then in a unified way for
all of LG in [CM]; see also [BRS] for earlier work. The evaluation and coeval-
uation maps for any 1-morphism are explicit expressions in terms of associative
Atiyah classes and residues. In an effort to keep the presentation in the present
paper compact and clear, we refrain from writing out the adjunction maps and
explaining their constituents. For our purposes it will be enough to know that
they exist and satisfy the properties we review below. For all further details we
refer to [CM].

Let W ∈ R = k[x1, . . . , xn] and V ∈ S = k[z1, . . . , zm] be potentials. The left
and right adjoints of X ∈ hmf(S ⊗k R, V −W ) are the matrix factorisations

†X = X∨ ⊗S S[m] , X† = R[n] ⊗R X
∨ , (6.6)

both in hmf(R ⊗k S,W − V ). Here X∨ = HomS⊗kR(X,S ⊗k R) is the dual
factorisation with differential given by dX∨(ν) = (−1)|ν|+1ν ◦dX for homogeneous
ν ∈ X∨. Similarly, on the level of 2-morphisms φ : X → Y we have

†φ = φ∨ ⊗S 1S[m] : †Y −→ †X , φ† = 1R[n] ⊗R φ
∨ : Y † −→ X† . (6.7)
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We summarise the results of [CM, Sect. 5.3 & 8] relevant for us, using the dia-
grammatic notation of Section 2.1:

Theorem 6.1. The bicategory LG has adjoints. Furthermore:

(i) For φ : X → Y in hmf(k[x, z], V −W ) we have

φ

†XY

= †φ

†XY

, φ

X†Y

= †φ

X†Y

, †φ

†X

†Y

= φ

†X

†Y

, (6.8)

φ

YX†

= φ†

YX†

, φ

Y †X

= φ†

Y †X

, φ†

X†

Y †

= φ

X†

Y †

. (6.9)

(ii) For Φ : X → X in hmf(k[x, z], V −W ), φ ∈ End(IV ) and ψ ∈ End(IW ) we
have

DΦ
l (X)(φ) := φ Φ

X

= (−1)(
n+1
2 ) Res

[
φ(z) str(Φ ΛX) dz

∂z1V, . . . , ∂zmV

]
, (6.10)

DΦ
r (X)(ψ) := ψΦ

X

= (−1)(
m+1

2 ) Res

[
ψ(z) str(Φ ΛX) dx

∂x1W, . . . , ∂xn
W

]
(6.11)

if m− n ∈ 2Z, where ΛX = ∂x1dX . . . ∂xn
dX ∂z1dX . . . ∂zmdX .

(iii) Write Dh(X) := D1X
h (X) for h ∈ {l, r}. Then we have

Dl(I) = 1 = Dr(I) , Dl(X) = Dr(X
∨) , Dr(X) = Dl(X

∨) , (6.12)

Dl(X) ◦ Dl(Y ) = Dl(Y ⊗X) , Dr(X) ◦ Dr(Y ) = Dr(X ⊗ Y ) (6.13)

for all composable 1-morphisms X, Y in LG.

Note that part (ii) of the above theorem in particular provides us with an
explicitly computable expression for quantum dimensions. For a quick review
on how to compute with residues we refer to [CM, Sect. 2.5] and to Section 7.3
below; general residue theory is developed in [Lip].

It is clear from their definition in (6.6) that for m = n mod 2 the left and
right adjoints of X ∈ hmf(k[x1, . . . , xn, z1, . . . , zm], V −W ) are isomorphic and
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that X ∼= X††. However for m 6= n mod 2 we have †X 6∼= X† and X 6∼= X†† for
most X , such that in general it does not make sense to talk about pivotality or
quantum dimensions in the standard sense in LG. Both of these issues have a
natural resolution (see [CM, Sect. 7 & 8]), but at the price of a more sophisticated
discussion of shifts and their compatibility with the adjunction maps. For exam-
ple, if m 6= n mod 2 then DΦ

l (X) is a map from End(IV ) to Hom(IW , IW [1]), and
since the latter space is zero we have DΦ

l (X) = 0 and similarly DΦ
r (X) = 0. To

keep our presentation simple and uncluttered we only refer to [CM] for a detailed
discussion of these points, but we make the following two remarks.

Firstly, the full subbicategory LG ′ whose objects (R,W ) depend on an even
number of variables is pivotal in the standard sense. Thus all the constructions
of Sections 4 and 5 are directly applicable to LG ′. Secondly, however, we stress
that the restriction on the number of variables to be even can be lifted as the full
LG is “pivotal up to shifts”, compare [CM, Prop. 7.1] with (2.10). Indeed, it is
not necessarily pivotality but rather its implications such as the relations (6.13)
that are relevant for our construction. Since these identities hold in all of LG
there is no need for restrictions.

Recall that by Theorem 4.4 having 1-morphisms X : a → b with invertible
quantum dimension leads to equivalences in the orbifold completion. If the
original bicategory B has a “trivial object” 0 then this implies that the asso-
ciated category of “boundary conditions” B(0, b) is equivalent to modules over
X† ⊗X ∈ B(a, a) in B(0, a). This is in particular the case for Landau-Ginzburg
models:

Proposition 6.2. Let X : (R,W ) → (S, V ) with invertible dimr(X) in LG.
Then m = n mod 2, †X ∼= X† and

hmf(S, V )ω ∼= mod(X† ⊗X) . (6.14)

Proof. If m 6= n mod 2 then the quantum dimensions of X are zero. For m = n
mod 2, by definition †X ∼= X†. By Theorem 4.4 we have that in LGorb

X : (W,X† ⊗X) −→ (V, IV ) (6.15)

is a 1-isomorphism, and hence

hmf(S, V )ω = LG(0, V ) = LGorb

(
(0, I0), (V, IV )

)
∼= LGorb

(
(0, I0), (W,X

† ⊗X)
)

= mod(X† ⊗X) . (6.16)

6.2 Graded matrix factorisations and central charge

In order to make more detailed comparisons with conformal field theory one
should study R-charge in Landau-Ginzburg models. This is encoded in categories
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hmf(R,W )gr of graded matrix factorisations as follows. Let R = k[x1, . . . , xn] be
graded via the assignment of degrees |xi| ∈ Q>0 to the variables xi, and let W ∈ R
be homogeneous of degree 2. Objects of hmf(R,W )gr are matrix factorisations
(X, dX) where in addition X is a graded module and dX is homogeneous of
degree 1, and morphisms are as in hmf(R,W ), but with the additional condition
that they must have degree zero.

Definition 6.3. Let W ∈ k[x1, . . . , xn] be a homogeneous potential as above. Its
central charge is

ĉW =
n∑

i=1

(1 − |xi|) . (6.17)

In the general construction of Section 4 the condition of quantum dimensions
for 1-morphisms being invertible plays a central role, and it is natural to ask
when this condition can be satisfied. In the case of rational CFT it is known
(see [FFRS] and references therein) that any two theories with identical central
charge and identical left and right symmetry algebras are related by the con-
struction of Section 4. Furthermore, the idea of computing correlators in one
theory by inserting “islands” of another theory on the worldsheet, separated by
defect lines X , fundamentally hinges on the topological nature of X as argued in
Section 1, and topological defects exist only between CFTs of the same central
charge. In this sense the next result on defects in Landau-Ginzburg models is
not unexpected:

Proposition 6.4. Let X ∈ hmf(k[z1, . . . , zm, x1, . . . , xn], V −W )gr with m = n
mod 2. X can have invertible quantum dimensions only if ĉW = ĉV .

Proof. By Theorem 6.1(ii) the right quantum dimension of X is the polynomial

dimr(X) = (−1)(
m+1

2 ) Res

[
str(∂x1dX . . . ∂xn

dX ∂z1dX . . . ∂zmdX) dx

∂x1W, . . . , ∂xn
W

]
∈ k[z] .

(6.18)
This is invertible if and only if it is a nonzero constant in k, so we have to
ask when dimr(X) has degree zero. Since |W | = 2 we have |∂xi

W | = 2 − |xi|,

and residue theory [Lip, (1.10.5)] tells us that Res[ (−) dx
∂x1W,...,∂xnW

] is homogeneous of

degree
∑n

i=1(2|xi|−2). Furthermore, |dX | = 1 and ∂xi
dX , ∂zjdX are homogeneous

of degree 1 − |xi|, 1 − |zj |, respectively. It follows that

| dimr(X) | =

n∑

i=1

(2|xi| − 2) +

m∑

j=1

(1 − |zj|) +

n∑

i=1

(1 − |xi|) = ĉV − ĉW (6.19)

which vanishes if and only if ĉW = ĉV . The argument for diml(X) is exactly the
same, thus completing the proof.
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6.3 Open/closed topological field theory

In this section we establish that generalised orbifolds of Landau-Ginzburg models
give rise to open/closed topological field theories (TFTs). We start with a concise
review of the generators-and-relations description of two-dimensional TFT, and
explain how ordinary (non-orbifolded) Landau-Ginzburg models give rise to this
structure.

Recall from [Laz, MS] that one way to present a two-dimensional open/closed
TFT (see also Remark 3.2(i)) is by the data of

• a commutative Frobenius algebra C,

• a Calabi-Yau category O,

• bulk-boundary maps βX : C → EndO(X) and boundary-bulk maps βX :
EndO(X) → C for all X ∈ O.

These data are subject to the following conditions.

• The bulk-boundary maps βX are morphisms of unital algebras that map
into the centre of EndO(X).

• βX and βX are mutually adjoint with respect to the nondegenerate pairings
〈−,−〉 on C and 〈−,−〉X on EndO(X) (which are part of the Frobenius
and Calabi-Yau structure):

〈
βX(φ),Ψ

〉
X

=
〈
φ, βX(Ψ)

〉

for all φ ∈ C and Ψ ∈ EndO(X).

• The Cardy condition is satisfied, i. e. we have

str(ΨmΦ) =
〈
βX(Φ), βY (Ψ)

〉

for all Φ : X → X , Ψ : Y → Y where ΨmΦ(α) = Ψ ◦ α ◦ Φ for all
α ∈ HomO(X, Y ).

Every Landau-Ginzburg potential W ∈ R gives rise to a TFT with closed state
space and open sector category

C = R/(∂W ) , O = hmf(R,W ) . (6.20)

Given two boundary conditions X, Y ∈ hmf(R,W ) the space Hom•(X, Y )
of boundary operators comprises both the even and odd cohomology of the
differential dY ◦ (−) − (−1)|−|(−) ◦ dX , while by definition Hom(X, Y ) :=
Homhmf(R,W )(X, Y ) is only the even part. Nevertheless, thanks to its triangulated
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structure the category hmf(R,W ) is sufficient to describe the full open/closed
TFT since

Hom1(X, Y ) ∼= Hom0(X, Y [1]) . (6.21)

Below we will specify the remaining TFT data. The difficult part in checking
that these data satisfy the TFT axioms is to establish the Cardy condition and
the nondegeneracy of the open sector pairing. This was first done in [PV] and
[Mur], respectively; see also [BF, DM1, DM2, CM].

The bulk pairing for a Landau-Ginzburg model with potential W ∈ R =
k[x1, . . . , xn] is given by [Vaf2]

〈−,−〉W : R/(∂W ) ×R/(∂W ) −→ C ,

〈φ1, φ2〉W = Res

[
φ1φ2 dx

∂x1W, . . . , ∂xn
W

]
, (6.22)

and we will also write 〈φ〉W = 〈φ, 1〉W . The boundary pairings for X, Y ∈
hmf(R,W ) are [KL2, HL]

〈−,−〉X : Hom(X, Y ) × Hom(Y,X)[n] −→ C ,

〈Ψ1,Ψ2〉X = Res

[
str(Ψ1Ψ2 ∂x1dX . . . ∂xn

dX) dx

∂x1W, . . . , ∂xn
W

]
. (6.23)

Furthermore, the bulk-boundary and boundary-bulk maps are [KaR] (with ΛX =
∂x1dX . . . ∂xn

dX)

βX(φ) =

X

φ

IW

= φ · 1X , βX(Ψ) = Ψ

X

= (−1)(
n+1
2 ) str(Ψ ΛX) .

(6.24)
We will now show that we can also associate an open/closed TFT to every

object (W,A) in the generalised orbifold category LGorb. The natural choices for
the bulk space and the boundary category are

Corb = EndAA(A) , Oorb = LGorb

(
0, (W,A)

)
(6.25)

which of course reduce to the unorbifolded case (6.20) in the special case A = IW .
Next we specify the bulk and boundary pairings in LGorb. The latter are simply
given by (6.23) when restricted to A-modules X and A-module maps Ψ1,Ψ2,
while the orbifold bulk pairing is

〈φ1, φ2〉(W,A) =

〈

φ2

φ1

〉

W

. (6.26)
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This makes Corb into a Frobenius algebra; commutativity follows from the bi-
module map property. Finally, the bulk-boundary and boundary-bulk maps in
LGorb are

βorb
X (φ) =

X

X

φ , βX
orb(Ψ) =

Ψ
X

. (6.27)

Theorem 6.5. Every (W,A) ∈ LGorb gives rise to an open/closed TFT via the
above data.

Proof. We need to check the nondegeneracy of the bulk and boundary pairings,
the adjunction between βorb

X and βX
orb, and the Cardy condition; the other axioms

are clear.
That the boundary pairings are nondegenerate in the orbifold completion

would be the special case of Corollary 5.3 where the defect X is of the form
(k, 0) → (R,W ), but only if LGorb was pivotal in the standard sense. This is
not the case, but inspection of the proof shows that it is enough to assume in-
stead of pivotality that the identities (6.13) continue to hold when an arbitrary
2-morphism is inserted on the tensor product. This is the case as follows directly
from the proof of [CM, Prop. 8.5(iii)].

To show that the bulk pairings (6.26) are nondegenerate we use Corollary 5.3.
Its assumptions are satisfied since it follows from Theorem 6.1(ii) (see also [CM,
Cor. 8.3]) that

〈

φ2

φ1

〉

W

=

〈
φ1

φ2

〉

W

, (6.28)

and furthermore
〈

φ2

φ1

〉

W

= (−1)(
n+1
2 ) Res

[
str(φ1φ2 ∂x1dA . . . ∂xn

dA ∂x′
1
dA . . . ∂x′

n
dA) dxdx′

∂x1W, . . . , ∂xn
W, ∂x′

1
W, . . . , ∂x′

n
W

]

(6.29)
is nondegenerate as a pairing of φ1 and φ2, because up to a sign it is the boundary
pairing for A viewed as a matrix factorisation of W̃ .

Next we wish to show that the maps βorb
X , βX

orb in (6.27) are adjoint in the sense
〈
φ, βX

orb(Ψ)
〉
(W,A)

=
〈
βorb
X (φ),Ψ

〉
X
. (6.30)

By definition the left-hand side equals

〈

Ψ
X

φ

〉

W

, (6.31)
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part of which we compute as follows:

φ

(1)
=

φ

(2)
=

φ

(3)
=

φ

(4)
= φ

(5)
= φ .

(6.32)
Here we used (1) that A is symmetric Frobenius, (2) Zorro moves, (3) the Frobe-
nius property of A, (4) that φ is a bimodule map, and (5) that A is a separable
Frobenius algebra. Thus the left-hand side of (6.30) is

〈

Ψ
X

φ

〉

W

=
〈
1, βX(βorb

X (φ) · Ψ)
〉
W

=
〈
βorb
X (φ),Ψ

〉
X

(6.33)

where we used that βX is adjoint to βX in LG and βX(1) = 1X .
Finally we want to prove the Cardy condition in LGorb. Thus we compute

〈
βX
orb(Φ), βY

orb(Ψ)
〉
(W,A)

=

〈
Φ

X

Ψ
Y

〉

W

=

〈

Φ
XΨ

Y

〉

W

=

Φ

X

Ψ

Y

=

Φ

X

Ψ

Y

= Φ∨

X

Ψ

Y

(6.34)

where we used Theorem 6.1(ii) together with (6.22) in the third step and
Theorem 6.1(i) in the last. Note that after applying the orientation reversal
identity (5.5) we could drop the brackets for the last three expressions since
X : 0 →W and 〈−〉0 = (−). Now we observe that

π =

X† Y

(6.35)
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is the projector πX†,Y
A to X† ⊗A Y , see (2.26). Thus we have maps ξ : X† ⊗A

Y → X† ⊗ Y and ϑ : X† ⊗ Y → X† ⊗A Y such that ξϑ = π, ϑξ = 1 and
α⊗A β := ϑ ◦ (α⊗ β) ◦ ξ, with which we compute

Φ∨

X

Ψ

Y

=
Φ∨ ⊗Ψ

π
YX = Φ∨ ⊗A Ψ

X∨ ⊗A Y

(6.36)

which equals str(ΨmΦ), where in the last step we used π = ξϑ, the morphism
migration properties of Theorem 6.1(i), and Ψ∨ ⊗A Φ = ξ ◦ (Ψ∨ ⊗ Φ) ◦ ϑ.

7 Examples of Landau-Ginzburg orbifolds

In this section we give several concrete examples of (generalised) orbifolds. We
start with an explanation of how conventional orbifolds of Landau-Ginzburg mod-
els fit into our formalism. Then we go on to show that the phenomenon of Knörrer
periodicity can be viewed as a generalised orbifold equivalence. Finally we ex-
plicitly construct the generalised orbifold between A- and D-type singularities,
and comment on further applications.

7.1 Equivariant matrix factorisations

To speak of generalised orbifolds in a meaningful way, our first example should
be to explain how conventional orbifolds of Landau-Ginzburg models and matrix
factorisations can be recovered from the constructions of Sections 4–6. We will do
so in this section, by recalling the standard notion of G-equivariant matrix fac-
torisations and subsequently showing how it embeds into the generalised orbifold
formalism.

Let W ∈ R = k[x1, . . . , xn] be a potential and let G be a symmetry group
of W , i. e. a finite subgroup of those R-automorphisms that leave W invariant.
From the symmetry group G we construct the category of G-equivariant matrix
factorisations hmf(R,W )G as follows [ADD]. Denote by g(−) the functor that
sends an R-module X to the R-module which as a set equals X , but whose R-
action is twisted by g ∈ Aut(R), i. e. (r,m) 7→ g(r).m for all r ∈ R, m ∈ X .
Objects in hmf(R,W )G are objects (X, dX) in hmf(R,W ) together with a set of
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isomorphisms {ϕg : gX → X}g∈G such that ϕe = 1X and the diagram

ghX gX X
g(ϕh) ϕg

ϕgh

(7.1)

commutes. Morphisms in hmf(R,W )G are morphisms Ψ : X → Y in hmf(R,W )
that make the following diagram commute:

X Y

gX gY

Ψ

gΨ

ϕ
(X)
g ϕ

(Y )
g

(7.2)

We now claim that hmf(R,W )G is equivalent to the category of modules over

a particular algebra object in hmf(Re, W̃ ). Its underlying matrix factorisation is
given by

AG =
⊕

g∈G

gI (7.3)

where gI is the identity defect twisted by the group element g as explained above.
To make AG into an algebra, we specify the multiplication

µ =
∑

g,h∈G

µg,h : AG ⊗ AG −→ AG , µg,h = g(λhI) : gI ⊗ hI −→ ghI (7.4)

in terms of the unit isomorphism λ
hI : I ⊗ hI −→ hI, together with the obvious

unit I →֒ AG. Furthermore, AG is a coalgebra with comultiplication

∆ =
1

|G|

∑

g,h∈G

∆g,h : AG −→ AG ⊗ AG , ∆g,h = g(λ
−1
hI

) : ghI −→ gI ⊗ hI , (7.5)

and obvious counit AG ։ I.

Proposition 7.1. (i) AG is a separable Frobenius algebra, hence (W,AG) ∈
LGeq.

(ii) If dim(gI) = 1 for all g ∈ G, then AG is also symmetric, and (W,AG) ∈
LGorb.
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Proof. We first check that AG is an algebra. It is clear that it is unital, and the
associativity of the product µ amounts to the commutativity of the diagram

gI ⊗ hI ⊗ kI g(I ⊗ hkI)

ghI ⊗ kI ghkI .

g(1I ⊗ h(λkI))

g
(λ

h
I
)
⊗

1
k
I

=
g
(λ

h
I
⊗

k
I
)

g
(λ

h
k
I
)

g(h(λkI))

(7.6)

But this is g(−) applied to

I ⊗ hI ⊗ kI I ⊗ hkI

hI ⊗ kI hkI

1I ⊗ h(λkI)

λ
h
I
⊗

1
k
I

=
λ
h
I
⊗

k
I

λ
h
k
I

h(λkI)

(7.7)

which commutes by naturality of λ. Similarly, it follows that AG is a coalgebra
by reversing all arrows above.

The fact that AG is separable is manifest in the definition of its (co)algebra
structure,

=
1

|G|

∑

g,h∈G

g(λ
g−1hI

) ◦ g(λ
−1

g−1hI
) =

1

|G|

∑

g,h∈G

1
hI = 1AG

. (7.8)

For the Frobenius property we observe that

gI hkI

kIghI

=

gI hkI

kIghI

(7.9)
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is equivalent to the commutativity of

ghI ⊗ kI gI ⊗ hI ⊗ kI

g(hI ⊗ kI) g(I ⊗ hI ⊗ kI)

g(hkI) g(I ⊗ hkI)

ghkI gI ⊗ hkI

g(λ
−1

hI
) ⊗ kI

g
h
(λ

k
I
)

1
g
I
⊗

h
(λ

k
I
)

g
(
h
(λ

k
I
))

g(λ
−1

hkI
)

g(λhI⊗kI)

g
(1

I
⊗

h
(λ

k
I
))

g(λhkI )

(7.10)
which again holds since λ is natural. Similarly one proves the other Frobenius
property

ghI

hkI

kI

gI

=

ghI kI

hkIgI

. (7.11)

Finally we have to show that AG is symmetric if dim(gI) = 1 for all g ∈ G. As
follows from the definition, AG is symmetric if the two maps

L =

(gI)
†

g−1I

, R =

(gI)
†

g−1I

(7.12)

are identical for all g ∈ G. Since ∆g,g−1 and ẽv
gI are isomorphisms, the identity

L = R is equivalent to ẽv
gI ◦ (1

gI ⊗L) ◦∆g,g−1 = ẽv
gI ◦ (1

gI ⊗R) ◦ ∆g,g−1. Using
the Frobenius property we find that the left-hand side of the latter identity is
dimr(gI), while a Zorro move together with separability reveal that the right-hand
side is unity.
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We are now ready to recover equivariant matrix factorisations as the category
mod(AG) = LGeq((0, I), (W,AG)) in our framework of equivariant completion.
This justifies our choice of nomenclature in Section 4.

Theorem 7.2. hmf(R,W )G ∼= mod(AG).

Proof. Let X ∈ hmf(R,W )G with isomorphisms {ϕg : gX → X}g∈G. We define

ρ =
∑

g∈G

(
AG ⊗X gI ⊗X gX X

)
g(λX ) ϕg , (7.13)

that is, ρ =
⊕

g∈G ρg with ρg = ϕg ◦ g(λX). The map ρ satisfies ρ ◦ (µ ⊗ 1X) =
ρ ◦ (1AG

⊗ ρ) and thus is a left action of AG on X . This follows from the commu-
tativity of the diagram

gI ⊗ hI ⊗X gI ⊗X

gI ⊗ hX

gX

ghX

ghI ⊗X X

1
gI ⊗ ρh

1
g I ⊗

h(λ
X )=

g (1I ⊗
h(λ

X ))

µ
g
,h

⊗
1
X

g
(λ

h
I
⊗

1
X
)

1g
I
⊗ ϕh

= g(1I
⊗ ϕh

)

g
(λ

h
I
)i

g
(λ
X
)

ρ
g

ϕ
g

g
(ϕh

)

ϕ
ghg(h

(λX
))

ρgh

(7.14)
where each subdiagram commutes either by construction or by naturality of λ
and the coherence theorem. Furthermore, ρe = ϕe ◦ e(λX) = λX , so that the con-
ditions (2.18) are satisfied and the equivariant matrix factorisation X is endowed
with an AG-module structure. Conversely an object in mod(AG) is made into
one in hmf(R,W )G by inverting the above argument.

So far we have constructed two mutually inverse functors hmf(R,W )G ↔
mod(AG) on objects, and it remains to check that they are well-defined on mor-
phisms. Thus we have to show that one of the two diagrams

X Y

gX gY

Ψ

gΨ

ϕ
(X)
g ϕ

(Y )
g

,

AG ⊗X AG ⊗ Y

X Y

1⊗Ψ

Ψ

ρ(X) ρ(Y ) (7.15)
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commutes if and only if the other does. This follows from the naturality of λ, by
which the middle square of the diagram

gI ⊗X gI ⊗ Y

g(I ⊗X) g(I ⊗ Y )

gX gY

X Y

1
gI ⊗Ψ

g(1I ⊗Ψ)

g(λX) g(λY )

gΨ

ϕ
(X)
g ϕ

(Y )
g

Ψ

(7.16)

commutes.

Remark 7.3. Similarly, the category hmf(Re, W̃ )G ofG-equivariant defects stud-
ied in [BR2] is obtained as bimod(AG), and the bulk fields of [Vaf1, IV] are de-
scribed as EndAGAG

(AG). Hence the complete conventional equivariant theory of
Landau-Ginzburg models embeds into LGeq.

Whenever (W,AG) is an object in the orbifold completion LGorb the general
theory of the previous sections applies. This is the case when AG is symmetric
which by Proposition 7.1 is equivalent to the condition that dim gI = 1 for all gI.
As an immediate consequence this proves that for symmetric AG, hmf(R,W )G is
a Calabi-Yau category.

Theorem 7.4. Let W be a homogeneous potential in a graded ring R, and
let G be a symmetry group of W such that dim(gI) = 1 for all g ∈ G. Then
(W,AG) gives an open/closed TFT. In particular, the Cardy condition holds for
equivariant matrix factorisations, and the Kapustin-Li pairing

〈Ψ1,Ψ2〉X = Res

[
str(Ψ1Ψ2 ∂x1dX . . . ∂xn

dX) dx

∂x1W, . . . , ∂xn
W

]
(7.17)

is nondegenerate when restricted to G-equivariant morphisms Ψ1 : Y → X [n],
Ψ2 : X → Y in hmf(R,W )G.

Proof. This follows directly from Theorem 6.5 and Proposition 7.1.

Remark 7.5. (i) It is not true that the Kapustin-Li pairing always induces
nondegenerate pairings on hmf(R,W )G. A counterexample is W = xd

with the action of the symmetry group G = Zd generated by x 7→ e2πi/dx.
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Then the only equivariant endomorphisms of the matrix factorisation (X =
C[x]⊕2, dX = ( 0 xn

xd−n 0
)) with ϕg = ( 1 0

0 gn ) : gX → X are proportional
to the identity, but 〈1X , 1X〉X = 0. This is consistent with the fact that
from Theorem 6.1(ii) (or [CR2, (3.25–26)]) one finds diml(gI) = g and
dimr(gI) = g−1 ( 6= 1 for g 6= 1), where we identify the C[x]-automorphism g
with the root of unity that it multiplies x with.

(ii) On the other hand, we note that the condition dim(gI) = 1 is naturally sat-
isfied for a large class of models. In particular this is the case in the CY/LG
correspondence of [Orl, HHP], which states that for a quasi-homogeneous
potential W ∈ R = k[x1, . . . , xn] of degree d the bounded derived category
of coherent sheaves on the hypersurface X = {W = 0} in weighted pro-
jective space is equivalent to (hmf(R,W )gr)G if X is a Calabi-Yau variety.
Here G = Zd acts diagonally as xi 7→ e2πi|xi|/dxi, and the Calabi-Yau con-
dition on X is

∑n
i=1 |xi| = d. This condition implies dim(gI) = 1 for all

g ∈ G; in the Fermat case this follows directly from part (i) and the fact
that quantum dimensions are multiplicative, while the general case can be
reduced to dim(I) = 1 (after a variable rescaling in (6.11) and application
of the Calabi-Yau condition).

7.2 Knörrer periodicity

Next we turn to the classical result [Knö] that for an algebraically closed field k
and a potentialW ∈ k[x] = k[x1, . . . , xn], there is an equivalence hmf(k[x],W )ω ∼=
hmf(k[x, u, v],W+u2−v2)ω, or put differently (k[x],W ) ∼= (k[x, u, v],W+u2−v2)
in LG. To understand this from the perspective of our construction in Section 4,
consider the Koszul matrix factorisation K = k[u, v]⊕2 with differential dK =
( 0 u−v
u+v 0 ) and define

X = IW ⊗k K ∈ LG(W,W + u2 − v2) . (7.18)

It follows from Theorem 6.1 that diml(X) = 2 · (−1)(
n
2) and dimr(X) = 2,

in particular both quantum dimensions are invertible. Thus by Proposition 6.2
we know that hmf(k[x, u, v],W + u2 − v2)ω ∼= mod(A) where A = X† ⊗ X , and
it remains to show that A ∼= IW since hmf(k[x],W )ω = mod(IW ). For this we
observe

K∨ ⊗k[u,v] K ∼= (K∨ ⊗k[u] K) ⊗k[v]e k[v] ∼= I∨−v2 ⊗k[v]e k[v] ∼= I0 , (7.19)

where the second equivalence follows since K is the identity matrix factorisation
for u2 and the last equivalence follows by noting that the left-hand side arises as
a resolution of k. Thus X† ⊗X ∼= IW , and we recover Knörrer periodicity from
the defect X in our setting.
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7.3 Orbifold equivalences between minimal models

Simple singularities have an ADE classification. For an even number of variables,
the associated polynomials are

W (Ad−1) = ud − v2 , W (Dd+1) = xd − xy2 , (7.20)

W (E6) = x3 + y4 , W (E7) = x3 + xy3 , W (E8) = x3 + y5 . (7.21)

Landau-Ginzburg models with these potentials are believed to correspond to
N = 2 minimal conformal field theories [Mar, VW, HW, KL3, BG, KeR, CR1].
These rational conformal field theories are known to be (generalised) orbifolds
of each other [Gra, FFRS]. Inspired by this fact in this section we will obtain
similar results for matrix factorisations.

Let us consider the matrix factorisation X = k[u, v, x, y]⊕4 with differential

dX =

(
0 xd−u2d

x−u2 − y2

x− u2 0

)
⊗k

(
0 v + uy

v − uy 0

)
(7.22)

which we view as a 1-morphism in LG(W (A2d−1),W (Dd+1)), i. e. a defect between
minimal models of type A and D. Put differently, X is the stabilisation of the
module k[u, v, x, y]/(x − u2, v − uy). We claim that this defect implements an
orbifold equivalence between the two theories. Invoking Theorem 4.4, all we have
to do to prove this is to check that X has invertible (right) quantum dimension.

By Theorem 6.1 the left and right quantum dimensions are given by

diml(X) = −Res

[
str
(
∂udX∂vdX∂xdX∂ydX

)
dx dy

∂xW (Dd+1), ∂yW (Dd+1)

]
, (7.23)

dimr(X) = −Res

[
str
(
∂udX∂vdX∂xdX∂ydX

)
du dv

∂uW (A2d−1), ∂vW (A2d−1)

]
. (7.24)

A direct computation yields

str
(
∂udX∂vdX∂xdX∂ydX

)
= 4y2 +

d−2∑

i=0

4du2i+2xd−2−i , (7.25)

and with ∂uW
(A2d−1) = 2du2d−1, ∂vW

(A2d−1) = −2v we find that dimr(X) = 1,
which is invertible. As an exercise we also compute the left quantum dimension,
for which we use the transformation formula

Res

[
φ dx

f1, . . . , fn

]
= Res

[
det(C)φ dx

g1, . . . , gn

]
if gi =

n∑

j=1

Cijfj (7.26)
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to convert the residue in (7.23) to one with only monomials in the denominator.
Indeed, if we set C = (

2x −y

2y dxd−2 ) and f1 = ∂xW
(Dd+1), f2 = ∂yW

(Dd+1), then

g1 =

2∑

j=1

C1jfj = 2dxd , g2 =

2∑

j=1

C2jfj = −2y3 , (7.27)

from which we find that diml(X) = −2. Thus both quantum dimensions of X
are invertible, but already from the invertibility of dimr(X) we conclude:

Theorem 7.6. With Ad := X†⊗X we have (W (Dd+1), I
W (Dd+1)) ∼= (W (A2d−1), Ad)

in LGorb. In particular,

hmf(k[x, y],W (Dd+1))ω ∼= mod(Ad) , (7.28)

Jac(W (Dd+1)) ∼= EndAdAd
(Ad) . (7.29)

Proof. This follows from Theorem 4.4 and Proposition 6.2.

We have computed that

Ad
∼= I

W (A2d−1) ⊕ Jd with Jd ⊗ Jd ∼= I
W (A2d−1) (7.30)

where Jd = P{d}[1] ⊗ ( 0 −v
v 0 ) in the notation of [BR1, (6.2)] for d ∈ {2, 3, . . . , 10},

and we believe both relations to hold in general. This would be in accordance with
the situation in CFT, making the equivalence (W (Dd+1), I

W (Dd+1)) ∼= (W (A2d−1), Ad)
into a Z2-orbifold. Also note that checking the equivalences (7.28), (7.29) directly
would be a rather painful enterprise. By our general construction in Section 4
all we had to do is produce a matrix factorisation X of W (Dd+1) −W (A2d−1) with
invertible quantum dimension, a condition that is easily checked thanks to the
explicit residue expressions.7

It would be very useful to have a constructive method of producing 1-
morphisms X in LG with invertible quantum dimension between any given pair
of potentials V,W whenever they exist. More ambitiously one could even aim for
a classification of such matrix factorisations. For many potentials there will be
obstructions to the existence of such X (as for example the condition on central
charges in Proposition 6.4), but any matrix factorisation with invertible quantum
dimension could potentially give rise to previously unknown equivalences between
triangulated categories.

From the above result and from the analogous situation in rational CFT, we
conjecture that that there are also 1-morphisms with invertible quantum dimen-
sion between minimal models of type A and E which produce the following equiv-
alences:

hmf(k[x, y],W (E6))ω ∼= mod(A6) , (7.31)

7Results similar to (7.28), with the appearance of skew group algebras instead of orbifolds,
are [RR, § 2.1] and [Dem, Thm. 1], the relation to matrix factorisation being due to [KST,
Thm. 3.1]. We thank Bernhard Keller and Daniel Murfet for pointing this out.
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hmf(k[x, y],W (E7))ω ∼= mod(A9) , (7.32)

hmf(k[x, y],W (E8))ω ∼= mod(A15) , (7.33)

both in the Z2- and in the Z-graded situation, where the Ad-modules are taken
in hmf(k[u, v],W (A2d−1)). While naive attempts at constructing matrix factori-
sations with invertible quantum dimension of say W (E6) −W (A11) have failed so
far, we are confident that a more systematic approach will successfully establish
the above equivalences. By the central charge condition (Proposition 6.4), in the
Z-graded case the equivalences (7.31)–(7.33) between A- and E-models (and the
corresponding D-models) together with those between A- and D- models treated
in Theorem 7.6 would exhaust all generalised orbifold equivalences X between
minimal models. We also note that for such X Proposition 6.2 says that the mod-
ule categories mod(X† ⊗ X) are always of finite type, because minimal models
are.

Looking further ahead we stress that there is no reason to believe that inter-
esting equivalences are confined to simple minimal models. To the contrary, our
construction applies to all Landau-Ginzburg models, including (but not limited
to) those that are related to Calabi-Yau hypersurfaces as in [Orl, HHP].

References

[Abr] L. S. Abrams, Two-dimensional topological quantum field theories and
Frobenius algebras, J. Knot Theor. Ramifications 5 (1996), 569–587.

[AN] A. Alexeevski and S. Natanzon, Non-commutative extensions of
two-dimensional topological field theories and Hurwitz numbers
for real algebraic curves, Selecta Mathematica 12 (2007), 307–377,
[math.GT/0202164].

[ADD] S. K. Ashok, E. Dell’Aquila, and D.-E. Diaconescu,
Fractional Branes in Landau-Ginzburg Orbifolds,
Adv. Theor. Math. Phys. 8 (2004), 461–513, [hep-th/0401135].

[BP] C. Bachas and M. Petropoulos, Topological Models on
the Lattice and a Remark on String Theory Cloning,
Commun. Math. Phys. 152 (1993), 191–202, [hep-th/9205031].

[BFK] M. Ballard, D. Favero and L. Katzarkov, A category of kernels for
graded matrix factorizations and its implications for Hodge theory,
[arXiv:1105.3177].

[Bal] P. Balmer, Stacks of group represenations, draft available at
http://www.math.ucla.edu/˜balmer/research/Pubfile/G-stacks.pdf

51

http://dx.doi.org/10.1142/S0218216596000333
http://dx.doi.org/10.1007/s00029-006-0028-y
http://www.arxiv.org/abs/math/0202164
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.atmp/1098389089
http://www.arxiv.org/abs/hep-th/0401135
http://dx.doi.org/10.1007/BF02097063
http://www.arxiv.org/abs/hep-th/9205031
http://arxiv.org/abs/1105.3177
http://www.math.ucla.edu/~balmer/research/Pubfile/G-stacks.pdf


[Bor] F. Borceux, Handbook of categorical algebra 1, volume 50 of Encyclope-
dia of Mathematics and its Applications, Cambridge University Press,
Cambridge, 1994.

[BG] I. Brunner and M. R. Gaberdiel, The matrix factorisations of the D-
model, J. Phys. A 38 (2005), 7901–7920, [hep-th/0506208].

[BHLS] I. Brunner, M. Herbst, W. Lerche, and B. Scheuner, Landau-
Ginzburg Realization of Open String TFT, JHEP 0611 (2003), 043,
[hep-th/0305133].

[BR1] I. Brunner and D. Roggenkamp, B-type defects in Landau-Ginzburg
models, JHEP 0708 (2007), 093, [arXiv:0707.0922].

[BR2] I. Brunner and D. Roggenkamp, Defects and Bulk Perturbations
of Boundary Landau-Ginzburg Orbifolds, JHEP 0804 (2008), 001,
[arXiv:0712.0188].

[BRS] I. Brunner, D. Roggenkamp and S. Rossi Defect Perturbations in
Landau-Ginzburg Models, JHEP 1003 (2010), 015, [arXiv:0909.0696].

[BF] R.-O. Buchweitz and H. Flenner, The global decomposition theorem
for Hochschild (co-)homology of singular spaces via the Atiyah-Chern
character, Adv. Math. 217 (2008), no. 1, 243–281, [math/0606730].
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