
Sabrina Melchionna

Berichte zur Erdsystemforschung

Reports on Earth System Science

  101
2011

Retrieval of microphysical cloud properties:
a novel algorithm for decomposing 

cloud radar spectra.





Sabrina Melchionna

Reports on Earth System Science

 Berichte zur Erdsystemforschung 101
2011

101
2011

ISSN 1614-1199

Hamburg 2011

aus Bari, Italien

Retrieval of microphysical cloud properties:

a novel algorithm for decomposing cloud radar spectra



ISSN 1614-1199

Als Dissertation angenommen 
vom Department Geowissenschaften der Universität Hamburg

auf Grund der Gutachten von 
Prof. Dr. Bjorn Stevens
und
Dr. Gerhard Peters

Hamburg, den 1. Juli 2011
Prof. Dr. Jürgen Oßenbrügge
Leiter des Departments für Geowissenschaften

Sabrina Melchionna
Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg 
Germany



Hamburg 2011

Sabrina Melchionna

Retrieval of microphysical 
cloud properties:

a novel algorithm for decomposing 
cloud radar spectra



Cover picture sources

Clouds over home at Christmas sunset, S. Melchionna



i

Contents

Abstract 1

1 Motivation 3

2 Description of cloud microphysics 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Warm–clouds microphysics . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Droplets formation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Droplets growth by condensation . . . . . . . . . . . . . . . . 10

2.2.3 Droplets growth by coalescence . . . . . . . . . . . . . . . . . 10

2.3 Cold–clouds microphysics . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Ice crystals formation - primary nucleation . . . . . . . . . . 11

2.3.2 Ice crystals growth by deposition . . . . . . . . . . . . . . . . 12

2.3.3 Ice crystals growth by collection . . . . . . . . . . . . . . . . 13

2.4 Mixed-phase cloud microphysics . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Ice crystals formation - secondary nucleation . . . . . . . . . 14

2.4.2 Ice crystals growth - ice crystal theory . . . . . . . . . . . . . 15

2.5 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Particle size spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Size, shape and fall velocity of cloud particles . . . . . . . . . . . . . 20

2.8 Liquid and Ice Water Content . . . . . . . . . . . . . . . . . . . . . . 25

3 Cloud radars 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The radar equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Radar cross section for meteorological targets . . . . . . . . . . . . . 34

3.3.1 Equivalent reflectivity factor . . . . . . . . . . . . . . . . . . 39

3.4 Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Doppler radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Gaussian spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Polarimetric radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Moments of the Doppler spectrum . . . . . . . . . . . . . . . . . . . 53

3.9.1 The spectral reflectivity factor . . . . . . . . . . . . . . . . . 55



ii Contents

3.10 Graphical representation of measurements by vertically pointing
radar systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Radar specifications of MIRA-36 . . . . . . . . . . . . . . . . . . . . 60

4 Development of the decomposition algorithm 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Overview of the decomposition algorithm . . . . . . . . . . . . . . . 62
4.3 The spectral model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Noise level detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Fitting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Microphysical retrievals 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Mixed-phase recognition . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Vertical velocity of cloud particles assessed by Doppler radar mea-

surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Diameter and IWC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Rate of increasing of fall velocity in clouds . . . . . . . . . . . . . . . 102

6 Application of the decomposition algorithm:
comparison with model 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Case study: 7 December 2006 . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Summary and Outlook 119

Bibliography 121



iii

List of Figures

2.1 Microphysical processes in clouds . . . . . . . . . . . . . . . . . . . . 9

2.2 Nucleation of ice particles . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Basic shapes of ice crystals . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Snow crystals morphology diagram . . . . . . . . . . . . . . . . . . . 13

2.5 The possible proportions between vapor pressures in mixed-phase clouds 16

2.6 Ice crystal fed by droplets . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Holes in clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Fall velocity of liquid drops based on their size . . . . . . . . . . . . 21

2.9 Fall velocity of frozen hydrometeors based on their size . . . . . . . . 22

3.1 Basic representation of a radar system . . . . . . . . . . . . . . . . . 28

3.2 Beam pattern for MIRA-36 . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Schematic representation of the interaction process between radar
waves and cloud droplets . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Normalised radar cross section for liquid and solid water spheres . . 35

3.5 Examples of radar equivalent reflectivity factor for a cirrus and a stratus 41

3.6 Depolarization of waves incident on oblate particles . . . . . . . . . . 48

3.7 THI — Example of Signal to Noise Ratio and respective Linear De-
polarization Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Gaussian model of the Doppler spectrum . . . . . . . . . . . . . . . 54

3.9 Examples of Time–Height Indicators . . . . . . . . . . . . . . . . . . 58

4.1 Flow chart of the decomposition algorithm . . . . . . . . . . . . . . . 63

4.2 Examples of spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Uni–modal spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Noise spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Noise profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Decomposed spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Non–plausible modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Another non–plausible mode . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Scatterplots vcx vs. vco . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Example of a decomposed spectra profile . . . . . . . . . . . . . . . . 83

5.2 Time series of decomposed spectra profiles - mixed-phase . . . . . . 84

5.3 Time series of decomposed spectra profiles - turbulence . . . . . . . 85



iv List of Figures

5.4 Fall velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Scatterplots VD against Ze . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6 Fall velocity with air vertical motions reductions; case 1 . . . . . . . 89
5.7 Fall velocity with air vertical motions reductions; case 2 . . . . . . . 90
5.8 Fall velocity with air vertical motions reductions (profile) . . . . . . 91
5.9 Fall velocity with air vertical motions reductions by different time

averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.10 D0 vs. Vt relationships for different assumptions of the Particle Size

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.11 Main and secondary mode–specific reflectivity, fall velocity and LDR,

6th March 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.12 Particle diameters, 6th March 2007 . . . . . . . . . . . . . . . . . . . 100
5.13 IWC, 6th March 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.14 Example of fitted spectra profile, case 1 . . . . . . . . . . . . . . . . 102
5.15 Example of fitted spectra profile, case 2 . . . . . . . . . . . . . . . . 103
5.16 Example of fitted spectra profile, case 3 . . . . . . . . . . . . . . . . 104
5.17 Example of fitted spectra profile, case 4 . . . . . . . . . . . . . . . . 105
5.18 Time series of rate of increasing of fall velocity, 6th March 2007 . . . 105

6.1 Satellite image over East Europa on the 7th December 2006 . . . . . 109
6.2 Mode–specific fall velocity, 7 December 2006 . . . . . . . . . . . . . . 110
6.3 Mode–specific median volume diameter, 7 December 2006 . . . . . . 111
6.4 Mode–specific IWC, 7 December 2006 . . . . . . . . . . . . . . . . . 112
6.5 Prediction for the different hydrometeors, 7 December 2006 . . . . . 113
6.6 Model prediction for fall velocity, 7 December 2006 . . . . . . . . . . 115
6.7 Time series of rate of increasing of fall velocity, 7th December 2006 . 116



v

List of Tables

2.1 Characteristic coefficients for the terminal fall velocity of snow . . . 23

3.1 Typical values of equivalent reflectivity factor . . . . . . . . . . . . . 40
3.2 Attenuation coefficients at 35 GHz . . . . . . . . . . . . . . . . . . . 42
3.3 Typical values of Linear Depolarization Ratio . . . . . . . . . . . . . 49
3.4 Specifications for the cloud radar MIRA-36 . . . . . . . . . . . . . . 60

4.1 What can go wrong during the automatized fitting procedure . . . . 75



vi List of Tables



1

Abstract
Clouds play a vital role in regulating the climate of Earth. However, there is a
lack of understanding on their microphysical properties, as well as on the physical
processes responsible for formation, growth, and evolution of cloud particles.
Microphysical properties of clouds can be remotely investigated by using cloud
Doppler radars. In order to characterize clouds by Doppler radar measurements,
the first three moments of Doppler spectra, nominally reflectivity, Doppler mean ve-
locity, and spectral width, and additionally the Linear Depolarization Ratio (LDR),
are widely used. These observables allow radar meteorologists to derive information
on particle size, shape, phase, orientation, concentration, and motion.
Traditionally the moments of the Doppler spectra are evaluated considering the spec-
tra due to only one class of particles, i.e. either cloud droplets or ice crystals. But
cloud radars have an excellent sensitivity to detect cloud particles and, therefore,
they produce complex Doppler spectra which bring information on cloud droplets of
different size, ice crystals with different habit and size, or on cloud droplets mixed
with ice crystals. Against this potential to investigate clouds, robust techniques for
resolving radar Doppler spectra are still not fully developed.

In this work we develop a new operational algorithm with the aim of routinely de-
compose radar Doppler spectra in their constitutive modes, each mode representing
a different class of cloud particles. The rationale of the algorithm is that an ensem-
ble of cloud particles of the same class produces a Gaussian spectrum with char-
acteristic parameters, which are related to the traditional moments of the Doppler
spectrum. Ensembles containing different classes of cloud particles produce linearly
superposed Gaussian Doppler spectra, whose characteristic parameters are used to
evaluate mode–specific moments. The three mode–specific moments and mode–
specific LDR are then used to evaluate microphysical parameters of each class.
The algorithm has been developed on measurements taken by the Doppler cloud
radar MIRA-36, operating at the frequency of 35.5 GHz and with Doppler veloc-
ity resolution of 0.08 m/s . Using these measurements we are able to separate the
spectra in up to two dominant classes.

This analysis turned to be particularly useful in the recognition and study of
mixed-phase layers, where the detected modes are due to snowflakes and super-
cooled droplets or snowflakes and ice crystals. The process plausibly occurring is
ice secondary nucleation process, that is snowflakes falling through a layer of super-
cooled droplets splinter into pristine ice crystals.

The potentiality of the method is illustrated by applying it on radar measure-
ments of deep stratiform convective cloud structures, for which a layer of double
modes shows up for a persistent lapse of vertical and temporal extension.

Further pieces of information on the properties of the cloud particles are extracted
by linearly fitting the main mode–specific velocity as a function of the altitude. The
gradient of this fit gives a picture on the growing rate of hydrometeors along the
vertical extension of the cloud. Specifically, we have observed a continual constant
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increasing of the Doppler velocity on the cloud particles fall path.

The microstructure of mixedphase cloud as retrieved by cloud radar data has
been compared for one case study with the results obtained by a configuration of
the COSMO–DE model, showing a suitable agreement. As this model configuration
includes an explicit cloud microphysical parametrization, the use of radar decom-
posed spectra in numerical cloud models should be considered for testing the current
knowledge of the processes involved and for validation and refinement of numerical
cloud models itself.
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Chapter 1

Motivation

It is widely recognized that the climate of the Earth is strongly influenced by clouds
through their radiative behavior, as assessed in the Intergovernmental Panel on Cli-
mate Change 2007 Report (IPCC, 2007).
The magnitude of the influence of clouds on the atmosphere depends on their geo-
metrical properties, such as thickness or vertical and horizontal extension, as well
as on their microphysical properties, such as cloud particle size or water content
(Stephens et al., 1990).
Whereas geometrical properties are routinely measured by satellites (Stephens et al.,
2002) and used to quantitatively represent clouds in atmospheric models (Marchand
et al., 2009), the knowledge of the microstructure of clouds, as well as the phys-
ical processes responsible for formation, growth, and evolution of cloud particles,
is extensive, but still not exhaustive (Cantrell and Heymsfield, 2005; Shupe et al.,
2008).

In order to investigate cloud microphysical properties vertically resolved, millime-
ter, Doppler, polarimetric radar systems - the so–called cloud radars - are preferred
because they have an excellent sensitivity to cloud particles (droplets and ice crys-
tals) and at the same time a reasonable low attenuation by rain; they work contin-
uously and unattended; finally they have a compact size and thus can be deployed
on different platforms such as ships, satellites, or aircrafts.

Specifically cloud radar systems measure profiles of intensity of the signal
backscattered by cloud particles, of their Doppler shift, and eventually the polarime-
try of the backscattered radiation. From these measurements it is possible to derive
information on particle size, shape, phase, orientation, concentration, and motion.

The basic information given by a cloud radar is then a Doppler spectrum for
every time step and for every height step from the radar.
The Doppler spectrum is determined by the scattering cross section of all the par-
ticles present in a sampling volume as function of their Doppler velocity.
Conventionally, in order to characterize clouds by Doppler radar measurements,
radar meteorologists use the first three moments of Doppler spectra (reflectivity,
Doppler mean velocity, spectral width) and the Linear Depolarization Ratio (LDR);
the moments of the Doppler spectrum are evaluated considering the spectra due to
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only one class of particles.
Unfortunately these “global” moments are not sufficient to describe the complex
structure of the spectra. The complexity arises mainly from the variegate collection
of particles forming clouds: cloud droplets of different size, ice crystals with differ-
ent habit and size, or cloud droplets mixed with ice crystals (mixed-phase clouds);
moreover, cloud top turbulence influences the radar echoes. Thus, in case of clouds
producing such composite Doppler spectra, the extraction of cloud microphysical
parameters by using the global moments leads to incomplete, when not erroneous,
retrievals.

In this work we consider Doppler spectra received with a cloud radar, to retrieve
information on microphysical structure of clouds and dynamics of cloud systems.
The shape of the Doppler spectra containing important information on the phase
of the observed hydrometeors has been already recognized; however, the separation
among the different classes of particles observed in a Doppler spectrum need sophis-
ticated spectral analysis, as described by Shupe et al. (2004), Verlinde et al. (2007),
Luke and Kollias (2007), or Rambukkange et al. (2011).

We present a novel algorithm to analyze Doppler spectra, with improved resolu-
tion of the complexity of the spectra, discriminating up to two classes of particles
in a cloud. The rationale of the algorithm is that an ensemble of cloud particles of
the same species — the same thermodynamic phase, analogous shape and size —
produces a Gaussian spectrum with characteristic parameters, which are related to
the global moments of the Doppler spectrum. Ensembles containing different classes
of cloud particles produce linearly superposed Gaussian Doppler spectra with pa-
rameters that are (not necessarily but probably) sufficiently different that they can
be separated.
Knowing the three moments and the LDR for each class, we are able to evaluate mi-
crophysical parameters for both the classes of cloud particles, extending and making
more exhaustive our knowledge on cloud microphysical processes.
This algorithm has been applied routinely on the measurements taken by a
36 GHz Doppler research vertically pointing cloud radar, MIRA–36, that operates in
Hamburg, Germany. Among the measurements collected between September 2006
and July 2007, we had examined closely spectra from several days in which deep
frontal clouds showed up (Melchionna et al., 2008). For these clouds the global
spectral width showed large values. In these cases we often observe, after the de-
composition, a hundred metres depth layer with bimodal spectra, which are typical
of a mixed-phase layer (Zawadzki et al., 2001).

The decomposition algorithm here presented is furthermore easily modifiable,
so that future studies could be conduct, i.e. by changing the shape of the curves
composing the spectra and combining the results within measurement campaigns
in which several instruments to investigate clouds are involved, including TOSCA1,
COPS2 and, currently, the Barbados campaign3.

1http://gop.meteo.uni-koeln.de/tosca/doku.php
2http://www.uni-hohenheim.de/spp-iop/index.htm
3http://barbadossite.wordpress.com/
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We believe that the retrievals here shown, combined with measurements other
instruments of investigation will bring us to a deeper understanding of the micro-
physical processes that are going on in a mixed-phase cloud.

Moreover, the microstructure of mixed-phase cloud as retrieved by cloud radar
data has been compared with the results obtained by a configuration of the COSMO–
DE model which includes an explicit cloud microphysical parametrization (Seifert
and Beheng, 2006).
Thus the further advance of our understanding on cloud microphysics could be
used to evaluate and develop more realistic cloud models, in order to advance our
knowledge on elusive mixed-phase clouds.
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Chapter 2

Description of cloud

microphysics

Schneeflöckchen, Weißröckchen,
wann kommst du geschneit,

du wohnst in den Wolken,
dein Weg ist so weit.

Volkslied

2.1 Introduction

Cloud microphysical processes are related to the formation and to the small-scale
modifications of clouds. Many and various microphysical1 phenomena, most of which
are still not completely understood, are responsible for the growth and for the phase
modification of cloud particles. A simplified schema of cloud processes is depicted
in figure 2.1 . We identify as the basic processes that make a cloud: nucleation,
condensational growth (and evaporation) by diffusion, and interparticle collection.
Let us consider an air parcel. An air parcel is an idealized volume of air containing
a large number of air molecules. In a parcel the air is considered to be either dry
or moist, and to have uniform thermodynamical properties. The parcel moves adia-
batically through the atmosphere, without exchange of matter with it. To reach the
equilibrium with the surrounding ambient pressure, the parcel can expand, cooling,
or shrink, warming.
Nucleation of cloud particles occurs by the general following steps: water vapor is
produced on the Earth surface by evaporation; thereafter convection in the tropo-
sphere causes the upward motion of a parcel of moist air; the rising parcel expands
and cools adiabatically; if air becomes supersaturated with respect to liquid and

1The prefix micro refers to the small dimension of the cloud particles relative to the entire cloud.
Cloud particles sizes range from micrometres to millimetres.
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to solid water phases, and in presence of suitable aerosol particles, condensation or
deposition of water vapor (made possible because of supersaturation) lead to the
formation of respectively liquid or solid cloud particles.
After nucleation, cloud particles continue to grow by diffusion of water vapor
molecules on their surface up to 100 µm in diameter. Growth by diffusion diminishes
in proportion to the ratio between surface and volume, and becomes insignificant at
100 µm diameter.
Interparticle collection process becomes dominant for further growth of the parti-
cles. Collection may occur among particles with the same or with different thermo-
dynamic phase. Coalescence and aggregation are the processes of collection among
respectively only liquid water particles (drop–drop interaction) and only solid water
particles (ice–ice interaction). Contact freezing and riming are the processes with
which respectively a larger liquid water particle collects a smaller solid water particle
(drop–ice interaction) or a larger solid water particle collects a smaller liquid water
particle (ice–drop interaction).

The microphysical properties of cloud particles are specified by phase, size, shape,
and number concentration.
Cloud particles can be either in liquid or in solid phase. Indeed, the most general
classification of clouds that one can give distinguishes warm clouds, made of only
liquid droplets, from cold clouds, made of ice and eventually droplets. A portion of
the cloud in which both the phases are present is called mixed-phase zone.

As book references about cloud microphysics we suggest Wallace and Hobbs
(1996), Pruppacher and Klett (1997), Young (1993).
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Figure 2.1: Summary of the microphysical processes operative in clouds. Red arrows
indicate the processes related to liquid droplets; blue arrows indicate the processes
related to ice particles, eventually mixed with liquid droplets.
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2.2 Warm–clouds microphysics

2.2.1 Droplets formation

Liquid particles, i.e. cloud droplets, form by condensation of water vapor on atmo-
spheric aerosols. In the atmosphere, aerosols acting as Cloud Condensation Nuclei
(CCN) are sulfates, nitrates, or soluble material with dimensions of tenths of mi-
crometres. The process of condensation of droplets is described by the Köhler theory
(Köhler, 1936); it computes the supersaturation at which the cloud drop is in equi-
librium with the environment over a range of droplet diameters. The Köhler equi-
librium equation combines the change in saturation vapor pressure due to a curved
surface with the saturation vapor pressure due to the solute, and therefore depends
on the amount and composition of the solute (i.e. the atmospheric aerosol). When
the conditions of ambient supersaturation given by the Köhler theory are reached,
water vapor condenses first on a CCN, forming a liquid water film around it (ac-
tivation of the CCN), and then continues to condensate on the surface of the new
born droplet. This process reduces the amount of water vapor in the surrounding
ambient, but, at the same time, adiabatic cooling caused by upward air motions
reduces the equilibrium pressure. The activation of CCNs continues as long as the
rate of reduction of partial pressure by expansion and by depletion of water vapor
stays lower than the rate of reduction of equilibrium pressure by adiabatic cooling.
Depending on CCNs characteristics and on updraft velocity, the number of droplets
formed ranges from million to billion per cubic metre.

2.2.2 Droplets growth by condensation

Once that the CCNs have been activated, the droplets in warm clouds grow by con-
densation as long as the supersaturation exceeds the equilibrium value. By reasons
of balance among molecular diffusion in the proximity of the particles and outflowing
of latent heat released by the process of condensation, the growth rate decreases as
the droplets grow.

2.2.3 Droplets growth by coalescence

In a warm cloud, a big droplet with a relatively higher fall velocity may collide
against the little ones on its path, and eventually coalesce, forming a larger drop. The
process of coalescence depends strongly on the size of collector and collected droplets.
That is because a big droplet throughout its falling bends the air flow around itself,
and hence pushes the little droplets away. Thus just a little fraction of droplets on
the geometrical path of the collector does actually collide with it. Moreover, not all
the collisions result in a coalescence, because air may still be trapped at the point of
impingement. Laboratory studies have shown that the maximum collision efficiency
is achieved by droplets with diameters from 60 to 100 µm sweeping droplets with
diameters as small as 10 µm . Once that the droplets have reached the dimension of
0.1 mm , they grow by coalescence exponentially up to raindrop size.
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It’s disgusting.
I see more belly than brother.

S. K.

2.3 Cold–clouds microphysics

2.3.1 Ice crystals formation - primary nucleation

There are several nucleation processes that lead to the formation of ice crystals,
schematically represented in figure 2.2 .

HOMOGENEOUS 

NUCLEATION

IMMERSION 

FREEZING

DEPOSITION 

NUCLEATION

CONTACT 

FREEZING

WATER 

DROPLET

ICE

CRYSTAL

ICE

EMBRYO
IN

Figure 2.2: Schematic representation of the nucleation mechanisms of ice particles.

Let us start from liquid water. The presence of liquid water in the troposphere2 is
very common, because liquid water can exist below 0 ◦C down to −40 ◦C in the
form of supercooled droplets. Below −40 ◦C water can not exist in liquid phase
anymore, then supercooled droplets certainly freeze at those temperatures. For ice
particles, as for liquid droplets, water molecules need to come together to form an ice
embryo; if the embryo overcomes a critical size, the droplet freezes at a temperature
that could be higher than −40 ◦C . If the droplet is made of pure water, we call the
frozen process homogeneous nucleation. Homogeneous nucleation of liquid droplets

2The lowest temperature at the top of the troposphere is about −50 ◦C .
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to ice occurs at temperatures around −35 ◦C . Anyway, similarly to liquid droplets,
the freezing process is favored by the presence of foreign particles, the Ice Nuclei
(IN). When the creation of an ice cloud particle involves the presence of an IN, the
nucleation is termed heterogeneous. Appropriate INs are insoluble particles with a
crystalline structure affine to that of the ice crystals, i.e. hexagonal. If the super-
cooled droplet enclose an IN, water molecules will use it as molecular template for
the ice crystal lattice, heightening the temperature of freezing (immersion freezing).
Kaolinite (a clay) can nucleate at temperature so high as −15 ◦C , whereas silver
iodide can nucleate even at −4 ◦C , reason why it is used in cloud seeding; biogenic
matter, such as decayed plant leaves, nucleates also at −4 ◦C .
Heterogeneous nucleation can besides occur by deposition or by contact.
Deposition nucleation is a process in which, granted that the air is supersaturated
in respect to the solid phase of water, an ice particle forms by deposition of water
vapor molecules on an IN.
Contact nucleation occurs when a cloud droplet freezes after it impacts with one
external IN.
Nucleation by contact occurs at higher temperatures than the temperatures needed
for the nucleation of the same IN but embedded in the droplet.

2.3.2 Ice crystals growth by deposition

Crystals of ice grow on the lattice of the INs into hexagonal prisms. Prisms are
composed by two hexagonal basal facets with width a, and by six rectangular prism
facets with length c, as shown in figure 2.3 , and are characterized by their axial
ratio c/a.

a

c

c/a = 1

c/a>1

c/a<1

Figure 2.3: Basic shapes of ice crystals. The axial ratio c/a defines the shape of the
chrystal: less than 1 for plates-like, grater than 1 for columnar.

The basic shapes of ice crystals, as depicted in figure 2.3, are plate-like (axial ratio
less than the unity) or columnar (axial ratio bigger than the unity). Their aspect
ratio depends on how water molecules put themself together on the growing lattice.
Laboratory experiments have shown that the shape of an ice crystal depends strongly
and in a complicated way on the temperature and on the amount of water vapor of
the ambient air in which the crystal is growing, as it is illustrate in the morphology
diagram (figure 2.4). Even if the physics behind this behavior is still not understood,
we know that there is an alternation of the basic habits with the temperature, and
that the shapes become complicated with higher supersaturation.
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Figure 2.4: The snow crystals morphology diagram. It shows how snow crystals grow
with temperature and water vapor supersaturation relative to ice. As the tempera-
ture decreases, there is an alternation between basic shapes, and the complexity of
the shape increase with the supersaturation. The water saturation curve is depicted
in green.

2.3.3 Ice crystals growth by collection

The collection processes that involve ice particles are aggregation and riming. Note
that contact freezing, mentioned above about the formation of ice particles, has to
be regarded also as a collection process.
Aggregation occurs when two ice particles collide and stick together. This process
occurs more likely at temperatures above about −5 ◦C by sintering3. Dendrites
are very likely to adhere because their arms can easily interlace during a collision,
whereas plates tend to rebound.
Riming occurs when ice crystals pass through a region filled with supercooled
droplets. The contact between ice and droplets results in the freezing of the droplets
onto the ice surface. The collision efficiency for the riming process becomes appre-
ciable for ice crystals with basal facet of about 150 µm for plates and 25 µm for
columns (remember that a supercooled droplet has a diameter of about 10 µm ). At
the early stage of the riming process, the original morphology of the rimed crystal
is still recognizable. As the riming process continues, the number of droplets accu-
mulated obscures the identity of the crystal, and the resulting crystal is referred to
as graupel. When the dimension of graupel crystal exceeds 5 mm we referred to it
as hail.

3Formation of a coherent mass of particles by heating without melting them until they adhere
to each other.
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2.4 Mixed-phase cloud microphysics

2.4.1 Ice crystals formation - secondary nucleation

The last decades of measurement campaigns have shown that ice crystals concen-
tration disagrees with the one predicted by theory, when only ice crystals produced
by nucleation are considered. In the attempt to explain this disagreement a few
mechanisms of secondary ice production were postulated. Mechanical fracture of
the arms of dendrites may increase the ice concentration. However, this process
appears insufficient to explain the enhancement of concentration observed.
Laboratory works of Hallett and Mossop carried out between the seventies and eight-
ies (Hallett and Mossop, 1974; Mossop and Hallett, 1974; Mossop, 1976, 1978, 1985)
have pointed out that pristine ice crystals can be produced by splintering from rimed
ice crystals. They have found out that there are strict conditions under which ice
crystals growing by collection of supercooled cloud water may release tiny splinters
of ice, that subsequently grow into columnar ice crystals. The variables involved in
the process are: temperature of the cloud of supercooled droplets, that has to be
between −8 ◦C and −3 ◦C with a maximum at about −5 ◦C ; velocity range at
which the graupel falls through this cloud, going from 0.7 m/s to 2.7 m/s ; and size
distribution of the supercooled water droplets, since splintering appears in presence
of droplets larger than 25 µm , and at the same time it is enhanced by the presence of
droplets smaller than 12 µm . The medium rate of secondary ice production is of one
splinter for every 250 droplets larger than 25 µm collected by an ice particle with fall
velocity of about 2 m/s at a temperature of −5 ◦C . Even though ample laboratory
evidences have characterized the splintering process, its physical mechanism is still
uncertain (Cantrell and Heymsfield, 2005).
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2.4.2 Ice crystals growth - ice crystal theory

There exists a special growing process for ice crystals immerse in a cloud of super-
cooled droplets, that takes the name of ice crystal theory4. This process involves
the growing of ice crystals at the expenses of supercooled droplets. One should
however keep in mind that the evolution of a mixed-phase cloud depends on the
local thermodynamical characteristics of the cloud. In fact the rates of growth by
condensation/deposition and of loss of mass by evaporation/sublimation are driven
by the difference between the in–cloud water pressure e and the equilibrium vapor
pressure over liquid/ice. Therefore the supersaturation conditions of the air can be
such that both the liquid and ice particles continue to grow or both continue to
evaporate or such that ice particles grow and liquid particles evaporate, the latter
process being the ice crystal theory, as just stated.
Let us then consider the equilibrium vapor pressure over liquid es,w for subfreez-
ing temperatures and the equilibrium vapor pressure over ice es,i. The differ-
ence (es,w − es,i) may be evaluated by using Magnus equations. The Magnus
equations (Herbert, 1987) are special solutions of the Clausius-Clapeyron differen-
tial equations for the saturation vapor pressures. Magnus equations are widely used
in meteorology because they are simple to apply and at the same time they are still
sufficient accurate for cloud microphysical uses. Their expressions are given by:

es,w = es,w(T(0)) exp

[
Aw(T − T(0))

T − Bw

]

(2.1)

es,i = es,i(T(0)) exp

[
Ai(T − T(0))

T − Bi

]

(2.2)

with the index w and i referring respectively to liquid water and ice, the equilibrium
vapor pressures es,w/i given in hecto Pascal, the absolute temperature T in kelvin,
and with the values: es,w(T0) = 6.1070 hPa , Aw = 17.15, Bw = 38.25 K , es,i(T0) =
6.1064 hPa , Ai = 21.88, Bi = 7.65 K , where T(0) is the freezing point of water.
The difference (es,w − es,i) is always positive far all subfreezing temperatures, with
a maximum at about −12 ◦C . Thus, when air is saturated with respect to liquid
water, it is also always saturated with respect to ice.

Korolev and Mazin (2003) and Korolev (2007) have connected the ascension ve-
locity of air parcels, and therefore, with the velocity at which water vapor is provided,
with three different possible behaviors of the cloud particles: growing of both liquid
and ice particles, growing of ice particles and evaporation of liquid particles, subli-
mation of ice particles and evaporation of liquid particles.
The possible scenarios, schematically illustrated in figure 2.5, are:

1. e > es,w > es,i - growing of liquid and ice particles:
if enough water vapor is provided by the updraft motions of the air, both

4In literature this process is referred to with several different names, i.e. ice crystal theory, ice
crystal process of precipitation, WBF theory or process, by the names of the scientists who have
been the first to describe it: Wegener (1911), Bergeron (1935), and Findeisen (1938).
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droplets and ice crystals, despite they compete for the same water vapor,
continue to grow by diffusion. Anyway, ice particles grow for deposition faster
then droplets for condensation, as a consequence of the different growth rates.
This condition maintains the unstable state of mixed-phase until water vapor
is provided by the updraft.

2. es,w > e > es,i - growing of ice particles and evaporation of liquid particles
(ice crystal theory):
this is the case in which ice crystal theory occurs. Ice crystal theory is
considered to be the major process that contributes to the growth of the ice
crystals in clouds with low updraft and consequently, low supersaturation,
such as stratus clouds.
The depletion of water vapor in the vicinity of an ice crystal lowers the
vapor pressure below the liquid water saturation value, causing the adjacent
droplets to evaporate. This process is pictorially illustrate in figure 2.6 .
If this condition persists, it brings to the glaciation of the portion of the cloud

Figure 2.5: Schematic diagram of possible proportions among in–cloud water pres-
sure e and equilibrium vapor pressure over liquid and ice es,w/i . Depending on
the value of e in respect to the values of es,w and es,i in a localized portion of the
mixed-phase cloud, three different scenarios are possible: (a) both liquid droplets
and ice particle grow; (b) liquid droplets evaporate and ice particles grow; and (c)
liquid droplets evaporate and ice particles sublimate. From Korolev (2007), with
the permission of the author.
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Figure 2.6: An ice crystal surrounded by droplets grows by deposition of water vapor
which is provided by the evaporation of the droplets in its proximity.

interested.
The vapor flux which comes to establish from droplets to ice crystals achieves
a maximum value for temperatures lower than −12 ◦C ; at higher temperature
the latent heat released by the sublimation process reduces too much the
vapor pressure around the ice crystals surface.
One macroscopic effect of the ice crystal theory is the formation of holes in
warm clouds. In a warm cloud intercepted by a bounce of ice particles, for
example the ones produced in the wakes of airplanes, it would be need less
then half an hour to a large area of liquid water droplets to evaporate feeding
the ice particles, as theorized by Rangno and Hobbs (1983) and in the recent
study by Heymsfield et al. (2010). The glaciated part of the cloud would then
descend to a lower level, leaving a clear sky area above. An example is shown
in picture 2.7 .

3. es,w > es,i > e - simultaneous sublimation of ice particles and evaporation of
liquid particles:
when the water vapor content is depleted by the mixing with dry air, as likely
occurs along cloud boundaries, both droplet evaporate and ice particles subli-
mate up to the dissolve of the entire cloud; if ice particles sublimates all before
the droplets (or the opposite), the cloud will pass through a stage of liquid
(glaciated) stage.
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Figure 2.7: One effect of the ice crystal theory is the creation of holes in clouds. Here
the hole appears as a clear area in the liquid cloud, partially covered by a glaciated
descending portion of the could. The pictures were taken in the vicinity of an airport
the 25th December 2009, in Bari, south of Italy, west looking. They are 6 minutes
elapsed (17:34 upper panel; 17:40 lower panel); the picture in the lower panel was
taken 500 m norther than picture in the upper panel. Red arrows indicate some
reference points in the liquid portion of the cloud structure, the blue line indicates
the boundaries of the glaciated cloud portion, and the blue arrow indicates the
hole formed after its descending in picture (b). [Upper panel: photograph by S.
Melchionna; lower panel: photograph courtesy of G. Genchi]
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2.5 Precipitation

Precipitation, whether as rain or snow, appears once the particles in a cloud have
reached a size large enough to fall against the local updrafts.
The coalescence process continues also in rainfall regimes. In steady air flow the
equilibrium shape of a water drop at terminal velocity is determined by the balance
of internal and external pressure at its surface; these forces involve aerodynamics,
hydrostatic, and surface tension. As a result of the application of these forces, the
shape of the drop deviate from a sphere, becoming oblate, with a dip into the bottom
side. The dip increases in depth and width as the mass of the drop increases. Thus
the drop looks more like a donut, with the upper side of the hole connected by a
tiny film of water. During the fall, the film swells as a parachute. At some point it
bursts, producing a spray of droplets, and the ring of water at its lower rim breaks
up into small drops. The maximum size that raindrops can reach is about 7 mm.

2.6 Particle size spectra

To describe the microstructure of a cloud (without regard to the mechanisms that
produced it) we need ultimately to specify how many particles of which size and
shape are present at a given location and time. We express mathematically these
characteristics by means of size spectra, which represent the cloud particle concen-
tration in function of the diameter of the particles. The size spectra measured are
approximated by empirical functions, which include several parameters, in order to
take into account for the several shapes and sizes. These functions are widely used
in the remote sensing of clouds as well as in modeling and parameterization of cloud
properties.
As an example, cloud droplets are reasonably approximated by a generalized gamma
distribution:

f(D) = cNDpe−β Dλ

, (2.3)

where cN is a normalization constant, p, with p a positive number, describes the
shape of the spectrum for small radii, and β and λ determine the exponential tail
for large radii. Measurement campaigns settled the values of p for liquid clouds
between 6 and 15.
The particular case of equation 2.3 with β = 0 and with negative values of p:

f(D) = cNDp (2.4)

with p ranging from −12 to −2, was founded to be a good approximation for ice
crystal size spectra in cirrus and cloud particles with diameters between 600 and
1600 µm .
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How odd.
The only way for us to touch the clouds is having a walk in the fog.

2.7 Size, shape and fall velocity of cloud particles

Knowing the size of the particles, together with their shape and phase, is fundamen-
tal to determine their terminal fall velocity.
Cloud droplets are spherical as result of surface tension effects and have diameters
of tens of micrometres; their terminal fall velocity in still air is proportional to the
square of the diameter D and does not exceed some centimetres per second.
Drizzle drops, that have to be regarded as the transition step between droplets and
raindrops, have diameters of tenths of millimetres and fall velocity of some tens of
centimetres per second.
Following Stokes theory, and assuming a small Reynolds number5 Re, the terminal
velocity of a liquid water sphere falling through still air is given by:

v(D) =
ρw − ρa

36 η
g D2 , (2.5)

with ρw liquid water density, ρa dry air density, η air dynamic viscosity, g gravita-
tional constant. Using the standard values (sea level, 15 ◦C ) of these constants we
obtain:

v(D) = 31.3 D2 , D ≤ 0.1 mm , (2.6)

and the inverse function:

D(v) = 0.179
√

v , v ≤ 0.313 m/s , (2.7)

with D in millimetre and v in metre per second. The limit value for the diameter
is due to the fact that as the drop grows the equilibrium among the forces affecting
the drop shape changes, causing the Reynolds number to significantly increase.
Raindrops have in fact a flat shape, that can be approximated by an oblate spheroid
with maximum diameter oriented perpendicularly to the flow and smaller diameter
oriented vertically; this shape becomes parachute–like as the drops increase their
size above some millimetres, because of the corresponding increasing of aerodynamic
forces on their lower side; their fall velocity may reach up to ten metres per second.
Figure 2.8 depicts the various velocities of liquid drops based on their sizes.
One general empirical equation for the terminal fall velocity of such drops is given
by Atlas et al. (1973), which have fitted the data collected by Gunn and Kinzer
(1949):

v(D) = 9.65 − 10.3 e−0.6 D , 0.6 mm ≤ D ≤ 5.8 mm , (2.8)

5The Reynolds number is given by the ratio between inertial and viscous force acting of a particle
moving within a fluid. Its value depends on the regime for the flow: small for laminar flows and
large for turbulent flows.
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with the inverse:

D(v) = 1.67
[

2.33 − ln (9.65 − v)
]

, 2.46 m/s ≤ v ≤ 9.33 m/s . (2.9)

Peters (2009a) has derived an equation that is valid for any diameter assumable by
cloud droplets and raindrops joining equations 2.6 and 2.8 for their upper and lower
limit, respectively. With Dc being a characteristic diameter with value 0.108 mm ,
the velocity of the particles in function of their diameter is given by:

v(D) = 9.65 − 10.3 e−0.6
√

D2−Dc
2

, (2.10)

and then the inverse:

D(v) =

√
(

1

0.6
ln

10.3

9.65 − v

)2

+ Dc
2 , (2.11)

with now D and v varying through the whole domain of diameters and fall velocities.
Equations 2.6, 2.8, and 2.10 are represented in figure 2.8.

In contrast with liquid cloud particles, pristine ice particles never exceed some
millimetres in size, and they occur in a broad diversity of shapes. Nucleation of
ice particles produces simple monocrystalline structures, i.e. columns or plates, that
grow into hexagonal forms whose geometry depends strongly on the temperature and
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Figure 2.8: Falling velocity of liquid drops based on their size. The shapes of liquid
drops with the size are also indicated. From Peters (2009a), with the permission of
the author.
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humidity conditions (Magono and Lee, 1966). These individual crystals may stick
together forming larger aggregates (snowflakes), as well as droplets may freeze on
them, forming rimed crystals. The fall velocity of a columnar crystal one millimetre
in length is about half a metre per second, and increases with the length of the
crystal. The terminal fall velocity of a plate-like crystal is also of the same order,
but it is almost independent of its dimensions, because the drag force acting at
a given speed on the base of the crystal balances the gravitational force which is
proportional to the area. The situation changes if the crystals, of any sort, are
rimed; then the terminal fall velocity depends strongly on the dimensions and on
the degree of riming of the crystals, and it reaches even some metres per second for
crystals as large as some millimetres.
Several measurement campaigns have shown that the terminal fall velocity for ice
crystals is a power function of the maximum dimension DM of the particle in the
form:

vt(DM ) = A DM
B , (2.12)

where A and B are empirical coefficients varying with the family of crystals. Equa-
tion 2.12 for different kind of crystals is depicted in figure 2.9.

Figure 2.9: Falling velocity of frozen hydrometeors based on their size. By Spek et
al. (2008); with the permission of the authors.
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The coefficients A and B can be evaluated by following Mitchell (1996). The
terminal fall velocity depends, beyond the maximum dimension DM , on mass and
area projected on the flow direction, which both can be also parameterized as power
laws of DM :

m(DM ) = α DM
β (2.13)

A(DM ) = γ DM
σ , (2.14)

with m mass in grams, A area in square centimetre, DM maximum extension in
centimetre, and with α, β, γ, and σ empirical coefficients, determined from best fits
to the experimental data in various size regions, tabled in table 2.1 for a selection
of families of ice crystals.
It is obvious that if ice crystals would be homogeneous spheres, β and σ would
assume the values of 3 and 2 respectively, values that are anyway the upper limit
for the exponents in 2.13 and 2.14. According to Mitchell (1996) formulation the
coefficients in equation 2.12 are expressed as:

A = aRe ν

(
2 α g

γ ρa ν2

)bRe

(2.15)

and
B = bRe

(
β + 2 − σ

)
− 1 , (2.16)

where the coefficients aRe and bRe for large Reynolds numbers and particles with
DM > 500 µm were calculated by Khvorostyanov and Curry (2002):

aRe = 1.85

bRe =
1

2
.

The general behavior of both the coefficients is to decrease with increasing size.
Moreover, the terminal velocity increasing becomes slower with the increasing of the

Table 2.1: Characteristic coefficients for the terminal fall velocity of snow (equation
2.15 and equation 2.16)

Type of crystal Size (cm) α β γ σ A B

Hexagonal plates 0.0015 ≤ 0.01 0.00739 2.45 0.24 1.85 1.296 0.3
0.01 ≤ 0.3 0.65 2 0.788 0.225

Dendrites 0.03 ≤ 0.4 0.003 2.3 0.21 1.76 0.883 0.27

Aggregates 0.05 ≤ 0.8 0.003 2.1 0.2285 1.88 0.847 0.11

Graupel 0.2 ≤ 0.8 0.049 3.06 0.5 2 2.313 0.53

Hail 0.5 ≤ 2.5 0.466 3 0.625 2 6.380 0.5
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particle size, because for ice crystal larger the size smaller the bulk density.
One should note that equations from 2.12 to 2.16 are valid near the ground level.
To make the expression of the falling velocity valid for other altitudes, all other
conditions being equal, it is necessary to multiply it for the correction factor cpT ,
depending on pressure and temperature:

vD(p, T ) = cpT vD(p0, T0) =

(
p0

p

T

T0

)bRe

vD(ρa) =

(
ρa

ρa0

)bRe

vD(ρa0) , (2.17)

with p0, T0, and ρa0 are pressure, temperature, and density at standard conditions
(sea level), p, T , and ρa are pressure, temperature, and density at the desired alti-
tude. Since ρa in equation 2.15 depends on pressure and temperature, it need to be
appropriately substituted.
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2.8 Liquid and Ice Water Content

In order to describe the microphysical state of a cloud we commonly refer in case of
liquid clouds to its Drop Size Distribution (DSD) and to its Liquid Water Content
(LWC), or in case of ice clouds to its Particle Size distribution (PSD) and to its Ice
Water Content (IWC).
As seen in section 2.6, the Size Distribution represents the cloud particle concen-
tration in function of the diameter of the particles. We calculate the LWC and the
IWC by integration of the DSD or of the PSD, respectively, which are in this case
expressed by the number density of the particles n as a function of the particle ra-
dius r, or as a function of rs, radius of the ice sphere having the same mass of the
corresponding irregular ice particle:

LWC =
4π

3
ρw

∫

r3 n(r) dr (2.18)

IWC =
4π

3
ρi

∫

rs
3 n(rs) drs , (2.19)

with ρw the liquid water density, and ρi the ice water density.
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Chapter 3

Cloud radars

3.1 Introduction

In meteorology radar systems are active devices designed to remotely study the at-
mospheric environment from a ground platform1.
A radar produces electromagnetic radiation with a well defined frequency in the
microwave band, and emits it through an antenna. Microwaves travel trough the
atmosphere and interact with targets such as raindrops or cloud forming particles
– our interest as meteorologists – or such as insects, birds, etc. Because of this
interaction, the targets emit radiation themselves. The part of radiation directed
back to the radar is received by the radar system. Studying these echoes we are
able to extract information on the observed objects. The design of the radar allows
us to detect and locate targets, reason for which in meteorology radars are used
operationally for monitoring the weather; radars also provide measurements that,
after proper signal processing, allow us to individuate properties of the targets, such
as size, shape, and velocity, and therefore to derive an empirical description of the
physical processes that were likely operative at the time of measurements.
The advantages of cloud radar systems, compared with other remote sensing instru-
ments, are the potential of detecting clouds over the whole troposphere, and the
capability of long unattended operation.

Many text books describe the principle of radar systems; in this work we refer to
Skolnik (1990), Doviak and Zrnić (1993), Bringi and Chandrasekar (2001).

1Nowadays we can find meteorological radars also on air- or space- borne platforms
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3.2 The radar equation

TRANSMITTER

RECEIVER

ANTENNA

SINGLE

TARGET

RADAR 

RESOLUTION

VOLUME

R
A

N
G

E

Figure 3.1: Basic representation of a radar system.

Figure 3.1 shows a schematic representation of a weather radar. A radar system
incorporates the source of microwaves, that is a resonator, such as a klystron or
a magnetron. The wavelength range useful for meteorological applications goes
from millimetres to metres, in response of practical requirements (attenuation, range
ambiguities, velocity ambiguities, ground clutter, spatial resolution).
In the last decades improvement of equipment sensitivity with high power and short
wavelength radars were accomplished. The operating frequency of the radar system
used in this work - MIRA-36 - is 35.5 GHz , that corresponds to a wavelength
of 8.45 mm . At this wavelength the sensitivity (inversely proportional to λ4, in
Rayleigh scattering regime) for the small hydrometeor constituting clouds is finer
than at longer wavelength. Moreover, the contribution to the scattering due to the
turbulent fluctuations of the refractive index of clear-air is negligible. Radar systems
operating at this short wavelength are then suitable for cloud studies, even though,
in circumstances that need to be considered, rainfalls attenuate the signal.
The microwaves travel through proper guides to the antenna. For meteorological
applications, the antenna is designed to emit radiation within a narrow beam, and
to receive radiation traveling along the opposite direction.
The radiation is emitted in pulses of constant length τ . The depth of the radar
resolution volume is directly proportional to the length of the pulse. The pulses
are repeated at regular intervals of length T (T = 1/PRF, with PRF the pulse
repetition frequency). During this time interval between two consecutive pulses the
radar system waits for an echo. This procedure allow us to range-resolve radar data:
by measuring the time delay tD between any transmitted pulse and its echo, we
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evaluate the distance r of a target as:

r =
c tD
2

, (3.1)

with c speed of light.
The radar antenna transmits an electromagnetic pulse with power Pt in the space
around it. If the antenna irradiated isotropically2, the power per unit area on the
surface of a sphere of radius r and with center at the antenna would be:

Pi =
Pt

4πr2
. (3.2)

Thus the incident power density on a point target distant r from the antenna would
be Pi . Anyway antennas are never isotropic, but they are designed to be highly
directional: the geometry of their reflectors is such that most of the energy is trans-
mitted within a beam along a specific direction. The directionality of the antenna
is expressed by the gain G(Θ,Φ) , function of the spacial coordinates azimuth and
elevation. The spacial gain G(Θ,Φ) shows a maximum G0 within the beam. For
circular paraboloidal reflectors, such as the one of MIRA-36, G0 is expressed by:

G0 =
4πAe

λ2
, (3.3)

with λ wavelength of the emitted electromagnetic radiation and Ae effective aperture
of the antenna.
Figure 3.2 shows G(Θ,Φ)/G0 for the radar system MIRA-36, where H– and V–
plane refer to the plane of oscillations of the electromagnetic waves (see section 3.7).
By assuming a sharp-edged conical beam with uniform gain G0, an extended target
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Figure 3.2: Beam pattern for radar MIRA-36, METEK documentation (2006)

with cross-sectional area Atg that lies in the beam intercepts the amount of power:

Ptg = PiG0Atg . (3.4)

2power uniformly distributed on a sphere
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If the target would not absorb any power but would re-irradiate all the intercepted
power isotropically, the power density at distance r from the target would be (simi-
larly to equation 3.2) :

Pr =
Ptg

4πr2
. (3.5)

In a monostatic system, the same radar acts both as transmitter and receiver. Hence
the radar antenna intercepts a power back from the target:

Pr =
Ptg

4πr2
Ae . (3.6)

In antenna theory it is shown that the gain increases with decreasing wavelength:

Ae =
G0λ

2

4π
. (3.7)

Grouping the previous equations we obtain the radar equation for a single extended
target:

Pr =
Pt

4πr2

G0Atg

4πr2
Ae =

PtG
2
0λ

2

(4π)3
Atg

r4
. (3.8)

Note that, because of the two-way trip of the signal, the power received by the
antenna from a single target varies inversely to the fourth power of the distance.
Real targets do neither re-irradiate isotropically nor they are free of absorption. In
order to maintain the validity of equation 3.8, we need to replace Atg with the back
scatter cross section σ, which specifies how much of the intercepted power is scattered
back to the antenna. The backscattering cross-section σ has the dimensions of an
area and depends on shape, size, and orientation of the target, but it is generally
different from the physical cross section, because it depends also on conductivity and
complex dielectric constant of the target, as well as on wavelength and polarization
of the incident radiation.
By substituting the cross-sectional area Atg of the target with its backscattering
cross-section σ, equation 3.8 for a real target becomes:

Pσ =
PtG

2
0λ

2

(4π)3
σ

r4
. (3.9)

This equation is valid for a single target in the volume V scanned by the radar. If
the volume V contains more than one target (see figure 3.3), the total backscattered
signal is the sum of the signals backscattered from each target i in V :

Pσ =
PtG

2
0λ

2

(4π)3
1

r4

∑

V

σi , (3.10)

where the summation is over the volume centered at distance r, and σi is the
backscattering cross-section of the i-th target in this volume.
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Figure 3.3: Schematic representation of the interaction among radar waves and a
distributed target - namely cloud droplets.

The length τ of the emitted electromagnetic pulse and the beam width at distance
r from the antenna determine the volume sampled by the radar:

V = π
cτ

2

(
rθ

2

)(
rφ

2

)

, (3.11)

with cτ/2 being the volume depth, θ and φ the azimuth and elevation beam-widths,
and the factor 1

2 taking in account the two-way path.
Antennas with circular paraboloidal reflectors produce a symmetric beam, mean-
ing θ = φ . Additionally, the Probert-Jones correction needs to be introduced to
take in account that the beam shape is not uniform: assuming a Gaussian shape for
the antenna beam (see figure 3.2), the radar sampling volume is smaller by a factor
of 2 ln 2 :

V =
πθ2r2cτ

24 ln 2
. (3.12)

Let us assume that the targets are uniformly distributed over the volume, so that
we may introduce the radar reflectivity η, such that it represents the backscattering
cross-sectional area per unit volume:

η =

∑

V σi

V
. (3.13)

Then equation 3.10 becomes:

Pσ =
PtG

2
0λ

2θ2cτ

1024(ln 2)π2r2
η . (3.14)
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This signal needs still to be reduced because of the occurrence of losses. We group
all the power losses introduced by the components between the antenna and the
received input, such as waveguides or joints, in the factor L . The power loss L
is measured at a fixed point in the radar system. MIRA-36 has a loss of power
L = 10 · log L estimated to be about 7 dB . Considering the losses the equation 3.14
becomes:

Pσ =
PtG

2
0λ

2θ2cτ

1024(ln 2)π2L r2
η , (3.15)

or, simply:

Pσ =
constant

r2
η , (3.16)

that represents the radar equation for uniformly distributed targets. It illustrates
that the received power:

is a function of constants which depend on the characteristics of radar set;

is directly proportional to the radar reflectivity η, which represents the scatter-
ing properties of the ensemble of targets;

is inversely proportional to the square of the distance.

Backscattered power received at the antenna, decomposed in step:

Pσ =

backscattered power collected by the antenna
︷ ︸︸ ︷





backscattered power
︷ ︸︸ ︷







(
PtG0

4πr2

)

︸ ︷︷ ︸

power density on a target

σ









1

4πr2







︸ ︷︷ ︸

backscattered power density at the antenna

G0λ
2

4π

Note that the amount of received power decreases with the second power of the
distance, instead that with the fourth power as in the radar equation for a single
target (equation 3.8), because the greater the distance, the larger the volume, the
more numerous the scatterers.
As last aspect let us consider that all the radar systems, as electrical devices, suffer
from thermal noise3. This noise produces an additive signal at the receiver input.

3Thermal noise is due to the thermal agitation of electrons that happens in any electrical con-
ductor.
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The receiver thermal noise power is given by:

PN = kBT0BF , (3.17)

where kB is the Boltzmann’s constant, T0 is the standard temperature, B is the
receiver bandwidth, and F is the receiver noise factor (or noise figure FN , if expressed
in dB as FN = 10 · log F ).
Since in all the equations seen up to this point the power Pσ is due to only scattering
properties, and therefore is noise free, the power actually measured Pm by the radar
system is given by the power backscattered from atmospheric targets plus the noise
power:

Pm = Pσ + PN . (3.18)

We define the Signal to Noise Ratio SNR as:

SNR =
Pσ

PN
=

Pm − PN

PN
. (3.19)

Thus, we can evaluate the backscattered power Pσ from the SNR, which is a direct
function of the noise and the measured power.
The nominal value of the thermal noise power for MIRA-36 assessed by equation
3.17 is about4 −100 dBm .

Receiver thermal noise power
for MIRA-36:

PN = 10 · log PN

= 10 · log (kBT0BF )
= −103.6 dBm until 23rd April 2007
= − 98.6 dBm after 23rd April 2007

kB = 1.38 · 10−23 J/K Boltzmann’s constant
T0 = 290 K standard temperature
B = 1/τ = 5 MHz receiver bandwidth
F = 2.19 ⇔ FN = 3.4 dB receiver noise figure until 23rd April 2007
F = 6.92 ⇔ FN = 8.4 dB receiver noise figure after 23rd April 2007

There are other ways to evaluate the noise; one is to measure it directly at the
receiver; the other involves the average of the power backscattered by a range gate,
referred to as the noise gate, free from meteorological targets or plankton5. Usually
the noise gate is chosen over 14 km . Considering that within a pulse cycle PN stays
nearly constant, in the practical use of MIRA-36 its value is measured at the noise
gate at every pulse.

4With P (mW) expressed in milliwatt it follows 10 log P (mW) = P(dBm) expressed in decibel
relative to one milliwatt.

5With the term plankton in radar meteorology one means all the non-hydrometeoric targets
revealed from a radar system, that are normally insects, pollen, or birds.
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3.3 Radar cross section for meteorological targets

The radar equation 3.16 is a function of properties of the radar set and properties
of the scattering particles.
The properties of the radar set are known, and they are grouped in the radar con-
stant, that includes the losses of the system.
The properties of the scattering particles depend on shape and size, number concen-
tration, and thermodynamic phase, which all affect the amount of energy scattered
back to the radar. Thus, the fundamental observable of a cloud radar is the reflec-
tivity η , which through σ , as defined in equation 3.13, depends on the properties of
all the scattering particles in a unit volume.
Meteorological scatterers have a variety of forms – from simply spherical droplets to
awesome snow crystals –, a litre of air may contain some or millions of them, their
dimension ranges from microns to millimetres, and they can be in liquid or solid
thermodynamical state (see chapter 2 on cloud microphysics).
Let us imagine all the meteorological scatterers being spherical particles, and allow
them only to vary with diameter D for the time being.
Mie (1908) had developed a theory that allow us to evaluate the backscattered en-
ergy of a sphere made of a uniform material. The theory predicts that the behavior
of a spherical particle depends on the relation between the diameter D of the particle
and the wavelength λ of the incident radiation. The limit cases are droplets large
relative to the incident wavelength, which scatter in the optical region, and droplets
small relative to the incident wavelength, which scatter in the Rayleigh region. The
bounds of these regions are determined by the ratio between the circumference of
the spherical particle and the incident wavelength:

πD

λ

{
/ 1 ; Rayleigh region
' 1 ; optical region

When the diameter D of a particle is much smaller than the incident electromagnetic
wave the induced field can be approximated by a dipole field with the axis on the
direction of the incident wave (Rayleigh scattering approximation); the induced
field maintains the same frequency as the incident field and it is proportional to
the number of molecules of the particle, that means that it is proportional to the

volume of the particle

(

4

3
π
(

D

2

)3
)

. In the Rayleigh approximation the power of the

backscattered radiation is well approximated by:

σi =
π5

λ4
|Kw|2Di

6 , (3.20)

where Kw is the dielectric factor:

Kw =
m2 − 1

m2 + 2
, (3.21)

with m the complex index of refraction of liquid water.
Equation 3.20 is known as Rayleigh approximation: the backscattering cross-section
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(a) Liquid water sphere

(b) Solid water sphere

Figure 3.4: Normalised radar cross section at a frequency of 35.5 MHz (a) for a
liquid water sphere at a temperature of 10 ◦C (Liebe et al., 1991) and (b) for a solid
water sphere at a temperature of −10 ◦C (Hufford, 1991).

increases linearly with the sixth power of the diameter of the scatterer.
In the case of MIRA-36, working with a wavelength of 8.45 mm , the limit for
diameter of spherical liquid or solid water particles to behave in the Rayleigh ap-
proximation is shorter than 1 mm , as shown in figure 3.4 . The refractive index
model used for the scattering computations of a liquid water sphere has been de-
veloped by Liebe et al. (1991) , and the one used for the scattering computations
of a solid water sphere has been developed by Hufford (1991) . Remembering that
the greatest dimension of cloud particles - liquid droplets or ice crystals - is about
0.1 mm , whereas raindrops have maximum diameters ranging from 1 to 7 mm , we
derive that at the wavelength of MIRA-36 cloud particles scatter in the Rayleigh
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region, and raindrops scatter in the Mie region. We should note that in this section,
for the sake of simplicity, we are treating spherical, liquid–made water particles.
The most important point in 3.20 is that the backscattering cross-section is strongly
dependent on the particle size, therefore the reflectivity η shows the same depen-
dence:

η =
1

V

∑

V

σi

=
1

V

π5

λ4
|K|2

∑

V

Di
6 . (3.22)

In general, a litre of air in a warm cloud contains more than one billion droplets;

Resolution volume centered at 5 km in litres for MIRA-36:

V =
πθ2cτ

24 ln 2
· r2 =

= 35 · 103 m3 = 35 · 106 l

θ = 0.52o = 0.00908 rad
τ = 200 ns

a radar resolution volume – i.e. for the radar MIRA-36 a resolution volume at
5 km is constituted by 35 · 106 litres – contains a number of particles high enough
to allow us to substitute the discrete sum over all the particles diameters with
an integral of the continuous function Particle Size Distribution N(D), with the
particles uniformly distributed over the radar resolution volume. Thus it is clear
that the radar reflectivity is the product of the concentration and of the radar cross
section of the particles:

η =
π5

λ4
|K|2

∫ ∞

0
N(D) D6dD , (3.23)

where N(D)dD represents the number of particles per unit volume having diameter
between D and D + dD.
The radar reflectivity represents the product of the concentration and of the radar
cross section of the particles. The integral on the right end of the 3.23 takes the
name of reflectivity factor Z:

Z =

∫ ∞

0
N(D) D6dD (3.24)

that does not depend on the radar set and refers to spherical targets of unknown
properties but the size; we also say that the reflectivity factor Z is given by the
sixth moment of the Particle Size Distribution. Radar sets measure the reflectivity
η, which is used to evaluate the reflectivity factor Z .



3.3 Radar cross section for meteorological targets 37

The strong dependence on the diameter entails that in a volume containing a dis-
tribution of particles, few relatively big particles dominate the backscattered power
and obscure the power backscattered by a higher number of smaller particles. This
point is referred to as the large droplet issue (Russchenberg and Boers, 2003). It
has as a consequence that the Liquid Water Content LWC - proportional to the
third power of the droplet diameters - is not evaluable directly only from reflectivity
measurements, but other remote sensing systems should be additionally considered
(as a synergy with Lidar, see Hogan and O’Connor, 2004 ). Moreover the cloud base
height is not detectable in the presence of few rain drops or either few drizzle–like
particles.
The units of η are area per unit volume, both expressed in metres (m2/m3), whereas
by convention Z is expressed as the sixth power of millimetres per unit volume in
metres (mm6/m3), to remind that it represents the sixth power of a diameter per
unit volume.
The values of the reflectivity factor span many orders of magnitude, therefore radar
meteorologists make use of a logarithmic scale:

Z(dBZ) = 10 log10 Z(mm6/m3) , (3.25)

where Z on the left hand side is in the so–called dBZ units (decibel relative to the
reflectivity factor) and Z on the right end side is in mm6/m3 units. Values of Z
range from −20 to 20 dBZ for clouds, and from 0 to as much as 60 dBZ for rainfalls.
Let us write the equation 3.23 in function of the reflectivity factor Z, and let us sub-
stitute it in equation 3.15, so that the power backscattered is expressed as function
of Z; including the known constants of the backscattering cross section in the radar
constant we obtain:

Pσ =
PtG

2
0λ

2θ2cτ

1024(ln 2)π2L

1

r2

[

π5

λ4
|K|2Z

]

=
PtG

2
0θ

2cτπ3|K|2
λ21024(ln 2)L

1

r2
Z

=
constant

r2
Z . (3.26)

The reflectivity factor evaluated inverting equation 3.26 turns to be a function of
backscattered power and range:

Z =
r2

constant
Pσ . (3.27)

Recalling equation 3.18, where Pm and PN are measured quantities:

Z =
r2

constant
(Pm − PN ) . (3.28)

We may also write, highlighting the contribution to the reflectivity factor due to the
noise, ZN :

Z = Zm − ZN . (3.29)
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Using equation 3.19:

Z =
r2

constant
PN

(Pm − PN )

PN

=
PN

constant
r2 SNR (3.30)

= C r2 SNR .

Specifying the units:

Z(mm6/m3) = C(m) r2(m) SNR (3.31)

Z(dBZ) = C + 20 · log r(m) + SNRdB ,

with C = 10 · log C and SNRdB = 10 · log SNR. The constant C takes the name of
weather radar constant. The value of C for MIRA-36 is −92.47 dB , with the range
provided in metre.

Weather radar constant of MIRA-36:

C = 10 · log C = 10 · log
λ21024(ln 2)LPN

PtG2
0θ

2cτπ3|Kw|2
= −92.47 dB

λ = 8.45 mm
L = 3.6 dB
PN = −98.6 dBm
Pt = 25 kW
G0 = 89125

(
= 49.5 dB

)

θ = 0.52 ◦C = 0.00908 rad
τ = 200 ns

|Kw|2 = 0.93 [liquid water]
If MKS units are used to evaluate C, then the result must be multiplied
by 1018 to return Z in mm6/m3 units, and the distance r of the target
from the radar in equation 3.31 must be expressed in meters.
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3.3.1 Equivalent reflectivity factor

So far equation 3.30, through equation 3.24, does not relate the power recorded by
the radar system with the properties of the hydrometeors, because we need to know
the phase of the particles and we need to assume a Particle Size Distribution PSD.
Recalling the assumptions done up to now, the following ideal conditions need to
be fulfilled for the weather radar equation to be valid: resolution volume completely
and uniformly filled by the particles; particles spherical, liquid water made, and
small enough to satisfy Rayleigh approximation.
When the above conditions are not met, the equivalent6 reflectivity factor Ze is used
in place of the reflectivity factor Z. This means that we rewrite equation 3.23 as:

Ze (= Z) =
λ4

π5 |Kw|2
η . (3.32)

where the equality in brackets is valid in the ideal case, and with Kw a function of the
complex index of refraction of liquid water (see equation 3.21); in weather radar ap-
plications is still used an old value tabulated by Gunn and East in 1954: |Kw|2 = 0.93.
The convention of considering cloud and precipitation particles being made of liquid
water is adopted because weather radars were first used to evaluate amount of rain,
and it is still used because generally it is not known which kind of particles the
resolution volume currently contains.
It being understood that the resolution volume is still supposed uniformly filled, if
we conjecture that the radar resolution volume under study contains ice or snow,
we should change the value of the index of refraction for water with the one for ice,
that is |Ki|2 = 0.176 for a density of 0.917 g/cm3 , and we should use an expression
of the backscattering cross section that is appropriate for irregular shaped particles.
Rayleigh approximation is still valid for ice at the common weather radar wave-
lengths, because ice is a weak dielectric. This implies that the exact shape of the
particle is inessential: the backscattering cross-section of an irregular particle com-
posed by ice is similar to that of a uniform ice-made sphere with the same mass of
the actual particle. It should be noted that Rayleigh approximation is anyway no
more valid either in case of huge hailstone, nor in case of large wet particles.
The issue here is that radar systems are customized to measure Ze, which means
that an assumed dielectric factor is incorporated in the weather radar constant; nev-
ertheless it is possible to evaluate the actual reflectivity from the equivalent one if
the properties of the scatterers are known.

Smith (1984) has sketched how to properly connect Z with Ze . We saw that for
liquid spherical drops in Rayleigh approximation, the equivalent reflectivity factor
Ze is equal to Z (equation 3.32). Let us rewrite the reflectivity expression (equation
3.23) for irregular ice particles, by substituting the dielectric factor |Kw| for liquid
particles with the dielectric factor |Ki| for ice particles, and by substituting the
diameter D of a generic spherical particle with the diameter Ds of an equivalent ice

6In literature you may also find the term “effective” in place of “equivalent”.
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sphere (i.e. the ice sphere having the same mass of the corresponding irregular ice
particle):

η =
π5

λ4
|Ki|2

∫ ∞

0
N(Ds) D 6

s dD =
π5

λ4
|Ki|2Z ; (3.33)

we obtain, using equation 3.33 in equation 3.32 :

Ze =
|Ki|2

|Kw|2
Z = 0.189 Z (3.34)

Z =
1

0.189
Ze ,

or, as logarithmic expression:

Z = 7.2 dB + Ze .

This means that the measured reflectivity factor, Ze , is smaller by a factor 0.189
than the actual one, Z. We may still maintain the value of Ze, if we consider in
place of Ds , the diameter of a liquid particle obtained by the complete melting of
the ice one, Dm. The relation between Dm and Ds is given by:

Dm = Ds
3

√
ρi

ρw
= 0.97 Ds , (3.35)

with the densities of ice and water being respectively ρi = 0.9168 g/cm3 and ρw =
0.9998 g/cm3 . The use of alternative diameters for ice particles is necessary because
they trap air in different amount, and the density of an ice particle may be as low
as 0.05 g/cm3 .
Typical values of equivalent reflectivity factor Ze , expressed on a logarithmic scale,
are tabled for different cloud types in table 3.1 , and examples of radar measurements
by MIRA-36 for cirrus and stratus are shown in figure 3.57 .

Table 3.1: Typical values of equivalent reflectivity factor for the radar system
MIRA-36 placed in Lindenberg (DWD Meteorological Observatory). By Görsdorf
(2009).

Cloud type Equivalent reflectivity Ze

Cirrus −50 . . . 0 dBZ
Fair weather cumulus −50 . . . − 30 dBZ

Non–drizzling stratocumulus −50 . . . − 30 dBZ
Stratocumulus with drizzle −30 . . . 10 dBZ

Light rain (drizzle) −10 . . . 10 dBZ
Moderate rain 10 . . . 30 dBZ

7See section 3.10 for an explanation of Time–Height Indicators.
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(a) Cirrus

(b) Stratus

Figure 3.5: Examples of radar equivalent reflectivity factor measured by the radar
system MIRA-36 (Hamburg, 2007).
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3.4 Attenuation

Electromagnetic waves propagating through the atmosphere are attenuated by gases
and particles. The attenuation depends on the composition and concentration of the
penetrated matter as well as on the wavelength. Attenuation due to liquid water is
appreciable, and increases with decreasing wavelength. Corrections for attenuation
by atmospheric gases and liquid water clouds are necessary for radar systems working
at 94 GHz; but radar systems working at frequencies as low as 36 GHz do not suffer of
strong attenuation from atmospheric gases or hydrometeors, as one sees in table 3.2
by Görsdorf (2009). Attenuation corrections below the melting layer could anyway
be included using the algorithm developed by Hitschfeld and Bordan (1954).

Table 3.2: Attenuation coefficients in dB/km for 35 GHz radar separated for absorp-
tion by gases (h being the absolute humidity and with pressure p = 1013 hPa and
temperature T = 0 ◦C) and extinction by rain (R being the rain rate). By Görsdorf
(2009), after the formulation of Lhermitte (1990).

Absorption by gases
h = 0.25 g/m3 0.04 dB/km

h = 25 g/m3 0.35 dB/km

Extinction by rain
R = 0.3 mm/h 0.06 dB/km

R = 10 mm/h 2 dB/km
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“Daddy?”
“Yes?”

“I want to be a scientist.”
XKCD.com/585

3.5 Doppler radar

All the particles in the radar resolution volume are moving in respect to the radar,
each with its own velocity and each giving rise to a different echo signal. The single
signals from every particle superpose linearly to give rise to the total echo. This echo
is a radiation with the same wavelength of the initial incident radiation, but has
intensity and phase fluctuating, as result of the random movements of the particles
(figure 3.3). Note that the wavelength is of course also affected by the Doppler
shift. Indeed the Doppler effect for microwave radars and for usual meteorological
velocities is so small that it cannot be resolved in the short time of observation
of backscattered signal from a single transmit pulse. It is rather reconstructed
from the incremental phase shift of the backscattered signal for subsequent transmit
pulses. The intensity of the echo is related to the distribution and to the size of the
particles, as we saw in the foregoing sections (see in particular equations 3.24 and
3.26), whereas the shift in phase is due to the Doppler effect and hence it is related
to the velocities of the particles in respect to the radar.
The radial velocity vr of the target in respect to the radar system is related to the
Doppler shift fD by:

fD =
2

λ
· vr . (3.36)

In case of vertically pointing radar, vr represents the vertical component of the radial
velocity of the particle, which we indicate as Doppler velocity vD in the following.
Thus a radar system that measures the shift in phase allows us to calculate the
Doppler velocity of the particles through equation 3.36. A radar system with this
capability is called Doppler radar, and it returns the Doppler spectral power density
SfD

(fD), or Doppler spectrum, which is defined such that SfD
(fD) dfD represents

the density of power backscattered by the particles having Doppler shifts in the
range fD to fD + dfD.

Since signals are recorded in a discrete way, we need to reconstruct the continuous
signal by computing the Fast Fourier Transform from a discrete number of samples
(2n points, n = 6, 7, 8, . . .). The radar emits a pulse of length τ ; then it waits for
the echo for a time long T ; during T the signal received by the radar system (signal
plus noise) is sampled every ∆tD, every sample corresponding to a subsequent range
gate of ∆r metres along the beam track (see equation 3.1). In order to reconstruct
the signal we need to collect from the same range gate a number of samples high
enough so that the samples are a complete representation of the signal, but small
enough to can consider the particles remain in a stationary state, that means they
not change their own velocity.
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According to Nyquist theorem a maximum signal frequency fM is associated to a
frequency of sampling PRF (Pulse Repetition Frequency):

fM =
PRF

2
, (3.37)

from which we calculate the maximum Doppler velocity range measurable as:

vDMax − vDmin = fM
λ

2
. (3.38)

The sign of the shift is related with a motion of the particles toward or away from
the radar. The Doppler velocity resolution is given by:

∆vD =
vDMax − vDmin

NFFT
, (3.39)

with NFFT the number of points for the Fast Fourier Transform.
Then it is clear that by increasing NFFT we increase the frequency (or velocity)
resolution, but not the Nyquist range, that is instead driven by Pulse Repetition
Frequency (and wavelength) of the specific radar system.

As said, instant by instant the power backscattered fluctuates, since the particles
move randomly. Then to obtain a more realistic estimate of the behavior of the
particles we could either perform a running average of one spectrum over a certain
frequency interval, or a time averaging of successive spectra over a period of sev-
eral multiples of the time needed to have one complete reconstructed spectrum of
the received signal — the latter technique being the one used in the radar system
MIRA-36.
The time averaged spectrum of a sampled series of spectrum SfD

(fD) is SfD
(fD).

Hence the expression for the time averaged power is:

Pm =

∫ +∞

−∞
SfD

(fD) dfD . (3.40)

By virtue of equation 3.36, that expresses the Doppler frequency shift in terms of
the radar wavelength λ and of the Doppler velocity vD of the particles, we write,
likewise equation 3.40:

Pm =

∫ +∞

−∞
SvD

(vD) dvD , (3.41)

where SvD
(vD) dvD is the time averaged spectrum of a sampled series of spectrum

SvD
(vD), representing the density of power backscattered by the particles having

Doppler velocity in the range vD to vD + dvD.
We know that the scattering particles are size distributed, that their number is large
in the radar resolution volume and that they move independently with respect to
one other. The single scattered electromagnetic waves superpose with constructive
and destructive interference, giving rise to a signal that arrives to the radar with
random phase and fluctuating intensity. The statistical error of the mean measured
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intensity, and thus of the reflectivity factor Z, is given by 1/
√

n , n ≫ 1 , with n
the number of averaged spectra.

For MIRA-36 system, at the configuration used for this work, that is PRF
= 5 kHz and NFFT = 256, the time needed to have one complete reconstructed
spectrum for every range gate is 51.2 ms (500 range gates of 30 metres), the Nyquist
range goes from −10.625 m/s to +10.625 m/s , and the Doppler velocity resolution
is 0.08 m/s .
The averaging time is 10.0352 seconds, that corresponds to average over 196 raw
spectra.
The statistical error value for MIRA-36 for the averaging time of 10.0352 seconds is
about 7%, that corresponds to 0.3 dB .
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3.6 Gaussian spectra

The measured Doppler spectrum SvD
(vD) is the convolution of functions describing

several factors.
The convolution of two signals h(t) and x(t) is defined as:

y(t) = h(t) ⊗ x(t) =

∫ +∞

−∞
h(ξ)x(t − ξ)dξ (3.42)

It can be proved that the spectrum of y(t) is given by the product of the spectra of
h(t) and x(t), that is:

Y (f) = FT

[
y(t)

]
= FT

[
h(t) ⊗ x(t)

]
= FT

[
h(t)

]
FT

[
x(t)

]
= H(f)X(f) (3.43)

as a property of the Fourier transform FT .

The first contribution to the measured Doppler spectrum is due to the particle
fall velocity distribution.
A broadening of the spectra is caused by the dwell time, that is the time of residence
of the particles in the radar resolution volume. This factor is anyway negligible for
the radar system used in this work.
The spectra could be affected by wind shear or droplet size distribution broadening,
specifically, the dominating effect to the shape of a Doppler spectrum is the broad-
ening due to turbulent motion of the air.
Thus the measured Doppler spectrum is the convolution of the still air Doppler ve-
locity spectrum with the turbulent velocity probability density function, which is
usually assumed to be Gaussian (Gossard et al., 1997). In the ideal case we suppose
that the particles in the resolution volume are of the same type and have the same
dimensions, so in steady air they move with the same velocity. Therefore the fall
velocity is a Dirac’s delta function.
Since the convolution of a Dirac’s delta function with a Gaussian function is still a
Gaussian function, we can reasonably assume Doppler spectra of cloud signals being
Gaussian-shaped.
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3.7 Polarimetric radar

The identification of the hydrometeors just using reflectivity factor and Doppler ve-
locity is a challenge because, for example, little droplets can produce an echo similar
to the one of larger ice crystals.
Polarimetric radar systems provide information on the shape of the sensed hydrom-
eteors, on their fall orientation related to the radar beam direction, and on their
refractive index and bulk density. More and more radar systems are nowadays
equipped with polarimetry control for the emitted and received waves. Linearly
polarized electromagnetic waves oscillate on one well defined plane, called the po-
larization plane. Common configurations for cloud radars use linear, circular, or
elliptical polarized waves. Radar system MIRA-36 emits waves on one linear polar-
ized plane H, and measures waves on the same plane H and on the orthogonal plane
V . This radar is vertically pointing, and indeed for vertically pointing radar systems
the direction of polarization is inessential; we maintain the labels of H (horizontal)
and V (vertical) polarization following the conventional notation for slanted-looking
radars.
The study of the polarization of the received waves, compared with the polarization
of the emitted one, allows us to infer the asymmetry of the particles, so that we can
distinguish spherical droplets from asymmetric snow crystals.
The measure of the asymmetry of the particles is called Linear Depolarization Ratio
LDR, and is given by the ratio between the signal received on the vertical polariza-
tion plane and the signal received on the horizontal polarization plane; in decibel:

LDRdB = 10 · log10

(
ZV H

ZHH

)

. (3.44)

In the suffixes in equation 3.44 the first letter indicates the received polarization
plane, and the second letter the emitted polarization plane; then, since we are in-
terested in systems with only one plane of polarization for the emitted wave, ZV H

is the reflectivity received on the vertical polarized plane, or cross–polar plane (cx–
channel), and ZHH is the reflectivity received on the horizontal polarized plane, or
co–polar plane (co–channel).

With the term depolarization we mean that part of a linearly polarized wave
incident on a target that starts to oscillate on a different polarization plane, so that
there is a distribution of the incident energy among all the possible oscillation planes.
Let us imagine a liquid particle with cross–section oblate with respect to the radar
line of sight. Let us also consider that the incident wave has a plane of polarization in
respect to the line of sight aligned as illustrated in figure 3.6. Let us decompose the
incident field Ei in two arbitrary components EiX and EiY (figure 3.6a); as the choice
of these components does not change the final result, we consider two orthogonal
axis XY oriented at 45o degrees in respect to the incident wave (T. Otto, personal
communication). The two components EiX and EiY of the incident wave induce in
the particle the fields EσX and EσY (figure 3.6b) oriented parallel to their directions,
such that the power (Px and Py) of the backscattered waves are proportional to the
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Figure 3.6: Depolarization of waves incident on oblate particles. a: incident wave
decomposed on two arbitrary orthogonal components (XY); b: components of the
field induced on an oblate particle and backscattered wave due to their composition
(XY); c: backscattered wave decomposed on the polarization planes (HV).

backscattering cross sections σx and σy , that in the Rayleigh approximation depend
on the 6th power of the length of the section of the liquid particle along the considered
component. The composition of EσX and EσY results in a backscattered wave with
field Es that is not necessarily oriented along the incident polarization plane. Let
us decompose again Es on the plane individuated by the axis H and V , H oriented
along the incident polarization plane and V oriented orthogonally to it (figure 3.6c).
If the component EsV of Es along the V axis is not zero, than the transmitted
wave Ei has been depolarized. If the liquid particle has a spherical cross–section
with respect to the line of sight of the radar, there is no depolarized component, the
depolarization ratio EsV /EsH is zero, and the value of the LDRdB (see equation 3.44)
tends to −∞. Practically there is a limit in measuring the depolarized component,
depending on the goodness of the separation of the waveguides in the radar system,
as any imperfection of the antenna will produce a cross–polarized component. For
MIRA-36 radar system the lowest limit for the LDRdB is about −35 dB .
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If the liquid particle has a cross–section oblate with respect to the line of sight of
the radar, the maximum possible depolarization results when Es is oriented such
that its projections on the H and V axis, EsH and EsV , have the same intensity.
In this case the the depolarization ratio EsV /EsH is one and the value of LDRdB is
then zero.
The things became more complicated by the elaborate shapes of the ice crystals.
Hence from the LDRdB values we just infer how much aspherical is the section of
the particles. Moreover, ice has a small index of refraction, therefore the value of
LDRdB might not be always measurable for the smaller ice crystals.
The LDRdB is also used as an indicator of the melting layer, since it was observed
that its value consistently increase in this part of the clouds. The reason for this
behavior of the LDRdB is still not clear, even though several explanations were
suggested (Kowalewski and Peters, 2010). The most invocate process is that the ice
particles begin to melt at 0 ◦C from their external part; the liquid film of water
distributes around the still solid particle until the complete melting; during this
melting process the wet particles produce a greater value of the depolarized wave,
as a consequence of the increasing of the index of refraction.

Ground clutter and plankton, although they show the same reflectivity of cloud
particles, can be distinguished from hydrometeors by studying the values of the
LDRdB. Indeed, being largely not spherical, this kind of targets gives rise to a larger
cross–polarized component, and therefore has a larger LDRdB than the hydrometeors
(figure 3.7). Typical signature of LDRdB for different targets as measured are given
in table 3.3 .

Table 3.3: Typical values of LDRdB measured by the radar system MIRA-36 placed
in Lindenberg (DWD Meteorological Observatory). By Görsdorf (2009).

LDRdB class of targets

−30 . . . − 10 dB mixed phase clouds
−25 . . . − 10 dB ice clouds
−20 . . . 0 dB melting layer
−10 . . . 0 dB insects
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(a) Signal to Noise Ratio

(b) Linear Depolarization Ratio

Figure 3.7: Example of Signal to Noise Ratio and respective Linear Depolarization
Ratio measured by the radar system MIRA-36 (Achern, Germany, 2007, within the
COPS campaign (Wulfmeyer et al., 2008) ). In the lower panel, the reddish layer
up to 2 km is atmospheric plankton (insects, pollen, etc.); note that the SNR of the
plankton is similar to the cloud particles one, so that they are distinguishable only
by their LDR signatures. The red tiny layer at 3 km is the melting layer. Little ice
particles (between 9 and 12 km ) visible in the SNR, have a not measurable LDR.
See section 3.10 for an explanation of Time–Height Indicators.
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3.8 Phase noise

The radar system MIRA-36 utilizes a magnetron as resonator (the source of electro-
magnetic waves). The magnetron developed for MIRA-36 is particularly stable in
terms of intensity and wavelength of the emitted radiation, but it is not a coherent
resonator, that means that the phase of subsequent pulse is arbitrary. That implies
that the phase8 Φn of the emitted wave need to be measured at every pulse n. Due
to uncertainties in this measurement, a further source of noise need to be considered
in addition to the thermal noise PN : the phase noise. The main consequence of the
presence of the phase noise is that the noise floor in the spectra will not be constant,
but will increase its value with the intensity of the corresponding received wave.

Let us analyze the details of this process, rising from the “coherent on receiver”
technology, as described by Peters (2009b). The signal emitted at the pulse n is
Sn(t) (see section 3.5). For the sake of simplicity let us normalize the signal to:

en(t) = e

[

i
(
ω t + Φn

)]

, (3.45)

with t the time elapsed after the leading edge of the transmit pulse. The copy of
the signal stored for the next coherent processing is:

en
′(t) = e

[

i
(
ω t + Φn + ϕn

)]

, (3.46)

whit ϕn a random uncertain phase. The received signal from a distance rn (see
equation 3.1) is:

En(t) = E e

[

i

(

ω
(
t− 2rn

c

)
+Φn

)]

, (3.47)

with E the amplitude of the signal. Considering each particle moving with the same
velocity v, mean of the velocities of all the particles involved in the scattering, we
can express the mean range rn of these particles as:

rn = r0 + v n T , (3.48)

with r0 the mean range at n = 0, and T pulse repetition time. Then equation 3.47
turns in:

En(t) = E e

[

i

(

ω
(
t−

2r0
c

− 2vnT

c

)
+ Φn

)]

. (3.49)

The next step of signal processing is “mixing” the received signal into the base band
(transmitted signal), by means of a multiplication of the received signal with the
complex conjugate of the transmitted signal according equation 3.46:

m′(n) = Ee

[

−i
(
2r0k+2vnTk−ϕn

)]

, (3.50)

8We need to know the phase of the electromagnetic waves emitted and received to evaluate the
Doppler shift (see section 3.5).
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with k = ω/c the wave number; note that the dependency on the time t canceled.
The first phase term is fixed and is determined by the position of the targets during
the first pulse. The second phase term describes the Doppler shift. The third phase
term is the random phase measurement uncertainty. If, for simplicity of notation,
we assume that the first and second terms are zero, then:

m(n) = Ee−iϕn . (3.51)

For small variation of ϕn, that means ϕn ≪ 1, we can approximate equation 3.51
with:

m(n) = E
(

1 − i ϕn

)

. (3.52)

As described in section 3.6, the power spectrum (Doppler spectrum) is given by the
Fourier transform of the auto covariance function of the signal. The auto covariance
function of equation 3.52 is:

acf
{
m(n′)

}
= E2 ·

(

1

N

N−1∑

n=0

1

︸ ︷︷ ︸

1

− i

N

N−1∑

n=0

ϕn

︸ ︷︷ ︸

0

− i

N

N−1∑

n=0

ϕn′

︸ ︷︷ ︸

0

+
1

N

N−1∑

n=0

ϕn′ϕn

︸ ︷︷ ︸

var{ϕ} δ(n,n′)

)

= E2
(
1 + var{ϕ} δ

(
n, n′

))
, (3.53)

with var {ϕ} the variance of ϕ, and δ (n, n′) the Kronecker delta, defined by:

δ
(
n, n′

)
=

{

1 if n = n′

0 if n! = n′
. (3.54)

The discrete Fourier transform FT of the auto covariance function 3.53 is:

S(j) = FT

[
acf
{
m(n′)

}]
= E2δ

(
2πj

T
, 0

)

+ E2var {ϕ} , j = 0, 1, 2, . . . . (3.55)

The first term of 3.55 is the signal peak with zero Doppler shift, whereas the second
term is the frequency–independent noise power in each frequency bin due to the
measurement uncertainty of ϕ.
A usual representation of the phase noise power is obtained by normalization with
respect to the signal power E2 (referred to as “carrier power”) and with respect to
the frequency bin width 1/T :

PNΦ = var {ϕ} T . (3.56)

Often a logarithmic presentation in decibel is preferred, which is:

L = 10 · log PNΦ , (3.57)

with units dBc , where c indicates the “carrier”.
Typical values for MIRA-36 are about L = −35 dBc/ Hz .
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3.9 Moments of the Doppler spectrum

We saw in a last section (3.6 at page 46) that a Fourier transform converts a time
series of backscattered power in a series of reflectivities each one associated with a dif-
ferent velocity of the particles, the Doppler spectrum. Considering the Doppler spec-
tra be a continuous probability density distributions, the moments of the Doppler
spectrum are defined9 as the normalized statistical moments of the Doppler spec-
trum:

0th moment i.e. the received power:

〈
v0
〉

=

∫ +∞

−∞
SvD

(vD) dvD = Pm . (3.58)

1st moment i.e. the mean Doppler velocity (reflectivity weighted):

〈
v1
〉

=

∫ +∞
−∞ vD SvD

(vD) dvD
∫ +∞
−∞ SvD

(vD) dvD

= vD . (3.59)

2nd central moment i.e. the square of the Doppler spectrum width (or Doppler
velocity width):

〈
vc

2
〉

=

∫ +∞
−∞ (vD − vD)2 SvD

(vD) dvD
∫ +∞
−∞ SvD

(vD) dvD

= σ2
v . (3.60)

Trough equation 3.30 we see that the 0th moment represents, with the appropriate
conversions and units, the reflectivity of the particles in a resolution volume, and
then that the reflectivity can be evaluated by calculating the area under the Doppler
spectrum S(vD). Recalling equations 3.41 and 3.28, we see that, for any fixed range,
the reflectivity factor Z is directly proportional to the total power received by the
radar system, and, therefore, it is equal, up to an arbitrary constant, to the integral
of the measured Doppler spectrum SvD

(vD):

3.41 ⇒ Pm =
∫ +∞
−∞ SvD

(vD) dvD

3.28 ⇒ Z = r2

constant (Pm − PN )

}

⇒ Z ∝
∫ +∞

−∞
SvD

(vD) dvD . (3.61)

The mean Doppler velocity is expressed by the reflectivity weighted distribution
of the Doppler velocities of the particles within the scattering volume. We should
remember this point when comparing the mean Doppler velocity measured by a
radar system, that represents the mean velocity of the particle in the scattering
volume, with the terminal fall velocity (see equation 2.10 or equation 2.12), that

9Similarly to the statistical moments of a continuous random variable, the n-th moment of a
distribution is the expected value of the n-th power of the variable, and the n-th central moment
of a distribution is the expected value of the n-th power of the deviations from the 1st moment.
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predicts the fall velocity of a single cloud particle.
It is clear, therefore, that the moments of the Doppler spectrum, that are received
power, mean Doppler velocity, and spectrum width, fully characterize the Doppler
spectrum, if it is assumed Gaussian (see figure 3.8); nevertheless, if the Doppler
spectrum deviates from a symmetric, Gaussian model, we should expect a bias in
the mean Doppler velocity and spectrum width estimators.
In the following the first three moments will be referred to as global moments of
the spectrum, since they denote microphysical property of the whole ensemble of
particles in the scattering volume.

S(v  )D

v 0 v D

σ

S 0

Figure 3.8: Gaussian model of the Doppler spectrum. The moments of the Doppler
spectrum, nominally the received power Pm , the mean Doppler velocity vD , and
the spectrum width σ , are estimated from the parameters of the Gaussian curve,
respectively maximum value S0, center v0, and standard deviation σv.

By using the moments of the Doppler spectra we valuate meaningful meteorolog-
ical parameters, such as, for example, the extension of the clouds and its liquid or
ice water content, and microphysical properties. The intensity of the backscattered
power gives us information on the cloud particle phase, as liquid water scatters back
higher amount of power than solid one; from the Doppler velocity we can derive
diameter of the particles as ice particles and little cloud droplets fall with termi-
nal velocity of about 2 m/s , whereas snow has relatively higher fall velocity, and
rain reach velocities even faster then 5 m/s . The LDRdB tells us how asymmetric
the particles are, allowing us to distinguish the irregularly shaped hydrometeors, as
snowflakes, from spherical droplets. Combining the moments of the Doppler spec-
trum with ceilometers and microwave radiometer measurements, Illingworth et al.
(2007) have been able to classify hydrometeors on a continuous basis.
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3.9.1 The spectral reflectivity factor

The data acquisition software of MIRA-36 system provides values of the output
signals in so called Engineering Units (EU); that means that these values are pro-
portional to the physical quantity of interest, but they need to be calibrated before
we can connect the output numbers with the physical phenomena we are measuring.
The primary measured values of the radar are spectral powers praw,i in EU. To de-
rive the calibration constant between primary values and spectral radar reflectivity
zi in mm6m−3 we follow the indications given by Peters (2010).

Let us define the total power at the receiver input in engineering units Praw as:

Praw =
255∑

i=0

praw,i , (3.62)

with the index of the sum covering the 256 bins of the spectrum.
Similarly to the total power we define the total receiver noise measured at the noise
gate (14 km) in EU as:

NT,raw =
255∑

i=0

nT,raw,i , (3.63)

with nT,raw,i the spectral total noise at the noise gate.
The noise derived after the application of Hildebrand and Sekhon method (see sec-
tion 4.4 for more details) is:

NHS,raw = 256 · nHS,raw , (3.64)

again with the total noise NHS,raw and the spectral noise nHS,raw in EU . Note that
Hildebrand and Sekhon noise level is constant along the spectrum.
The radar software returns as a global moment the Signal to Noise Ratio SNR,
dimensionless, given by (compare with equation 3.19):

SNR =
Praw − NHS,raw

NT,raw
. (3.65)

From equation 3.30 the radar reflectivity factor Z, in EU, can be expressed as:

Z = C r2 SNR , (3.66)

with C constant of proportionality (whose logarithm represents the weather radar
constant), and r the range gate height in metre. In the same manner of equation
3.65 we can define the spectral signal to noise ratio as:

snri =
praw,i − nHS,raw

NT,raw
, (3.67)

so that the total SNR can be also write as:

SNR =

255∑

i=0

snri . (3.68)
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and equation 3.66 can be write as:

Z =

255∑

i=0

C r2 snri . (3.69)

Let us express the spectral reflectivity zi in mm6 m−3 such as:

Z =
255∑

i=0

zi , (3.70)

that then brings to:
zi = C r2 snri . (3.71)

If we wish to express zi by the measured quantities (EU), we substitute equation
3.67 to snri:

zi = C r2 praw,i − nHS,raw

NT,raw
, (3.72)

from which finally Z can be evaluated.
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3.10 Graphical representation of measurements by ver-

tically pointing radar systems

In case of vertically pointing radars the usual way to visually represent the
global moments, the LDR, and additional meteorological variables, is to use a
Time–Height Indicator (THI). A THI has the time on the X–axis and the height
range from the radar on the Y–axis. To every point on this XY–space it is assigned
a color, representing the magnitude of the represented variable; the reference values
are indicated on a scale on a side panel. One can ultimately consider a THI as the
vertical section of a cloud as the cloud passes over the radar system.
The panels in figure 3.9 illustrate an example of global moments and LDR measured
by MIRA-36 in Hamburg on 15th June 2007 . The period here shown (from 14:00
until 17:00) is dominated by a stratiform cloud from about 2 to 11 km. The melt-
ing layer is recognizable at 2.5 km until 16:00 by the sharp increase of reflectivity
and the high LDR values. Below it, heavy rain is characterized by high values of
reflectivity and spectral width as well as by significant values of the vertical velocity.
After 16:00, the signal below 2 km is dominated by atmospheric plankton with high
values of LDR .
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(a) Signal to Noise Ratio

(b) Doppler fall velocity

Figure 3.9: Examples of Time–Height Indicators. THI for the SNR, Doppler veloc-
ity, LDR, and equivalent reflectivity factor measured with cloud radar MIRA-36 in
Hamburg (2007).
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(c) Linear Depolarization Ratio

(d) Equivalent reflectivity factor

Figure 3.9: Cont. In the equivalent reflectivity factor the atmospheric plankton is fil-
tered by using an algorithm developed at METEK (Bauer–Pfundstein and Görsdorf,
2007)
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3.11 Radar specifications of MIRA-36

During this chapter we saw how radar systems work, and we evaluate some values for
the radar system MIRA-36. In this section (table 3.4) we recall the basics value for
MIRA-36, and the special settings used for this work, which represents a compromise
of good resolution and acceptable storage requirements.
All the measurements considered in this work were taken in Hamburg by the 35-GHz
vertically pointing Doppler radar MIRA-36 in the period going from August 2006
to May 2007.

Table 3.4: Specifications for the cloud radar MIRA-36. The operational parameters
indicated are valid for the measurements considered in this work. For more details
about the radar see the radar user manual (METEK documentation, 2006).

Parameter Value

Frequency 35.5 GHz
Wavelength 8.45 mm
Peak power 30 kW
Pulse Repetition Frequency 5 kHz
Pulse length 200 ns
Range resolution 30 m
Antenna diameter 1.2 m
Beamwidth 0.52◦

FFT length 256
Doppler velocity resolution 0.08 m/s
Integration time 10 ns
Minimum range 150 m
Maximum range 15 km
Minimum detectable LDR −35 dB
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Chapter 4

Development of the

decomposition algorithm

4.1 Introduction

In order to characterize clouds by Doppler radar measurements, radar meteorolo-
gists use the global moments of the Doppler spectrum. As explained in the previous
chapter, a Doppler spectrum is determined by the power backscattered by the hy-
drometeors in function of their radial Doppler velocity. Sustained by the consider-
ations outlined in section 3.6, in this work we assume that cloud particles produce
spectra with a Gaussian shape. More specifically, an ensemble of cloud particles of
the same species — the same thermodynamic phase, analogous shape and size —
produces a Gaussian spectrum, henceforth defined as a mode, with characteristic
parameters, which are related to the global moments of the Doppler spectrum (see
section 3.9, for the definition of the moments of the Doppler spectrum).

Traditionally the moments of the Doppler spectrum are evaluated considering the
spectra due to only one mode of particles. Thus, in case of clouds producing Doppler
spectra composed of more modes, the extraction of cloud microphysical parameters
by using the global moments leads to incomplete, when not erroneous, retrievals, as
for example a shifted mean Doppler velocity, or a too wide spectral width.
To overcome this lack, we have developed an algorithm capable of decomposing the
spectral modes of the Doppler spectra, from which it is possible to evaluate mode–
specific moments (in opposition with respect to the global moments). Therefore
deeper information on the structure of a cloud can be extracted.

In this chapter we will illustrate the decomposition technique developed to de-
compose the Doppler spectra with some results obtained by using this algorithm.
All the routines constituting the algorithm are written in IDL1.

1http://www.ittvis.com/ProductServices/IDL/tabid/63/language/en-US/Default.aspx
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It isn’t I cannot see the solution;
it is I cannot see the problem.

4.2 Overview of the decomposition algorithm

The basic flow chart illustrating the steps of the decomposition algorithm is depicted
in figure 4.1 .
We start our analysis from preprocessed data: we consider spectral powers praw,i,
already averaged in time, the averaging time being about 10 seconds, as described
in the last part of section 3.5 .
The main step is to fit every spectrum with the function describing the spectral
model chosen for the decomposition. A detailed description of the spectral model is
given in section 4.3 .
In order to simplify the decomposition process, the first operation to do is to remove
the noise floor. The algorithm we develop individuates the noise level for every
spectrum by using a method suggested by Hildebrand and Sekhon (1974) . This
routine is described in section 4.4 . For the analysis that follows we use the spectra
devoid of the noise. The noise level is considered again when calculating the power
of the meteorological signal (see also section 3.8).
The automatic fitting procedure could give results that have no physical meaning,
thus we need to settle several checks, so that only plausible modes would be returned.
We also formulate a separability criterion among more modes. See section 4.5 for
details.
Once the characteristic parameters of the spectral model are individuated, we use
the final products, that means the global moments, to properly calibrate the mode–
specific spectral powers, as we will explain in section 4.6 .
Microphysical retrievals obtained applying this algorithm are presented in chapter 5 .
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Figure 4.1: Flow chart of the decomposition algorithm.



64 4 Development of the decomposition algorithm

4.3 The spectral model

The core of the algorithm is the model chosen to fit the data, and, therefore, to
decompose the spectra.
A prevalent uni–modal Doppler spectrum measured with MIRA-36 in a cloud is
shown in figure 4.2a . Moreover, often Doppler spectra are measured that show a bi-
modality, which means double peaked power distributions, as shown in figures 4.2b ,
4.2c , and 4.2d . The shaded area in every panel of figure 4.2 depicts the measured
spectrum.
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(c) 11th February 2007, 12:15:10 UT, 2158 m
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(d) 29th January 2007, 23:50:20 UT, 1918 m

Figure 4.2: Examples of spectra measured by the radar system MIRA-36 (Hamburg,
Germany). The measurements are represented with gray shaded areas. Negative
velocities are downwards.

We consider bi–modal spectra indicative of the simultaneous presence in the radar
resolution volume of at least two ensembles of cloud particles, each producing a
Gaussian Doppler spectrum having slightly different parameters, which linearly su-
perpose. A typical condition for the appearing of these particular bimodal spectra
is the presence of a mixed-phase layer in a deep stratiform cloud. We should specify
that also particles moving not uniformly in the radar resolution volume, as can hap-
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pen to ice crystals because of turbulent motion on cooling cloud tops, could produce
a double peaked spectrum.

We are aware that, because of the 10 seconds averaging time, secondary modes
may appear due to the random scattering processes involved. Unfortunately, because
of disk space limitations, it is not possible to save the raw data2, thus it is not
possible to verify if - and show that - secondary modes are present constantly in
every spectrum averaged. The point is that, when revealed, secondary modes are
present along a layer of some hundred metres and a time range of about half an
hour. The observation of this persistence is not compatible with random processes,
and let us believe that these secondary modes highlight a real physical structure.

We have already pointed out (see equation 3.20 and the following discussion at
page 34) that one of the main characteristics of a radar system is the dependence of
the received signal (i.e. the reflectivity) on the sixth power of the diameter of the ob-
served particles. This means that radar systems are more sensible to bigger particles
present in a resolution volume. Hence, when more ensembles of particles are present
in a radar resolution volume, the signal produced by bigger particles, although with
a low concentration, contributes normally the most to the backscattering cross sec-
tion. In these circumstances only the strongest signal would be measurable. After
eye inspection of samples of many spectra, taken from clouds showing different verti-
cal and temporal extensions, it turned out that the decomposition of clouds Doppler
spectra in no more than two modes is adequate in most cases.
Motivated by these observations, we developed a spectral model based on a mixture
of two Gaussian functions, from which mode-specific moments of the Doppler spec-
trum are derived.
A Gaussian spectrum is represented by the equation:

SG(v) = S0 e−
(v−v0)2

2σ2 , (4.1)

where S0 is the maximum power of the signal, v0 is the mean velocity of the ensemble
of particles, and σ is the spectrum width.
We already discussed (section 3.2 equation 3.17 and section 3.8 ) the presence in the
signal registered by the radar system of a fluctuating additive noise N , which is due
to the thermal noise PN plus the phase noise PNΦ :

N = PN + PNΦ . (4.2)

Then equation 4.1 becomes:

SN (v) = N(v) + S0 e−
(v−v0)2

2σ2 , (4.3)

where S0 is referred to the noise–free floor level.

2At the DWD observation site in Lindenberg (Germany) spectra measured with a twin radar
system MIRA-36 averaged for only 2 seconds are saved every week for 5 minutes (U. Goersdorf,
personal communication)



66 4 Development of the decomposition algorithm

If in a radar resolution volume there are more ensembles of particles, they produce
a spectrum that is due to the linear superposition of the Gaussian signals which
they would produce singularly. The additive noise is instead a result of the radar
technology of measurement, thus it is added to the final noise–free signal. The
equation representing this process is:

S(v) = N(v) +
∑

k

S0k e
−

(v−v0k
)2

2σk
2 , (4.4)

with the index k representing the k− th component, or mode, of the total spectrum.
As illustrated above, the spectral model used in this work is the linear superposition
of only two Gaussian functions S1(v) and S2(v), plus the additive noise N(v):

S(v) = N(v) + S1(v) + S2(v)

= N(v) + S01 e
−

(v−v01)2

2σ1
2 + S02 e

−
(v−v02)2

2σ2
2 , (4.5)

where S1(v) and S2(v) are the two Gaussian spectral components; S0k , v0k , and
σk , with k = 1 and 2, are the maximum signal power, the mean velocity, and the
spectrum width of the k − th component, respectively.
Known the parameters of the k − th component of the spectrum, we are able to
evaluate mode–specific moments of the spectrum and LDRdB , by applying equations
3.58, 3.59, 3.60, and 3.44 to every component.



4.4 Noise level detection 67

4.4 Noise level detection

Every measured spectrum is constituted by the meteorological signal and by a fluc-
tuating additive noise, as shown in figure 4.3 .
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Figure 4.3: Example of an uni–modal spectrum measured by the radar system
MIRA-36 (gray solid line). Negative velocities are downwards. The noise level NL

retrieved with the Hildebrand and Sekhon method (1974) is shown by the horizontal
cyan dotted line. 07th December 2006, 15:02:40 UT, 6129 m, Hamburg, Germany

The noise is due to thermal noise and phase noise.
The thermal noise is always present, and depends on the electronic of the measuring
system. Its mean value is fairly constant for every spectra, and is evaluated for all
the spectra in one vertical profile by averaging the power values of the spectrum
at the noise gate, that is a gate where no meteorological signal is present, as the
spectrum shown in figure 4.4 ; usually the noise gate is one gate placed above 14
km (see also section 3.2 equation 3.17 ).
The phase noise is proportional to the power of the meteorological signal. Thereby
its value varies from spectrum to spectrum (see also section 3.8 ).
In order to evaluate an unambiguous noise threshold for every spectrum, we adopt
the method developed by Hildebrand and Sekhon (1974), which makes use of the
power spectrum under investigation without any a priori knowledge about the elec-
tronic instrumentation. The only assumption made is that for radar systems the
noise measured is a white Gaussian signal, that means that its power has a variance
equal to the square of its mean value:

σN(v)
2 = N(v)

2
, (4.6)

with N(v) the measured noise spectral density (where all the sources of noise are
considered). This equation is valid for non–averaged spectra.
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Figure 4.4: Example of a noise spectrum measured by the radar system MIRA-36
(gray solid line). Negative velocities are downwards. The noise level NL retrieved
with the Hildebrand and Sekhon method (1974) is shown by the horizontal cyan
dotted line. 01st May 2007, 01:23:20 UT, 7725 m, Hamburg, Germany.

For averaged spectra this condition has to be modified as:

σN(v)
2 = N(v)

2
/m , (4.7)

with m ≫ 1 the number of averaged spectra
Let us consider one spectrum. The procedure consists in finding the noise threshold
by subsequent approximations. First we calculate the mean value of the spectrum;
the spectral points with a value greater than this mean value are cut away, and a new
spectrum is formed. This process is iteratively performed reducing the threshold by
recalculating for every step the new mean value of the spectrum, until it satisfies
the property expressed in equation 4.7. The noise level value NL is then equal to
the last threshold applied. In the upper left panel on figure 4.5 it is shown a vertical
profile for the noise level NL retrieved for a sample of a deep convective cloud.
By comparing it with the maximum signal power, shown on the upper right panel,
you note that the noise level increases with the meteorological echo; as previously
mentioned, this increasing is due to the phase noise, and it can be assumed that the
thermal noise level is the one at very high range, where there is no meteorological
signal.
Note that the values of the spectra here are given in Engineering Units EU (see
section 3.9.1 for clarifications).
After applying the Hildebrand and Sekhon threshold method to retrieve the noise
level, we remove it by subtracting NL from the measured spectrum; we cut also
some low peaks, which are due to the noise fluctuations, by smoothing to NL the
peaks with a maximum power lower than NL + σN(v).
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After the removal of the noise the new function for the spectral model Sm(v)
(equation 4.5) is given by:

Sm(v) = S1(v) + S2(v)

= S01 e
−

(v−v01)2

2σ1
2 + S02 e

−
(v−v02)2

2σ2
2 . (4.8)
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Figure 4.5: A noise profile sample taken at 22:32 UT from the measurements of a
deep convective cloud (23th March 2007, Hamburg, Germany), whose reflectivity is
shown on the lower panel. Upper left panel: profile of noise. Upper right panel:
corresponding profile for the maximum signal power, co–channel, main mode after
decomposition. Lower panel: reflectivity, co-channel, main mode after decomposi-
tion. Green rectangle: the melting layer, visible on the reflectivity measurements,
shows a peak on both noise and maximum signal power at about 1.3 km. Black
solid lines: cloud top. Blue rectangle: rainfall.
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4.5 Fitting procedure

Before going into details, the decomposition algorithm is first illustrated in figure 4.6
for the cases presented in figure 4.2. In every panel the gray shaded area represents
the measured spectrum; the cyan horizontal dashed line represents the noise level NL

retrieved by the Hildebrand and Sekhon method; the other dashed lines represent
the components of the spectrum, specifically blue for the mode with the higher fall
velocity and green for the mode with the slower fall velocity; the fuchsia solid line
represents the reconstruction of the spectrum from its components. On the right side
of every panel a legend indicates the values retrieved by the decomposition algorithm:
with i = 1, 2 for the first or second mode respectively, VDmax,i is the center of the
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(b) 24th April 2007, 04:31:10 UT, 3807 m
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(c) 11th February 2007, 12:15:10 UT, 2158 m
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(d) 29th January 2007, 23:50:20 UT, 1918 m

Figure 4.6: Examples of decomposed spectra. Gray shaded areas: measurements;
cyan horizontal dashed line: noise level NL retrieved by the Hildebrand and Sekhon
method; blue and green dashed lines: components of the spectrum retrieved by the
decomposition algorithm; fuchsia solid line: reconstruction of the spectrum from its
components. Legend on the right side of every panel: values for the modes retrieved
by the decomposition algorithm. Negative velocities are downwards. Measurements
taken in Hamburg, Germany.
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Gaussian curve (v0,i in equation 4.8), σi is the standard deviation, PDmax,i is the
maximum of the Gaussian curve (S0,i in equation 4.8), NL is the noise level, ∆ is
the error of the fit evaluated as the average of the deviation between measures and
fit expressed in percentage, and check1 and check2 are two indices whose meaning is
described in table 4.1 .

The decomposition algorithm works as following.

Once the spectral model is defined as illustrated in the previous section, the task
of the algorithm is to fit the measured spectrum and to return the parameters of
the model, namely the triplets (S01, v01, σ1) and (S02, v02, σ2) being composed by
the maximum signal power, the mean velocity, and the spectrum width of the two
Gaussian components (see also figure 3.8). The routine chosen for the fit is an IDL
custom routine, which makes use of a gradient–expansion algorithm to compute a
non–linear least squares fit. The performance of the fit is represented by the param-
eter χ2 (chi square). Its value ranges from 0 to 1; a large value indicates that the
model represents reasonably the measured data. Iterations are performed until the
χ2 changes by a specified amount, or until a maximum number of iterations have
been performed. The automatic fitting procedure needs an initial guess for the pa-
rameters of the spectral model. These are relative maxima, the corresponding values
for the Doppler velocities, and the width of the components of the spectrum. We
search for the two higher relative maxima in every spectrum, and the corresponding
values for the Doppler velocities, by using a dedicated routine, whereas for the width

The retrieved values for every decomposed spectra are saved all together in an
IDL vector that is composed of the following elements:
0 – VDmax,1: center of the main mode–specific Gaussian curve;
1 – FWHM1: Full Width at Half Maximum of the main mode–specific Gaussian
curve;
2 – PDmax,1: maximum of the main mode–specific Gaussian curve;
3 – εV1 : computational error for VDmax,1 ;
4 – εFWHM1 : computational error for FWHM1 ;
5 – εP1 : computational error for PDmax,1 ;
6 – VDmax,2: center of the secondary mode–specific Gaussian curve;
7 – FWHM2: Full Width at Half Maximum of the secondary mode–specific Gaus-
sian curve;
8 – PDmax,2: maximum of the secondary mode–specific Gaussian curve;
9 – εV2 : computational error for VDmax,2 ;
10 – εFWHM2 : computational error for FWHM2 ;
11 – εP2 : computational error for PDmax,2 ;
12 – NL: noise level;
13 – σN : noise variance;
14 – check1 and 15 – check2: indices whose meaning is described in table 4.1 ;
16 – ∆: error of the fit evaluated as the average of the deviation between measures
and fit expressed in percentage.
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of the components of the spectrum we choose a fixed starting value, namely 0.3 m/s .

Values for the model parameters with no physical meaning could occur as result
of the automatized fitting procedure, as shown in figure 4.7 . Such unsuitable results
need to be excluded.
We come out with the following list of possible non–plausible modes:

• a mode with a negative value for the maximum signal power (figure 4.7a);

• a mode with mean velocity value out of the possible range (figure 4.7b), which
is:
[ −10.5 m/s , +10.5 m/s ];
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(b) 24th April 2007, 03 : 01 : 10 UT, 3687 m
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(c) 24th April 2007, 03 : 01 : 10 UT, 2308 m

-15 -10 -5 0 5 10 15

40

30

20

10

0

-10

Fall velocity, m/s

S
p

e
ct

ra
l 

p
o

w
e
r,

 d
B

E
U

(d) 24th April 2007, 03 : 01 : 10 UT, 2338 m

Figure 4.7: Example of non–plausible modes. Black solid line: measurements; red
solid lines: the two Gaussian components of the spectrum before the non–plausible
mode analysis; blue dashed line: linear superposition of the Gaussian components
(see equation 4.8). (a): a negative value for the maximum signal power; (b): a
mean velocity value out of the possible range; (c): a mode lying underneath the
other; (d): modes too close to each other. Negative velocities are downwards.
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• a mode where the spectral width is oversized; we choose as reasonable a value
lower than a third of the total velocity range spread:
1/3 · 21 m/s ∼= 7 m/s ;

• a mode lying underneath one other mode in the same spectrum (figure 4.7c).

If one relative maximum is detected, and the mode found is rejected because non–
plausible, then the relative spectrum is considered containing no meteorological sig-
nal.
If two relative maxima are detected, but one of the mode retrieved is non–plausible,
the fitting is repeated by forcing a one–mode fitting.
We note that the detection of a non-plausible modes for two relative maxima could
happen also if the two modes have both a physical meaning, but in consequence of
a too large difference in energy values between the two relative maxima, the lower
mode is automatically discarded, as for example it happens for the two peaks shown
in figure 4.8. Thus, when the difference between the two maxima is greater than
32 dB , a one–mode fitting is forced on the lower peak, after the higher is momen-
tarily removed from the spectrum.
Ultimately it is checked if the two modes are too close to each other (figure 4.7d).
A separability criterion between Gaussian curves is then applied: when the absolute
value of the difference between the mean velocity values is smaller than the averaged
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(b) Decomposed spectrum

Figure 4.8: Example of a non–plausible mode resulting from the automatized fitting
procedure. Here is shown a spectrum with a large difference in energy values between
the two relative maxima. Gray shaded areas: measurements; cyan horizontal dashed
line: noise level NL retrieved by the Hildebrand and Sekhon method; blue and
green dashed lines: components of the spectrum retrieved by the decomposition
algorithm; fuchsia solid line: reconstruction of the spectrum from its components.
Legend on the right side of every panel: values for the modes retrieved by the
decomposition algorithm. Negative velocities are downwards. 22nd March 2007,
19:24:20 UT, 3027 m .
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standard deviations of the two modes, then the modes are considered not separable,
and one–mode fitting is again forced.

To control which path the algorithm followed to get the final components of every
spectrum, like whether one or two modes were detected and whether one of these
were rejected and why, we create a two values index, illustrated in table 4.1. The first

Table 4.1: What can go wrong during the automatized fitting procedure: meaning
of the indices check1 and check2 and final result of the decomposition algorithm.

Case Check1 Check2 Meaning
Result of the
decomposition

a nana nan no relative maxima found no mode
b 0 nan 1 maximum 1 mode

1 nan
1 maximum but mode with nega-
tive maximum signal power

c 2 nan
1 maximum but mode with mean
velocity value out of the possible
range

no mode

3 nan
1 maximum but mode with too
wide spectral width

d 0 0 2 maxima 2 modes

1/0 0/1
2 maxima but 1th/2nd mode with
negative maximum signal power

e 2/0 0/2
2 maxima but 1th/2nd mode with
mean velocity value out of the
possible range

one–mode fitting
forced

3/0 0/3
2 maxima but 1th/2nd mode with
too wide spectral width

f 0 4/5/6

one–mode fitting was forced (case
e); if too large difference in en-
ergy values between the two rel-
ative maxima =⇒ remove tem-
porarily the retrieved mode and
force one–mode fitting on the re-
maining spectrum

1 mode (first
mode retrieved
and case c) or
2 modes (first
mode retrieved
and case b)

g 0 7.1/7.2
2 modes but maximum value of
the 1th/2nd mode lies below the
2th/1nd mode curve

one–mode fitting
forced

h 0 8 2 modes but not separable
one–mode fitting
forced

aNot a Number: IDL custom value to represent missing values in computations



76 4 Development of the decomposition algorithm

(second) value refers to the main (secondary) mode retrieval, and the combination
of them tell us which non-plausible mode checks, if any, the algorithm went through,
as it is annotated in the table. This list has helped us in developing and refining the
algorithm.

As different modes correspond to different ensembles of particles, we also attempt
to cluster the data, by using the measured values of fall velocity and LDRdB, and the
vertical structure of the modes as additional information. At the present state of the
art the results of this clustering routine are not stable enough to run it automatically.
Thus we decide, for the time being, to cluster the modes by sorting them with the
fall velocity. Nevertheless, a suitable clustering routine, along with a classification
algorithm, would be valuable for a proper evaluation of liquid and ice water content.
By observing the results of the decomposition algorithm we note that usually the
mode with lower power has fall velocity slower than the mode with higher power
(note that negative velocities are downwards, therefore a particle with the lower
value of fall velocity is actually falling faster to the ground). This means that, for
every spectrum, if only one mode is detected, it is assigned to a main mode; if two
modes are detected, to the main mode it is assigned the one falling faster (lower fall
velocity).

The decomposition algorithm is applied to both the co– and the cross–channel.
In order to verify whether the corresponding mode–specific fall velocities are the
same in the co– and cross–polarised channels, vco and vcx respectively, we consider
the scatterplot of vcx vs. vco, in which the cloud of points should be distribute along
the diagonal. The examples shown in figure 4.9 sustain that the decomposition
algorithm is able to properly recognize different ensemble of cloud particles.

(a) (b)

Figure 4.9: Scatterplots vcx vs. vco for two cases of (a) 24 and (b) 6 hours. The
mode–specific fall velocities are distributed along the diagonal, thus the decompo-
sition algorithm assigns the same fall velocity to the modes retrieved in the two
channels. Negative velocities are downwards.
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4.6 Calibration

We have seen in section 3.9.1 that, in order to properly calculate the spectral reflec-
tivity zi (see equation 3.72) from the spectral powers praw,i returned by the radar
data acquisition software, we need to know the Hildebrand and Sekhon spectral noise
level nHS,raw , the weather radar constant C , and the spectral total noise nT,raw at
the noise range gate. The radar software performs this operation automatically, with
instantaneous recorded values of the spectral total noise. Due to the limited space
in the disk for data, only spectral powers and global moments evaluated from them
are saved. Thus the problem of correctly calibrating the mode–specific moments
insistently arises.
The Hildebrand and Sekhon noise level is found for every spectrum by using the
routine explained in section 4.4.
An estimate for the spectral total noise nT,raw at the noise range gate can be ob-
tained by averaging the values of the Hildebrand and Sekhon spectral noise level
nHS,raw on the range gates along the last kilometer away from the radar.
Let us consider a spectrum decomposed in its two components, as function of the
velocity range; from equations 3.38 and 3.39, we are allowed to substitute the sum-
mation over the spectral bins with summation over the Doppler velocity:

P1,raw =
∑

v

p 1,raw,v ,

P2,raw =
∑

v

p 2,raw,v , (4.9)

so that the total power is directly proportional to their sum:

Praw = c (P1,raw + P2,raw) , (4.10)

with c a constant of proportionality, needed because the mode–specific spectral
power could overlap for some bins of the spectrum.
By expanding equation 3.67 we can write:

snrv = c
p 1,raw,v − nHS,raw

nT,raw
+

p 2,raw,v − nHS,raw

nT,raw
= c

(
snr1,v+snr2,v

)
. (4.11)

As the spectral reflectivity factor is given by equation 3.71 :

zv = C r2 snrv , (4.12)

we can write:
zv

C r2
= c

(
snr1,v + snr2,v

)
, (4.13)

and then evaluate the calibration constant Ccal as:

Ccal = c ·C r2 =
zv

snr1,v + snr2,v
, (4.14)
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so that, summing over the spectrum:

Z = Ccal (SNR1 + SNR2) , (4.15)

with the mode–specific calibrate reflectivities:

SNR1,cal = CcalSNR1

SNR2,cal = CcalSNR2 . (4.16)

The result of the decomposition algorithm returns the coefficient of the two Gaussian
components of the spectrum; thus the summation over the spectrum of the individual
snrk,v yields to:

SNRk =
∑

v

p k,raw,v − nHS,raw

nT,raw

=
AG,k

nT,raw ·∆(v)
, (4.17)

with k = 1, 2 the component of the spectrum, AG,k the area subtended by the k–th
Gaussian curve, and nT,raw being constant along the spectrum. From integration
theory it follows that:

AG,k = S0,k σk

√
2 π , (4.18)

with S0,k and σk respectively the maximum signal power and the spectrum width
of the k–th component of the spectrum.
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Chapter 5

Microphysical retrievals

Dissertation:
every word a drop of blood.

5.1 Introduction

The decomposition of the spectral modes of the Doppler spectra and the evalua-
tion of the mode–specific moments (previous chapter) allows us to retrieve several
microphysical properties of the cloud system under study.

Among the available data collected in Hamburg (Germany) by the radar system
MIRA-36 between July 2006 and May 2007, we choose to analyse the data collected
between November 2006 and May 2007. This narrowed data set presents in fact
a constant technical configuration, namely the one illustrated in section 3.11 (dur-
ing 2006 the system was still tested), which meets requirements of needful accurate
measurements and of disk space disposal.
Moreover, we restrict our interest to non convective events, as for convective events
it is not possible to separate the contribution of the vertical air motion from the
motion of the hydrometeors (see section 5.3).
In this data set, embracing nevertheless different cloud structures, we find that
bimodal spectral structures prevail for most cloud types, although Linear Depolari-
sation Ratio (LDR) is evaluable for both the modes only in case of deep stratiform
convective clouds.

We want to emphasize that the aim of this work is not to resort to statistics,
rather to develop and test the new algorithm.
Statistical analysis can be realized within the several measuring campaigns the radar
system MIRA-36 was involved in, including TOSCA1 (Kneifel et al., 2010), COPS2

(Wulfmeyer et al., 2008), and, currently, the Barbados campaign3.

1http://gop.meteo.uni-koeln.de/tosca/doku.php
2http://www.uni-hohenheim.de/spp-iop/index.htm
3http://barbadossite.wordpress.com/



80 5 Microphysical retrievals

Therefore in the following we propose an analysis of stratiform mixed-phase cloud
systems.
After having individuated a mixed-phase system by means of the presence of a layer
of double modes stable in time (section 5.2), we proceed with reducing the influence
of the vertical air motion by using an averaging approach. As we will see in section
5.3 , the limit of this approach is that it is applicable only to non-convective strati-
form clouds.
Known the fall velocity of cloud particles, we derive their size and subsequently
the cloud water content. As explained in section 3.3 at page 37 , it is not possible
to evaluate the Liquid Water Content (LWC) with the single use of one radar sys-
tem. Thus, we evaluate mode–specific microphysical characteristics of the ice cloud
particles only, such as characteristic diameter and Ice Water Content (IWC). The
methods used for these retrievals are described in section 5.4 .
Further pieces of information on the properties of the cloud particles are extracted
by linearly fitting the main mode–specific velocity as a function of altitude. The
gradient of this fit gives a picture on the growing behavior of the particles along
the vertical. Specifically, we have observed a continual constant increasing of the
Doppler velocity on the cloud particles fall path, as we describe in section 5.5 .
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5.2 Mixed-phase recognition

An example of decomposed and clustered spectra profile is shown in figure 5.1, where
retrieved mode–specific parameters for the model, (i.e. mean velocity, maximum sig-
nal power, and spectrum width), equivalent reflectivity, and LDR are depicted in
blue for the main mode and in green for the secondary mode.
The main features of the algorithm are drawn in this figure.
The melting layer is recognizable at about 1.5 km by the abrupt jump observed in
the fall velocity; below this level, in the rain band, the results of the algorithm are
unrealistic, as echoes from raindrops do not have a Gaussian power density distribu-
tion, which is instead the rationale for the application of our decomposition method
(equation 4.5).
Two modes are observed along 500 m above the melting layer in both the polari-
metric channels. The values of the LDR for these two modes are significantly mode-
dependent: about −25 dB for the main mode and between −15 and −10 dB for
the secondary mode. Let us recall that for spherical cloud particles, as cloud– or
drizzle– drops, LDR tends to the lowest limit of −35 dB . Any deviations of LDR
from this value indicates presence of non–spherical cloud particles. Well separated
values of LDR imply hydrometeors with different shapes, supporting the claim that
a mixed-phase layer was observed near the cloud base in the considered event. Two
modes are also visible in the co–channel at about 8.5 km ; however, as in this case
the bimodal spectra cannot be explained by a realistic particle distribution, we as-
sume here that they reflect enhanced turbulent motion of cloud particles induced by
radiative cloud top cooling.

Putting the double modes generated by turbulence aside, the typical condition
for observing bimodal spectra remains the presence of a mixed-phase layer.
Looking at the fall velocity and LDR values only, it is not possible to say, apart from
the secondary mode moving slower to the ground, if the modes are due to solid or
liquid water particles. Because of the presence of the melting layer, it is reasonable
to assume that the main mode is due to ice crystals, growing to snow and then
melting to form rain.
Zawadzki et al. (2001) have suggested a qualitative method to assign a phase to
the two modes, when melting layer is observed. Let us firstly underline that the
presence of a secondary mode is an evidence for the concurrent presence of snow,
supercooled liquid droplets and ice crystals, the latter produced by secondary nucle-
ation, process illustrated in section 2.4.1 (Hallett and Mossop, 1974). The signature
of droplets and pristine ice crystals to a cloud radar is very similar, so we cannot
distinguish among them looking at cloud radar measurements only. Nevertheless,
we can claim that the secondary mode retrieved is due to the class of particles with
major concentration, that produces an echo that superposes over the other.
Let us now focus on the secondary mode vanishing in the melting layer. The disap-
pearance of the secondary mode in the melting layer is a clear indication of particles
melting, and thus we infer that the secondary mode is due to the higher concen-
tration of ice crystals; if instead the secondary mode appears just to grow in fall
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velocity through the melting layer, this is the indication of the increasing of mass of
the particles due to coalescence and of their transformation in rain drops, thus we
infer that the secondary mode is due to the higher concentration of droplets.
In the example here reported the first hypothesis seems to be more reliable.

As we notice in our discussion on the spectral model (section 4.3), secondary
modes may appear due to the random scattering processes occurring during the 10
seconds averaging time. Figure 5.2 shows that the secondary modes of figure 5.1
are present for an appreciable time range. The observation of this persistence is
not compatible with random processes, therefore it seems very plausible that these
secondary modes highlight a real physical structure.
In contrast the signature produced by the turbulence, shown in figure 5.3, exhibits
double modes which appear and disappear from one time step to the other.
Note that in figure 5.2 the profiles are one minute apart, whereas in 5.3 the profiles
are consecutive, i.e. ten seconds apart.
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Figure 5.1: Example of mode–specific model parameters (mean velocity, maximum
signal power, and spectrum width), equivalent reflectivity, and LDR profiles resulting
from the decomposition. The colors indicate the mode order number: blue for the
main mode, green for the secondary mode. Upper panels: mean fall velocity (black
thicks), spectrum width (colored horizontal bars), and maximum signal power in the
co–channel (left panel) and in the cx–channel (right panel). Lower panels: equivalent
reflectivity factor in the co– and in the cx–channel (left panels) and LDR (right
panel). Negative velocities are downwards.
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Figure 5.2: Time series of mode–specific (main mode in blue and secondary mode in
green) model parameters and LDR profiles resulting from the decomposition. The
presence of secondary modes on a height layer, during a continuous period of time,
and with stationary values of velocity and LDR, is plausibly due to a mixed-phase
layer. Mean fall velocity (black thicks), spectrum width (colored horizontal bars),
and maximum signal power in the co–channel (left panels) and in the cx–channel
(central panels). Right panels: LDR. Time is indicated on every line of panels.
Negative velocities are downwards.
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Figure 5.3: Time series of mode–specific (main mode in blue and secondary mode
in green) model parameters and LDR profiles resulting from the decomposition.
The presence of random secondary modes is plausibly due to turbulence. Mean
fall velocity (black thicks), spectrum width (colored horizontal bars), and maximum
signal power in the co–channel (left panels) and in the cx–channel (central panels).
Right panels: LDR. Time is indicated on every line of panels. Negative velocities
are downwards.
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5.3 Vertical velocity of cloud particles assessed by

Doppler radar measurements

In order to calculate microphysical properties of clouds by measurements taken with
a vertically pointing Doppler radar system, we need to determine the ice particle
characteristic size from the measured Doppler velocities.
The vertical Doppler velocity measured by vertically pointing radar systems VD is
due to two terms: the terminal vertical velocity of the particles, and the vertical
motion of the air that they also experience. In symbols:

VD = Vt + Va , (5.1)

with Vt the actual terminal velocity of the cloud particles and Va the vertical air
motion.
Considering the bias which is introduced by vertical air motion is then fundamental,
as we want to connect unambiguously the fall velocity of cloud particles to their size.
The contribution of air motion for small cloud particles could be indeed of the same
magnitude or even larger as the particles terminal velocity, that is about 1 m/ s .
Before using the values of the Doppler velocity to retrieve the dimension of the
particles, one should estimate the value of Va , for example using a windprofiler (i.e.
a VHF Doppler radar system) as has been described by Wakasugi et al. (1986), or
reduce its influence, so that the measured Doppler velocity can be considered a good
approximation for the terminal velocity of the ensemble of particles as VD ≈ Vt .
In the case of our measurements, we rely on a single cloud radar system, therefore
in the following we will illustrate a technique apt to reduce the contribution of the
air vertical motions on the total measured Doppler velocity, which does not require
further instrumentation. This method has been suggested by Orr and Kropfli (1999)
and has been successfully applied in a simplified variant by Matrosov et al. (2002),
and by Delanoë et al. (2007). The rationale of Orr and Kropfli approach is that the
vertical air motions are supposed to randomly fluctuate, therefore, after performing
a time average of the Doppler velocity measurements, one expects them to have a
0 m/ s average.
If there was no influence from air motions, and assuming that different populations
of particles do not effect to a great extent the scattering, the measurements should
lay on the solid curve:

VD = α Ze
β , (5.2)

where α and β are retrieved by a least square fit on the cloud of points. The distance
of every measured point from the regression line in the scatter plot of VD against Ze

indicates the presence, and the intensity, of vertical air motions in the case under
study.
In order to retrieve information on the cloud structure, Orr and Kropfli have sug-
gested to group the data in small cloud height bins and cloud reflectivity bins, and
then to perform the time average. As it is supposed that the structure of a strat-
iform cloud varies with the height, but stays fundamentally stable within a cloud
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Figure 5.4: Fall velocity measured the 7th December 2006, from 07:30 to 16:00
UTC, Hamburg, Germany. Negative velocities are downwards. Velocity values of
rain, below about 1.5 km are out of the shown range.

layer, the time averaging can be performed on thin cloud layers. Furthermore, time
averaging intervals need to be long enough to reduce the air motion variability, but
at the same time short enough to not avoid possible changes in the cloud structure.
For the i–th height layer we can then write the 5.2 as:

〈VD〉i,j = αi 〈Ze〉i,jβi , (5.3)

with 〈VD〉i,j and 〈Ze〉i,j the time averages of VD and Ze in the i–th height bin
and in j–th reflectivity bin, and with αi and βi obtained by a least square fit on
the partitioned data. Once that the coefficient of the power law relationship 5.3
are retrieved, the punctual fall velocity Vt

′ corrected for the air motions can be
calculated by using the measured values of the reflectivity factor for every height
layer:

Vt
′ = αi Ze

βi . (5.4)

One should note that the residuals of the vertical air motions may be large compared
to Vt only if strong up– or down–drafts are present. As a consequence, this approach
can be successfully applied to clouds with a stable stratiform structure, but not
to convective events. Indeed, best–fit curves which have similar coefficients and
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Figure 5.5: Scatterplots of VD against Ze, for the reflectivity measured the 7th

December 2006, Hamburg, Germany. Every panel corresponds to a cloud layer
of 270 m centered at the indicated quote. The measurements are represented by
the cloud of points. The time averages for reflectivity bins of 1 dB are calculated
only for groups of data with more than 500 points, and are represented by colored
triangles. The best–fit curves with the equation 5.2 are also shown. The particle
terminal velocities are plotted as positive values to be consistent with the power–law
analysis.
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07 December 2006

fall velocity, co-channel, main mode

Figure 5.6: Fall velocity, co–channel, main mode, 7th December 2006, Hamburg,
Germany. The reduction of vertical air motion is obtained by applying the method of
Orr and Kropfli (1999), with height bins of 270 m , reflectivity bins of 1 dB , minimum
number of points for the time averages equals to 500 points, minimum number for
the power–law 5.2 best–fit equals to 10 . Negative velocities are downwards.

which are parallel, indicate stable cloud systems, composed of particles that maintain
similar shape and size distribution as they grow in their fall through the cloud layer.
Strong changes in slope from one level to the adjacent one indicates, instead, that
microphysical changes are occuring between these levels, such as aggregation or
change of the particle phase.

To evaluate the performance of this method, let us consider the deep stratiform
cloud structure in figure 5.4. To obtain the proper partition of the data before per-
forming the best–fit with equation 5.2, one should proceed as follows. First, data are
grouped in height bins i. Then, for every height layer, the data are further grouped
in reflectivity bins j. Then the averages 〈VD〉i,j and 〈Ze〉i,j to be used in equation 5.3
can be evaluated. In order to obtain reliable velocity and reflectivity averages, each
of these averages should contain an enough large number of data points. Therefore,
to improve the vertical resolution by using a smaller value for the height bins, one
has to loose resolution in cloud structure by using a larger value for the reflectivity
bins. A reasonable number of points would be greater than some hundreds. The
grouping of the data for our example of figure 5.4 is shown in figure 5.5 , where every
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fall velocity, co-channel, main mode

Figure 5.7: As figure 5.6, but with minimum number for the power–law 5.2 best–fit
equals to 5 . Negative velocities are downwards.

panel represents the scatterplot of VD against Ze for a height layer of 270 m centered
at the indicated quote. We choose 1 dB for the reflectivity bins, and average only
the groups with a minimum number of points of 500. The averages are indicated
with a triangle in figure 5.5 . When the number of averages for height layer is bigger
than 10 we perform the best–fit and use the coefficients αi and βi to recalculate the
fall velocity of the cloud particles in the ith layer. The result of the application of
this method is shown in figure 5.6 .
At this point it is clear that, if the partitioned groups were not enough numerous to
perform the time average this method could return empty layers for the air vertical
motion–free cloud structure. In our example this happens below 4 km and above
9.5 km . Moreover, in one height layer, most of the reflectivity points could bunch
in the same reflectivity bin, reducing further the number of points to perform the
best–fit.
We apply then this method with different choices of the parameters. For less con-
straining limits, for example using only 5 points as minimum number for the power–
law 5.2 best–fit, it is possible to reconstruct more layers of the cloud, but with a loss
in cloud structure resolution (figure 5.7) . A single spectra profile for this example
is shown in figure 5.8 .
In addition this method is of difficult application for automatized routines, because a
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Figure 5.8: Fall velocity, co–channel, main mode, 7th December 2006, 11:49, Ham-
burg, Germany. Red dots: main mode–specific fall velocity; blue dots: main mode–
specific fall velocity with reduction of vertical air motion; green dots: main mode–
specific fall velocity for rain (not reliable). The reduction of vertical air motion is
obtained by applying the method of Orr and Kropfli (1999), with height bins of
270 m , reflectivity bins of 1 dB , minimum number of points for the time averages
equals to 500 points, minimum number for the power–law 5.2 best–fit equals to 5 .
Negative velocities are downwards.

proper choice for the width of the bins is required for every different case. For these
reasons, even if interesting features on the cloud under analysis can be obtained,
this method does not appear totally satisfactory.
We decide then for a simplified version of the method, by averaging our data only in
time. Anyway, by using short averaging time intervals we still maintain small–scale
variability in the cloud structure. Figures 5.9 show the fall velocity for the same
example averaged for 5 minutes (upper panel) and 15 minutes (lower panel). The
variability in the cloud structure is still recognizable in both cases.

In order to calculate the proper fall velocity and microphysical parameters, such
as size and Ice Water Content, in the following we will average the measurements
for 5 minutes, with the foresight to choose stable stratiform cloud structures.
We know that for an individual ice cloud particle the terminal fall velocity vt is
related to a size of the particle (for example the maximum dimension DM ) by the
power law (see section 2.7, at page 22):

vt(DM ) = A DM
B , (5.5)

with A and B parameters depending on the kind of crystal.
On the other hand, atmospheric profilers (such as vertically pointing cloud radar
systems) measure the vertical velocity of an ensemble of cloud particles, specifically
the reflectivity weighted fall velocity (see section 3.9, page 53):

Vt =

∫
vt Svt

(vt) dvt
∫

Svt
(vt) dvt

. (5.6)
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Note that we use capital letters for the velocity of the ensemble of particles to
distinguish it from the velocity of one single particle.
Matrosov and Heymsfield (2000) have derived that in the Rayleigh scattering regime
equation 5.6 can be rewritten as:

Vt = A a1(B) D0
B , (5.7)

with D0 the median volume diameter, which describes the particle size distribution
of the ensemble of particles4.
In order to reach this result they have substituted in equation 5.6 the individual fall
velocity with relation 5.5, and the reflectivity factor with relation 3.24 through 3.61:

Vt =

∫
Kρ Qr A DM

B N(DM ) DM
6 dDM

∫
Kρ Qr N(DM ) DM

6 dDM
, (5.8)

where Kρ and Qr are corrections needed because with the particle diameter also
bulk density and shape change.
The parameter Kρ represents the changes of the complex reflective index of ice
relative to the one of water, that can be approximated with the relation:

Kρ ≈ 0.23 · ρ2 . (5.9)

The shape parameter Qr, r being the axis ratio of the particles, represents the
tendency of non–spherical particles to scatter more radiation than spherical particles
with the same volume. For oblate particles the shape parameter varies with the axis
ratio as:

Qr = r 0.41 · ρ , (5.10)

with the density ρ expressed in g/ cm3 .
Matrosov and Heymsfield (2000) have considered the PSD being properly described
by a gamma function distribution of order n :

N(DM ) = N0DM
ne

− 3.67+n

D0
DM , (5.11)

with D0 the median volume diameter.
Then equation 5.8 becames:

Vt =

∫
Kρ Qr ADM

B N0 DM
n e

− 3.67+n

D0
DM DM

6 dDM
∫

Kρ Qr N0 DM
n e

− 3.67+n

D0
DM DM

6 dDM

. (5.12)

Matrosov and Heymsfield (2000) have besides assumed that particle bulk density ρ,
shape r, and coefficients A and B do not change with the size DM . Then:

Vt =
A
∫

DM
B+n+6 e

− 3.67+n

D0
DM dDM

∫
DM

n+6 e
− 3.67+n

D0
DM dDM

. (5.13)

4The median volume diameter D0 of a distribution of particles is defined such that the particles
with diameter less than D0 contribute to half of the total mass.
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With the substitution:

D =
3.67 + n

D0
DM =⇒ DM =

D0

3.67 + n
D

dD =
3.67 + n

D0
dDM =⇒ dDM =

D0

3.67 + n
dD

we obtain:

Vt = A
∫ (

D0
3.67+n

)B+n+6
DB+n+6 e−D D0

3.67+n dD

∫ (
D0

3.67+n

)n+6
Dn+6 e−D D0

3.67+n dD

= A
(

D0

3.67 + n

)B ∫ DB+n+6 e−D dD
∫

Dn+6 e−D dD
.

Noting that the gamma function of order n is defined5 as:

Γ(n) = (n − 1)! =

∫

xn−1 e−x dx ,

the final result for equation 5.7 is:

Vt = A
(

D0

3.67 + n

)B Γ(B + n + 7)!

Γ(n + 7)!

= A
(

D0

3.67 + n

)B (B + n + 6)!

(n + 6)!
, (5.14)

that gives equation 5.7 with:

a1(B) =

(
1

3.67 + n

)B (B + n + 6)!

(n + 6)!
. (5.15)

Through the analysis of a large data set, Matrosov and Heymsfield (2000) have found
that B is correlated to A , and that A decreases consistently with increasing size, in
the extent of:

B ≈ 0.17 A0.24

A = 3.5 · 104 D0
−0.62 , (5.16)

where A and B are in cgs units and D0 in µm . Comparing equation 5.5 for a single
ice particle with equation 5.7 for an ensemble of particles, one note that the terminal
velocity vs. size relationships differ only in the proportionality coefficients a1 .

5http://mathworld.wolfram.com/GammaFunction.html
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5.4 Diameter and IWC

A measure of the diameter for an ensemble of particles can be given once that the
terminal velocity has been retrieved.
When dealing with ice crystals we have to face with a number of values for the
coefficients A and B for the different habits (see table 2.1), as every species of ice
particles has its own relationship describing fall velocity versus diameter.
Matrosov et al. (2002) have overcome this problem by extrapolating a general rela-
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Figure 5.10: D0 vs. Vt relations for different assumptions of the Particle Size Distri-
bution. Colored dotted lines show the gamma–function Particle Size Distributions
for n = 0 (green), n = 1 (blue), and n = 2 (red). Black lines show results of cal-
culations using data from Mitchell (1996) and Heymsfield and Iaquinta (2000) with
constant values of A and B . The best polynomial fit for the different values of n is
given at the top of the figure. From Matrosov et al. (2002), with the permission of
the author.
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tionship which approximates fall velocity versus diameter with enough accuracy for
most of the ice particles habits measurable with cloud radars.
The authors have considered equation 5.7, and have made use of equations 5.15
and 5.16 for a1 and A. They have calculated the values of fall velocity for different
assumption for the Particle Size Distribution, by varying the order n of the gamma
distribution. The curves obtained for n = 0, 1, 2 along all the range of variability
for velocity and diameter describe satisfactory the experimental ones determined for
different habits of ice crystal (figure 5.10). Being these curves of not easy inversion,
one can simply perform a best polynomial fits for the different orders n . Kosarev
and Mazin (1991) have shown that n = 0, 1, or 2 is suitable to describe observed
particle size spectra in ice clouds. In this study we use the relationship found by
Matrosov et al. (2002) for D0 as function of Vt of order n = 1 :

D0 = 9.0 · 10−4 Vt
3 − 6.6 · 10−2 Vt

2 + 6.2 Vt − 9.7 , Vt ≥ 6 cm/s . (5.17)

Diameters calculated by following equation 5.17 for the example shown in figure 5.11
with 5 minutes average are shown in figure 5.12.
Figure 5.11 shows another case of deep raining stratiform cloud, with the melting
layer at about 1 km ; the values below it are shadowed as not reliable (the decompo-
sition algorithm is thought for cloud particles only). Again, as for the cloud structure
shown in figure 5.4 we recognize double modes around the cloud boundaries, above
the melting layer throughout the event, and in a big cell of 3 km between 00:00 and
06:00 UTC. The secondary mode–specific LDR is computable for this cell only, and
it is about −10 dB , whereas the corresponding values for the main mode are about
−20 dB . Therefore we have well separated values supporting the claim that this
represents a mixed phase cell in the considered event.

The most accepted way to evaluate Ice Water Content of ice clouds (or iced
portions of clouds) is to use the relationship proposed by Atlas et al. (1995), that
relate equivalent reflectivity factor with the median diameter of the particles:

Ze = G D0
3 IWC , (5.18)

with Ze in mm6/ m3 , IWC in g/ m3 , and D0 in µm . The coefficient G depends on
shape and bulk density of the particles, and on the Particle Size Distribution. One
can in reason consider the most little ice particles, i.e. with diameters shorter that
50 µm , having solid ice density; in this case the value of G is constant and equal to
10−6 . Otherwise it decreases with the diameter as:

G = 7.5 · 10−5 D0
−1.1 . (5.19)

An example of IWC evaluated by following equation 5.18 for the same case study of
the previous sections is shown in figure 5.13.
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(a) Main mode reflectivity

(b) Secondary mode reflectivity

Figure 5.11: Main and secondary mode–specific reflectivity, fall velocity and LDR
for the 6th March 2007, Hamburg, Germany. Values below the melting layer at
about 1 km are shaded as not reliable.
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(c) Main mode fall velocity

(d) Secondary mode fall velocity

Figure 5.11: Cont.
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(d) Main mode LDR

(e) Secondary mode LDR

Figure 5.11: Cont.
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Figure 5.12: Particle diameters, co–channel, main and secondary mode, 6th March
2007, Hamburg, Germany. Evaluated applying equation 5.17 to the velocities shown
in figures 5.12c and 5.12d . The shaded values below the melting layer are not
reliable.
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Figure 5.13: IWC, co–channel, main and secondary mode, 6th March 2007, Hamburg,
Germany. Evaluated applying equation 5.18 to the data shown in figures 5.12 .The
shaded values below the melting layer are not reliable.
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5.5 Rate of increasing of fall velocity in clouds

When developing the decomposition algorithm, our hypothesis was that every peak
in a spectrum corresponds to a mode and that every mode corresponds to one class
of cloud particles, which evolves descending to the surface. Therefore, if it would
be possible to establish a relation within one mode along the height range on a
spectra profile, we could improve our understanding of evolution processes for cloud
particles.

Let us first consider the example of vertical profiles of fall velocity shown in figure
5.14 . We note that the Doppler velocity of the main mode tends to constantly
increase (i.e. it becomes more negative) while approaching the cloud base. In
order to analyze systematically this behavior we fit, with a least absolute deviation
method, the main mode–specific velocity values to a linear dependence on the vertical
range:

VD = VD0 + s ·H , (5.20)

with H the vertical range, and VD0 and s the coefficients for the linear fit.

(a) (b)

Figure 5.14: (a): main and secondary mode–specific spectral moments (indicated
respectively by black dots and blue bars). The main mode fall velocity (with negative
velocities downwards) shows a constant increase in fall velocity from the cloud top to
the cloud base. (b): the main mode fall velocity is fitted along the vertical extension
of the cloud. The result is illustrated by the red solid line, and the relative equation
for the fit is given on the panel. Referring to equation 5.20, VD is given in m/s,
the intercept in m/s, the slope in s−1, and H in m . The slope value of 0.34 · 10−3

s−1 means that the fall velocity increases in average of 34 cm/s per kilometer fall
path.
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The slope s of the fit gives an indication of the increasing of fall velocity per
unit path along the examined spectra profile, for example a mean value of about
0.10 · 10−3 s−1 corresponds to an increase of fall velocity of 10 cm/s per kilometer
fall path. We interpret this behavior as the consequence of ice particles growth (see
section 2.3).
In figure 5.14b the result of the fitting is presented. The vertical range for the fit
extends from the cloud bottom up to the cloud top. We apply this analysis to dif-
ferent kind of cloud structures (figures 5.15, 5.16, and 5.17). In order to exclude
data from raindrops, in case of raining clouds we choose as lower bound for the fit
the level just above the melting layer (5.15 and 5.16)). Furthermore, we decide to
not extend this analysis to secondary mode spectra profiles: cases in which there
are enough points to obtain a reliable fit (at least one hundred), as in figure 5.16,
are extremely rare.

At a first glance the downward direction of the Doppler velocity is surprising,
because the mean vertical wind within active clouds should be directed upward with
fast enough speed to carry cloud droplets upward, thus inducing their growth by
condensation, as for the profile shown in figure 5.17. We explain the observed
downward velocity with the very strong weighting of large hydrometeors in the
radar echo (proportional to the 6th power of the diameter). In fact, the Doppler

(a) (b)

Figure 5.15: (a): main and secondary mode–specific spectral moments (see also
figure 5.14); (b): the main mode fall velocity is fit along the vertical extension of
the cloud up to the melting layer (red solid line).
The main mode fall velocity (with negative velocities downwards) shows a constant
increase in fall velocity from the cloud top to the cloud base. The slope value
of 0.08 · 10−3 s−1 means that the fall velocity increases in average of 8 cm/s per
kilometer fall path.
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velocity is mostly dominated by those hydrometeors which grow on their upward
travel by a sufficient amount so that their terminal fall velocity exceeds the updraft
of ambient air. Accordingly, the increasing Doppler velocity on the fall path may
be explained as the consequence of particle-growth due to various microphysical
interaction processes occurring on the encounter of other hydrometeors existing on
the fall path.

The analysis of time series of slopes s reveals that the mean rate of increasing
of fall velocity assumes a fairly constant value within the same cloud structure (as
shown in figure 5.18 ), but may vary for different clouds. We believe that the observed
(and fairly stable) rate of increasing of fall velocity in a could structure represents
a useful parameter to be taken into consideration for the validation of modeling of
related microphysical processes.

(a) (b)

Figure 5.16: (a): main and secondary mode–specific spectral moments indicated
respectively by black dots and blue or green bars (see also figure 5.14); (b): only
the main mode fall velocity is fitted along the vertical extension of the cloud up to
the melting layer (red solid line).
The main mode fall velocity (with negative velocities downwards) shows a con-
stant increase in fall velocity from the cloud top (corrupted by turbulence) toward
the cloud base and a slight decrease before the melting layer. The slope value of
0.36 · 10−3 s−1 means that the fall velocity increases in average of 36 cm/s per kilo-
meter fall path.
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(a) (b)

Figure 5.17: (a): main and secondary mode–specific spectral moments (see also
figure 5.14); (b): the main mode fall velocity is fitted along the vertical extension
of the cloud (red solid line). The main mode fall velocity (with negative velocities
downwards) shows an increase in fall velocity from the cloud top to the center of
the cloud, and then a decrease in its course to the cloud base.

Figure 5.18: Time series of rate of increasing of fall velocity for the 6th March 2007
(THI for the fall velocity, co–channel, main mode, in figure 5.12c). The fit is repeated
after reducing the vertical air motions. In the case here shown, the rate of increase
of fall velocity per km fall path is stabilized at about 11 cm/s . Light blue points:
increase of fall velocity per spectra profile; Light blue straight line: mean value of
the increase of fall velocity; the vertical bars indicate the corresponding error for
the fit 5.20, every profile consisting of at least 100 range gates. The mean values
represent 360 profiles per hour.
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Chapter 6

Application of the

decomposition algorithm:

comparison with model

Grad School:
It seemed better than getting a real job.

Jorge Cham

6.1 Introduction

In this chapter we show the comparison of the retrievals obtained by applying the
decomposition algorithm developed in chapters 4 and 5 with the ones predicted by
a non operational configuration of the COSMO-DE model, particularly for one case
study.

The COSMO model (Consortium for Small-Scale Modelling) is a limited-area
atmospheric prediction model. In nature several physical processes are likely to
take place for the formation and growth of cloud particles, especially in mixed-
phase clouds (see chapter 2). The configuration of the model here used includes
the explicit microphysical parametrization of processes taking place between cloud
droplets and raindrops, including cloud droplets nucleation (see section 2.2.1), and
of processes between cloud droplets and ice phase, where cloud ice, snow flakes and
graupel are distinguished.
This cloud microphysical scheme predicts then the mixing ratio of five hydrometeor
types, nominally cloud droplets, raindrops, cloud ice, graupel, and snowflakes in
terms of number as well as mass densities and number concentration.
For details about the model configuration see Seifert and Beheng (2006).

We will consider microphysical properties such as size and Ice Water Content
(IWC) and the growing rate of hydrometeors along the vertical cloud extension.
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A proper parameterization of cloud microphysical processes for Numerical
Weather Prediction (NWP) and for climate modeling is an actual issue, as every
cloud represents a complex system to be described with a numerical physically con-
sistent treatment. More detailed the mathematical description, more computation-
ally costly the prediction results.
We believe that the retrievals here shown combined with model predictions will
bring us to a deeper understanding of the microphysical processes that are happen-
ing within a mixed-phase cloud.



6.2 Case study: 7 December 2006 109

6.2 Case study: 7 December 2006

During the 7th December 2006 a warm front associated to a low pressure system
passed over Hamburg (figure 6.1). Over the day a moderate precipitation rate and
temperatures at the ground ranging from 4◦C to 8◦C were registered.
The application of the decomposition algorithm to this case is discussed in chapter
5; particularly some results are outlined in sections 5.2 and 5.3.
Although vertical air motions could be obtained with 5 minutes averages, here it is
obtained by 15 minutes averages, to conform to the time resolution of the model. The
mode–specific fall velocities, diameters, and Ice Water Content for the co–channel
are shown in figures from 6.2 to 6.4.
Looking at the main mode–specific retrievals, we deduce this being an ice cloud, with
ice crystals of some hundreds micron growing along the vertical downwards to snow
crystals of 3 mm. The fall velocity increases correspondingly up to 1.8 m/s before
melting at about 1.5 km to form rain (non indicated in figures as the results of the
decomposition are not correct in case of raindrops).
From the secondary mode–specific plots, we discover the presence of second modes
on the cloud top boundary, in a layer of one kilometre above the melting layer be-
tween 11:00 and 14:00 UTC, and at 4 km between 14:30 and 15:30 UTC. As discussed
in the previous chapter, secondary modes at the cloud top are due to turbulence.

Figure 6.1: Satellite image over East Europa on the 7th December 2006 (Dundee
Quicklook for AVHRR, channel 2, near infrared, 07 December 2006 at 10:06 UTC).
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Figure 6.2: Mode–specific fall velocity, co–channel, 15 minutes averaged to reduce
the vertical air motions. 7 December 2006, Hamburg, Germany
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Figure 6.3: Mode–specific median volume diameter, co–channel, 15 minutes averaged
to reduce the vertical air motions. 7 December 2006, Hamburg, Germany
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Figure 6.4: Mode–specific IWC, co–channel, 15 minutes averaged to reduce the
vertical air motions. 7 December 2006, Hamburg, Germany
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At 15:00 UTC the secondary modes are likely due to stronger air motions within
the cloud; the visible change in the melting layer height supports this hypothesis.
Above the melting layer we face a mixed-phase layer. Behind the doubled fall veloc-
ity values, the LDR values are coherently structured along the vertical, suggesting
that we deal with two different groups of particles. Let us recall that mixed-phase
layers are connected with secondary production of ice (Hallett and Mossop effect,
see 2.4.1). This process needs temperatures around −7◦C and the presence of both
snow crystals and supercooled droplets: snow crystals, rimed by the droplets, splin-
ter out pristine ice crystals. Above the melting layer right conditions of temperature
exist that allow this secondary production of ice to occur, because here the temper-
ature decreases from 0◦C with increasing height. With cloud radar only we can
detect snow crystals (main mode), and supercooled droplets or ice crystals (sec-
ondary mode). In order to distinguished among the two, we use the qualitative
method suggested by Zawadzki et al. (2001), as seen in section 5.2.

Looking in the model prediction results illustrated in figure 6.5, we note a layer
between 1 and 4 km from 12:00 to 18:00 UTC where the model predicts the presence
of cloud liquid water along with production of a little amount of graupel. This result
further supports our hypothesis about the occurrence of secondary ice production.

Figure 6.5: Prediction for the different hydrometeors between 00:00 and 21:00 UTC,
7 December 2006, Hamburg, Germany. Red and purple design the areas with cloud
droplets and snow or ice crystals.
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Whereas the measured velocities are reflectivity weighted, that means with the 6th

power of the diameter, the model velocities are weighted with the mass, that means
with the 3rd power of the diameter. Although the velocities are weighted differently,
the vertical velocities are similar, as one can see in the comparison provided in figures
6.6.
The time series for the increase of the fall velocity evaluated by the model prediction
and the one retrieved from the radar data are shown in figure 6.7. The fall velocity of
cloud particles increases with an average of about 15 cm/s per kilometre fall path.
This value is consistent with the result of the cloud resolving model COSMO-DE,
that is about 11.5 cm/s per kilometre fall path. The point values get closer for the
deeper part of the cloud, after 10:00 UTC; instead, between 07:00 UTC and 10:00
UTC, the model result do not have enough point values along the vertical to make
the fit reliable.

Switching on one growing process at time in the model, such as growth by water
vapor deposition, by collection processes, or by freezing of water drops, we shall
understand which one is critical in the evolution of the bigger particles in the cloud.
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Mass weighted fall velocity, m/s

Figure 6.6: Model prediction for the fall velocity 07:30 and 16:00 UTC, 7 December
2006, Hamburg, Germany (lower panel). Comparison with the result retrieved from
radar data (upper panel). Negative velocities are downwards.
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Figure 6.7: Time series of rate of increasing of fall velocity for the 7th December
2006 (see also section 5.5). Blue points: measured increase of fall velocity per spec-
tra profile after reduction of vertical air motion (15 minutes averages); red points:
increase of model predicted fall velocity per spectra profile; vertical bars indicate
the corresponding mean absolute deviation between the points of each profile and its
fit 5.20. Dotted lines: mean value for the increase of fall velocity for measurements
and model prediction, red and blue respectively. Mean values are based on 4 values
per hour. The model predicted mean value is evaluated considering only the time
gates where there are enough point values – at least 20 – to make the fit reliable;
that means the model predicted mean value is evaluated for the deeper part of the
cloud only.
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Chapter 7

Summary and Outlook

Cloud radars have an excellent sensitivity to detect cloud particles, but their poten-
tial to investigate them is still not fully developed. Against a complex structure of
the measured Doppler radar spectra, robust techniques for resolving it do not still
exist.

In this work we have described a new operational algorithm which we have de-
veloped to decompose in up to two modes Doppler radar spectra.
The rationale of the algorithm is that an ensemble of cloud particles of the same
species — the same thermodynamic phase, analogous shape and size — produces
a Gaussian spectrum with characteristic parameters, which are related to the mo-
ments of the Doppler spectrum.
More ensembles of cloud particles in the same radar resolution volume produce a
spectrum that is due to the linear superposition of the Gaussian signals which they
would produce singularly.
With the aid of radar polarimetric measurements, each mode can be associate to a
different type of cloud particle.

The purpose of the proposed method is the requirement to evaluate mode–specific
moments, in contrast with the traditional global moments, in order to retrieve ex-
haustive information on the microphysical structure of clouds and on the dynamics
of cloud systems.

Cloud properties evaluated by cloud radars are size, shape, phase, orientation,
concentration, and motion.
We extracted further pieces of information on the properties of the cloud particles
by linearly fitting the main mode–specific velocity as a function of the altitude.
The gradient of this fit gives a picture on the growing behaviour of the particles
along the vertical.
Therefore physical processes responsible for formation, growth, and evolution of
cloud particles can be studied.

This analysis turned to be particularly useful in the recognition and study of
mixed-phase layers in deep convective stratiform cloud structures.
Mixed-phase clouds (or sections of clouds) are composed by snowflakes, supercooled
droplets, and pristine ice crystals.
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Depending on their size, these different classes of particles may show a comparable
fall velocity; therefore, with decomposed cloud radar measurements we are able to
identify only the two dominant classes.
Nevertheless, for the considered measurements, the melting layer is well visible, and
then it is possible to guess the temperature gradient within the vertical extension of
the cloud. The detection of double modes together with the study of the ambient
conditions allow us to claim the ice secondary nucleation process in mixed-phase
layers as responsible for the double modes revealed by the decomposition algorithm.

The algorithm has been developed on measurement taken by a vertically pointing
polarimetric Doppler cloud radar MIRA-36, operating at the frequency of 35.5 GHz.
The radar was placed in Hamburg, Germany.

The potentiality of the method is illustrated by applying it on radar measure-
ments of deep stratiform convective cloud structures, for which a layer of double
modes shows up for a persistent lapse of vertical and temporal extension.

By using measurements taken by more instruments, such as lidars, it would be
possible to extend the study to other cloud structures, and a subject of future studies
is to understand if the described behaviour is common to clouds of the same type.

For a case study the microphysical results we obtained are compared with the
prediction obtained by the COSMO–DE model, showing a suitable agreement. We
considered microphysical properties such as size, Ice Water Content, and the growing
rate of hydrometeors along the vertical cloud extension.
As this model includes an explicit cloud microphysical parametrization, the use of
radar decomposed spectra in numerical cloud models should be considered for testing
the current knowledge of the processes involved and for validation and refinement
of numerical cloud models itself.

Anyway, the retrieved microphysical properties, i.e. particle diameter and Ice
Water Content, require to be validate with in situ data. In this way, also shapes
different from a Gaussian for the modeled double spectra, as the exponential one,
could be considered and tested.
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