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Abstract 

We investigated the effects of privatization on hospital efficiency in Germany. To do so, we 

obtained bootstrapped DEA efficiency scores in the first stage of our analysis and subsequently 

employed a difference-in-difference matching approach within a panel regression framework. 

Our findings show that conversions from public to private for-profit status were associated with 

an increase in efficiency of between 3.2 and 5.4%. We defined four alternative post-

privatization periods and found that the increase in efficiency after a conversion to private for-

profit status appeared to be permanent. We also observed an increase in efficiency one year 

after hospitals were converted to private non-profit status, but our estimations suggest that 

this effect was transitory. Our findings also show that the efficiency gains after a conversion to 

private for-profit status were achieved through substantial decreases in staffing ratios in all 

analyzed staff categories with the exception of physicians. It was also striking that the 

efficiency gains of hospitals converted to for-profit status were significantly lower in the DRG 

era than in the pre-DRG era. Altogether, our results suggest that converting hospitals to private 

for-profit status may be an effective way to ensure the scarce resources in the hospital sector 

are used more efficiently. 

JEL classification:  I11, I12, L20, L33, M11 

Keywords: Privatization, Performance measurement, Data envelopment analysis, Propensity 

score matching, Germany 

 

 

Oliver Tiemann 

Universität Hamburg 

Fakultät WISO 

Von-Melle-Park 5 

20146 Hamburg 

Germany 

oliver.tiemann@wiso.uni-

hamburg.de 

 

Jonas Schreyögg 

Universität Hamburg 

Fakultät WISO 

Von-Melle-Park 5 

20146 Hamburg 

Germany 

jonas.schreyögg@wiso.uni-

hamburg.de 

 

 



1 

 

1. Introduction 

 

Rising health expenditure and tight public budgets over the past four decades have led decision 

makers in many Western industrialized countries to seek ways to improve the performance of 

health care organizations. Hospitals, in particular, are increasingly being held accountable for 

their efficiency and financial performance. Having identified inefficiencies and financial risks in 

public hospitals, national and local governments in a wide range of countries have responded by 

privatizing these institutions. The chief motivation behind the privatizations that have taken place 

in these countries during the past twenty years has been the expectation that shifting from public 

to private ownership would lead to gains in organizational performance, especially in terms of 

efficiency.  

 

Considering the importance of this topic, not least in the political debate, the lack of quantitative 

empirical studies on the effects of hospital privatization is surprising, as is the small number of 

studies analyzing the effects of conversions in hospital ownership in general. The present 

investigation is the first to examine the effects of privatization on technical efficiency in the 

hospital market. To do so, we examined a large sample of German hospitals that changed from 

public to either private non-profit or to private for-profit status.  

 

Following an extensive wave of privatizations that began in the mid-1990s, the large hospital 

market in Germany is now fertile ground for investigating these effects. In Germany, three 

different types of hospital ownership have co-existed for decades: private for-profit, private non-

profit, and public. As their classification implies, both types of private hospitals are owned by 

private entities, whereas public hospitals are owned mainly by public entities, such as local or 
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regional governments. Between 1995 and 2008, a substantial number of local and regional 

governments in Germany sold their hospitals to private for-profit and private non-profit owners. 

The total number of private for-profit hospitals increased by 164, or 44%, which represented a 

rise in market share from 6 to 18% measured in terms of hospital beds. During the same period, 

the market share of private non-profit hospitals decreased slightly, from 38 to 36%, because some 

private non-profit hospitals were also converted to private for-profit ownership (Federal 

Statistical Office of Germany, 2009).  

 

In the present study, we focused on technical efficiency to assess changes in hospital performance 

following privatization. After using a bootstrapped data envelopment analysis (DEA) technique 

to estimate efficiency scores for each hospital in our sample, we employed propensity score 

matching to ensure that the two groups of hospitals in our analysis (i.e. privatized and non-

privatized) were comparable in terms of organizational characteristics, environmental 

characteristics, and patient heterogeneity. Subsequently, following an approach suggested by 

Simar and Wilson (2007), we estimated a second-step regression model for truncated longitudinal 

data, with bootstrapped DEA efficiency scores as dependent variable. Finally, while controlling 

for the impact of hospital organizational and environmental characteristics, we applied a 

difference-in-difference specification of the regression model to examine whether privatization 

improved hospital efficiency.  

 

The second section of this paper reviews the relevant theoretical and empirical literature on 

privatization and its impact on organizational performance. The third section presents the setting, 

data, and methodology used to explore this relationship. The fourth section describes and 
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discusses the results of our analysis, and the fifth, and final, section draws conclusions and 

suggests topics for future research. 

 

2. Previous literature on privatization 

 

Most of the existing research on privatization relies on agency theory, property rights theory, or 

public choice theory, each of which provides different explanations of a common outcome. 

According to all three theories, the rationale for privatization is that the resulting changes in an 

organization’s objectives, incentives, and control mechanisms lead to improved performance: 

Public hospitals acquired by a private for-profit organization are expected to maximize profit 

through a high degree of technical efficiency, producing services in such a way that marginal cost 

will equal marginal revenue. In turn, public hospitals acquired by a private non-profit 

organization are expected to improve technical efficiency by suppressing politically motivated 

resource allocation and expanding their output at least to the point where total cost equals total 

revenue (Haskel and Szymanski, 1993; Shleifer and Vishny, 1994; Bös, 1991; Boycko et al., 

1996; Laffont and Tirole, 1993; Sappington, 1987; Schmidt, 1996; Vickers and Yarrow, 1991). 

 

Generally speaking, there have been – from an empirical point of view – two categories of studies 

that deal with ownership and privatization. The first, and by far the most numerous, of these have 

compared the performance of public and private entities in industries in which both types of 

ownership coexist (Villalonga, 2000). In a meta-review of studies of this nature that focused on 

the hospital market, Shen et al. 2007 concluded that there was little evidence supporting the 

standard assumption that private for-profit hospitals outperform hospitals with other types of 

ownership. Herr (2008) and Tiemann and Schreyögg (2009) found that public hospitals 
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outperform hospitals with other types of ownership in the German hospital market. Because none 

of these studies investigated changes in ownership type during a specified period – and thus did 

not examine the effects of privatizing public entities – they will not be discussed in any further 

detail below. 

 

The second category of studies has focused on privatization and its impact on organizational 

performance, usually employing a longitudinal design. From a methodological perspective, these 

studies have taken two different approaches. The first was introduced by Megginson et al. (1994), 

who compared the means and medians of the periods before and after privatization according to 

defined performance criteria. Few of the studies that have taken this approach, however, have 

included control groups consisting of non-privatized state-owned organizations. The second 

approach has involved much larger samples of privatized entities and, defining the privatization 

event as an intervention, has applied methods proposed in the literature on program evaluation 

(Heckman and Hotz, 1989; Heckman et al., 1997). The majority of these studies have used some 

kind of difference-in-difference method to analyze the effects of privatization on performance 

compared to the performance of a control group of non-privatized entities, controlling for time-

invariant differences between the groups. As part of our literature review, we were able to 

identify ten studies from different industries that used such a method to evaluate privatization 

effects, including four studies on hospitals: Picone et al. (2002), Shen (2002), Shen (2003) and 

Farsi (2004), all of whom examined ownership conversion effects in the US hospital market.  

 

Three of these four studies assessed the quality of care after a change in ownership and found that 

conversions from private non-profit to private for-profit status had a significantly negative impact 
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(Picone et al., 2002; Shen, 2002; Farsi, 2004). One study (Farsi, 2004) found that a change from 

private for-profit to private non-profit status also had a negative effect on the quality of care. 

 

Using profit margins, capacity, staffing ratios, salaries, patient mix, and the amount of 

unprofitable care as measures, Shen (2003) and Picone et al. (2002) examined the impact of 

changes in ownership on hospital performance. Both studies found that hospitals converted from 

public or private non-profit status to private for-profit status increased their profit margins and 

reduced staffing ratios. In addition, Shen (2003) found that these hospitals reduced cost and 

increased revenue. She also found that a change from public or private for-profit status to private 

non-profit status resulted in slight reductions in cost and in nursing staff, but did not lead to 

increased profit margins. 

 

Although all four studies were pioneering in their approach and focus, they have several 

important weaknesses. First, Shen (2003) and Picone et al. (2002) used profit margins as a 

measure of performance. There is evidence, however, that public hospitals are averse to seeking 

profit maximization (Pestieau, 2009). As a result, it seems reasonable to assume that using 

financial performance criteria, such as profit margins, may lead to bias in pre-post comparisons 

of privatized entities and control group designs. For this reason, we believe that productivity, in 

terms of technical efficiency, is a more suitable measure of changes in performance among 

hospitals that have undergone a conversion in ownership type. Second, none of the four studies 

specifically examined the phenomenon of privatization, which would have required a focus solely 

on changes from public status to private non-profit or private for-profit status. Instead, they 

examined the effects of conversion from any form of ownership to public, private non-profit, or 

private for-profit status. Third, Shen (2002 and 2003) was the only author to address the problem 
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of causal interference, using a difference-in-difference method combined with a matching 

approach to investigate the impact of privatization. Finally, all four studies implicitly assumed 

that changes in performance are attributable primarily to changes in ownership status. There may, 

however, be other changes to the market environment, such as the introduction of diagnosis-

related groups (DRGs), that also interact with the privatization event.  

 

By focusing on the impact of privatization on technical efficiency and employing a difference-in-

difference matching approach, we attempt to address these shortcomings and contribute to the 

current understanding of the consequences of hospital privatization. 

 

3. Research design and methods 

3.1 Data envelopment analysis 

 

In the hospital sector, DEA is the most frequently used approach to measuring efficiency 

(Hollingsworth, 2008). A linear programming technique for evaluating the relative technical 

efficiency of individual organizations based on observed data, DEA defines the relative 

efficiency of an organization as the ratio of the weighted sum of its outputs to the weighted sum 

of its inputs. The weights are not pre-assigned, but rather determined by the model, thus avoiding 

any bias resulting from subjectively assigned weights. DEA allows multiple inputs and outputs to 

be considered simultaneously, which seems particularly well-suited to measuring the efficiency 

of complex service organizations like hospitals. In contrast to parametric methods such as  

stochastic frontier analysis (SFA), DEA has the advantage of not requiring that any assumptions 

be made about the functional form of the production or cost frontier. This reduces the need for a 

theoretical exposition of the model. SFA is also frequently used to measure efficiency in health 
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care organizations. Because both techniques have their strengths and weaknesses, Coelli et al. 

(1999) propose evaluating their suitability depending on the context of study. As in other 

investigations that have measured hospital efficiency, our decision to use DEA was driven by 

data availability (Pilyavsky et al., 2006): our data set contained a range of input and output 

variables suitable for DEA, but did not contain input prices, which are an important prerequisite 

for SFA.  

 

Based on our understanding of the market constraints within the German hospital sector, we 

assumed variable returns to scale, which may be appropriate when it is impossible to assume that 

all observed units are operating at an optimal scale (Banker et al., 1984). In the health care sector, 

imperfect competition and budgetary constraints, as well as regulatory constraints on entry, 

mergers, and exits, can often cause organizations to operate at an inefficient scale size (Jacobs et 

al., 2006). In light of this theoretical framework, we used the following empirical model in our 

analysis. In the input-oriented case, we estimated the variable returns to scale model by Banker, 

Charnes, and Cooper (BCC) as a linear programming problem, as follows (Banker et al., 1984):  

 

��, � = 1,… , � is the hospital’s efficiency, where � represents the number of observations (i.e. the 

number of hospitals).  

 

�� = 1/
�, where 
� is the inefficiency.  

 

Matrix � ∈ ℝ�×� refers to � observed inputs of � compared hospitals, and matrix � ∈ ℝ�×� 

refers to � observed outputs of the compared hospitals. Vectors �� ∈ ℝ
� and �� ∈ ℝ

� represent the 
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inputs and outputs of unit � (i.e. the �th columns of matrix � and �, respectively). Furthermore, � 

refers to a column vector of ones with a suitable dimension. The DEA efficiency score, which is 

the reciprocal of the inefficiency 
�, can be obtained by solving the following BCC linear 

programming model (Syrjänen, 2004): 

(1) 
∗ = ���
, 

(2) s.t. �� − �� ≥ �, 

(3) −�� + θ�� ≥ �, 

(4) 1"� = 1, � ≥ �. 

 

Using DEA efficiency scores for a second-stage regression has been found to result in 

inconsistent estimates unless these scores are corrected by a bootstrapping procedure. The 

procedure applied in the present study follows the approach developed by Simar and Wilson 

(1998, 2000). In our case, the bias-corrected scores were derived from 500 bootstrap iterations, 

which allowed us to estimate a robust regression model for the second-stage analysis (see Section 

3.3). 

 

3.2 Propensity score matching 

The difference-in-difference estimator has the advantage of eliminating unobserved time-

invariant hospital-level effects between privatized and non-privatized hospitals. It does not, 

however, address the problem of potential baseline imbalance between these two groups, which 

can be caused when large differences in group characteristics prior to privatization lead to 

selection bias. In the case of baseline imbalance, results may be very sensitive to the model 

specification, and regression analysis may effectively extrapolate outside the support of the data. 

Methods such as propensity score matching have been shown to avoid unreliable inference in 
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parametric models. Whereas the use of matching estimators alone is usually unsatisfactory due to 

the strong assumption that selection is based only on observables, several authors have proposed 

that a combination of difference-in-difference and propensity score matching methods 

significantly increases the quality of non-experimental evaluation results (Blundell and Dias, 

2000; Smith and Todd, 2005). 

 

We thus applied a propensity score matching approach proposed by Rosenbaum (2002) and 

Rubin (1973, 2006) and extracted a sub-sample of non-privatized hospitals in which the 

distribution of covariates was similar to that in our sample of privatized hospitals. In the first 

step, we estimated the conditional probability that any hospital in the two samples had been 

privatized during the study period given the vector of our defined covariates. The propensity 

scores were derived by performing a logistic regression. In order to achieve a propensity score 

model that minimizes the conditional bias, it is important to determine predictors and 

confounders of the intervention–outcome relationship and to identify predictors of exposure 

(Austin, 2008). To determine appropriate predictors of exposure, we tested different models, 

allowing for interactions between variables (for a detailed description of the variables, see 

Section 4.2). Subsequently, we calculated the predicted probabilities of belonging to the sample 

of privatized hospitals. Based on this score, each privatized hospital was matched to one non-

privatized hospital in the corresponding baseline year (i.e. one year before the privatization 

occurred). Because the propensity score was the only pre-intervention measurement, the 

matching algorithm minimized the absolute differences in propensity score (Rosenbaum, 1989). 

By using one-to-one matching with replacement, the total distance between matched pairs was 

also minimized; known as optimal matching, this method ensures that conditional bias is reduced 

to a minimum (Rosenbaum, 2002; Rubin, 2006; Schreyögg et al., 2010). The number of pairs in 
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the matched sample was further restricted by using calipers of width equal to 0.2 of the standard 

deviation. A comparison of different caliper widths found that this width was superior to others at 

reducing conditional bias in the estimation of intervention effects (Austin, 2009). 

 

We assessed the appropriateness of our propensity score matching by using standardized 

differences for continuous variables and differences for non-continuous variables as 

recommended by Austin (2008). Standardized differences represent a good measure of 

appropriateness for the matching procedure, as they depend neither on the unit of measurement 

nor on the size of the sample (Imai et al., 2008). Furthermore, we applied Hotelling’s T-square 

statistic to test the reliability of our propensity score matching. Whereas standardized differences 

and differences rely on the cross-sample difference of each variable included in the propensity 

score matching model, Hotelling’s T-square test considers whether these differences can be taken 

as jointly insignificant. In the present study, we divided the sample by propensity score quartiles 

and conducted the test for each sub-sample (Girma and Görg, 2007). 

 

3.3 Difference-in-difference estimates 

 

In our regression analysis, we applied a linear regression model for truncated longitudinal data 

with DEA efficiency scores as dependent variable. A difference-in-difference specification of the 

regression model was used to assess whether privatization led to improvements in efficiency 

while controlling for patient heterogeneity and the impact of hospital organizational and 

environmental characteristics. Truncated regression models were chosen owing to the truncated 

distribution of the DEA-based relative efficiency estimates (Simar and Wilson, 2007). All of our 

difference-in-difference regressions were modeled with fixed effects and random effects because 
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the results of the Breusch–Pagan and Hausman tests suggested that the assumption of the random 

effects specification was also appropriate. Although we reported both the fixed effects and the 

random effects regression results, the fixed effects estimator generally provides more consistent 

estimates and may pick up much of the unobserved heterogeneity in the hospital-specific effect. 

Because of this, the fixed effects estimator was our preferred model. Our model was a follows: 

 

(5) ��# = $� + $%&'()� + $*&+,-�# + $.&'()�&+,-�# + $/0�# + 1�# 

 

where ��# is the efficiency of the �th hospital at year 2, 2 = 1,… ,13; &'()� is a dummy variable 

for privatization, with &'()� being assigned a value of 1 if a hospital was privatized at any time 

between 1997 and 2007 and a value of 0 if not; &+,-# is assigned a value of 1 in the years after 

privatization and 0 before the year during which the hospital changed its status to private for-

profit or private non-profit; and 0�# are observable factors affecting the efficiency of hospital � at 

year 2 (i.e. hospital characteristics, environmental characteristics, and patient heterogeneity; a 

detailed description of the variables is provided in Section 4.2). The random term 1�# is assumed 

to be normally distributed with zero mean. 

 

The variable &'()� was included to control for time-invariant differences between privatized 

hospitals in the intervention group (i.e. hospitals that were converted from public to private for-

profit or private non-profit status) and non-privatized hospitals in the control group. The 

coefficient of interest is the interaction between &'()� and &+,-#, which identifies changes in 

efficiency after a hospital was privatized relative to efficiency in the comparator group. The 

difference-in-difference methodology assumes that all other temporal factors affecting hospital 
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efficiency had the same impact on hospitals in the intervention group as they did on hospitals in 

the control group. We thus assume that any changes over time for which we did not control 

affected all hospitals in the same way. For sensitivity purposes, and to check the robustness of 

our estimates, we allowed for four alternative post-privatization periods (i.e. first, second, third, 

and fourth year). The pre-period was defined as the year before privatization occurred and 

alternatively year 2 before privatization was used. 

 

An important assumption in our study was that environmental and organizational factors can 

influence the efficiency of hospitals in addition to a change in ownership status. We assert that 

considering the impact of such covariates on hospital efficiency provides a better explanation of 

variation in efficiency and more robust findings on the post-acquisition effects of privatization 

than the approaches taken in previous studies on this topic, none of which controlled for these 

effects. The use of control variables is of particular importance when examining the hospital 

market because there are usually a range of structural and regulatory determinants of efficiency 

that a hospital itself cannot influence. Table 1 provides a comprehensive outline of our statistical 

analysis. 

------------------------------- 

Insert Table 1 about here 

------------------------------- 
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4. Data 

4.1 Sample 

 

The data for our study were derived from the annual hospital reports collected and administered 

by the Research Data Centre of the Statistical Offices of the Länder. This rich dataset covers all 

public, private for-profit, and private non-profit hospitals in Germany and contains hospital-level 

information on cost and hospital infrastructure, as well as patient-level information on age, 

diagnoses, and procedures performed. Our study is based on data from the years 1996 through 

2008, and the unit of analysis was the hospital. Due to data privacy issues, we were able to obtain 

randomly selected data for only two-thirds of German acute care hospitals (n = 1878). To ensure 

the comparability of the hospitals in the sample, the following institutions were excluded from 

further analysis: hospitals providing only psychiatric care; university hospitals; day clinics; 

hospitals with fewer than 50 beds or more than 2000 beds; and private non-profit and private for-

profit hospitals that had been privatized before the study period. In addition, manual plausibility 

checks were conducted to identify any measurement errors. Ultimately, a total of 548 public 

hospitals remained in our sample, including 132 that were privatized between 1997 and 2007. Of 

these 132 hospitals, 99 were acquired by a private for-profit organization and 33 were acquired 

by a private non-profit organization (Research Data Centre of the Statistical Offices of the 

Länder, 2009). Table 2 shows the number of hospital privatizations per year. 

------------------------------- 

Insert Table 2 about here 

------------------------------- 
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4.2 Description of variables 

 

When selecting inputs and outputs for the first stage of our analysis, we followed the example of 

other studies that have developed DEA frameworks for measuring hospital efficiency (Pilyavsky 

et al., 2006; Jacobs et al., 2006; Burgess and Wilson, 1998). For our purposes, we chose six 

inputs and two outputs. The first input variable (SUPPLIES) represents the amount spent on 

supplies per year, including operational expenses, but excluding payroll, capital, and depreciation 

expenses. Taking into account the relative importance of resource use in terms of labor in the 

hospital production process, we chose the number of full-time equivalents (FTEs) for the 

following personnel categories as additional input variables: physicians (PHYS), nursing staff 

(NURSE), other clinical staff (CLIN), administrative staff (ADMIN), and other nonclinical staff 

members (NONCLIN). 

 

In our first DEA efficiency model, we used the number of inpatient cases per year in each 

hospital as the only output variable (INPATIENT). A second model specification served as a 

sensitivity analysis to test whether the efficiency scores and ranks remained stable when a 

measure of quality of care was employed as a second output. To do so, we used the average in-

hospital mortality rate per year for each hospital to adjust for variations in the quality of care 

between hospitals. The second output thus represents the number 1 minus the average in-hospital 

mortality rate per year (1-MORTALITY).  

 

Using output variables like these can be problematic if patient heterogeneity (i.e. case mix) varies 

systematically across the hospitals in a sample. This is because hospitals with a more complex 

case mix are likely to receive lower efficiency scores. To address this potential shortcoming, we 
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used patient-level data to condense a comprehensive set of comorbidities to a single numeric 

score that (a) summarized disease burden and resource use and (b) was sufficiently discriminative 

for predicting mortality. In order to generate this case-mix index for each hospital, we relied on 

the comorbidities included in the Elixhauser Comorbidity Index (van Walraven et al., 2009). We 

used this case-mix index to risk-adjust both of the output variables for the DEA models. Another 

common approach would have been to use a case-mix index whose weight reflected the relative 

costliness of DRGs. Carey (2000, 2002), however, reported that individual-level measures 

represent a vast improvement over such aggregate case-mix measures when controlling for 

patient heterogeneity. 

 

A correlation analysis showed that our multiple inputs were positively correlated with our output 

set. This is an important prerequisite for applying DEA. In the present study, the input variables, 

in particular, were highly correlated, which suggests that a limited number of inputs might have 

been sufficient to represent the selected input set in our efficiency assessment. Several authors 

(e.g., Dyson et al., 2001; Jacobs et al., 2006), however, emphasize that correlation is an aggregate 

measure of the closeness of two sets of observed data and argue that omitting a highly correlated 

variable can lead to significant changes in efficiency estimates. As a result, variations in the input 

levels for individual hospitals may have little impact on the correlation while significantly 

affecting the measured efficiency. A comprehensive set of inputs and outputs may also increase 

the chance of identifying the presence of a production technology common to all decision-making 

units. In addition, Dyson et al. (2001) argue that omitting variables to increase discrimination is 

less effective when using large data samples. Based on these considerations, we chose to use all 

of our input variables for the DEA model. Table 3 shows the descriptive statistics for in- and 



16 

 

outputs of our sample used in the DEA models stratified according to the intervention and control 

groups.   

------------------------------- 

Insert Table 3 about here 

------------------------------- 

 

In the second stage of our analysis, heterogeneity in hospital characteristics was covered by 

several variables. The first of these was the number of licensed and staffed beds (BEDS), an 

approach taken in previous studies to control for hospital size (Carey et al., 1999; Dudley et al., 

2000; Harrison et al., 2004). In the context of hospital planning in Germany, the number of beds 

per hospital can be seen, at least over the medium term, as an exogenous factor that is not under 

the direct control of hospital management. To account for higher resource consumption due to 

differences in teaching activities, we included a variable (TEACHING) for the training activities 

of non-medical staff. These activities are represented by the ratio of trainee positions and the sum 

of all non-medical personnel. Another important point to consider is that hospitals may lease 

facilities to private-practice physicians (e.g. for hospital outpatient surgery). The estimated DEA 

efficiency scores calculated in the first stage of our analysis were higher for hospitals that had 

done so because the cases referred to these physicians had been counted as hospital output, 

whereas the corresponding resource use (i.e. in terms of physicians) had not been considered on 

the input side. To control for this, we defined the proportion of all hospital beds that had been 

leased (LEASED BEDS) as a variable in our regression models.  

 

The set of explanatory variables representing the different environmental characteristics were as 

follows: The most important regressor was the Hirschman-Herfindahl index (HHI), which 

measures competitive pressure in a hospital’s market, a standard economic measure of market 
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concentration. The market area was defined as the county in which a hospital was located, which 

is a frequently used definition in hospital studies (Chang et al., 2004; Rosko 1999, 2001, 2004; 

Rosko and Chilingerian, 1999). Although there has been some controversy about the most 

appropriate way to define a hospital’s market area, Garnick et al. (1987) reported that for the 

purpose of measuring competitive activity it makes little difference whether a hospital’s market is 

defined as a county or a radius. The HHI is obtained by squaring a hospital’s regional market 

share (reflected by the distribution of treated cases) and subsequently summing the market shares 

of admissions for all of the hospitals in a given county. The higher the HHI, the more 

concentrated the regional market. We used HHI to measure the effects from the changes over 

time in a hospital’s competitive environment. This specification allowed us to differentiate 

between the effects of privatization and the effects of changes in market structure resulting from 

health care reforms.  

 

In recent years, the most significant reform in the German hospital market was the introduction of 

a new system of reimbursement based on DRGs. The chief motivation behind this fundamental 

overhaul of the old reimbursement system, which was based on per diem charges, was to create 

financial incentives that would increase hospital efficiency (Schreyögg et al., 2006). We thus 

defined a dummy variable (DRG), which was assigned a value of 1 in the DRG era (i.e. 2003 

through 2007).  

 

These variables for hospital and environmental characteristics were also used in the propensity 

score model, as were the case-mix index (CMXI) derived from the Elixhauser Comorbidity Index 

(van Walraven et al., 2009) and the pre-privatization efficiency (EFFICIENCY) of privatized and 

non-privatized hospitals. We used this last variable to minimize potential bias because public 
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entities may prefer to sell hospitals characterized by lower levels of efficiency while keeping 

those that are performing well. Table 4 shows the descriptive statistics for the variables used in 

the second stage analysis stratified according to the intervention and control groups.  

------------------------------- 

Insert Table 4 about here 

------------------------------- 

 

5. Findings and discussion 

 

Table 5 shows the degree of imbalance before and after propensity score matching for our subset 

of covariates (interactions are not shown).  

------------------------------- 

Insert Table 5 about here 

------------------------------- 

 

The differences in covariate means between the unmatched samples indicate that it was especially 

the size of non-privatized hospitals (in terms of beds) that was likely to be larger than that of 

privatized hospitals. After propensity score matching, the differences in covariate means between 

the privatized and non-privatized hospitals were substantially smaller than those seen in the pre-

matching distribution. All of the differences between the groups were less than 6% in the post-

matching distribution. Table 6 summarizes the results of Hotelling’s T-square test. Reassuringly, 

the balancing conditions were satisfied within each propensity score quartile (i.e. the P values for 

all quartiles were substantially higher than 0.10).   

------------------------------- 

Insert Table 6 about here 

------------------------------- 
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The fixed and random effects regression results for our first model, which used DEA efficiency 

scores as dependent variable, are summarized in Table 7 and stratified according to whether 

public hospitals were converted to private for-profit or private non-profit status. Two sets of 

regression results are shown for each type of conversion: one based on the unmatched samples 

and the other based on the samples after propensity score matching. The coefficients shown in 

Table 7 are those for the difference-in-difference interaction between the variables PRIV and 

POST and can be interpreted as marginal effects. The interaction terms identify the changes in 

efficiency after a hospital was privatized relative to changes in efficiency in the comparator 

group. 

 

The regression results for public hospitals that were converted to private for-profit status show 

that there was a significant increase in efficiency compared to the control group starting the 

second year after privatization. Throughout all estimations of our efficiency model, the effects of 

this change in status increased with the number of years after privatization. For instance, four 

years after their conversion to private for-profit status, the formerly public hospitals experienced 

an increase in efficiency that was 3.2 to 5.4% greater than that seen among non-privatized 

hospitals over the same period. These fixed effects regression results are confirmed by similar 

results obtained through our estimations based on the random effects specification of the model. 

In the matched samples, the standard errors were larger than in the pre-matched sample. This can 

be attributed, in part, to the smaller size of the control group; nevertheless, the general finding 

remained the same. The estimations also suggest that the increase in efficiency seen in public 

hospitals that were converted to private for-profit status is permanent and not simply a 

transitional phenomenon after which hospital operations revert to their pre-privatization state.  
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The regression results for public hospitals that were converted to private non-profit status show 

that, at least in the first year after privatization, there was a significant increase in efficiency of 

3.2 to 4.7% compared to the control group. For years 2 through 4 after privatization, we observed 

no significant effects apart from those seen in year 2 in the random effects specification with 

matched samples. In that model, public hospitals converted to private non-profit status showed a 

significant increase in efficiency of 3.9% in the second year after privatization compared to the 

non-privatized hospitals. Throughout most estimations, however, the effects of a conversion to 

private non-profit status decreased as the number of years after privatization increased. This 

points to a transitory rather than a permanent effect.  

 

------------------------------- 

Insert Table 7 about here 

------------------------------- 

 

To gain a better understanding of these findings and the restructuring that occurred after hospitals 

were converted to private for-profit and non-profit status in our sample, we conducted a series of 

exploratory regressions. Using the same model specification to identify the effect of privatization 

on the quantity and type of resource use (i.e. employing input variables from the first-stage 

analysis as dependent variables of the second-stage regression), we found that hospitals that were 

converted to private for-profit status substantially reduced all of the analyzed labor inputs during 

the post-privatization period with the exception of physicians (i.e. nursing staff, other clinical 

staff, administrative staff, and other nonclinical staff). This finding can potentially be explained 

by the two lines of internal authority – medical and managerial – that characterize most hospitals: 

In contrast to nurses and technical staff, physicians are often part of the top management and 

make decisions on the allocation of resources. Being clinicians or former clinicians themselves, 
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members of top management may be predisposed to avoiding reductions in the number of 

physicians. Another explanation may be that avoiding physician lay-offs is a strategy to reduce 

resistance to change by compensating physicians for coping with the organizational adjustments 

associated with privatization. For hospitals converted to non-profit status reductions of labor 

input tend to be smaller compared to conversions to for-profit status.  

 

To explore our results yet further, we examined the interaction effects between a given 

privatization (difference-in-difference coefficient) and the competitive environment (HHI) in 

which this privatization took place. In their summary of the theoretical literature, Sheshinski and 

López-Calva (2003) argue that privatized organizations are likely to have lower efficiency gains 

in non-competitive markets than they would under the discipline of a competitive market. They 

assume that organizations in monopolistic or oligopolistic markets restrict output and have higher 

average costs and lower efficiency than competitive organizations. Rosko (1999, 2001, 2004) and 

Rosko and Chilingerian (1999), however, have found that efficiency in the US hospital sector is 

negatively related to market competition. Using HHI as a proxy for competition in our present 

study, we were unable to observe any effect of this variable on efficiency after privatization.  

 

We also examined the interaction effects between privatization and the introduction of yardstick 

competition through DRGs in the year 2004 in Germany. There is reason to believe that 

efficiency gains are larger for privatizations after the introduction of yardstick competition, 

especially in the case of hospitals converted to private for-profit status (Schreyögg et al., 2006; 

Biørn et al., 2003; Kjerstad, 2003; Shleifer, 1985). We used a dummy variable to model the pre-

DRG and the DRG period. In doing so, we defined each of the years 2001 through 2004 as the 

cut-off point between pre-DRG and DRG periods because hospitals may have changed their 
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behavior after the introduction of DRGs or beforehand based on their knowledge of the new 

system and its upcoming implementation. Table 8 summarizes the corresponding regression 

results based on a fixed effects model. 

-------------------------------- 

Insert Table 8 about here 

-------------------------------- 

 

The regression results for hospitals that were converted to private for-profit status reveal a 

significant negative association between post-privatization performance and the introduction of 

DRGs. In particular, the efficiency gains seen in hospitals converted to private for-profit status 

were substantially lower in the DRG era compared to those seen in the control group. The 

introduction of DRGs induced yardstick competition in the German hospital market, setting 

strong incentives to increase efficiency and stimulating restructuring efforts across all types of 

ownership. Our findings thus suggest that it became more challenging for hospitals that were 

converted to private for-private status in the DRG era to realize further efficiency gains. In the 

model estimated for hospitals that were converted to private non-profit status, the interaction term 

between post-privatization performance and the introduction of DRGs was not significant. 

 

We tested the robustness of our findings in several ways. First, we employed the average in-

hospital mortality rate as an additional output to adjust for variations in the quality of care 

between hospitals. The results of our quality-adjusted efficiency model show that employing in-

hospital mortality as an additional output was not associated with smaller efficiency gains (see 

Table 9 for the regression results of the quality-adjusted efficiency model). In fact, the regression 

results for hospitals that were converted to private for-profit status showed that there was even a 

small increase in coefficients compared to the estimations of the efficiency model. Our findings 
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therefore do not provide any evidence that increases in technical efficiency come at the expense 

of the quality of care. This may be due to a decrease over the past decade in the asymmetry of 

information about the quality of care in the German hospital sector following several health care 

reforms that have aimed to improve quality assurance, such as the introduction of mandatory 

quality reports. Furthermore, it is important to consider that privatized hospitals are often located 

in very competitive regions with substantial overcapacities, which may increase the importance 

of quality of care as a parameter of competition. Indeed, there is evidence that private for-profit 

hospitals have improved their quality management and hospital outcomes precisely in order to 

attract patients in such settings (Busse et al., 2009). 

-------------------------------- 

Insert Table 9 about here 

-------------------------------- 

 

Second, we re-estimated all second-stage regressions by incorporating firm fixed effects as an 

additional dimension. To do so, we estimated time and firm fixed effects as a multi-way clustered 

regression (Cameron et al., 2006). This resulted in only minor changes in the difference-in-

difference coefficients, and our findings remained robust throughout the models. Third, in other 

economic sectors, Parker and Martin (1995) found that pre-privatization gains in efficiency can 

be even larger than post-privatization gains. Based on this finding, there is reason to assume that 

local governments make efforts to increase the efficiency of public hospitals prior to privatization 

to generate higher sales revenue, reducing potential gains in efficiency after privatization. In 

order to take account of this possibility, we re-ran our models, allowing an alternative pre-

privatization period of two years. The direction of the difference-in-difference coefficients did 

not change throughout the models, and standard errors increased only slightly due to the reduced 

sample size. Bias due to pre-privatization efficiency gains was thus unlikely. 



24 

 

 

Our study has a number of strengths compared to previous investigations of hospital ownership 

conversions. First, to our knowledge, it is the first quantitative study to examine the effects of 

privatization on technical efficiency using a panel data approach based on bootstrapped DEA 

efficiency scores. Second, our study employs a difference-in-difference matching approach to 

address problems arising both from causal inference and time-invariant differences. Third, our 

sample of privatized hospitals is large (n = 132), providing greater statistical power and more 

robust estimates than the analyses conducted in previous studies. Finally, our sample is rich, 

consisting of a large set of environmental and organizational characteristics. This is likely to have 

yielded more consistent results because it allowed us to control appropriately for determinants of 

efficiency other than the privatization event. 

 

Our study also has several important limitations. First, additional inputs (e.g., capital) and 

additional outputs (e.g., hospital outpatient cases) would have improved our model of the hospital 

production process. Considering the number of hospital outpatient cases in addition to inpatient 

cases is often recommended in order to measure patient care output (Jacobs et al., 2006). 

Although we had intended to include a proxy for hospital outpatient activities in our analysis 

(e.g., outpatient surgery), data inconsistencies and measurement errors prevented us from doing 

so. Second, including explanatory factors in addition to environmental and organizational 

characteristics might have provided a better explanation of variation in our estimates, thus 

potentially affecting our interpretation of the relationship between privatization and 

organizational efficiency. Third, our study relies on in-hospital mortality data and does not take 

post-hospital mortality into account, which clearly would have been preferable. This being said, 

Rosenthal et al. (2000) found that (a) in-hospital mortality data were not biased by discharge 
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practices and  (b) using in-hospital mortality as a measure of a hospital’s quality of care leads to 

results similar to those obtained with 30 days post-hospital mortality. Fourth, for sensitivity 

purposes it would have been preferable to use SFA in addition to DEA. When comparing DEA to 

SFA, however, Linna (1998) and Webster et al. (1998) found that both methods yielded 

comparable results when measuring hospital efficiency. Finally, in DEA model II, we used 1 

minus the in-hospital mortality rate per year, which represents an index variable. Syrjänen (2004) 

found that mixing index and volume measures in DEA may lead to biased results for the most 

commonly used constant returns to scale variant of the Banker and Moorey (BM) model and 

Charnes, Cooper, and Rhodes (CCR) model. This problem does not apply in our context, 

however, because we used a variable returns to scale variant of the BCC model (Hollingsworth 

and Smith, 2003; Syrjänen, 2004). 

 

6. Conclusions 

 

In the present study, we investigated the post-acquisition effects of privatization on hospital 

efficiency in Germany. Our findings show that hospitals converted to private for-profit status 

showed an increase in efficiency after privatization that was significantly higher than that realized 

by their non-privatized counterparts over the same period. We defined four alternative post-

privatization periods (i.e. first, second, third, and fourth year) and found that the increase in 

efficiency after conversion to private for-profit status did not appear to be transitory. Our results 

show that hospitals that were converted to private for-profit status realized their substantial 

efficiency gains by markedly reducing all labor inputs (with the exception of physicians) and 

expenditure on supplies. The results of our study, which remained robust when considering in-

hospital mortality as an additional output, do not support frequently voiced concerns that 
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efficiency gains after conversion to private for-profit status are realized at the expense of quality 

of care. Taking the effect of the introduction of DRG payments into account, it is striking that the 

efficiency gains of hospitals converted to private for-profit status were significantly lower during 

the DRG era. We also observed an increase in efficiency one year after hospitals were converted 

to private non-profit status, but our estimations suggest that this effect is transitory and that 

hospitals converted to private for-profit status follow a different restructuring strategy than that 

pursued by their private non-profit counterparts. 

 

Our results indicate that converting hospitals to private for-profit status may be an effective way 

to ensure better allocation of resources in the hospital sector. Before drawing policy implications, 

however, a number of issues must be considered. In some cases, public hospitals converted to 

private non-profit status may not be restructured with the intention of increasing efficiency, but 

rather with the aim of improving the patient experience, including the quality of care. Although 

our results remained robust when considering in-hospital mortality for hospitals converted to 

private non-profit status, other measures not considered in our analysis, such as patient 

satisfaction, may have led to different results after the privatization event. Moreover, it should 

also be taken into consideration that the time needed to develop new quality assurance systems in 

privatized hospitals may be longer than the period we considered in our study. Additional 

research is needed to investigate the long-term effects of privatization and to examine the 

decisions behind the approaches taken by private for-profit and private non-profit organizations 

in their restructuring of public hospitals. 

 

Given the increasing importance of privatization in health systems in Germany and beyond, 

further studies are needed to investigate the effects of privatization on efficiency and different 
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dimensions of care quality. Outside the hospital sector, privatization activity is also increasing in 

laboratory diagnostics, nursing care and rehabilitative services. The approach used in our study 

may be useful in investigating privatization in these other areas of care.  
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Steps Implementation Sample Size

1. Increasing 

homogeinity of the 

To ensure the comparability of the hospitals in the sample we Randomly selected data from 1,878 German acute care 

hospitals were obtained between 1996 and 2008

(1) Excluded hospitals providing only psychiatric care, university hospitals, day clinics, 

hospitals with fewer than 50 beds and more than 2,000 beds

A total of 1,187 hospitals remained in the sample

(2) Excluded non-privatized non-profit and private for-profit hospitals during our study 

period

A total of 548 hospitals remained in the sample

(3) Eliminated hospitals with measurement errors and hospitals that had observations in 

less than 7 years between 1996-2008

A total of 493 hospitals remained in the sample

Intervention group: 132 privatized hospitals were found, i.e. 99 

public hospitals were acquired by a private for-profit hospitals 

and 33 public hospitals were acquired by private non-profit 

Control group: 361 public hospitals

3. Data Envelopment 

Analysis (DEA)

Application of an input-oriented variable returns to scale model by Banker, Charnes, 

and Cooper (BCC) for all privatized and non-privatized hospitals. DEA was performed 

per year.

4. Bootstrapping Derive bias-corrected DEA efficiency scores from 500 bootstrap iterations

5. Proponsity Score 

Matching (PSM)

(1) Estimate probability for being privatized based on our defined covariates by means 

of logistic regression

(2) Match privatized hospitals to non-privatized public hospitals based on predicted 

means by using a one-to-one matching with replacement; we used an optimal matching 

algorithm i.e. we minimized the total distance of matched pairs

Number of hospitals in control group after matching: 128 in 

first year after matching, 113 in second year after matching,            

99 in third year after matching, 86 in fourth year after matching

6. PSM Diagnostics Assessing appropriateness and reliability of the PSM results by using                                  

(1) standardized differences and                                                                                        

(2) Hotelling’s T-square statistic based on quartiles

7. Regression 

Analysis

Use of fixed and random effects linear regression model for truncated longitudinal data 

with DEA efficiency scores as dependent variable. Difference-in-difference interaction 

was used to examine effects of privatization on efficiency compared to control group of 

non-privatized hospitals controlling for patient heterogeneity and the impact of hospital 

organizational and environmental characteristics

8. Sensitivity analysis (1) Re-estimation of the DEA model by employing 1-MORTALITY as a second output                                

(2) Estimated multiway clustered regression including time and firm fixed effects                                          

(3) Allowed pre-privatization period of two years instead of one year

Seperation of intervention and control groups2. Identification of 

interventrion and 

control groups

TABLE 1 

Outline of the statistical analysis 
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TABLE 2 

Number of hospital privatizations per year 

 

Period Total Non-profit For-profit

1997 15 5 10

1998 13 8 5

1999 7 0 7

2000 4 2 2

2001 15 0 15

2002 13 2 11

2003 14 3 11

2004 11 2 9

2005 13 1 12

2006 16 2 14

2007 11 8 3

Total 132 33 99

Number of privatizations
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TABLE 3 

Descriptive statistics of in- and outputs for the matched sample 

 

Period

Mean SD Mean SD Mean SD Mean SD Mean SD

For-profit

Number of hospitals 

PHYS 71.46 (73.12) 73.32 (74.91) 71.74 (72.76) 70.47 (75.18) 74.97 (79.41)

NURSE 199.7 (168.4) 188.9 (165.2) 179.3 (153.9) 173.2 (153.8) 177.3 (154.7)

CLIN 127.1 (125.8) 126.7 (126.2) 118.5 (118.9) 114.5 (117.8) 120.5 (121.8)

ADMIN 33.55 (29.81) 33.48 (28.27) 31.85 (26.78) 30.98 (26.50) 30.94 (26.17)

NONCLIN 66.07 (57.01) 56.84 (54.95) 48.97 (47.75) 45.20 (47.25) 43.07 (45.14)

SUPPLIES 14.5 (15.7) 15.1 (15.7) 15.3 (15.3) 14.7 (14.5) 16.1 (15.9)

INPATIENT 13147 (10860) 13386 (11286) 13002 (10649) 12822 (11142) 13537 (11780)

1-MORTALITY 0.974 (0.011) 0.975 (0.010) 0.975 (0.010) 0.976 (0.010) 0.976 (0.009)

Non-profit

Number of hospitals 

PHYS 40.64 (41.08) 42.82 (44.35) 49.04 (50.40) 52.54 (53.04) 55.56 (54.46)

NURSE 132.1 (119.5) 128.6 (122.4) 14.4 (137.62) 151.7 (134.9) 156.4 (133.7)

CLIN 78.3 (84.92) 78.8 (84.97) 91.4 (97.96) 96.3 (99.66) 100.7 (100.8)

ADMIN 22.98 (21.42) 22.57 (23.74) 27.01 (29.52) 27.37 (29.45) 28.67 (29.85)

NONCLIN 60.05 (62.30) 56.37 (62.85) 64.05 (77.76) 59.64 (75.01) 59.73 (77.96)

SUPPLIES 7.8 (6.7) 8.3 (7.3) 9.0 (8.6) 10.1 (9.2) 10.6 (10.1)

INPATIENT 8232 (6668) 8631 (7358) 9773 (8526) 12093 (8612) 10316 (8607)

1-MORTALITY 0.978 (0.009) 0.978 (0.011) 0.977 (0.009) 0.976 (0.010) 0.977 (0.009)

Control

Number of hospitals 

PHYS 65.50 (72.50) 69.62 (76.55) 72.73 (79.68) 71.65 (84.07) 69.66 (80.05)

NURSE 189.0 (172.8) 187.2 (168.4) 191.1 (169.9) 183.8 (165.5) 181.3 (166.8)

CLIN 119.4 (141.5) 120.5 (140.7) 124.2 (143.5) 119.7 (139.4) 121.6 (146.9)

ADMIN 32.70 (33.05) 33.08 (33.47) 33.49 (34.57) 31.57 (32.83) 32.11 (34.43)

NONCLIN 73.81 (77.88) 68.42 (71.34) 68.27 (71.91) 66.26 (71.47) 65.35 (71.25)

SUPPLIES 12.0 (13.4) 13.6 (15.5) 14.5 (16.8) 14.3 (17.6) 14.6 (19.6)

INPATIENT 12435 (10516) 12606 (10587) 13049 (10984) 12630 (10736) 12594 (11278)

1-MORTALITY 0.973 (0.013) 0.973 (0.013) 0.974 (0.011) 0.973 (0.013) 0.973 (0.012)

n=66

T-1 T+1 T+2 T+3

n=128 n=128 n=113 n=99 n=87

T+4

n=33 n=33 n=24 n=23 n=22

n=99 n=99 n=90 n=77
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TABLE 4 

Descriptive statistics of variables used for the second stage analysis for the matched sample 

  

Period

Mean SD Mean SD Mean SD Mean SD Mean SD

For-profit

Number of hospitals 

BEDS 344 (268) 344 (273) 332 (261) 327 (262) 342 (272)

LEASED BEDS 0.037 (0.074) 0.032 (0.073) 0.028 (0.050) 0.026 (0.047) 0.024 (0.047)

TEACHING 0.146 (0.154) 0.171 (0.177) 0.162 (0.191) 0.177 (0.202) 0.129 (0.147)

CMXI 0.161 (0.063) 0.155 (0.061) 0.160 (0.056) 0.154 (0.052) 0.147 (0.048)

EFFICIENCY 0.761 (0.122) 0.757 (0.121) 0.772 (0.123) 0.774 (0.114) 0.772 (0.117)

HHI 0.399 (0.294) 0.393 (0.284) 0.413 (0.291) 0.450 (0.288) 0.443 (0.267)

Non-profit

Number of hospitals 

BEDS 237 (179) 232 (189) 264 (220) 267 (214) 274 (216)

LEASED BEDS 0.060 (0.067) 0.055 (0.064) 0.037 (0.047) 0.039 (0.047) 0.055 (0.097)

TEACHING 0.151 (0.156) 0.165 (0.159) 0.141 (0.151) 0.182 (0.125) 0.099 (0.138)

CMXI 0.141 (0.042) 0.146 (0.044) 0.142 (0.043) 0.128 (0.034) 0.132 (0.037)

EFFICIENCY 0.730 (0.144) 0.757 (0.131) 0.743 (0.129) 0.738 (0.140) 0.716 (0.157)

HHI 0.404 (0.210) 0.439 (0.253) 0.463 (0.274) 0.469 (0.278) 0.475 (0.285)

Control

Number of hospitals 

BEDS 332 (257) 329 (256) 336 (257) 321 (248) 319 (250)

LEASED BEDS 0.048 (0.078) 0.045 (0.078) 0.047 (0.083) 0.043 (0.078) 0.051 (0.094)

TEACHING 0.148 (0.153) 0.146 (0.158) 0.148 (0.158) 0.142 (0.154) 0.146 (0.160)

CMXI 0.162 (0.072) 0.162 (0.070) 0.160 (0.067) 0.154 (0.050) 0.157 (0.061)

EFFICIENCY 0.765 (0.127) 0.746 (0.121) 0.750 (0.129) 0.747 (0.133) 0.747 (0.119)

HHI 0.390 (0.231) 0.394 (0.241) 0.395 (0.242) 0.390 (0.249) 0.398 (0.247)

n=66

n=128 n=128 n=113 n=99 n=87

n=33 n=33 n=24 n=23 n=22

T+1

n=99 n=99 n=90 n=77

T-1 T+2 T+3 T+4
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Unmatched sample Matched sample

Mean SD Mean SD d i Mean SD Mean SD d i

BEDS 351 (259) 317 (252) 12.89% 332 (257) 317 (252) 5.68%

LEASED BEDS 0.069 (0.091) 0.043 (0.073) 2.60% 0.048 (0.078) 0.043 (0.073) 0.50%

TEACHING 0.169 (0.172) 0.147 (0.154) 2.20% 0.148 (0.153) 0.147 (0.154) 0.10%

CMXI 0.157 (0.058) 0.156 (0.059) 0.10% 0.162 (0.072) 0.156 (0.059) 0.60%

EFFICIENCY 0.772 (0.111) 0.753 (0.128) 1.90% 0.765 (0.127) 0.753 (0.128) 1.20%

HHI 0.401 (0.242) 0.400 (0.275) 0.10% 0.390 (0.231) 0.400 (0.275) 1.00%

Variable name

Control (n=361) Intervention (n=132) Control (n=128) Intervention (n=132)Group 

 

TABLE 5 

Balance in measured covariates before and after matching 
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TABLE 6 

Results from Hotelling’s T square test by propensity score quartile 

 

Quartile
T squared 

statistics

F test 

statistics
P  values

FIRST 3.593 0.551 0.768

SECOND 4.647 0.712 0.641

THIRD 4.066 0.615 0.717

FOURTH 4.933 0.746 0.615



38 

 

TABLE 7 

Regression results for the efficiency model

 

 

  

Fixed effects

1
st

 year after privatization 0.003 (0.008) 0.016 (0.012)  0.033** (0.014)  0.041* (0.023)

2
nd

 year after privatization 0.019** (0.009) 0.034** (0.013)  0.015 (0.016)  0.035 (0.025)

3
rd

 year after privatization 0.025*** (0.009) 0.043*** (0.016)  0.019 (0.017)  0.022 (0.026)

4
th

 year after privatization 0.032*** (0.010) 0.054*** (0.016)  0.002 (0.017)  0.012 (0.027)

Random effects

1
st

 year after privatization 0.004 (0.008) 0.019** (0.012)  0.032** (0.014)  0.047** (0.022)

2
nd

 year after privatization 0.020** (0.009) 0.033** (0.013)  0.014 (0.016)  0.039* (0.024)

3
rd

 year after privatization 0.025*** (0.009) 0.041*** (0.016)  0.018 (0.017)  0.038 (0.025)

4
th

 year after privatization 0.032*** (0.010) 0.051*** (0.016)  0.000 (0.017)  0.022 (0.027)

 * P ≤0.10; ** P ≤0.05; *** P ≤0.01; SE in parentheses

Public->For-profit Public->Non-profit

Coefficients

Unmatched Matched Unmatched Matched
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TABLE 8 

Changes in efficiency after privatization in the DRG era compared to the pre-DRG era 

 

  

Post-privatization period

Public->For-profit

2001 cut-off point -0.023 (0.019) -0.026 (0.022) -0.021 (0.029)  0.011 (0.033)

2002 cut-off point -0.023 (0.017) -0.018 (0.022) -0.039* (0.025) -0.005 (0.029)

2003 cut-off point -0.023 (0.016) -0.036* (0.019) -0.039* (0.024) -0.041* (0.024)

2004 cut-off point -0.030* (0.017) -0.037** (0.019) -0.047** (0.022) -0.043* (0.024)

Public->Non-profit

2001 cut-off point  0.001 (0.034) -0.009 (0.036)  0.004 (0.038)  0.042 (0.051)

2002 cut-off point  0.001 (0.034) -0.006 (0.037)  0.004 (0.038) -0.050 (0.038)

2003 cut-off point  0.000 (0.032) -0.006 (0.037)  0.009 (0.039) -0.051 (0.038)

2004 cut-off point -0.005 (0.033) -0.035 (0.038)  0.009 (0.039) -0.036 (0.041)

 * P ≤0.10; ** P ≤0.05; *** P ≤0.01; SE in parentheses

Matched sample

T+1 T+2 T+3 T+4

Coefficients



40 

 

TABLE 9 

Regression results for the quality-adjusted efficiency model

Fixed effects

1
st

 year after privatization 0.003 (0.008) 0.020* (0.012)  0.033** (0.014)  0.037 (0.023)

2
nd

 year after privatization 0.023*** (0.009) 0.036*** (0.013)  0.014 (0.016)  0.033 (0.024)

3
rd

 year after privatization 0.027*** (0.009) 0.044*** (0.015)  0.017 (0.017)  0.019 (0.025)

4
th

 year after privatization 0.035*** (0.010) 0.058*** (0.016) -0.001 (0.017) -0.002 (0.028)

Random effects

1
st

 year after privatization 0.004 (0.008) 0.022* (0.012)  0.033** (0.014)  0.047** (0.022)

2
nd

 year after privatization 0.024*** (0.009) 0.036*** (0.013)  0.013 (0.016)  0.039* (0.023)

3
rd

 year after privatization 0.027*** (0.009) 0.043*** (0.015)  0.017 (0.017)  0.037 (0.024)

4
th

 year after privatization 0.035*** (0.010) 0.057*** (0.016) -0.010 (0.017)  0.011 (0.027)

 * P ≤0.10; ** P ≤0.05; *** P ≤0.01; SE in parentheses

Public->For-profit Public->Non-profit

Coefficients

Unmatched Matched Unmatched Matched
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