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Abstract

Based on a weak action of a finite group J on a finite group G, we present a geometric
construction of J-equivariant Dijkgraaf-Witten theory as an extended topological field
theory. The construction yields an explicitly accessible class of equivariant modular tensor
categories. For the action of a group J on a group G, the category is described as the
representation category of a J-ribbon algebra that generalizes the Drinfel’d double of the
finite group G.
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1 Introduction

This paper has two seemingly different motivations and, correspondingly, can be read from two
different points of view, a more algebraic and a more geometric one. Both in the introduction
and the main body of the paper, we try to separate these two points of view as much as possible,
in the hope to keep the paper accessible for readers with specific interests.

1.1 Algebraic motivation: equivariant modular categories

Among tensor categories, modular tensor categories are of particular interest for representation
theory and mathematical physics. The representation categories of several algebraic structures
give examples of semisimple modular tensor categories:

1. Left modules over connected factorizable ribbon weak Hopf algebras with Haar integral
over an algebraically closed field [NTV03].

2. Local sectors of a finite µ-index net of von Neumann algebras on R, if the net is strongly
additive and split [KLM01].

3. Representations of selfdual C2-cofinite vertex algebras with an additional finiteness con-
dition on the homogeneous components and which have semisimple representation cate-
gories [Hua05].

Despite this list and the rather different fields in which modular tensor categories arise, it is fair
to say that modular tensor categories are rare mathematical objects. Arguably, the simplest
incarnation of the first algebraic structure in the list is the Drinfel’d double D(G) of a finite
group G. Bantay [Ban05] has suggested a more general source for modular tensor categories:
a pair, consisting of a finite group H and a normal subgroup G / H. (In fact, Bantay has
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suggested general finite crossed modules, but for this paper, only the case of a normal subgroup
is relevant.) In this situation, Bantay constructs a ribbon category which is, in a natural way, a
representation category of a ribbon Hopf algebra B(G/H). Unfortunately, it turns out that, for
a proper subgroup inclusion, the category B(G/H)-mod is only premodular and not modular.
Still, the category B(G / H)-mod is modularizable in the sense of Bruguières [Bru00], and
the next candidate for new modular tensor categories is the modularization of B(G / H)-mod.
However, it has been shown [MS10] that this modularization is equivalent to the representation
category of the Drinfel’d double D(G).
The modularization procedure of Bruguières is based on the observation that the violation of
modularity of a modularizable tensor category C is captured in terms of a canonical Tannakian
subcategory of C. For the category B(G / H)-mod, this subcategory can be realized as the
representation category of the the quotient group J := H/G [MS10]. The modularization
functor

B(G / H)-mod→ D(G)-mod

is induction along the commutative Frobenius algebra given by the regular representation of
J . This has the important consequence that the modularized category D(G) is endowed with
a J-action.
Experience with orbifold constructions, see [Kir04, Tur10] for a categorical formulation, raises
the question of whether the category D(G)-mod with this J-action can be seen in a natural
way as the neutral sector of a J-modular tensor category.
We thus want to complete the following square of tensor categories

D(G)-mod

orbifold
��

J

		
� � // ???

J

��

orbifold

��
B(G / H)-mod

modularization

OO

� � // ???

OO (1.1)

Here vertical arrows pointing upwards stand for induction functors along the commutative
algebra given by the regular representation of J , while downwards pointing arrows indicate
orbifoldization. In the upper right corner, we wish to place a J-modular category, and in the
lower right corner its J-orbifold which, on general grounds [Kir04], has to be a modular tensor
category. Horizontal arrows indicate the inclusion of neutral sectors.
In general, such a completion need not exist. Even if it exists, there might be inequivalent
choices of J-modular tensor categories of which a given modular tensor category with J-action
is the neutral sector [ENO10].

1.2 Geometric motivation: equivariant extended TFT

Topological field theory is a mathematical structure that has been inspired by physical theories
[Wit89] and which has developed into an important tool in low-dimensional topology. Recently,
these theories have received increased attention due to the advent of extended topological field
theories [Lur09, SP09]. The present paper focuses on three-dimensional topological field theory.
Dijkgraaf-Witten theories provide a class of extended topological field theories. They can be
seen as discrete variants of Chern-Simons theories, which provide invariants of three-manifolds
and play an important role in knot theory [Wit89]. Dijkgraaf-Witten theories have the advan-
tage of being particularly tractable and admitting a very conceptual geometric construction.
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A Dijkgraaf-Witten theory is based on a finite group G; in this case the ’field configurations’
on a manifold M are given by G-bundles over M , denoted by AG(M). Furthermore, one has to
choose a suitable action functional S : AG(M)→ C (which we choose here in fact to be trivial)
on field configurations; this allows to make the structure suggested by formal path integration
rigorous and to obtain a topological field theory. A conceptually very clear way to carry this
construction out rigorously is described in [FQ93] and [Mor10], see section 2 of this paper for
a review.
Let us now assume that as a further input datum we have another finite group J which acts
on G. In this situation, we get an action of J on the Dijkgraaf-Witten theory based on G.
But it turns out that this topological field theory together with the J-action does not fully
reflect the equivariance of the situation: it has been an important insight that the right notion
is the one of equivariant topological field theories, which have been another point of recent
interest [Kir04, Tur10]. Roughly speaking, equivariant topological field theories require that
all geometric objects (i.e. manifolds of different dimensions) have to be decorated by a J-cover
(see definitions 3.11 and 3.13 for details). Equivariant field theories also provide a conceptual
setting for the orbifold construction, one of the standard tools for model building in conformal
field theory and string theory.
Given the action of a finite group J on a finite group G, these considerations lead to the question
of whether Dijkgraaf-Witten theory based on G can be enlarged to a J-equivariant topological
field theory. Let us pose this question more in detail:

• What exactly is the right notion of an action of J on G that leads to interesting theories?
To keep equivariant Dijkgraaf-Witten theory as explicit as the non-equivariant theory,
one needs notions to keep control of this action as explicitly as possible.

• Ordinary Dijkgraaf-Witten theory is mainly determined by the choice of field configu-
rations AG(M) to be G-bundles. As mentioned before, for J-equivariant theories, we
should replace manifolds by manifolds with J-covers. We thus need a geometric notion
of a G-bundle that is ’twisted’ by this J-cover in order to develop the theory parallel to
the non-equivariant one.

Based on an answer to these two points, we wish to construct equivariant Dijkgraaf-Witten
theory as explicitly as possible.

1.3 Summary of the results

This paper solves both the algebraic and the geometric problem we have just described. In
fact, the two problems turn out to be closely related. We first solve the problem of explicitly
constructing equivariant Dijkgraaf-Witten and then use our solution to construct the relevant
modular categories that complete the square (1.1).
Despite this strong mathematical interrelation, we have taken some effort to write the paper
in such a way that it is accessible to readers sharing only a geometric or algebraic interest.
The geometrically minded reader might wish to restrict his attention to section 2 and 3, and
only take notice of the result about J-modularity stated in theorem 4.35. An algebraically
oriented reader, on the other hand, might simply accept the categories described in proposition
3.22 together with the structure described in propositions 3.23, 3.24 and 3.26 and then directly
delve into section 4.
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For the benefit of all readers, we present here an outline of all our findings. In section 2, we
review the pertinent aspects of Dijkgraaf-Witten theory and in particular the specific construc-
tion given in [Mor10]. Section 3 is devoted to the equivariant case: we observe that the correct
notion of J-action on G is what we call a weak action of the group J on the group G; this
notion is introduced in definition 3.1. Based on this notion, we can very explicitly construct
for every J-cover P → M a category AG(P → M) of P -twisted G-bundles. For the definition
and elementary properties of twisted bundles, we refer to section 3.2 and for a local description
to appendix A.1. We are then ready to construct equivariant Dijkgraaf Witten theory along
the lines of the construction described in [Mor10]. This is carried out in section 3.3 and 3.4.
We obtain a construction of equivariant Dijkgraaf-Witten theory that is so explicit that we
can read off the category CJ(G) it assigns to the circle S1. The equivariant topological field
theory induces additional structure on this category, which can also be computed by geometric
methods due to the explicit control of the theory, and part of which we compute in section 3.5.
This finishes the geometric part of our work. It remains to show that the category CJ(G) is
indeed J-modular.

To establish the J-modularity of the category CJ(G), we have to resort to algebraic tools. Our
discussion is based on the appendix 6 of [Tur10] by A. Virélizier. At the same time, we explain
the solution of the algebraic problems described in section 1.1. The Hopf algebraic notions we
encounter in section 4, in particular Hopf algebras with a weak group action and their orbifold
Hopf algebras might be of independent algebraic interest.
In section 4, we introduce the notion of a J-equivariant ribbon Hopf algebra. It turns out that it
is natural to relax some strictness requirements on the J-action on such a Hopf algebra. Given
a weak action of a finite group J on a finite group G, we describe in proposition 4.24 a specific
ribbon Hopf algebra which we call the equivariant Drinfel’d double DJ(G). This ribbon Hopf
algebra is designed in such a way that its representation category is equivalent to the geometric
category CJ(G) constructed in section 3, compare proposition 4.25.
The J-modularity of CJ(G) is established via the modularity of its orbifold category. The
corresponding notion of an orbifold algebra is introduced in subsection 4.4. In the case of the
equivariant Drinfel’d double DJ(G), this orbifold algebra is shown to be isomorphic, as a ribbon
Hopf algebra, to a Drinfel’d double. This implies modularity of the orbifold theory and, by a
result of [Kir04], J-modularity of the category CJ(G), cf. theorem 4.35.
In the course of our construction, we develop several notions of independent interest. In fact,
our paper might be seen as a study of the geometry of chiral backgrounds. It allows for various
generalizations, some of which are briefly sketched in the conclusions. These generalizations
include in particular twists by 3-cocycles in group cohomology and, possibly, even the case of
non-semi simple chiral backgrounds.

Acknowledgements. We thank Urs Schreiber for helpful discussions and Ingo Runkel for a
careful reading of the manuscript. TN and CS are partially supported by the Collaborative
Research Centre 676 “Particles, Strings and the Early Universe - the Structure of Matter and
Space-Time” and the cluster of excellence “Connecting particles with the cosmos”. JM and CS
are partially supported by the Research priority program SPP 1388 “Representation theory”.
JM is partially supported by the Marie Curie Research Training Network MRTN-CT-2006-
031962 in Noncommutative Geometry, EU-NCG.
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2 Dijkgraaf-Witten theory and Drinfel’d double

This section contains a short review of Dijkgraaf-Witten theory as an extended three-dimensional
topological field theory, covering the contributions of many authors, including in particular the
work of Dijkgraaf-Witten [DW90], of Freed-Quinn [FQ93] and of Morton [Mor10]. We explain
how these extended 3d TFTs give rise to modular tensor categories. These specific modular
tensor categories are the representation categories of a well-known class of quantum groups,
the Drinfel’d doubles of finite groups.
While this section does not contain original material, we present the ideas in such a way that
equivariant generalizations of the theories can be conveniently discussed. In this section, we
also introduce some categories and functors that we need for later sections.

2.1 Motivation for Dijkgraaf-Witten theory

We start with a brief motivation for Dijkgraaf-Witten theory from physical principles. A reader
already familiar with Dijkgraaf-Witten theory might wish to take at least notice of the definition
2.2 and of proposition 2.3.
It is an old, yet successful idea to extract invariants of manifolds from quantum field theories,
in particular from quantum field theories for which the fields are G-bundles with connection,
where G is some group. In this paper we mostly consider the case of a finite group and only
occasionally make reference to the case of a compact Lie group.
Let M be a compact oriented manifold of dimension 1,2 or 3, possibly with boundary. As the
‘space’ of field configurations, we choose G bundles with connection,

AG(M) := Bun∇G(M).

In this way, we really assign to a manifold a groupoid, rather than an actual space. The
morphisms of the category take gauge transformations into account. We will nevertheless keep
on calling it ’space’ since the correct framework to handle AG(M) is as a stack on the category
of smooth manifolds.
Moreover, another piece of data specifying the model is a function defined on manifolds of a
specific dimension,

S : AG(M)→ C
called the action. In the simplest case, when G is a finite group, a field configuration is given by
a G-bundle, since all bundles are canonically flat and no connection data are involved. Then,
the simplest action is given by S[P ] := 0 for all P . In the case of a compact, simple, simply
connected Lie group G, consider a 3-manifold M . In this situation, each G-bundle P over M
is globally of the form P ∼= G ×M , because π1(G) = π2(G) = 0. Hence a field configuration
is given by a connection on the trivial bundle which is a 1-form A ∈ Ω1(M, g) with values in
the Lie algebra of G. An example of an action yielding a topological field theory that can be
defined in this situation is the Chern-Simons action

S[A] :=

∫
M

〈A ∧ dA〉 − 1

6
〈A ∧ A ∧ A〉

where 〈·, ·〉 is the basic invariant inner product on the Lie algebra g.
The heuristic idea is then to introduce an invariant Z(M) for a 3-manifold M by integration
over all field configurations:

Z(M) := ”

∫
AG(M)

dφ eiS[φ] ”.
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Warning 2.1. In general, this path integral has only a heuristic meaning. In the case of a
finite group, however, one can choose a counting measure dφ and thereby reduce the integral to
a well-defined finite sum. The definition of Dijkgraaf-Witten theory [DW90] is based on this
idea.

Instead of giving a well-defined meaning to the invariant Z(M) as a path-integral, we exhibit
some formal properties these invariants are expected to satisfy. To this end, it is crucial to
allow for manifolds that are not closed, as well. This allows to cut a three-manifold into
several simpler three-manifolds with boundaries so that the computation of the invariant can
be reduced to the computation of the invariants of simpler pieces.
Hence, we consider a 3-manifold M with a 2-dimensional boundary ∂M . We fix boundary
values φ1 ∈ AG(∂M) and consider the space AG(M,φ1) of all fields φ on M that restrict to the
given boundary values φ1. We then introduce, again at a heuristic level, the quantity

Z(M)φ1 := ”

∫
AG(M,φ1)

dφ eiS[φ] ”. (2.1)

The assignment φ1 7→ Z(M)φ1 could be called a ‘wave function’ on the space AG(∂M) of
boundary values of fields. These ‘wave functions’ form a vector space H∂M , the state space

H∂M := ”L2
(
AG(∂M),C

)
”

that we assign to the boundary ∂M . The transition to wave functions amounts to a lineariza-
tion. The notation L2 should be taken with a grain of salt and should indicate the choice of an
appropriate vector space for the category AG(∂M); it should not suggest the existence of any
distinguished measure on the category.
In the case of Dijkgraaf-Witten theory based on a finite group G, the space of states has a
basis consisting of δ-functions on the set of isomorphism classes of field configurations on the
boundary ∂M :

H∂M = C
〈
δφ1 | φ1 ∈ IsoAG(∂M)

〉
.

In this way, we associate finite dimensional vector spaces HΣ to compact oriented 2-manifolds
Σ. The heuristic path integral in equation (2.1) suggests to associate to a 3-manifold M with
boundary ∂M an element

Z(M) ∈ H∂M ,

or, equivalently, a linear map C→ H∂M .
A natural generalization of this situation are cobordisms M : Σ → Σ′, where Σ and Σ′ are
compact oriented 2-manifolds. A cobordism is a compact oriented 3-manifold M with boundary
∂M ∼= Σ̄ t Σ′ where Σ̄ denotes Σ, with the opposite orientation. To a cobordism, we wish to
associate a linear map

Z(M) : HΣ → HΣ′

by giving its matrix elements in terms of the path integral

Z(M)φ0,φ1 := ”

∫
AG(M,φ0,φ1)

dφ eiS[φ] ”

with fixed boundary values φ0 ∈ AG(Σ) and φ1 ∈ AG(Σ′). Here AG(M,φ0, φ1) is the space of
field configurations on M that restrict to the field configuration φ0 on the ingoing boundary
Σ and to the field configuration φ1 on the outgoing boundary Σ′. One can now show that the
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linear maps Z(M) are compatible with gluing of cobordisms along boundaries. (If the group
G is not finite, additional subtleties arise; e.g. Z(M)φ0,φ1 has to be interpreted as an integral
kernel.)
Atiyah [Ati88] has given a definition of a topological field theory that formalizes these properties:
it describes a topological field theory as a symmetric monoidal functor from a geometric tensor
category to an algebraic category. To make this definition explicit, let Cob(2, 3) be the category
which has 2-dimensional compact oriented smooth manifolds as objects. Its morphisms M :
Σ→ Σ′ are given by (orientation preserving) diffeomorphism classes of 3-dimensional, compact
oriented cobordism from Σ to Σ′ which we write as

Σ ↪→M ←↩ Σ′.

Composition of morphisms is given by gluing cobordisms together along the boundary. The
disjoint union of 2-dimensional manifolds and cobordisms equips this category with the struc-
ture of a symmetric monoidal category. For the algebraic category, we choose the symmetric
tensor category VectK of finite dimensional vector spaces over an algebraically closed field K of
characteristic zero.

Definition 2.2 (Atiyah). A 3d TFT is a symmetric monoidal functor

Z : Cob(2, 3)→ VectK.

Let us set up such a functor for Dijkgraaf-Witten theory, i.e. fix a finite group G and choose the
trivial action S : AG(M)→ C, i.e. S[P ] = 0 for all G-bundles P on M . Then the path integrals
reduce to finite sums over 1 hence simply count the number of elements in the category AG.
Since we are counting objects in a category, the stabilizers have to be taken appropriately into
account, for details see e.g. [Mor08, Section 4]. This is achieved by the groupoid cardinality
(which is sometimes also called the Euler-characteristic of the groupoid Γ)

|Γ| :=
∑

[g]∈Iso(Γ)

1

|Aut(g)|
.

A detailed discussion of groupoid cardinality can be found in [BD01] and [Lei08].
We summarize the discussion:

Proposition 2.3 ([DW90],[FQ93]). Given a finite group G, the following assignment ZG defines
a 3d TFT: to a closed, oriented 2-manifold Σ, we assign the vector space freely generated by
the isomorphism classes of G-bundles on Σ,

Σ 7−→ HΣ := K
〈
δP | P ∈ IsoAG(Σ)

〉
.

To a 3 dimensional cobordism M , we associate the linear map

ZG

(
Σ ↪→M ←↩ Σ′

)
: HΣ → HΣ′

with matrix elements given by the groupoid cardinality of the categories AG(M,P0, P1):

ZG(M)P0,P1 :=
∣∣AG(M,P0, P1)

∣∣ .
8



Remark 2.4. 1. In the original paper [DW90], a generalization of the trivial action S[P ] =
0, induced by an element η in the group cohomology H3

Gp

(
G,U(1)

)
with values in U(1),

has been studied. We postpone the treatment of this generalization to a separate paper: in
the present paper, the term Dijkgraaf-Witten theory refers to the 3d TFT of proposition
2.3 or its extended version.

2. In the case of a compact, simple, simply-connected Lie group G, a definition of a 3d TFT
by a path integral is not available. Instead, the combinatorial definition of Reshetikin-
Turaev [RT91] can be used to set up a 3d TFT which has the properties expected for
Chern-Simons theory.

3. The vector spaces HΣ can be described rather explicitly. Since every compact, closed,
oriented 2-manifold is given by a disjoint union of surfaces Σg of genus g, it suffices to
compute the dimension of HΣg . This can be done using the well-known description of
moduli spaces of flat G-bundles in terms of homomorphisms from the fundamental group
π1(Σg) to the group G, modulo conjugation,

IsoAG(Σg) ∼= Hom(π1(Σg), G)/G

which can be combined with the usual description of the fundamental group π1(Σg) in terms
of generators and relations. In this way, one finds that the space is one-dimensional
for surfaces of genus 0. In the case of surfaces of genus 1, it is generated by pairs of
commuting group elements, modulo simultaneous conjugation.

4. Following the same line of argument, one can show that for a closed 3-manifold M , one
has ∣∣AG(M)

∣∣ =
∣∣Hom(π1(M), G)

∣∣ / |G| .
This expresses the 3-manifold invariants in terms of the fundamental group of M .

2.2 Dijkgraaf-Witten theory as an extended TFT

Up to this point, we have considered a version of Dijkgraaf-Witten theory which assigns in-
variants to closed 3-manifolds Z(M) and vector spaces to 2-dimensional manifolds Σ. Iterating
the argument that has lead us to consider three-manifolds with boundaries, we might wish to
cut the two-manifolds into smaller pieces as well, and thereby introduce two-manifolds with
boundaries into the picture.
Hence, we drop the requirement on the 2-manifold Σ to be closed and allow Σ to be a compact,
oriented 2-manifold with 1-dimensional boundary ∂Σ. Given a field configuration φ1 ∈ AG(∂Σ)
on the boundary of the surface Σ, we consider the space of all field configurations AG(Σ, φ1)
on Σ that restrict to the given field configuration φ1 on the boundary ∂Σ. Again, we linearize
the situation and consider for each field configuration φ1 on the 1-dimensional boundary ∂Σ
the vector space freely generated by the isomorphism classes of field configurations on Σ,

HΣ,φ1 := ”L2
(
AG(Σ, φ1)

)
” = C

〈
δφ | φ ∈ IsoAG(Σ, φ1)

〉
.

The object we associate to the 1-dimensional boundary ∂Σ of a 2-manifold Σ is thus a map
φ1 7→ HΣ,φ1 of field configurations to vector spaces, i.e. a complex vector bundle over the space
of all fields on the boundary. In the case of a finite group G, we prefer to see these vector
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bundles as objects of the functor category from the essentially small category AG(∂Σ) to the
category VectC of finite-dimensional complex vector spaces, i.e. as an element of

Vect(AG(∂Σ)) =
[
AG(∂Σ),VectC

]
.

Thus the extended version of the theory assigns the category Z(S) = [AG(S),VectC] to a
one dimensional, compact oriented manifold S. These categories possess certain additional
properties which can be summarized by saying that they are 2-vector spaces in the sense of
[KV94]:

Definition 2.5. 1. A 2-vector space (over a field K) is a K-linear, abelian, finitely semi-
simple category. Here finitely semi-simple means that the category has finitely many
isomorphism classes of simple objects and each object is a finite direct sum of simple
objects.

2. Morphisms between 2-vector spaces are K-linear functors and 2-morphisms are natural
transformations. We denote the 2-category of 2-vector spaces by 2VectK

3. The Deligne tensor product � endows 2VectK with the structure of a symmetric monoidal
2-category.

For the Deligne tensor product, we refer to [Del90, Sec. 5] or [BK01, Def. 1.1.15]. The
definition and the properties of symmetric monoidal bicategories (resp. 2-categories) can be
found in [SP09, ch. 3].
In the spirit of definition 2.2, we formalize the properties of the extended theory Z by describing
it as a functor from a cobordism 2-category to the algebraic category 2VectK. It remains to state
the formal definition of the relevant geometric category. Here, we ought to be a little bit more
careful, since we expect a 2-category and hence can not identify diffeomorphic 2-manifolds. For
precise statements on how to address the difficulties in gluing smooth manifolds with corners,
we refer to [Mor09, 4.3]; here, we restrict ourselves to the following short definition:

Definition 2.6. Cob(1, 2, 3) is the following symmetric monoidal bicategory:

• Objects are compact, closed, oriented 1-manifolds S.

• 1-Morphisms are 2-dimensional, compact, oriented collared cobordisms S × I ↪→ Σ ←↩
S ′ × I.

• 2-Morphisms are generated by diffeomorphisms of cobordisms fixing the collar and 3-
dimensional collared, oriented cobordisms with corners M , up to diffeomorphisms pre-
serving the orientation and boundary.

• Composition is by gluing along collars.

• The monoidal structure is given by disjoint union with the empty set ∅ as the monoidal
unit.

Remark 2.7. The 1-morphisms are defined as collared surfaces, since in the case of extended
cobordism categories, we consider surfaces rather than diffeomorphism classes of surfaces. A
choice of collar is always possible, but not unique. The choice of collars ensures that the glued
surface has a well-defined smooth structure. Different choices for the collars yield equivalent
1-morphisms in Cob(1, 2, 3).

10



Obviously, extended cobordism categories can be defined in dimensions different from three as
well. We are now ready to give the definition of an extended TFT which goes essentially back
to Lawrence [Law93]:

Definition 2.8. An extended 3d TFT is a weak symmetric monoidal 2-functor

Z : Cob(1, 2, 3)→ 2VectK .

We pause to explain in which sense extended TFTs extend the TFTs defined in definition
2.2. To this end, we note that the monoidal 2-functor Z has to send the monoidal unit in
Cob(1, 2, 3) to the monoidal unit in 2VectK. The monoidal unit in Cob(1, 2, 3) is the empty set
∅, and the unit in 2VectK is the category VectK. The functor Z restricts to a functor Z|∅ from
the endomorphisms of ∅ in Cob(1, 2, 3) to the endomorphisms of VectK in 2VectK. It follows
directly from the definition that EndCob(1,2,3)

(
∅
) ∼= Cob(2, 3). Using the fact that the morphisms

in 2VectK are additive (which follows from C-linearity of functors in the definition of 2-vector
spaces), it is also easy to see that the equivalence of categories End2VectK

(
VectK

) ∼= VectK holds.
Hence we have deduced:

Lemma 2.9. Let Z be an extended 3d TFT. Then Z|∅ is a 3d TFT in the sense of definition
2.2.

At this point, the question arises whether a given (non-extended) 3d TFT can be extended.
In general, there is no reason for this to be true. For Dijkgraaf-Witten theory, however, such
an extension can be constructed based on ideas which we described at the beginning of this
section. A very conceptual presentation of this this construction based on important ideas of
[Fre95] and [FQ93] can be found in [Mor10]. Before we describe this construction in more detail
in subsection 2.3, we first state the result:

Proposition 2.10. [Mor10] Given a finite group G, there exists an extended 3d TFT ZG which
assigns the categories [

AG(S),VectK
]

to 1-dimensional, closed oriented manifolds S and whose restriction ZG|∅ is (isomorphic to) the
Dijkgraaf-Witten TFT described in proposition 2.3.

Remark 2.11. One can iterate the procedure of extension and introduce the notion of a fully
extended TFT which also assigns quantities to points rather than just 1-manifolds. It can be
shown that Dijkgraaf-Witten theory can be turned into a fully extended TFT, see [FHLT09].
The full extension will not be needed in the present article.

2.3 Construction via 2-linearization

In this subsection, we describe in detail the construction of the extended 3d TFT of proposition
2.10. An impatient reader may skip this subsection and should still be able to understand
most of the paper. He might, however, wish to take notice of the technique of 2-linearization
in proposition 2.14 which is also an essential ingredient in our construction of equivariant
Dijkgraaf-Witten theory in sequel of this paper.
As emphasized in particular by Morton [Mor10], the construction of the extended TFT is
naturally split into two steps, which have already been implicitly present in preceding sections.
The first step is to assign to manifolds and cobordisms the configuration spacesAG ofG bundles.
We now restrict ourselves to the case when G is a finite group. The following fact is standard:
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• The assignment M 7→ AG(M) := BunG is a contravariant 2-functor from the category of
manifolds to the 2-category of groupoids. Smooth maps between manifolds are mapped
to the corresponding pullback functors on categories of bundles.

A few comments are in order: for a connected manifold M , the category AG(M) can be replaced
by the equivalent category given by the action groupoid Hom

(
π1(M), G

)
//G where G acts by

conjugation. In particular, the category AG(M) is essentially finite, if M is compact. It should
be appreciated that at this stage no restriction is imposed on the dimension of the manifold M .
The functor AG(−) can be evaluated on a 2-dimensional cobordism S ↪→ Σ ←↩ S ′ or a 3-
dimensional cobordism Σ ↪→M ←↩ Σ′. It then yields diagrams of the form

AG(S)←− AG(Σ) −→ AG(S ′)

AG(Σ)←− AG(M) −→ AG(Σ′).

Such diagrams are called spans. They are the morphisms of a symmetric monoidal bicategory
Span of spans of groupoids as follows (see e.g. [DPP04] or [Mor09]):

• Objects are (essentially finite) groupoids.
• Morphisms are spans of essentially finite groupoids.
• 2-Morphisms are isomorphism classes of spans of span-maps.
• Composition is given by forming weak fiber products.
• The monoidal structure is given by the cartesian product × of groupoids.

Proposition 2.12 ([Mor10]). AG induces a symmetric monoidal 2-functor

ÃG : Cob(1, 2, 3)→ Span.

This functor assigns to a 1-dimensional manifold S the groupoid AG(S), to a 2-dimensional
cobordism S ↪→ Σ ←↩ S ′ the span AG(S) ←− AG(Σ) −→ AG(S ′) and to a 3-cobordism with
corners a span of span-maps.

Proof. It only remains to be shown that composition of morphisms and the monoidal structure
is respected. The first assertion is shown in [Mor10, theorem 2] and the second assertion follows
immediately from the fact that bundles over disjoint unions are given by pairs of bundles over
the components, i.e. AG(M tM ′) = AG(M)×AG(M ′).

The second step in the construction of extended Dijkgraaf-Witten theory is the 2-linearization
of [Mor08]. As we have explained in section 2.1, the idea is to associate to a groupoid Γ its
category of vector bundles VectK(Γ). If Γ is essentially finite, the category of vector bun-
dles is conveniently defined as the functor category

[
Γ,VectK

]
. If K is algebraically closed of

characteristic zero, this category is a 2-vector space, see [Mor08, Lemma 4.1.1].

• The assignment Γ 7→ VectK
(
Γ
)

:=
[
Γ,VectK

]
is a contravariant 2-functor from the bi-

category of (essentially finite) groupoids to the 2-category of 2-vector spaces. Functors
between groupoids are sent to pullback functors.

We next need to explain what 2-linearization assigns to spans of groupoids. To this end, we
use the following lemma due to [Mor08, 4.2.1]:

12



Lemma 2.13. Let f : Γ → Γ′ be a functor between essentially finite groupoids. Then the
pullback functor f ∗ : Vect

(
Γ′
)
→ Vect

(
Γ
)

admits a 2-sided adjoint f∗ : Vect
(
Γ
)
→ Vect

(
Γ′
)
,

called the pushforward.

Two-sided adjoints are also called ‘ambidextrous’ adjoint, see [Bar09, ch. 5] for a discussion.
We use this pushforward to associate to a span

Γ Λ
p0oo p1 // Γ′

of (essentially finite) groupoids the ‘pull-push’-functor

(p1)∗ ◦ (p0)∗ : VectK
(
Γ
)
−→ VectK

(
Γ′
)
.

A similar construction [Mor08] associates to spans of span-morphisms a natural transformation.
Altogether we have:

Proposition 2.14 ([Mor08]). The functor Γ 7→ VectK(Γ) can be extended to a symmetric
monoidal 2-functor on the category of spans of groupoids

ṼK : Span→ 2VectK.

This 2-functor is called 2-linearization.

Proof. The proof that ṼK is a 2-functor is in [Mor08]. The fact that ṼK is monoidal follows
from the fact that VectK

(
Γ × Γ′

) ∼= VectK
(
Γ
)
� VectK

(
Γ′
)

for a product Γ × Γ′ of essentially
finite groupoids.

Arguments similar to the ones in [DPP04, prop 1.10] which are based on the universal property
of the span category can be used to show that such an extension is essentially unique.
We are now in a position to give the functor ZG described in proposition 2.10 which is Dijkgraaf-
Witten theory as an extended 3d TFT as the composition of functors

ZG := ṼK ◦ ÃG : Cob(1, 2, 3) −→ 2VectK.

It follows from propositions 2.12 and 2.14 that ZG is an extended 3d TFT in the sense of
definition 2.8. For the proof of proposition 2.10, it remains to be shown that ZG|∅ is the
Dijkgraaf-Witten 3d TFT from proposition 2.3; this follows from a calculation which can be
found in [Mor10, Section 5.2].

2.4 Evaluation on the circle

The goal of this subsection is a more detailed discussion of extended Dijkgraaf-Witten theory
ZG as described in proposition 2.10. Our focus is on the object assigned to the 1-manifold
S1 given by the circle with its standard orientation. We start our discussion by evaluating an
arbitrary extended 3d TFT Z as in definition 2.8 on certain manifolds of different dimensions:

1. To the circle S1, the extended TFT assigns a K-linear, abelian finitely semisimple category
CZ := Z(S1).

2. To the two-dimensional sphere with three boundary components, two incoming and one
outgoing, also known as the pair of pants,
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the TFT associates a functor

⊗ : CZ � CZ → CZ ,

which turns out to provide a tensor product on the category CZ .

3. The figure

shows a 2-morphism between two three-punctured spheres, drawn as the upper and lower
lid. The outgoing circle is drawn as the boundary of the big disk. To this cobordism, the
TFT associates a natural transformation

⊗ ⇒ ⊗opp

which turns out to be a braiding.

Moreover, the TFT provides coherence cells, in particular associators and relations between the
given structures. This endows the category CZ with much additional structure. This structure
can be summarized as follows:

Proposition 2.15. For Z an extended 3d TFT, the category CZ := Z(S1) is naturally endowed
with the structure of a braided tensor category.

For details, we refer to [Fre95] [Fre94] [Fre99] and [CY99]. This is not yet the complete structure
that can be extracted: from the braiding-picture above it is intuitively clear that the braiding
is not symmetric; in fact, the braiding is ‘maximally non-symmetric’ in a precise sense that is
explained in definition 2.20. We discuss this in the next section for the category obtained from
the Dijkgraaf-Witten extended TFT.

We now specialize to the case of extended Dijkgraaf-Witten TFT ZG. We first determine the
category C(G) := CZ ; it is by definition

C(G) =
[
AG(S1),VectK

]
.

It is a standard result in the theory of coverings that G-covers on S1 are described by group
homomorphisms π1(S1) → G and their morphisms by group elements acting by conjugation.
Thus the category AG(S1) is equivalent to the action groupoid G//G for the conjugation action.
As a consequence, we obtain the abelian category C(G) ∼= [G//G,VectK]. We spell out this
functor category explicitly:
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Proposition 2.16. For the extended Dijkgraaf-Witten 3d TFT, the category C(G) associated
to the circle S1 is given by the category of G-graded vector spaces V =

⊕
g∈G Vg together with a

G-action on V such that for all x, y ∈ G

x.Vg ⊂ Vxgx−1 .

As a next step we determine the tensor product on C(G). Since the fundamental group of
the pair of pants is the free group on two generators, the relevant category of G-bundles is
equivalent to the action groupoid (G × G)//G where G acts by simultaneous conjugation on

the two copies of G. The 2-linearization ṼK on the span

(G//G)× (G//G)← (G×G)//G→ G//G.

is treated in detail in [Mor10, rem. 5]; the result of this calculation yields the following tensor
product:

Proposition 2.17. The tensor product of V and W is given by the G-graded vector space

(V ⊗W )g =
⊕
st=g

Vs ⊗Wt

together with the G-action g.(v, w) = (gv, gw). The associators are the obvious ones induced
by the tensor product in VectK.

In the same vein, the braiding can be calculated:

Proposition 2.18. The braiding V ⊗W → W ⊗ V is for v ∈ Vg and w ∈ W given by

v ⊗ w 7→ gw ⊗ v.

2.5 Drinfel’d double and modularity

The braided tensor category C(G) we just computed from the last section has a well-known
description as the category of modules over a braided Hopf-algebra D(G), the Drinfel’d double
D(G) := D(K[G]) of the group algebra K[G] of G, see e.g. [Kas95, Chapter 9.4] The Hopf-
algebra D(G) is defined as follows:
As a vector space, D(G) is the tensor product K(G)⊗K[G] of the algebra of functions on G and
the group algebra of G, i.e. we have the canonical basis (δg⊗h)g,h∈G. The algebra structure can
be described as a smash product ([Mon93]), an analogue of the semi-direct product for groups:
in the canonical basis, we have

(δg ⊗ h)(δg′ ⊗ h′) =

{
δg ⊗ hh′ for g = hg′h−1

0 else.

where the unit is given by the tensor product of the two units:
∑

g∈G δg ⊗ 1. The coalgebra
structure of D(G) is given by the tensor product of the coalgebras K(G) and K[G], i.e. the
coproduct reads

∆(δg ⊗ h) =
∑
g′g′′=g

(δg′ ⊗ h)⊗ (δg′′ ⊗ h)
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and the counit is given by ε(δ1⊗ h) = 1 and ε(δg ⊗ h) = 0 for g 6= 1 for all h ∈ G. It can easily
be checked that this defines a bialgebra structure on K(G) ⊗ K[G] and that furthermore the
linear map

S : (δg ⊗ h) 7→ (δh−1g−1h ⊗ h−1)

is an antipode for this bialgebra so that D(G) is a Hopf algebra. Furthermore, the element

R :=
∑
g,h∈G

(δg ⊗ 1)⊗ (δh ⊗ g) ∈ D(G)⊗D(G)

is a universal R-matrix, which fulfills the defining identities of a braided bialgebra and corre-
sponds to the braiding in proposition 2.18. At last, the element

θ :=
∑
g∈G

(δg ⊗ g−1) ∈ D(G)

is a ribbon-element in D(G), which gives D(G) the structure of a ribbon Hopf-algebra (as
defined in [Kas95, Definition 14.6.1]). Comparison with propositions 2.17 and 2.18 shows

Proposition 2.19. The category C(G) is isomorphic, as a braided tensor category, to the
category D(G)-mod.

The category D(G)-mod is actually endowed with more structure than the one of a braided
monoidal category. Since D(G) is a ribbon Hopf-algebra, the category of representations
D(G)-mod has also dualities and a compatible twist, i.e. has the structure of a ribbon category
(see [Kas95, Proposition 16.6.2] or [BK01, Def. 2.2.1] for the notion of a ribbon category).
Moreover, the category D(G)-mod is a 2-vector space over K and thus, in particular, finitely
semi-simple. We finally make explicit the non-degeneracy condition on the braiding that was
mentioned in the last subsection.

Definition 2.20. 1. Let K be an algebraically closed field of characteristic zero. A premod-
ular tensor category over K is K-linear, abelian, finitely semisimple category C over K
which has the structure of a ribbon category such that the tensor product is linear in each
variable and the tensor unit is absolutely simple, i.e. End(1) = K.

2. Denote by ΛC a set of representatives for the isomorphism classes of simple objects. The
braiding on C allows to define the S-matrix with entries in the field K

sXY := tr(RY X ◦RXY ) ,

where X, Y ∈ ΛC. A premodular category is called modular, if the S-matrix is invertible.

In the case of the Drinfel’d double, the S-matrix can be expressed explicitly in terms of char-
acters of finite groups [BK01, Section 3.2]. Using orthogonality relations, one shows:

Proposition 2.21. The category C(G) ∼= D(G)-mod is modular.

The notion of a modular tensor category first arose as a formalization of the Moore-Seiberg
data of a two-dimensional rational conformal field theory. They are the input for the Turaev-
Reshetikhin construction of three-dimensional topological field theories.
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3 Equivariant Dijkgraaf-Witten theory

We are now ready to turn to the construction of equivariant generalization of the results of
section 2. We denote again by G a finite group. Equivariance will be with respect to another
finite group J that acts on G in a way we will have to explain. As usual, ‘twisted sectors’
[VW95] have to be taken into account for a consistent equivariant theory. A description of
these twisted sectors in terms of bundles twisted by J-covers is one important result of this
section.

3.1 Weak actions and extensions

Our first task is to identify the appropriate definition of a J-action. The first idea that comes
to mind – a genuine action of the group J acting on G by group automorphisms – turns out to
need a modification. For reasons that will become apparent in a moment, we only require an
action up to inner automorphism.

Definition 3.1. 1. A weak action of a group J on a group G consists of a collection of
group automorphisms ρj : G→ G, one automorphism for each j ∈ J , and a collection of
group elements ci,j ∈ G, one group element for each pair of elements i, j ∈ J . These data
are required to obey the relations:

ρi ◦ ρj = Innci,j ◦ ρij ρi(cj,k) · ci,jk = ci,j · cij,k and c1,1 = 1

for all i, j, k ∈ J . Here Inng denotes the inner automorphism G → G associated to an
element g ∈ G. We will also use the short hand notation jg := ρj(g).

2. Two weak actions
(
ρj, ci,j) and

(
ρ′j, c

′
i,j) of a group J on a group G are called isomorphic,

if there is a collection of group elements hj ∈ G, one group element for each j ∈ J , such
that

ρ′j = Innhj ◦ ρj and c′ij · hij = hi · ρi(hj) · cij
Remark 3.2. 1. If all group elements ci,j equal the neutral element, ci,j = 1, the weak action

reduces to a strict action of J on G by group automorphisms.

2. A weak action induces a strict action of J on the group Out(G) = Aut(G)/Inn(G) of
outer automorphisms.

3. In more abstract terms, a weak action amounts to a (weak) 2-group homomorphism J →
AUT(G). Here AUT(G) denotes the automorphism 2-group of G. This automorphism 2-
group can be described as the monoidal category of endofunctors of the one-object-category
with morphisms G. The group J is considered as a discrete 2-group with only identities
as morphisms. For more details on 2-groups, we refer to [BL04].

Weak actions are also known under the name Dedecker cocycles, due to the work [Ded60]. The
correspondence between weak actions and extensions of groups is also termed Schreier theory,
with reference to [Sch26]. Let us briefly sketch this correspondence:

• Let
(
ρj, ci,j

)
be a weak action of J on G. On the set H := G×J , we define a multiplication

by
(g, i) · (g′, j) :=

(
g · i(g′) · ci,j , ij

)
. (3.1)

One can check that this turns H into a group in such a way that the sequence G→ H → J
consisting of the inclusion g 7→ (g, 1) and the projection (g, j) 7→ j is exact.
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• Conversely, let G −→ H
π−→ J be an extension of groups. Choose a set theoretic section

s : J → H of π with s(1) = 1. Conjugation with the group element s(j) ∈ H leaves
the normal subgroup G invariant. We thus obtain for j ∈ J the automorphism ρj(g) :=
s(j) g s(j)−1 of G. Furthermore, the element ci,j := s(i)s(j)s(ij)−1 is in the kernel of
π and thus actually contained in the normal subgroup G. It is then straightforward to
check that

(
ρj, ci,j

)
defines a weak action of J on G.

• Two different set-theoretic sections s and s′ of the extension G→ H → J differ by a map
J → G. This map defines an isomorphism of the induced weak actions in the sense of
definition 3.1.2.

We have thus arrived at the

Proposition 3.3 (Dedecker, Schreier). There is a 1-1 correspondence between isomorphism
classes of weak actions of J on G and isomorphism classes of group extensions G→ H → J .

Remark 3.4. 1. One can easily turn this statement into an equivalence of categories. Since
we do not need such a statement in this paper, we leave a precise formulation to the
reader.

2. Under this correspondence, strict actions of J on G correspond to split extensions. This
can be easily seen as follows: given a split extension G → H → J , one can choose the
section J → H as a group homomorphism and thus obtains a strict action of J on G.
Conversely for a strict action of J on G it is easy to see that the group constructed in
equation (3.1) is a semidirect product and thus the sequence of groups splits. To cover all
extensions, we thus really need to consider weak actions.

3.2 Twisted bundles

It is a common lesson from field theory that in an equivariant situation, one has to include
“twisted sectors” to obtain a complete theory. Our next task is to construct the parameters
labeling twisted sectors for a given weak action of a finite group J on G, with corresponding
extension G → H → J of groups and chosen set-theoretic section J → H. We will adhere
to a two-step procedure as outlined after proposition 2.14. To this end, we will first construct
for any smooth manifold a category of twisted bundles. Then, the linearization functor can be
applied to spans of such categories.
We start our discussion of twisted G-bundles with the most familiar case of the circle, M = S1.
The isomorphism classes of G-bundles on S1 are in bijection to connected components of the
free loop space LBG of the classifying space BG:

Iso
(
AG(S1)

)
= HomHo(Top)(S1, BG) = π0(LBG).

Given a (weak) action of J on G, one can introduce twisted loop spaces. For any element j ∈ J ,
we have a group automorphism j : G → G and thus a homeomorphism j : BG → BG. The
j-twisted loop space is then defined to be

LjBG :=
{
f : [0, 1]→ BG | f(0) = j · f(1)

}
.

Our goal is to introduce for every group element j ∈ J a category AG(S1, j) of j-twisted
G-bundles on S1 such that

Iso
(
AG(S1, j)

)
= π0(LjBG) .
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In the case of the circle S1, the twist parameter was a group element j ∈ J . A more geometric
description uses a family of J-covers Pj over S1, with j ∈ J . The cover Pj is uniquely determined
by its monodromy j for the base point 1 ∈ S1 and a fixed point in the fiber over 1. A concrete
construction of the cover Pj is given by the quotient Pj := [0, 1] × J/ ∼ where (0, i) ∼ (1, ji)
for all i ∈ J . In terms of these J-covers, we can write

LjBG =
{
f : Pj → BG | f is J-equivariant

}
.

This description generalizes to an arbitrary smooth manifold M . The natural twist parameter

in the general case is a J-cover P
J→M .

Suppose, we have a weak J-action onG and construct the corresponding extensionG→ H
π→ J .

The category of bundles we need are H-lifts of the given J-cover:

Definition 3.5. Let J act weakly on G. Let P
J→M be a J-cover over M .

• A P -twisted G-bundle over M is a pair (Q,ϕ), consisting of an H-bundle Q over M and
a smooth map ϕ : Q→ P over M that is required to obey

ϕ(q · h) = ϕ(q) · π(h)

for all q ∈ Q and h ∈ H. Put differently, a P
J→ M-twisted G-bundle is a lift of the

J-cover P reduction along the group homomorphism π : H → J .

• A morphism of P -twisted bundles (Q,ϕ) and (Q′, ϕ′) is a morphism f : Q → Q′ of
H-bundles such that ϕ′ ◦ f = ϕ.

• We denote the category of P -twisted G-bundles by AG
(
P → M

)
. For M = S1, we

introduce the abbreviation AG
(
S1, j) := AG

(
Pj → S1

)
for the standard covers of the

circle.

Remark 3.6. There is an alternative point of view on a P -twisted bundle (Q,ϕ): the subgroup
G ⊂ H acts on the total space Q in such a way that the map ϕ : Q → P endows Q with the
structure of a G-bundle on P . Both the structure group H of the bundle Q and the bundle P
itself carry an action of G; for twisted bundles, an equivariance condition on this action has to
be imposed. Unfortunately this equivariance property is relatively involved; therefore, we have
opted for the definition in the form given above.

A morphism f : P → P ′ of J-covers over the same manifold induces a functor f∗ : AG
(
P →

M
)
→ AG

(
P ′ → M

)
by f∗(Q,ϕ) := (Q, f ◦ ϕ). Furthermore, for a smooth map f : M → N ,

we can pull back the twist data P →M and get a pullback functor of twisted G-bundles:

f ∗ : AG
(
P → N

)
→ AG

(
f ∗P →M

)
by f ∗(Q,ϕ) = (f ∗Q, f ∗ϕ). Before we discuss more sophisticated properties of twisted bundles,
we have to make sure that our definition is consistent with ‘untwisted’ bundles:

Lemma 3.7. Let the group J act weakly on the group G. For G-bundles twisted by the trivial
J-cover M×J →M , we have a canonical equivalence of categories

AG
(
M×J →M

) ∼= AG(M).
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Proof. We have to show that for an element (Q,ϕ) ∈ AG
(
M×J →M

)
the H-bundle Q can be

reduced to a G-bundle. Such a reduction is the same as a section of the associated fiber bundle
π∗(Q) ∈ BunJ(M) see e.g. [Bau09, Satz 2.14]). Now ϕ : Q → M × J induces an isomorphism
of J-covers Q ×H J ∼= (M × J) ×H J ∼= M × J so that the bundle Q ×H J is trivial as a
J-cover and in particular admits global sections.
Since morphisms of twisted bundles have to commute with these sections, we obtain in that
way a functor AG

(
M×J → M

)
→ AG(M). Its inverse is given by extension of G-bundles on

M to H-bundles on M .

We also give a description of twisted bundles using standard covering theory; for an alterna-
tive description using Čech-cohomology, we refer to appendix A.1. We start by recalling the
following standard fact from covering theory, see e.g. [Hat02, 1.3] that has already been used
to prove proposition 2.16: for a finite group J , the category of J-covers is equivalent to the
action groupoid Hom(π1(M), J)//J . (Note that this equivalence involves choices and is not
canonical.)
To give a similar description of twisted bundles, fix a J-cover P . Next, we choose a basepoint
m ∈M and a point p in the fiber Pm over m. These data determine a unique group morphism
ω : π1(M,m)→ J representing P .

Proposition 3.8. Let J act weakly on G. Let M be a connected manifold and P be a J-cover
over M represented after the choices just indicated by the group homomorphism ω : π1(M)→ J .
Then there is a (non-canonical) equivalence of categories

AG
(
P →M

) ∼= Homω
(
π1(M), H

)
//G

where we consider group homomorphisms

Homω
(
π1(M), H

)
:=
{
µ : π1(M)→ H | π ◦ µ = ω

}
whose composition restricts to the group homomorphism ω describing the J-cover P . The group
G acts on Homω

(
π1(M), H

)
via pointwise conjugation using the inclusion G→ H.

Proof. Let m ∈M and p ∈ P over m be the choices of base point in the J-cover P →M that
lead to the homomorphism ω. Consider a (P →M) twisted bundle Q→M . Since ϕ : Q→ P
is surjective, we can choose a base point q in the fiber of Q over m such that ϕ(q) = p. The
group homomorphism π1(M) → H describing the H-bundle Q is obtained by lifting closed
paths in M starting in m to paths in Q starting in q. They are mapped under ϕ to lifts of the
same path to P starting at p, and these lifts are just described by the group homomorphism
ω : π1(M)→ J describing the cover P . If the end point of the path in Q is qh for some h ∈ H,
then by the defining property of ϕ, the lifted path in P has endpoint ϕ(qh) = ϕ(q)π(h) = pπ(h).
Thus π ◦ µ = ω.

Remark 3.9. For non-connected manifolds, a description as in proposition 3.8 can be ob-
tained for every component. Again the equivalence involves choices of base points on M and
in the fibers over the base points. This could be fixed by working with pointed manifolds, but
pointed manifolds cause problems when we consider cobordisms. Alternatively, we could use the
fundamental groupoid instead of the fundamental group, see e.g. [May99].

Example 3.10. We now calculate the categories of twisted bundles over certain manifolds using
proposition 3.8.
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1. For the circle S1, ω ∈ Hom(π1(S1), J) = Hom(Z, J) is determined by an element j ∈ J
and the condition π ◦ µ = ω requires µ(1) ∈ H to be in the preimage Hj := π−1(j) of j.
Thus, we have AG(S1, j) ∼= Hj//G.

2. For the 3-Sphere S3, all twists P and all G-bundles are trivial. Thus, we have AG(P →
S3) ∼= AG(S3) ∼= pt//G.

3.3 Equivariant Dijkgraaf-Witten theory

The key idea in the construction of equivariant Dijkgraaf-Witten theory is to take twisted
bundles AG(P → M) as the field configurations, taking the place of G-bundles in section 2.
We cannot expect to get then invariants of closed 3-manifolds M , but rather invariants of 3-
manifolds M together with a twist datum, i.e. a J-cover P over M . Analogous statements
apply to manifolds with boundary and cobordisms. Therefore we need to introduce extended
cobordism-categories as Cob(1, 2, 3) in definition 2.6, but endowed with the extra datum of a
J-cover over each manifold.

Definition 3.11. CobJ(1, 2, 3) is the following symmetric monoidal bicategory:

• Objects are compact, closed, oriented 1-manifolds S, together with a J-cover PS
J→ S.

• 1-Morphisms are collared cobordisms

S × I ↪→ Σ←↩ S ′ × I

where Σ is a 2-dimensional, compact, oriented cobordism, together with a J-cover PΣ → Σ
and isomorphisms

PΣ|(S×I)
∼−→ PS × I and PΣ|(S′×I)

∼−→ PS′ × I.

over the collars.

• 2-Morphisms are generated by

- orientation preserving diffeomorphisms ϕ : Σ → Σ′ of cobordisms fixing the collar
together with an isomorphism ϕ̃ : PΣ → PΣ′ covering ϕ.

- 3-dimensional collared, oriented cobordisms with corners M with cover PM →M to-
gether with covering isomorphisms over the collars (as before) up to diffeomorphisms
preserving the orientation and boundary.

• Composition is by gluing cobordisms and covers along collars.

• The monoidal structure is given by disjoint union.

Remark 3.12. In analogy to remark 2.7, we point out that the isomorphisms of covers are
defined over the collars, rather than only over the the boundaries. This endows the glued cover
with a well-defined smooth structure.

Definition 3.13. An extended 3d J-TFT is a symmetric monoidal 2-functor

Z : CobJ(1, 2, 3)→ 2VectK.

Just for the sake of completeness, we will also give a definition of non-extended J-TFT. There-
fore define the symmetric monoidal category CobJ(2, 3) to be the endomorphism category of the
monoidal unit ∅ in Cob(1, 2, 3). More concretely, this category has as objects closed, oriented
2-manifolds with J-cover and as morphisms J-cobordisms between them.
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Definition 3.14. A (non-extended) 3d J-TFT is a symmetric monoidal 2-functor

CobJ(2, 3)→ VectK.

Similarly as in the non-equivariant case (lemma 2.9), we get

Lemma 3.15. Let Z be an extended 3d J-TFT. Then Z|∅ is a (non-extended) 3d J-TFT.

Now we can state the main result of this section:

Theorem 3.16. For a finite group G and a weak J-action on G, there is an extended 3d J-TFT
called ZJ

G which assigns the categories

VectK
(
AG(P → S)

)
=
[
AG(P → S),VectK

]
to 1-dimensional, closed oriented manifolds S with J-cover P → S.

We will give a proof of this theorem in the next sections. Having twisted bundles at our disposal,
the main ingredient will again be the 2-linearization described in section 2.3.

3.4 Construction via spans

As in the case of ordinary Dijkgraaf-Witten theory, cf. section 2.3, equivariant Dijkgraaf-Witten
ZJ
G theory is constructed as the composition of the symmetric monoidal 2-functors

ÃG : CobJ(1, 2, 3)→ Span and ṼK : Span→ 2VectK.

The second functor will be exactly the 2-linearization functor of proposition 2.14. Hence we
can limit our discussion to the construction of the first functor ÃG. As it will turn out, our
definition of twisted bundles is set up precisely in such a way that the construction of the
corresponding functor in proposition 2.12 can be generalized.

Our starting point is the following observation:

• The assignment (PM
J→ M) 7−→ AG(PM

J→ M) of twisted bundles to a twist datum
PM → M constitutes a contravariant 2-functor from the category of manifolds with J-
cover to the 2-category of groupoids. Maps between manifolds with cover are mapped to
the corresponding pullback functors of bundles.

From this functor which is defined on manifolds of any dimension, we construct a functor ÃG
on J-cobordisms with values in the 2-category Span of spans of groupoids, where the category
Span is defined in section 2.3. To an object in CobJ(1, 2, 3), i.e. to a J-cover PS → M , we
assign the category AG(PS → S) of J-covers. To a 1-morphism PS ↪→ PΣ ←↩ P ′S in CobJ(1, 2, 3),
we associate the span

AG(PS → S)← AG(PΣ → Σ)→ AG(PS′ → S ′) (3.2)

and to a 2-morphism of the type PΣ ↪→ PM ←↩ PΣ′ the span

AG(PΣ → Σ)← AG(PM →M)→ AG(PΣ′ → Σ′). (3.3)

We have to show that this defines a symmetric monoidal functor ÃG : CobJ(1, 2, 3)→ Span.
In particular, we have to show that the composition of morphisms is respected.
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Lemma 3.17. Let PΣ → Σ and PΣ′ → Σ′ be two 1-morphisms in CobJ(1, 2, 3) which can be
composed at the object PS → S to get the 1-morphism

PΣ ◦ PΣ′ :=
(
PΣ tPS×I PΣ′ → Σ tS×I Σ′

)
,

where I = [0, 1] is the standard interval. (Recall that we are gluing over collars.) Then the
category AG

(
PΣ ◦ PΣ′

)
is the weak pullback of AG(PΣ → Σ) and AG(PΣ′ → Σ′) over AG(PS →

S).

Proof. By definition the category
AG
(
PΣ ◦ PΣ′

)
has as objects twisted G-bundles over the 2-manifold ΣtS×I Σ′ =: N . The manifold N admits
an open covering N = U0 ∪ U1 with U0 = Σ \ S and U1 = Σ′ \ S where the intersection is the
cylinder U0 ∩U1 = S× (0, 1). By construction, the restrictions of the glued bundle PN → N to
U0 and U1 are given by PΣ \ PS and PΣ′ \ PS.
The natural inclusions U0 → Σ and U1 → Σ′ induce equivalences

AG(PΣ → Σ)
∼−→ AG(PN |U0 → U0)

AG(PΣ′ → Σ′)
∼−→ AG(PN |U1 → U1)

Analogously, we have an equivalence

AG
(
PN |U0∩U1 → U0 ∩ U1

) ∼−→ AG(PS → S) .

At this point, we have reduced the claim to an assertion about descent of twisted bundles
which we will prove in corollary 3.20. This corollary implies that AG(PN → N) is the weak
pullback of AG(PN |U0 → U0) and AG(PN |U1 → U1) over AG

(
PN |U0∩U1

)
. Since weak pullbacks

are invariant under equivalence of groupoids, this shows the claim.

We now turn to the promised results about descent of twisted bundles. Let P → M be a J-
cover over a manifold M and {Uα} be an open covering of M , where for the sake of generality
we allow for arbitrary open coverings. We want to show that twisted bundles can be glued
together like ordinary bundles; while the precise meaning of this statement is straightforward,
we briefly summarize the relevant definitions for the sake of completeness:

Definition 3.18. Let P →M be a J-cover over a manifold M and {Uα} be an open covering
of M . The descent category Desc(Uα, P ) has

• Objects: families of P |Uα-twisted bundles Qα over Uα, together with isomorphisms of

twisted bundles ϕαβ : Qα|Uα∩Uβ
∼−→ Qβ|Uα∩Uβ satisfying the cocycle condition ϕαβ ◦ϕβγ =

ϕαγ.

• Morphisms: families of morphisms fα : Qα → Q′α of twisted bundles such that over Uαβ
we have ϕ′αβ ◦ (fα)|Uαβ = (fβ)|Uαβ ◦ ϕαβ.

Proposition 3.19 (Descent for twisted bundles). Let P → M be a J-cover over a manifold
M and {Uα} be an open covering of M . Then the groupoid AG(P → M) is equivalent to the
descent category Desc(Uα, P ).
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Proof. Note that the corresponding statements are true for H-bundles and for J-covers. Then
the description in definition 3.5 of a twisted bundle as an H-bundle together with a morphism
of the associated J-cover immediately implies the claim.

Corollary 3.20. For an open covering of M by two open sets U0 and U1 the category AG(P →
M) is the weak pullback of AG(P |U0 → U0) and AG(P |U1 → U1) over AG(P |U0∩U1 → U0 ∩ U1).

In order to prove that the assignment (3.2) and (3.3) really promotes AG to a symmetric

monoidal functor ÃG : CobJ(1, 2, 3) → Span, it remains to show that AG preserves the
monoidal structure.
Now a bundle over a disjoint union is given by a pair of bundles over each component. Thus,
for a disjoint union of J-manifolds P → M = (P1 t P2) → (M1 t M2), we have AG(P →
M) ∼= AG(P1 → M1) × AG(P2 → M2). Note that the manifolds M,M1 and M2 can also be
cobordisms. The isomorphism of categories is clearly associative and preserves the symmetric
structure. Together with lemma 3.17, this proves the next proposition.

Proposition 3.21. AG induces a symmetric monoidal functor

ÃG : CobJ(1, 2, 3)→ Span

which assigns the spans (3.2) and (3.3) to 2 and 3-dimensional cobordisms with J-cover.

3.5 Twisted sectors and fusion

We next proceed to evaluate the J-equivariant TFT ZJ
G constructed in the last section on the

circle, as we did in section 2.4 for the non-equivariant TFT. We recall from section 3.2 the fact
that over the circle S1 we have for each j ∈ J a standard cover Pj. The associated category

C(G)j := ZJ
G

(
Pj → S1

)
is called the j-twisted sector of the theory; the sector C(G)1 is called the neutral sector. By
lemma 3.7, we have an equivalence AG(P1 → S1) ∼= AG(S1); hence we get an equivalence of
categories C(G)1

∼= C(G), where C(G) is the category arising in the non-equivariant Dijkgraaf-
Witten model, we discussed in section 2.4. We have already computed the twisted sectors as
abelian categories in example 3.10 and note the result for future reference:

Proposition 3.22. For the j-twisted sector of equivariant Dijkgraaf-Witten theory, we have
an equivalence of abelian categories

C(G)j ∼= [Hj//G,VectK] ,

where Hj//G is the action groupoid given by the conjugation action of G on Hj := π−1(j).
More concretely, the category C(G)j is equivalent to the category of Hj-graded vector spaces
V =

⊕
h∈Hj Vh together with a G-action on V such that

g.Vh ⊂ Vghg−1.

As a next step, we want to make explicit additional structure on the categories C(G)j coming
from certain cobordisms. Therefore, consider the pair of pants Σ(2, 1):
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The fundamental group of Σ(2, 1) is the free group on two generators. Thus, given a pair of

group elements j, k ∈ J , there is a J-cover P
Σ(2,1)
j,k → Σ(2, 1) which restricts to the standard

covers Pj and Pk on the two ingoing boundaries and to the standard cover Pjk on the outgoing
boundary circle. (To find a concrete construction, one should fix a parametrization of the pair

of pants Σ(2, 1).) The cobordism P
Σ(2,1)
j,k is a morphism

P
Σ(2,1)
j,k :

(
Pj → S1

)
t
(
Pk → S1

)
−→

(
Pjk → S1

)
(3.4)

in the category CobJ(1, 2, 3). Applying the equivariant TFT-functor ZJ
G yields a functor

⊗jk : C(G)j � C(G)k −→ C(G)jk.

We describe this functor in terms of the equivalent categories of graded vector spaces as a
functor

Hj//G-mod×Hk//G-mod→ Hjk//G-mod .

Proposition 3.23. For V =
⊕

h∈Hj Vh ∈ Hj//G-mod and W =
⊕

Wh ∈ Hk//G-mod the

product V ⊗jk W ∈ Hjk//G-mod is given by

(V ⊗jk W )h =
⊕
st=h

Vs ⊗Wt

together with the action g.(v ⊗ w) = g.v ⊗ g.w.

Proof. As a first step we have to compute the span ÃG(P
Σ(2,1)
j,k ) associated to the cobordism PH

j,k.
From the description of twisted bundles in proposition 3.8 and the fact that the fundamental
group of Σ(2, 1) is the free group on two generators, we derive the following equivalence of
categories:

AG
(
P

Σ(2,1)
jk → Σ(2, 1)

) ∼= (Hj ×Hk)//G .

Here we have Hj × Hk = {(h, h′) ∈ H × H | π(h) = j, π(h′) = k}, on which G acts by
simultaneous conjugation. This leads to the span of action groupoids

Hj//G×Hk//G←− (Hj ×Hk)//G −→ Hjk//G

where the left map is given be projection to the factors and the right hand map by multiplica-
tion. Applying the 2-linearization functor ṼK from proposition 2.14 amounts to computing the
corresponding pull-push functor. This yields the result.

Next, we consider the 2-manifold Σ(1, 1) given by the cylinder over S1, i.e. Σ(1, 1) = S1 × I:
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There exists a cover P
Σ(1,1)
j,x → Σ(1, 1) for j, x ∈ J that restricts to Pj on the ingoing circle and

to Pxjx−1 on the outgoing circle. The simplest way to construct this cover is to consider the

cylinder Pj × I → S1× I and to use the identification of P
Σ(1,1)
j,x over (a collaring neighborhood

of) the ingoing circle by the identity and over the outgoing circle the identification by the
morphism PΣ(1,1)|S1×1 = Pj → Pxjx−1 given by conjugation with x. In this way, we obtain a
cobordism that is a 1-morphism

P
Σ(1,1)
j,x : (Pj → S1) −→ (Pxjx−1 → S1) (3.5)

in the category CobJ(1, 2, 3) and hence induces a functor

φx : C(G)j → C(G)xjx−1 .

We compute the functor on the equivalent action groupoids explicitly:

Proposition 3.24. The image under φx of an object V =
⊕

Vh ∈ Hj//G-mod is the graded
vector space with homogeneous component

φx(V )h = Vs(x)hs(x)−1

for h ∈ Hj and with G-action on v ∈ Vh given by s(x)gs(x)−1 · v.

Proof. As before we compute the span ÃG(P
Σ(1,1)
j,x ). Using explicitly the equivalence given in

the proof of proposition 3.8, we obtain the span of action groupoids

Hj//G← Hj//G→ Hxjx−1//G

where the left-hand map is the identity and the right map is given by

(h, g) 7→
(
s(x)hs(x)−1, s(x)gs(x)−1

)
.

Computing the corresponding pull-push functor shows the claim.

Finally we come to the structure corresponding to the braiding of section 2.4. Note that the
cobordism that interchanges the two ingoing circles of the pair of pants Σ(2, 1), as in the
following picture,

can also be realized as the diffeomorphism F : Σ(2, 1)→ Σ(2, 1) of the pair of pants that rotates
the ingoing circles counterclockwise around each other and leaves the outgoing circle fixed. In
this picture, we think of the cobordism as the cylinder Σ(2, 1)× I where the identification with
Σ(2, 1) on the top is the identity and on the bottom is given by the diffeomorphism F . More
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explicitly, denote by τ : S1× S1 → S1× S1 the map that interchanges the two copies. We then
consider the following diagram in the two-category Cob(1, 2, 3):

Σ(2, 1)

F

��

S1 × S1

τ
%%KKKKKKKKKK

ι

44iiiiiiiiiiiiiiiiiiii
S1

iiTTTTTTTTTTTTTTTTTTT

{{xx
xx

xx
xx

x

S1 × S1 ι // Σ(2, 1)

where ι : S1 × S1 → Σ(2, 1) is the standard inclusion of the two ingoing boundary circles into
the trinion Σ(2, 1).
Our next task is to lift this situation to manifolds with J-covers. On the ingoing trinion, we
take the J cover P

Σ(2,1)
jk . We denote the symmetry isomorphism in CobJ(1, 2, 3) by τ as well.

Applying the diffeomorphism of the trinion explicitly, one sees that the outgoing trinion will
have monodromies jkj−1 and j on the ingoing circles. Hence we have to apply a J-cover P

Σ(1,1)
j,k

of the cylinder Σ(1, 1) first to one insertion. The next lemma asserts that then the 2-morphism
in CobJ(1, 2, 3) is fixed:

Lemma 3.25. In the 2-category CobJ(1, 2, 3), there is a unique 2-morphism

F̂ : P
Σ(2,1)
j,k =⇒

(
P

Σ(2,1)

jkj−1,j

)
◦ τ ◦

(
id t PΣ(1,1)

j,k

)
that covers the 2-morphism F in Cob(1, 2, 3).

Proof. First we show that a morphism F̃ : P
Σ(2,1)

jkj−1,j → P
Σ(2,1)
j,k can be found that covers the

diffeomorphism F : Σ(2, 1) → Σ(2, 1). This morphism is most easily described using the
action of F on the fundamental group π1(Σ(2, 1)) of the pair of pants. The latter is a free
group with two generators which can be chosen as the paths a, b around the two ingoing circles,
π1(Σ(2, 1)) = Z∗Z = 〈a, b〉. Then the induced action of F on the generators is π1(F )(a) = aba−1

and π1(F )(b) = a. Hence, we find on the covers F ∗Pj,k ∼= Pjkj−1,j. This implies that we have a

diffeomorphism F̃ : Pjkj−1,j → Pj,k covering F .

To extend F̃ to a 2-morphism in CobJ(1, 2, 3), we have to be a bit careful about how we consider

the cover P
Σ(2,1)

jkj−1,j → Σ(2, 1) of the trinion as a 1-morphism. In fact, it has to be considered

as a morphism (Pj → S1) t (Pk → S1) −→ Pjk → S1 where the ingoing components are
first exchanged and then the identification of Pk → S1 and Pjkj−1 → S1 via the conjugation

isomorphisms P
Σ(1,1)
j,k induced by covers of the cylinders is used first, compare the lower arrows

in the preceding commuting diagram. This yields the composition
(
P

Σ(2,1)

jkj−1,j

)
◦ τ ◦

(
idtPΣ(1,1)

j,k

)
on the right hand side of the diagram.

The next step is to apply the TFT functor ZJ
G to the 2-morphism F̂ . The target 1-morphism

of F̂ can be computed using the fact that ZJ
G is a symmetric monoidal 2-functor; we find the

following functor C(G)j ⊗ C(G)k → C(G)jk:

ZJ
G

((
P

Σ(2,1)

jkj−1,j

)
◦ τ ◦

(
id t PΣ(1,1)

j,k

))
= (−)j ⊗opkjk−1,k (−)

We thus have the functor which acts on objects as (V,W ) 7→ φj(W ) ⊗ V for V ∈ C(G)j and
W ∈ C(G)k.
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Then c := ZJ
G(F̂ ) is a natural transformation (−)⊗j,k (−) =⇒ (−)j ⊗opjkj−1,j (−) i.e. a family of

isomorphisms
cV,W : V ⊗j,k W

∼−→ φj(W )⊗jkj−1,j V (3.6)

in C(G)jk for V ∈ C(G)j and W ∈ C(G)k.
We next show how this natural transformation is expressed when we use the equivalent descrip-
tion of the categories C(G)j as vector bundles on action groupoids:

Proposition 3.26. For V =
⊕

Vh ∈ Hj//G-mod and W =
⊕

Wh ∈ Hk//G-mod the natural
isomorphism cV,W : V ⊗W → φj(W )⊗ V is given by

v ⊗ w 7→ (h · s(j)−1).w ⊗ v

for v ∈ Vh with h ∈ Hj and w ∈ W .

Proof. We first compute the 1-morphism in the category Span of spans of finite groupoids
that corresponds to the target 1-morphisms

(
P

Σ(2,1)

jkj−1,j

)
◦ τ ◦

(
id t PΣ(1,1)

j,k

)
. From the previous

proposition, we obtain the following zig-zag diagram:

Hj//G×Hk//G→ Hjkj−1//G×Hj//G← (Hjkj−1 ×Hk)//G→ Hjk//G .

The first morphism is given by the morphisms implementing the J-action that has been com-
puted in the proof of proposition 3.24, composed with the exchange of factors. The second
1-morphism is obtained from the two projections and the last 1-morphism is the product in the
group H.
Thus, the 2-morphism F̂ yields a 2-morphism F̂G in the diagram

Hj ×Hk//G

rrddddddddddddddddddddddddddddddddddd

**TTTTTTTTTTTTTTTT

F̂G

��

Hj//G×Hk//G

**TTTTTTTTTTTTTTT
Hjk//G

Hjkj−1//G×Hj//G (Hjkj−1 ×Hj)//Goo

44jjjjjjjjjjjjjjjj

where F̂G is induced by the equivariant map (h, h′) 7→ (hh′h−1, h). Once the situation is
presented in this way, one can carry our explicitly the calculation along the lines described in
[Mor10, Section 4.3] and obtain the desired result.

A similar discussion can in principle be carried out to compute the associators. More generally,
structural morphisms on H//G-mod can be derived from suitable 3-cobordisms. The relevant
computations become rather involved. On the other hand, the category H//G-mod also inherits
structural morphisms from the underlying category of vector spaces. We will use in the sequel
the latter type of structural morphism.

4 Equivariant Drinfel’d double

The goal of this section is to show that the category CJ(G) :=
⊕

j∈J C(G)j comprising the
categories we have constructed in proposition 3.22 has a natural structure of a J-modular
category.
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Very much like ordinary modularity, J-modularity is a completeness requirement for the relevant
tensor category that is suggested by principles of field theory. Indeed, it ensures that one can
construct a J-equivariant topological field theory, see [Tur10]. For the definition of J-modularity
we refer to [Kir04, Definition 10.1].
To establish the structure of a modular tensor category on the category found in the previous
sections, we realize this category as the representation category of a finite-dimensional algebra,
more precisely of a J-Hopf algebra. This section is organized as follows: we first recall the
notions of equivariant fusion categories and of equivariant ribbon algebras, taking into account
a suitable form of weak actions. In section 4.3, we then present the appropriate generalization of
the Drinfel’d double that describes the category CJ(G). We then describe its orbifold category
as the category of representations of a braided Hopf algebra, which allows us to establish the
modularity of the orbifold category. We then apply a result of [Kir04] to deduce that the
structure with which we have endowed CJ(G) is the one of a J-modular tensor category.
The Hopf algebraic structures endowed with weak actions we introduce in this section might
be of independent interest.

4.1 Equivariant fusion categories.

Let 1 → G → H
π→ J → 1 be an exact sequence of finite groups. The normal subgroup G

acts on H by conjugation; denote by H//G the corresponding action groupoid. We consider
the functor category H//G-mod := [H//G,VectK], where K is an algebraically closed field
of characteristic zero. The category H//G-mod is the category of H-graded vector spaces,
endowed with an action of the subgroup G such that g.Vh ⊂ Vghg−1 for all g ∈ G, h ∈ H.
An immediate corollary of proposition 3.22 is the following description of the category CJ(G) :=⊕

j∈J C(G)j as an abelian category:

Proposition 4.1. The category CJ(G) is equivalent, as an abelian category, to the category
H//G-mod. In particular, the category CJ(G) is a 2-vector space in the sense of definition 2.5.

Proof. With Hj := π−1(j), proposition 3.22 gives the equivalence C(G)j ∼= Hj//G-mod of
abelian categories. The equivalence of categories CJ(G) ∼= H//G-mod now follows from the
decomposition H =

⊔
j∈J Hj. By [Mor08, Lemma 4.1.1], the representation category of a finite

groupoid is a 2-vector space.

Representation categories of finite groupoids are very close in structure to representation cat-
egories of finite groups. In particular, there is a complete character theory that describes the
simple objects, see appendix A.2.
We next introduce equivariant categories.

Definition 4.2. Let J be a finite group and C a category.

1. A categorical action of the group J on the category C consists of the following data:

– A functor φj : C → C for every group element j ∈ J .

– A functorial isomorphism αi,j : φi◦φj
∼→ φij for every pair of group elements i, j ∈ J

such that the coherence conditions

αij,k ◦ αi,j = αi,jk ◦ φi(αj,k) and φ1
∼= id

hold.
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2. If C is a monoidal category, we only consider actions by monoidal functors φj and require
the natural transformations to be monoidal natural transformations. In particular, for
each group element j ∈ J , we have the additional datum of a natural isomorphism

γj(U, V ) : φj(U)⊗ φj(V )
∼→ φj(U ⊗ V )

for each pair of objects U, V of C such that the following diagrams commute:

jkX ⊗ jkY
γjk(X,Y )

//

αjk(X)⊗αjk(Y )

��

jk(X ⊗ Y )

αjk(X⊗Y )

��
j(k(X))⊗ j(k(Y ))

jγk(X,Y )◦γj(kX,kY )
// j(k(X ⊗ Y ))

3. A J-equivariant category C is a category with a decomposition C =
⊕

j∈J Cj and a cate-
gorical action of J , subject to the compatibility requirement

φiCj ⊂ Ciji−1

with the grading.

(Moreover, an isomorphism φj(1)→ 1 has to be chosen; we will suppress this isomorphism
in our discussion.) We use the notation jU := φj(U) for the image of an object U ∈ C
under the functor φj.

4. A J-equivariant tensor category is a J-equivariant monoidal category C, subject to the
compatibility requirement that the tensor product of two homogeneous elements U ∈
Ci, V ∈ Cj is again homogeneous, U ⊗ V ∈ Cij.

Remark 4.3. For any category C, consider the category AUT(C) whose objects are automor-
phisms of C and whose morphisms are natural isomorphisms. The composition of functors and
natural transformations endow AUT(C) with the natural structure of a strict tensor category.
A categorical action of a finite group J on a category C then amounts to a tensor functor
φ : J → AUT(C), where J is seen as a tensor category with only identity morphisms, compare
also remark 3.2.3.
Similarly, we consider for a monoidal category C the category AUTmon(C) whose objects are
monoidal automorphisms of C and whose morphisms are monoidal natural automorphisms.
The categorical actions we consider for monoidal categories are then tensor functors φ : J →
AUTmon(C) For more details, we refer to [Tur10] Appendix 5.

The category H//G-mod has a natural structure of a monoidal category: the tensor product
of two objects V = ⊕h∈HVh and W = ⊕h∈HWh is the vector space V ⊗W with H grading
given by (V ⊗W )h := ⊕h1h2=hVh1 ⊗Wh2 and G action given by g.(v ⊗ w) = g.v ⊗ g.w. The
associators are inherited from the underlying category of vector spaces.

Proposition 4.4. Consider an exact sequence of groups 1 → G → H → J → 1. Any choice
of a a set-theoretic section s : J → H allows us to endow the abelian category H//G-mod with
the structure of a J-equivariant tensor category as follows: the functor φj is given by shifting
the grading from h to s(j)hs(j)−1 and replacing the action by g by the action of s(j)gs(j)−1.
The isomorphism αi,j : φi ◦ φk → φij is given by the left action action of the element

αi,j = s(i)s(j)s(ij)−1 .
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The fact that the action is only a weak action thus accounts for the failure of s to be a section
in the category of groups.

Proof. Only the coherence conditions αij,k ◦αi,j = αi,jk ◦ φi(αj,k) remain to be checked. By the
results of Dedecker and Schreier, cf. proposition 3.3, the group elements s(i)s(j)s(ij)−1 ∈ G
are the coherence cells of a weak group action of J on H. By definition 3.1, this implies the
coherence identities, once one takes into account that that composition of functors is written
in different order than group multiplication.

We have derived in section 3.5 from the geometry of extended cobordism categories more
structure on the geometric category CJ(G) =

⊕
j∈J C(G)j. In particular, we collect the functors

⊗jk : C(G)j � C(G)k → C(G)jk from proposition 3.23 into a functor

⊗ : C � C → C. (4.1)

Another structure are the isomorphisms V ⊗W → φj(W ) ⊗ V for V ∈ C(G)j, described in
proposition 3.26. Together with the associators, this suggests to endow the category CJ(G)
with a structure of a braided J-equivariant tensor category:

Definition 4.5. A braiding on a J-equivariant tensor category is a family

cU,V : U ⊗ V → jV ⊗ U

of isomorphisms, one for every pair of objects U ∈ Ci, V ∈ Cj, which are natural in the sense
that for any pair f : U → U ′, g : V → V ′ of morphisms, the identity

cU ′,V ′(f ⊗ g) = (jg ⊗ f)cU,V ,

holds. Moreover, a braiding is required to satisfy an analogue of the hexagon axioms (see [Tur10,
appendix A5]) and to be preserved under the action of J , i.e. the following diagram commutes
for all objects U, V with U ∈ Cj and i ∈ J

i(U ⊗ V )

γi

��

i(cU,V )
// i(jV ⊗ U)

γi // i(jV )⊗ iU

αij(V )⊗id

��
iU ⊗i V ciU,iV

// ij−1
(iV )⊗ iU

αiji−1,i(V )⊗id
// ijV ⊗ iU

Remark 4.6. 1. It should be appreciated that a braided J-equivariant category is not, in
general, a braided category. Its neutral component C1 with 1 ∈ J the neutral element, is
a braided tensor category.

2. By replacing the underlying category by an equivalent category, one can replace a weak
action by a strict action, compare [Tur10, Appendix A5]. In our case, weak actions
actually lead to simpler algebraic structures.

3. The J-equivariant monoidal category H//G-mod has a natural braiding isomorphism that
has been described in proposition 3.26

We use the equivalence of abelian categories between CJ(G) =
⊕

j∈J C(G)j and H//G-mod

to endow the category CJ(G) =
⊕

j∈J C(G)j with associators. The category has now enough
structure that we can state our next result:
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Proposition 4.7. The category CJ(G) =
⊕

j∈J C(G)j, with the tensor product functor from
(4.1), can be endowed with the structure of a braided J-equivariant tensor category such that
the isomorphism CJ(G) =

⊕
j∈J C(G)j ∼= H//G-mod becomes an isomorphism of braided J-

equivariant tensor categories.

Proof. The compatibility with the grading is implemented by definition via the graded compo-
nents ⊗jk of ⊗ and the graded components of cV,W . It remains to check that the action is by
tensor functors and that the braiding satisfies the hexagon axiom. The second boils down to
a simple calculation and the first is seen by noting that the action is essentially an index shift
which is preserved by tensoring together the respective components.

4.2 Equivariant ribbon algebras

In the following, let J again be a finite group. To identify the structure of a J-modular tensor
category on the geometric category CJ(G) =

⊕
j∈J C(G)j, we need dualities. This will lead us

to the discussion of (equivariant) ribbon algebras. Apart from strictness issues, our discussion
closely follows [Tur10]. We start our discussion with the relevant category-theoretic structures.

Definition 4.8. 1. A J-equivariant ribbon category is a J-braided category with dualities
and a family of isomorphisms θV : V → jV for all j ∈ J, V ∈ Cj, such that θ is compatible
with duality and the action of J (see [Tur10, VI.2.3] for the identities). In contrast to
[Tur10], we allow weak J-actions and thus require the diagram

U ⊗ V
θU⊗V //

θU⊗θV
��

ji(U ⊗ V )

jU ⊗i V

RjU,iV &&NNNNNNNNNNN
j(iU ⊗i V )

αji◦j(γi)

OO

j(iV )⊗j U γj
// j(iV ⊗ U)

j(RiV,U )

77ppppppppppp

to commute for U ∈ Cj and V ∈ Ci.

2. A J-equivariant fusion category is an abelian semi-simple J-equivariant ribbon category.

Remark 4.9. The following facts directly follow from the definition of J-equivariant ribbon
category: the neutral component C1 is itself a braided tensor category. In particular, it contains
the tensor unit of the J-equivariant tensor category. The dual object of an object V ∈ Cj is in
the category Cj−1.

We will not be able to directly endow the geometric category CJ(G) =
⊕

j∈J C(G)j with the
structure of a J-equivariant fusion category. Rather, we will realize an equivalent category as
the category of modules over a suitable algebra. To this end, we introduce in several steps the
notions of a J-ribbon algebra and analyze the extra structure induced on its representation
category.

Definition 4.10. Let A be an (associative, unital) algebra over a field K. A weak J-action
on A consists of an algebra automorphism ϕj ∈ Aut(A), one for every element j ∈ J , and an
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invertible element cij ∈ A, one for every pair of elements i, j ∈ J , such that for all i, j, k ∈ J
the following conditions hold:

ϕi ◦ ϕj = Innci,j ◦ ϕij ϕi(cj,k) · ci,jk = ci,j · cij,k and c1,1 = 1

Here Innx with x an invertible element of A denotes the algebra automorphism a 7→ xax−1. A
weak action of a group J is called strict, if ci,j = 1 for all pairs i, j ∈ J .

Remark 4.11. As discussed for weak actions on groups in remark 3.2, a weak action on a
K-algebra A can be seen as a categorical action on the category which has one object and the
elements of A as endomorphisms.

We now want to relate a weak action (ϕj, ci,j) of a group J on an algebra A to categorical
actions on the representation category A-mod. To this end, we define for each element j ∈ J a
functor on objects by

j(M,ρ) := (M,ρ ◦ (ϕj ⊗ idM))

and on morphisms by jf = f . For the functorial isomorphisms, we take αi,j(M,ρ) := ρ(cij ⊗
idM). The next lemma is immediate from the definitions:

Lemma 4.12. Given a weak action of J on a K-algebra A, these data define a categorical
action on the category A-mod.

We next turn to an algebraic structure that yields J-equivariant tensor categories.

Definition 4.13. A J-Hopf algebra over K is a Hopf algebra A with a J-grading A =
⊕

j∈J Aj
and a weak J-action such that:

• The algebra structure of A restricts to the structure of an associative algebra on each
homogeneous component so that A is the direct sum of the components Aj as an algebra.

• J acts by homomorphisms of Hopf algebras.

• The action of J is compatible with the grading, i.e. ϕi(Aj) ⊂ Aiji−1

• The coproduct ∆ : A→ A⊗ A respects the grading, i.e.

∆(Aj) ⊂
⊕

p,q∈J,pq=j

Ap ⊗ Aq .

Remark 4.14. 1. For the counit ε and the antipode S of a J-Hopf algebra, the compati-
bility relations with the grading ε(Aj) = 0 for j 6= 1 and S(Aj) ⊂ Aj−1 are immediate
consequences of the definitions.

2. The restrictions of the structure maps endow the homogeneous component A1 of A with
the structure of a Hopf algebra with a weak J-action.

3. J-Hopf algebras with strict J-action have been considered under the name “J-crossed Hopf
coalgebra” in [Tur10, Chapter VII.1.2].

4. The invertible elements cij of a J-Hopf algebra that are part of the definition of the weak
J-action fulfill the identity ε(ci,j)ε((ci,j)

−1) = 1.

We will normalize them in such a way that the identity ε(ci,j) = 1 for all i, j ∈ J holds.
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The category A-mod of finite-dimensional modules over a J-Hopf algebra inherits a natural du-
ality from the duality of the underlying category of K-vector spaces. The weak action described
in Lemma 4.12 is even a monoidal action, since J acts by Hopf algebra morphisms. A grading
on A-mod can be given by taking (A-mod)j = Aj-mod as the j-homogeneous component. From
the properties of a J-Hopf algebra one can finally deduce that the tensor product, duality and
grading are compatible with the J-action. We have thus arrived at the following statement:

Lemma 4.15. The category of representations of a J-Hopf algebra has a natural structure
of a K-linear, abelian J-equivariant tensor category with compatible duality as introduced in
definition 4.5.

The representation category of a braided Hopf algebra is a braided tensor category. If the Hopf
algebra has, moreover, a twist element, its representation category is even a ribbon category.
We now present J-equivariant generalizations of these structures. To this end, we introduce for
a J-Hopf algebra A a linear endomorphism τJ of A⊗ A that acts on a⊗ b ∈ Ai ⊗ Aj as

τJ(a⊗ b) = ϕ−1
i (b)⊗ a (4.2)

We call this linear map the J-flip on A.

Definition 4.16. Let A be a J-Hopf algebra. An R-matrix in A is an invertible element
R =

∑
i,j∈J Ri,j ∈ A⊗ A with Rij ∈ Ai ⊗K Aj which satisfies the following conditions:

•
R∆(a) = τJ∆(a)R

• For any triple i, j, k ∈ J , we have the following equivariant version of the Yang-Baxter
relations:

(idAi ⊗∆j,k)(Ri,jk) = (Ri,k)1[j]3(Ri,j)12[k]

(∆i,j ⊗ idAk)(Rij,k) = ((ϕj ⊗ idAk)(Rj−1ij,k)1[j]3(Rj,k)[i]23

where ∆i,j : Aij → Ai ⊗Aj are the components of the coproduct and for r =
∑

r r
′ ⊗ r′′ ∈

A⊗ A we denote

– r12[k] = r ⊗ 1k ∈ A⊗3

– r[i]23 = 1i ⊗ r
– r1[j]3 =

∑
r r
′ ⊗ 1j ⊗ r′′

with 1 =
∑

j∈J 1j.

A J-Hopf algebra with an R-matrix is called a J-braided Hopf algebra.

Remark 4.17. • A J-braided Hopf algebra is not, in general, a braided Hopf algebra.

• The component A1 is a braided Hopf algebra.

For the twist, we proceed similarly:

Definition 4.18. Let A be a braided J-Hopf algebra with R-matrix R. A twist element in A
is an invertible element θ =

∑
j∈J θj ∈ A with θj ∈ Aj that obeys the following conditions:
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• For all j ∈ J, a ∈ Aj:
ϕj(a) = θ−1

j aθj

• The elements (θj)j∈J are invariant under the antipode and the action of J , and further-
more compatible with the R-matrix, i.e.

∆ji(θji) = (θj ⊗ θi)[∆ji(cji)(τ(idHi ⊗ ϕj)Ri,j)Rj,i]
−1 for all i, j ∈ J .

A J-braided Hopf algebra with a twist is called J-ribbon algebra.

Let A be a J-ribbon algebra. By lemma 4.15, its representation category A-mod has a natural
structure of a J-equivariant tensor category with compatible dualities. To find the structure of
a J-ribbon category, we have to find a J-equivariant braiding and twist.
To this end, we consider for objects V ∈ Ai-mod and W ∈ Aj-mod the morphism RVW :=
τJ ◦R. : V ⊗W →i W ⊗V constructed from the the left-action R. of R on the A⊗A-module
V ⊗W and the J-flip τJ introduced in (4.2). The twist endomorphism θV for V ∈ A-mod is
defined by the left action of the twist element as well, θV := θ−1.
The morphisms R and θ can be checked to endow the J-equivariant category A-mod with a
J-equivariant braiding and twist. We have thus derived:

Proposition 4.19. The representation category of a J-ribbon algebra is a J-ribbon category.

Remark 4.20. In [Tur10], Hopf algebras and ribbon Hopf algebras with strict J-action have
been considered. The next subsection will give an illustrative example where the natural action
is not strict.

4.3 Equivariant Drinfel’d Double

The goal of this subsection is to construct a J-crossed ribbon algebra, given a finite group G
with a weak J-action. As explained in subsection 3.1, such a weak J-action amounts to a group
extension

1→ G −→ H
π−→ J → 1 (4.3)

with a set-theoretical splitting s : J → H.
We start from the well-known fact reviewed in subsection 2.5 that the Drinfel’d double D(H)
of the finite group H is a ribbon Hopf algebra. The double D(H) has a canonical basis δh1⊗h2

indexed by pairs h1, h2 of elements of H. Let G ⊂ H be a subgroup. We are interested in the
vector subspace DJ(G) spanned by the basis vectors δh ⊗ g with h ∈ H and g ∈ G.

Lemma 4.21. The structure maps of the Hopf algebra D(H) restrict to the vector subspace
DJ(G) in such a way that the latter is endowed with the structure of a Hopf subalgebra.

Remark 4.22. The induced algebra structure on DJ(G) is the one of the groupoid algebra of
the action groupoid H//G.

The Drinfel’d double D(H) of a group H has also the structure of a ribbon algebra. However,
neither the R-matrix nor the the ribbon element yield an R-matrix or a ribbon element of
DJ(G) ⊂ D(H). Rather, this Hopf subalgebra can be endowed with the structure of a J-ribbon
Hopf algebra as in definition 4.18.
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To this end, consider the partition of the group H into the subsets Hj := π−1(j) ⊂ H. It gives
a J-grading of the algebra A as a direct sum of subalgebras:

Aj := 〈δh ⊗ g〉h∈Hj ,g∈G .

The set-theoretical section s gives a weak action of J on A that can be described by its action
on the canonical basis of Aj:

ϕj(δh ⊗ g) := (δs(j)hs(j)−1 ⊗ s(j)gs(j)−1) ;

the coherence elements are

cij :=
∑
h∈H

δh ⊗ s(i)s(j)s(ij)−1 .

Now the compatibility relations of grading and weak J-action with the Hopf algebra structure
that have been formulated in definition 4.13 can be checked by straightforward calculations.
We summarize our finding:

Proposition 4.23. The Hopf algebra DJ(G), together with the grading and weak J-action
derived from the weak J-action on the group G, has the structure of a J-Hopf algebra.

We now turn to the last piece of structure, an R-matrix and twist element in DJ(G). Consider
the element R =

∑
ij Ri,j ∈ DJ(G)⊗DJ(G) with homogeneous elements Rij defined as

Ri,j :=
∑

h1∈Hi,h2∈Hj

(δh1 ⊗ 1)⊗ (δh2 ⊗ h1s(j)
−1). (4.4)

The element Rij is invertible with inverse

R−1
i,j =

∑
h1∈Hi,h2∈Hj

(δh1 ⊗ 1)⊗ (δh2 ⊗ s(j)h−1
1 ).

We also introduce a twist element θ =
∑

j∈J θj ∈ DJ(G) with θj :=
∑

h∈Hj(δh ⊗ hs(j)
−1) ∈ Aj

for every element j ∈ J . Again, a straightforward computation yields

Proposition 4.24. The elements R and θ endow the J-Hopf algebra DJ(G) with the structure
of a J-ribbon algebra that we call the J-Drinfel’d double of G.

We are now ready to come back to the J-equivariant tensor category CJ(G) =
⊕

j∈J C(G)j
described in proposition 4.7. From this proposition, we know that the category CJ(G) is
equivalent to H//G-mod ∼= DJ(G)-mod as a J-equivariant tensor category. Also J-action
and tensor product coincide with the ones on DJ(G)-mod. Moreover, the equivariant braiding
of CJ(G) computed in proposition 3.26 is just the J-flip composed with action of the R-matrix
of DJ(G) given in (4.4) which is the equivariant braiding in DJ(G)-mod.
This allows us to transfer also the other structure on representation category of the J-Drinfel’d
double DJ(G) described in proposition 4.24 to the category CJ(G):

Proposition 4.25. The J-equivariant tensor category CJ(G) =
⊕

j∈J C(G)j described in propo-
sition 4.7 can be endowed with the structure of a braided J-equivalent fusion category such that
it is equivalent, as a J-equivariant fusion category, to the category DJ(G)-mod.
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Remark 4.26. At this point, we have constructed a J-equivariant fusion category CJ(G) =⊕
j∈J C(G)j with neutral component C(G)1

∼= D(G)-mod from a weak action of the group J on
the group G, or in different words, from a 2-group homomorphisms J → AUT(G) with AUT(G)
the automorphism 2-group of G.
In this remark, we very briefly sketch the relation to the description of J-equivariant fusion
categories with given neutral sector B in terms of 3-group homomorphisms J → Pic(B) given in
[ENO10]. Here Pic(B) denotes the so called Picard 3-group whose objects are invertible module-
categories of the fusion category B. The group structure comes from the tensor product of module
categories which can be defined since the braiding on B allows to turn module categories into
bimodule categories.
Using this setting, we give a description of our J-equivariant fusion category DJ(G)-mod in
terms of a functor Ξ : J → Pic(D(G)). To this end, we construct a 3-group homomorphism
AUT(G) → Pic(D(G)) and write Ξ as the composition of this functor and the functor J →
AUT(G) defining the weak J-action.
The 3-group homomorphism AUT(G) → Pic(D(G)) is given as follows: to an object ϕ ∈
AUT(G) we associate the twisted conjugation groupoid G//ϕG, where G acts on itself by twisted
conjugation, g.x := gxϕ(g)−1. This yields the category G//ϕG-mod := [G//ϕG,VectK] which
is naturally a module category over D(G)-mod. Morphisms ϕ → ψ in AUT(G) are given
by group elements g ∈ G with gϕg−1 = ψ; to such a morphism we associate the functor
Lg : G//ϕG → G//ψG given by conjugating with g ∈ G on objects and morphisms. This
induces functors of module categories G//ϕG-mod → G//ψG-mod. Natural coherence data
exist; one then shows that this really establishes the desired 3-group homomorphism.

4.4 Orbifold category and orbifold algebra

It remains to show that the J-equivariant ribbon category CJ(G) =
⊕

j∈J C(G)j described in
4.24 is J-modular. To this end, we will use the orbifold category of the J-equivariant category:

Definition 4.27. Let C be a J-equivariant category. The orbifold category CJ of C has:

• as objects pairs (V, (ψj)j∈J) consisting of an object V ∈ C and a family of isomorphisms
ψj : jV → V with j ∈ J such that ψi ◦ iψj = ψij.

• as morphisms f : (V, ψVj ) → (W,ψWj ) those morphisms f : V → W in C for which
ψj ◦ j(f) = f ◦ ψj holds for all j ∈ J .

In [Kir04], it has been shown that the orbifold category of a J-ribbon category is an ordinary,
non-equivariant ribbon category:

Proposition 4.28. 1. Let C be a J-ribbon category. Then the orbifold category CJ is natu-
rally endowed with the structure of a ribbon category by the following data:

• The tensor product of the objects (V, (ψVj )) and (W, (ψWj )) is defined as the object
(V ⊗W, (ψVj ⊗ ψWj )).

• The tensor unit for this tensor product is 1 = (1, (id))

• The dual object of (V, (ψj)) is the object (V ∗, (ψ∗j )
−1), where V ∗ denotes the dual

object in C.
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• The braiding of the two objects (V, (ψVj )) and (W, (ψWj )) with V ∈ Cj is given by the
isomorphism (ψj ⊗ idV ) ◦ cV,W , where cV,W : V ⊗W →j W ⊗ V is the J-braiding in
C.

• The twist on an object (V, (ψj)) is ψj ◦ θ, where θ : V → jV is the twist in C.

2. If C is a J-equivariant fusion category, then the orbifold category CJ is even a fusion
category.

It has been shown in [Kir04] that the J-modularity of a J-equivariant fusion category is equiva-
lent to the modularity as in definition 2.20 of its orbifold category. Our problem is thus reduced
to showing modularity of the orbifold category of DJ(G)-mod.
To this end, we describe orbifoldization on the level of (Hopf-)algebras: given a J-equivariant

algebra A, we introduce an orbifold algebra ÂJ such that its representation category ÂJ -mod
is isomorphic to the orbifold category of A-mod.

Definition 4.29. Let A be an algebra with a weak J-action (ϕj, cij). We define on the vector

space ÂJ := A⊗K[J ] a unital associative multiplication which is defined on an element of the
form (a⊗ j) with a ∈ A and j ∈ J by

(a⊗ i)(b⊗ j) := aϕi(b)cij ⊗ ij .

This algebra is called the orbifold algebra ÂJ of the J-equivariant algebra A with respect to the
weak J-action.

If A is even a J-Hopf algebra, it is possible to endow the orbifold algebra with even more
structure. To define the coalgebra structure on the orbifold algebra, we use the standard
coalgebra structure on the group algebra K[J ] with coproduct ∆J(j) = j ⊗ j and counit
εJ(j) = 1 on the canonical basis (j)j∈J . The tensor product coalgebra on A ⊗ K[J ] has the
coproduct and counit

∆(a⊗ j) = (idA ⊗ τ ⊗ idK[J ])(∆A(a)⊗ j ⊗ j), and ε(a⊗ j) = εA(a) (4.5)

which is clearly coassociative and counital.
To show that this endows the orbifold algebra with the structure of a bialgebra, we have first
to show that the coproduct ∆ is a unital algebra morphism. This follows from the fact, that
∆A is already an algebra morphism and that the action of J is by coalgebra morphisms. Next,
we have to show that the counit ε is a unital algebra morphism as well. This follows from the
fact that the action of J commutes with the counit and from the fact that we take normalized
elements ci,j, see remark 4.14 3.). The compatibility of ε with the unit is obvious.
In a final step, one verifies that the endomorphism

S(a⊗ j) = (cj−1,j)
−1ϕj−1(SA(a))⊗ j−1

is an antipode. Altogether, one arrives at

Proposition 4.30. If A is a J-Hopf-algebra, then the orbifold algebra ÂJ has a natural structure
of a Hopf algebra.

Remark 4.31. 1. The algebra ÂJ is not the fixed point subalgebra AJ of A; in general, the
categories AJ-mod and ÂJ-mod are inequivalent.
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2. Given any Hopf algebra A with weak J-action, we have an exact sequence of Hopf algebras

A→ ÂJ → K[J ] . (4.6)

In particular, A is a sub-Hopf algebra of ÂJ . In general, there is no inclusion of K[J ]

into ÂJ as a Hopf algebra.

3. If the action of J on the algebra A is strict, then the algebra A is a module algebra over
the Hopf algebra K[J ] (i.e. an algebra in the tensor category K[J ]-mod). Then the orbifold
algebra is the smash product A#K[J ] (see [Mon93, Section 4] for the definitions). The
situation described occurs, if and only if the exact sequence (4.6) splits.

The next proposition justifies the name “orbifold algebra” for ÂJ :

Proposition 4.32. Let A be a J-Hopf algebra. Then there is an equivalence of tensor categories

ÂJ-mod ∼= (A-mod)J .

Proof. • An object of (A-mod)J consists of a K-vector space M , an A-action ρ : A →
End(M) and a family of A-module morphisms (ψj)j∈J . We define on the same K-vector

space M the structure of an ÂJ module by ρ̃ : ÂJ → End(M) with ρ̃(a⊗ j) := ρ(a) ◦ ψj.
One next checks that, given two objects (M,ρ, ψ) and (M ′, ρ′, ψ′) in (A-mod)J , a K-linear
map f ∈ HomK(M,M ′) is in the subspace Hom(A-mod)J (M,M ′) if and only if it is in the
subspace HomÂJ -mod(M, ρ̃), (M ′, ρ̃′)).

We can thus consider a K-linear functor

F : (A-mod)J → ÂJ -mod (4.7)

which maps on objects by (M,ρ, ψ) 7→ (M, ρ̃) and on morphisms as the identity. This
functor is clearly fully faithful.

To show that the functor is also essentially surjective, we note that for any object (M, ρ̃)

in ÂJ -mod, an object in (A-mod)J can be obtained as follows: on the underlying vector
space, we have the structure of an A-module by restriction, ρ(a) := ρ̃(a⊗1J). A family of
equivariant morphisms is given by ψj := ρ̃(1⊗j). Clearly its image under F is isomorphic
to (M, ρ̃). This shows that the functor F is an equivalence of categories, indeed even an
isomorphism of categories.

• The functor F is also a strict tensor functor: consider two objects (M1, ρ1, ψ1) and
(M2, ρ2, ψ2) in (A-mod)J . The functor F yields the following action of the orbifold Hopf

algebra ÂJ on the K-vector space M1 ⊗K M2:

ρ̃M1⊗M2(a⊗ j) = ρ1 ⊗ ρ2(∆(a)) ◦ (ψ1(j)⊗ ψ2(j)) .

Since the coproduct on ÂJ was just given by the tensor product of coproducts on A
and K[G], this coincides with the tensor product of F (M1, ρ1, ψ1) and F (M2, ρ2, ψ2) in

ÂJ -mod.
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In a final step, we assume that the J-equivariant algebra A has the additional structure of a
J-ribbon algebra. Then, by proposition 4.19, the category A-mod is a J-ribbon category and by
proposition 4.28 the orbifold category (A-mod)J is a ribbon category. The strict isomorphism
(4.7) of tensor categories allows us to transport both the braiding and the ribbon structure to

the representation category of the orbifold Hopf algebra ÂJ . General results [Kas95, Proposition

16.6.2] assert that this amounts to a natural structure of a ribbon algebra on ÂJ . In fact, we
directly read off the R-matrix and the ribbon element. For example, the R-matrix R̂ of ÂJ

equals
R̂ = τ̂ cÂJ ,ÂJ (1ÂJ ⊗ 1ÂJ ) ∈ ÂJ ⊗ ÂJ ,

where the linear map τ̂ flips the two components of the tensor product ÂJ⊗ÂJ . This expression
can be explicitly evaluated, using the fact that A⊗K[J ] is an object in (A-mod)J with A-module
structure given by left action on the first component and that the morphisms ψj are given by

left multiplication on the second component. We find for the R-matrix of ÂJ

R̂ =
∑
i,j∈J

(id⊗ ψj)(ρ⊗ ρ)(R)((1A ⊗ 1J)⊗ 1A ⊗ 1J)

=
∑
i,j∈J

((Ri,j)1 ⊗ 1J)⊗ ((Ri,j)2 ⊗ j))

where R is the R-matrix of A. The twist element of ÂJ can be computed similarly; one finds

θ =

(∑
j∈J

ψj ◦ ρ(θ−1)(1Aj ⊗ 1)

)−1

=

(∑
j∈J

(θj)
−1 ⊗ j

)−1

We summarize our findings:

Corollary 4.33. If A is a J-ribbon algebra, then the orbifold algebra ÂJ inherits a natural
structure of a ribbon algebra such that the equivalence of tensor categories in proposition 4.32
is an equivalence of ribbon categories.

4.5 Equivariant modular categories

In this subsection, we show that the orbifold category of the J-equivariant ribbon category
CJ(G)-mod is J-modular. A theorem of Kirillov [Kir04, Theorem 10.5] then immediately implies
that the category CJ(G)-mod is J-modular.
Since we have already seen in corollary 4.33 that the orbifold category is equivalent, as a ribbon
category, to the representation category of the orbifold Hopf algebra, it suffices the compute this
Hopf algebra explicitly. Our final result asserts that this Hopf algebra is an ordinary Drinfel’d
double:

Proposition 4.34. The K-linear map

Ψ : D̂J(G)
J

→ D(H)

(δh ⊗ g ⊗ j) 7→ (δh ⊗ gs(j))
(4.8)

is an isomorphism of ribbon algebras, where the Drinfel’d double D(H) is taken with the standard
ribbon structure introduced in subsection 2.5.
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This result immediately implies the equivalence

(D̂J(G)-mod)J ∼= D(H)-mod

of ribbon categories and thus, by proposition 2.21, the modularity of the orbifold category, so
that we have finally proven:

Theorem 4.35. The category CJ(G) =
⊕

j∈J C(G)j has a natural structure of a J-modular
tensor category.

Proof of proposition 4.34. We show by direct computations that the linear map Ψ preserves
product, coproduct, R-matrix and twist element:

• Compatibility with the product:

Ψ((δh ⊗ g ⊗ j)(δ′h ⊗ g′ ⊗ j′)) = Ψ((δh ⊗ g) · j(δ′h ⊗ g′)cjj′ ⊗ jj′)

= Ψ

(
(δh ⊗ g) · (δs(j)h′s(j)−1 ⊗ s(j)g′s(j)−1) ·

∑
h′′∈H

(δh′′ ⊗ s(j)s(j′)s(jj′)−1)⊗ jj′
)

= Ψ
(
δ(h, gs(j)hs(j)−1g−1)(δh ⊗ gs(j)g′s(j′)s(jj′)−1)⊗ jj′

)
= δ(h, gs(j)hs(j)−1g−1)(δh ⊗ gs(j)g′s(j′))
= (δh ⊗ gs(j)) · (δh′ ⊗ g′s(j′))
= Ψ(δh ⊗ g ⊗ j)Ψ(δh′ ⊗ g′ ⊗ j′)

• Compatibility with the coproduct:

(Ψ⊗Ψ)∆(δh ⊗ g ⊗ j) =
∑

h′h′′=h

Ψ(δh′ ⊗ g ⊗ j)⊗Ψ(δh′′ ⊗ g ⊗ j)

=
∑

h′h′′=h

(δh′ ⊗ gs(j))⊗ (δh′′ ⊗ gs(j))

= ∆ (Ψ(δh ⊗ g ⊗ j))

• The R-matrix of D̂J(G)
J

has been determined in the lines preceding corollary 4.33:

R =
∑
j,j′∈J

∑
h∈Hj ,h′∈Hj′

(δh ⊗ 1G ⊗ 1J)⊗ (δh′ ⊗ hs(j)−1 ⊗ j)

This implies

(Ψ⊗Ψ)(R) =
∑
j,j′∈J

∑
h∈Hj ,h′∈Hj′

Ψ(δh ⊗ 1G ⊗ 1J)⊗Ψ(δh′ ⊗ hs(j)−1 ⊗ j)

=
∑

h h′∈H

(δh ⊗ 1)⊗ (δh′ ⊗ h),

which is the standard R-matrix of the Drinfel’d double D(H).
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• The twist in D̂J(G)
J

is by corollary 4.33 equal to θ =
(∑

j∈J
∑

h∈Hj(δh ⊗ hs(j)
−1 ⊗ j)

)−1

and thus it gets mapped to the element

Ψ(θ) =

∑
j∈J

∑
h∈Hj

Ψ(δh ⊗ hs(j)−1 ⊗ j)

−1

=

(∑
h∈H

(δh ⊗ h)

)−1

=
∑
h∈H

(δh ⊗ h−1)

which is the twist element in D(H).

4.6 Summary of all tensor categories involved

We summarize our findings by discussing again the four tensor categories mentioned in the
introduction, in the square of equation (1.1), thereby presenting the explicit solution of the
algebraic problem described in section 1.1. Given a finite group G with a weak action of a
finite group J , we get an extension 1 → G → H → J → 1 of finite groups, together with a
set-theoretic section s : J → H.

Proposition 4.36.
We have the following natural realizations of the categories in question in terms of categories
of finite-dimensional representations over finite-dimensional ribbon algebras:

1. The premodular category introduced in [Ban05] is B(G/H)-mod. As an abelian category,
it is equivalent to the representation category G//H-mod of the action groupoid G//H,
i.e. to the category of G-graded K-vector spaces with compatible action of H.

2. The modular category obtained by modularization is D(G)-mod. As an abelian category,
it is equivalent to G//G-mod.

3. The J-modular category constructed in this paper is DJ(G)-mod. As an abelian category,
it is equivalent to H//G-mod.

4. The modular category obtained by orbifoldization from the J-modular category D(G)-mod
is equivalent to D(H)-mod. As an abelian category, it is equivalent to H//H-mod.

Equivalently, the diagram in equation (1.1), has the explicit realization:

D(G)-mod

orbifold

��

J

		
� � // DJ(G)-mod

J

		

orbifold

��
B(G / H)-mod

modularization

OO

� � // D(H)-mod

OO
(4.9)
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We could have chosen the inclusion in the lower line as an alternative starting point for the
solution of the algebraic problem presented in introduction 1.1. Recall from the introduction
that the category B(G/H)-mod contains a Tannakian subcategory that can be identified with
the category of representations of the quotient group J = H/G. The Tannakian subcategory
and thus the category B(G / H)-mod contain a commutative Frobenius algebra given by the
algebra of functions on J ; recall that the modularization function was just induction along this
algebra. The image of this algebra under the inclusion in the lower line yields a commutative
Frobenius algebra in the category D(H)-mod. In a next step, one can consider induction along
this algebra to obtain another tensor category which, by general results [Kir04, Theorem 4.2]
is a J-modular category.
In this approach, it remains to show that this J-modular tensor category is equivalent, as a J-
modular tensor category, to DJ(G)-mod and, in a next step that the modularization D(G)-mod
can be naturally identified with the neutral sector of the J-modular category. This line of
thought has been discussed in [Kir01, Lemma 2.2] including the square (4.9) of Hopf algebras.
Our results directly lead to a natural Hopf algebra DJ(G) and additionally show how the various
categories arise from extended topological field theories which are built on clear geometric prin-
ciples and through which all additional structure of the algebraic categories become explicitly
computable.

5 Outlook

Our results very explicitly provide an interesting class J-modular tensor categories. All data
of these theories, including the representations of the modular group SL(2,Z) on the vector
spaces assigned to the torus, are directly accessible in terms of representations of finite groups.
Also series of examples exist in which closed formulae for all quantities can be derived, e.g. for
the inclusion of the alternating group in the symmetric group.
Our results admit generalizations in various directions. In fact, in this paper, we have only
studied a subclass of Dijkgraaf-Witten theories. The general case requires, apart from the
choice of a finite group G, the choice of an element of

H3
Gp(G,U(1)) = H4(AG,Z) .

This element can be interpreted [Wil08] geometrically as a 2-gerbe on AG. It is known that
in this case a quasi-triangular Hopf algebra can be extracted that is exactly the one discussed
in [DPR90]. Indeed, our results can also be generalized by including the additional choice of a
non-trivial element

ω ∈ H4
J(AG,Z) ≡ H4(AG//J,Z) .

Only all these data together allow to investigate in a similar manner the categories constructed
by Bantay [Ban05] for crossed modules with a boundary map that is not necessarily injective
any longer. We plan to explain this general case in a subsequent publication.

A Appendix

A.1 Cohomological description of twisted bundles

In this appendix, we give a description of P -twisted bundles as introduced in definition 3.5 in
terms of local data. This local description will also serve as a motivation for the term ‘twisted’
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in twisted bundles. Recall the relevant situation: 1 → G → H
π→ J → 1 is an exact sequence

of groups. Let P
J→ M be a J-cover. A P -twisted bundle on a smooth manifold M is an

H-bundle Q→M , together with a smooth map ϕ : Q→ P such that ϕ(qh) = ϕ(q)π(h) for all
q ∈ Q and h ∈ H.

We start with the choice of a contractible open covering {Uα} of M , i.e. a covering for which all
open sets Uα are contractible. Then the J-cover P admits local sections over Uα. By choosing
local sections sα, we obtain the cocycle

jαβ := s−1
α · sβ : Uα ∩ Uβ → J

describing P .
Let (Q,ϕ) be a P -twisted G-bundle over M . We claim that we can find local sections

tα : Uα → Q

of the H-bundle Q which are compatible with the local section of the J-cover P in the sense
that ϕ ◦ tα = sα holds for all α.
To see this, consider the map ϕ : Q → P ; restricting the H-action on Q along the inclusion
G→ H, we get a G-action on Q that covers the identity on P . Hence Q has the structure of a
G-bundle over P . Note that the image of sα is contractible, since Uα is contractible. Thus the
G-bundle Q → P admits a section s′α over the image of sα. Then tα := s′α ◦ sα is a section of
the H-bundle Q→M that does the job.
With these sections tα : Uα → Q, we obtain the cocycle description

hαβ := t−1
α · tβ : Uα ∩ Uβ → H

of Q.
The set underlying the group H is isomorphic to the set G× J . The relevant multiplication on
this set depends on the choice of a section J → H; it has been described in equation (3.1):

(g, i) · (g′, j) :=
(
g · i(g′) · ci,j , ij

)
.

This allows us to express the H-valued cocycles hαβ in terms of J-valued and G-valued functions

gαβ : Uα ∩ Uβ → G .

By the condition ϕ◦ tα = sα, the J-valued functions are determined to be the J-valued cocycles
jαβ. Using the multiplication on the set G × J , the cocycle condition hαβ · hβγ = hαγ can be
translated into the following condition for gαβ

gαβ · jβγ
(
gβγ
)
· cjαβ ,jβγ = gαγ (A.1)

over Uα ∩ Uβ ∩ Uγ. This local expression can serve as a justification of the term P -twisted
G-bundle.

We next turn to morphisms. A morphism f between P -twisted bundles (Q,ϕ) and (Q′, ψ)
which are represented by twisted cocycles gαβ and g′αβ is represented by a coboundary

lα := (t′α)−1 · f(tα) : Uα → H
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between the H-valued cocycles hαβ and h′αβ. Since f satisfies ψ ◦ f = ϕ, the J-component
π ◦ lα : Uα → H → J is given by the constant function to e ∈ J . Hence the local data
describing the morphism f reduce to a family of functions

kα : Uα → G.

Under the multiplication (3.1), the coboundary relation lα · hαβ = h′αβ · lβ translates into

kα · e
(
gαβ
)
· ce,jαβ = g′αβ · jαβ

(
kβ
)
· cjαβ ,e

One can easily conclude from the definition 3.1 of a weak action that eg = g and ce,g = cg,e = e
for all g ∈ G. Hence this condition reduces to the condition

kα · gαβ = g′αβ · jαβ
(
kβ
)
. (A.2)

We are now ready to present a classification of P -twisted bundles in terms of Čech-cohomology.
Therefore we define the relevant cohomology set:

Definition A.1.1 Let
{
Uα
}

be a contractible cover of M and (jαβ) be a Čech-cocycle with
values in J .

• A (jαβ)-twisted Čech-cocycle is given by a family

gαβ : Uα ∩ Uβ → G

satisfying relation (A.1).

• Two such cocycles gαβ and g′αβ are cobordant if there exists a coboundary, that is a family
of functions ka : Uα → G satisfying relation (A.2).

• The twisted Čech-cohomology set Ȟ1
jαβ

(M,G) is defined as the quotient of twisted cocycles
modulo coboundaries.

Warning A.1.2. It might be natural to guess that twisted Čech-cohomology Ȟ1
jαβ

(M,G) agrees

with the preimage of the class [jαβ] under the map π∗ : Ȟ1(M,H)→ Ȟ1(M,J). This turns out
to be wrong: The natural map

Ȟ1
jαβ

(M,G) → Ȟ1(M,H)

[gαβ] 7→ [(gα,β, jαβ)] ,

is, in general, not injective. The image of this map is always the fiber π∗
−1[jαβ].

We summarize our findings:

Proposition A.1.3. Let P be a J-cover of M , described by the cocycle jαβ over the contractible
open cover

{
Uα
}

. Then there is a canonical bijection

Ȟ1
jαβ

(M,G) ∼=
{

Isomorphism classes of P -twisted
G-bundles over M

}
.

45



A.2 Character theory for action groupoids

In this subsection, we explicitly work out a character theory for finite action groupoids M//G;
in the case of M = pt, this theory specializes to the character theory of a finite group (cf.
[Isa94] and [Ser77]). In the special case of a finite action groupoid coming from a finite crossed
module, a character theory including orthogonality relation has been presented in [Ban05]. In
the sequel, let K be a field and denote by VectK(M//G) the category of K-linear representations
of M//G.

Definition A.2.4 Let ((Vm)m∈M , (ρ(g))g∈G) be a K- linear representation of the action
groupoid M//G and denote by P (m) the projection of V =

⊕
n∈M Vn to the homogeneous

component Vm. We call the function

χ : M ×G→ K
χ(m, g) := TrV (ρ(g)P (m))

the character of the representation.

Example A.2.5. On the K-vector space H := K(M) ⊗ K[G] with canonical basis (δm ⊗
g)m∈M,g∈G, we define a grading by Hm =

⊕
gK(δg.m⊗ g) and a group action by ρ(g)(δm⊗ h) =

δm ⊗ gh. This defines an object in VectK(M//G), called the regular representation. The char-
acter is easily calculated in the canonical basis and found to be

χH(m, g) =
∑

(n,h)∈M×G

δ(g, 1)δ(h.m, n) = δ(g, 1)|G|

Definition A.2.6 We call a function

f : M ×G→ K

an action groupoid class function on M//G, if it satisfies

f(m, g) = 0 if g.m 6= m and f(h.m, hgh−1) = f(m, g) .

The character of any finite dimensional representation is a class function.
From now on, we assume that the characteristic of K does not divide the order |G| of the group
G. This assumption allows us to consider the following normalized non-degenerate symmetric
bilinear form

〈f, f ′〉 :=
1

|G|
∑

g∈G,m∈M

f(m, g−1)f ′(m, g). (A.3)

In the case of complex representations, one can show, precisely as in the case of groups, the
equality χ(m, g−1) = χ(m, g) which allows introduce the hermitian scalar product

(χ, χ′) :=
1

|G|
∑

g∈G,m∈M

χ(m, g)χ′(m, g) . (A.4)

46



Lemma A.2.7. Let K be algebraically closed. The characters of irreducible M//G-representations
are orthogonal and of unit length with respect to the bilinear form (A.3).

Proof. The proof proceeds as in the case of finite groups: for a linear map f : V → W on the
vector spaces underlying two irreducible representations, one considers the intertwiner

f 0 =
1

|G|
∑

g∈G,m∈M

ρW (g−1)PW (m)fPV (m)ρV (g). (A.5)

and applies Schur’s lemma.

A second orthogonality relation∑
i∈I

χi(m, g)χi(n, h
−1) =

∑
z∈G

δ(n, z.m)δ(h, zgz−1)

can be derived as in the case of finite groups, as well.
Combining the orthogonality relations with the explicit form for the character of the regular
representation, we derive in the case of an algebraically closed field whose characteristic does
not divide the order |G| use a standard reasoning:

Lemma A.2.8. Every irreducible representation Vi is contained in the regular representation
with multiplicity di := dimK Vi.

As a consequence, the following generalization of Burnside’s Theorem holds:

Proposition A.2.9. Denote by (Vi)i∈I a set of representatives for the isomorphism classes of
simple representations of the action groupoid and by di := dimK Vi the dimension of the simple
object. Then ∑

i∈I

|di|2 = |M ||G|

Proof. One combines the relation dimH =
∑

i∈I di dimVi from Lemma A.2.8 with the relation
dimH = |M ||G|.

In complete analogy to the case of finite groups, one then shows:

Proposition A.2.10. The irreducible characters of M//G form an orthogonal basis of the
space of class functions with respect to the scalar product (A.3).

The above proposition allows us to count the number of irreducible representations. On the set

A := {(m, g)|g.m = m} ⊂M ×G

the group G naturally acts by h.(m, g) := (h.m, hgh−1). A class function of M//G is constant
on G-orbits of A; it vanishes on the complement of A in M ×G. We conclude that the number
of irreducible characters equals the number of G-orbits of A.
This can be rephrased as follows: the set A is equal to the set of objects of the inertia groupoid
Λ(M//G) := [•//Z,M//G]. Thus the number of G-orbits of A equals the number of isomor-
phism classes of objects in Λ(M//G), thus |I| = |Iso(Λ(M//G))|.
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