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Abstract 

 

 

Weather variability and climate change affect the application of pesticides in agriculture, 

in turn impacting the environment. Using panel data regression for the US, we find that 

weather and climate differences significantly influence the application rates of most 

pesticides. Subsequently, the regression results are linked to downscaled climate change 

scenario the Canadian and Hadley climate change models. We find that the application of 

most pesticides increase under both scenarios. The projection results vary by crop, 

region, and pesticide.  
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1 Introduction 

Pesticides are chemical products designed to prevent, destroy, repel, or reduce pests such 

as insects, mice and other animals, weeds, fungi, bacteria and viruses. They are widely 

employed and generally considered essential to modern cropping systems. They 

contribute to a stable supply of affordable agricultural products of uniform quality. In the 

US, agriculture accounts for over two thirds of domestic pesticide sales and three quarters 

of the total 1.1 billion pounds of active ingredients applied annually in recent years, at a 

cost of $10 billions (US EPA, 2006). Several studies have empirically estimated the 

marginal productivity of pesticides for US agriculture. Most of them indicate that the 

average revenue increase exceeds the pesticides price. Particularly, Fernandez- Cornejo et 

al. (1998) find an average return for corn of $1.89 per dollar of pesticides expenditure. 

Pimentel (1997) reports that each dollar spent on pesticide control returns about $4 in 

increased crop revenue. 

 

In contrast to the economic benefits, the use of pesticides causes adverse externalities on 

human health and environment. Many studies evaluate the possible association between 

pesticides and risk of cancer (Teitelbaum et al. (2007), Cockburn (2007), Lee et al. 

(2007), Alavanja et al. (2006)) and other disease such as Parkinson's disease (Hancock et 

al.(2008)) heart disease (Watkinson et al. (1986)) and sterility (Wheater (1978)). Adverse 

environmental externalities of pesticide use include the loss of biodiversity. There are 

some known instances of significant non-target species population declines due to 

pesticide use. For example, the insecticide carbofuran is very efficient at killing a large 

number of songbirds breeding on the edge of treated fields (McLaughlin et al. (1995)). 
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Kellogg et al. (2000)) estimate losses via leaching and runoff for pesticides applied on 12 

major crops over a 17 year period. They report losses between 4.0 and 5.5 percent of the 

amount applied pesticides. Pimentel (2005) finds that pesticides applied at recommended 

dose rates indirectly cost the U.S. at least $10 billion a year, or about 1 percent of US 

GDP in 2007 - $13.8 trillion (BEA, 2008). This figure includes losses from increased pest 

resistance; decline of natural pollinators (including bees and butterflies) and pest 

predators; reduced viability of crop, fish, and bird populations; groundwater 

contamination; harm to pets and livestock - and an estimated $787 million loss from 

human health treatments. From the conventional view, pesticides have been considered to 

be risk reducing, leading to higher optimal use. 

 

During the last decade many countries have made extensive efforts to control and reduce 

pesticide applications. However, pesticides are still applied at large amounts. Currently, 

world pesticide consumption exceeds 2.2 billion kilograms of active ingredients per year 

(US EPA, 2002).  

 

Weather and climate affect many agricultural decisions including crop choices, water 

management, and crop protection. Several studies investigate agricultural consequences 

of climate change (Kaiser et al. (1995), Lewandrowski et al. (1999), Adams et al. (1990)). 

A relatively comprehensive analysis of likely effects of climate change and climate 

variability to the US agriculture has been carried out by the US Global Change Research 

Program 2000 (www.nacc.usgcrp). Across their and other studies, there is broad 

agreement that climate changes will have substantial ramifications for US agriculture. A 
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major concern involves the impact of climate change on pest populations. Using 

historical data about pest infestations and migration, Patterson et al. (1999) deduced that 

temperature and precipitation constitute important determinants of pest incidence. Chen 

et al. (2001) study the relationship between pesticide and climate with a statistical model. 

Their results suggest that climate change will increase pesticide expenditures in US 

agriculture. However, their study is limited to a few products (mainly cereals) and 

distinguishes only broad pesticide categories, i.e. herbicides, fungicides, and insecticides.  

 

This study uses a similar approach as in Chen et al. (2001) but considers more crop types 

(including all major food products) and a more detailed classification of pesticides. The 

pesticides are aggregated to the chemical class they belong to. Each chemical class 

includes a group of active ingredients (pesticides) with similar properties. To estimate the 

potential effects of climate change on the use of pesticides, we link panel data regression 

coefficients to climate change scenario results from two general circulation models. The 

paper proceeds as follows. Section 2 describes the data, functional form, and estimation 

method. Section 3 gives the basic results of the regression model. The sensitivity of 

pesticides application to climate change is analyzed in section 5. Finally, section 6 

concludes. 

 

2 Data  

 

Data on pesticide applications for 339 active ingredient compounds, 32 US states, 48 

crops and 14 years between 1990 and 2004 are obtained from the Agricultural Chemical 
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Usage survey (NASS 2005). As can be seen in Figure 1, there is a relatively large 

variation across years, but relatively little variation across states. The biggest pesticide 

use occurs in California and Florida followed by Iowa, Illinois, Indiana, Nebraska, 

Michigan, and Minnesota. After 1996, total pesticide applications decreased in the US. 

Likely reasons are modifications of the two federal laws governing pesticides – the 

Federal Insecticide Fungicide and Rodenticide Act and the Federal Food Drugs and 

Cosmetics Act – in 1996 to keep risks low while allowing continued use of many 

important products. At the time, the pesticide standards were leading the Environmental 

Protection Agency (EPA) to cancel many widely used pesticide uses (CEI, 2008). 

<Figure 1 here> 

Data on production, yield, planted and harvested area are taken from USDA 

(http://www.usda.gov, USDA, 2005). Figure 2, shows the average share of treated areas 

over all crops for 2004. In most of states, the treated area exceeds 50 percent (USDA 

NASS, 2005).  

<Figure 2 here> 

 

The quantities of pesticide applications by crops between 1965 and 2004, for the entire 

US states, are given in Figure 3. Corn receives most pesticides followed by soybeans and 

vegetables.  

<Figure 3 here> 

More than 300 active ingredients were grouped into 48 chemical families based on the 

classification system of the Pesticide Action Network North America (for details see 
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http://www.pesticideinfo.org). The presence of data by states and chemical family is 

reported in Appendix 1. 

 

Treated area share and frequency of application differ widely across pesticides Figure 4, 

shows the most widely applied pesticides across chemical classes with organophosphates, 

phosphinic acids, carabamates, and pyretroids covering more than 50 percent of all 

pesticide treated areas across the US states. Other widely used chemical classes such as 

urea and azole, izohexadione, and phenoxy reach treatment shares between 30 to 40 

percent (USDA NASS, 2005). 

<Figure 4, here> 

State-level weather and climate data (temperature and precipitation) were taken from 

NOAA (2006) and includes monthly averages for thousands of weather stations.  

 

Functional form and estimation method 

 

Our objective is to investigate how climate affects pesticide application. To do so, we 

regress pesticide application per hectare (kilogram of active ingredients applied) on 

marginal revenue, total planted area in hectares and climate and weather variables 

(temperature, precipitation).  

A statistical summary of the regression variables is shown in Table 1. Marginal revenue 

is computed as the product of crop prices ($ per kilogram), and yields (kilogram per 

hectare). Temperature data are averaged over the entire growing season for each crop. In 

addition, we include one additional temperature variable for the average temperature over 
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the period 1990-2004. The precipitation variables are annual totals for each state 

reflecting both rainfall and inter-seasonal water accumulation. 

 

The functional form of the regression is given in equation (1). A set of reduced form 

variable input demand functions was postulated using a standard simultaneous equations 

framework. For this study we considered the log-linear functional form. Through the 

power Box-Cox parameters transformation (Box and Cox, 1982) associated with the 

dependent and independent variables via the using a likelihood ratio test, the preferred 

regression model was log-linear 

 

tttststststististististis ATempTempTAMRPA ln*Prln*ln*ln*ln*ln ληγβα ++++=  (1) 

 

where PA denotes pesticide application in kilograms, MR marginal revenue in $ US, TA 

total planted area in hectares, Temp growing season temperature on Celsius, Pr annual 

precipitation in millimeters, and ATemp average temperature over the period 1990-2004 

in degrees Celsius. Indexes i, t and s, correspond to pesticides, time and states, 

respectively. Parameters: α, β, γ, η, and λ, represent the regression coefficients.  

The dataset yields 17,783 observations and covers 32 states and 54 crops over a period of 

14 years. 

 

Regression coefficients for individual crops and pesticides are estimated jointly within 

the predefined crop types and chemical classes. Table 2, shows the crop types included in 

the analysis. The data have a panel structure. Statistical investigations of panel data have 
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led to estimation processes which control for common factors influencing a member 

(state) over any repeated observation or all members in a repeated observation (i.e. events 

broadly occurring during a year such as a drought). The number of periods is the same 

across crops and states but taking into consideration that not all of the chemical classes 

are observed in all states and crops, the panel is unbalanced.  

 

The appropriate specification of panel data regression models requires a series of 

structural tests before the final estimation. The first test determines the presence of fixed 

or random effects in the panel. In other words, are there state specific factors omitted 

from the model that significantly impact pesticide applications and need to be controlled 

for (fixed effects)? Or are those effects random in nature? There are several ways to test 

for fixed or random effects. The generally accepted way of choosing between fixed and 

random effects is running a Hausman test. We found with 95 percent confidence that a 

random state effect exist for all chemical classes, that is, the errors are panel member 

specific. However, using the test of Baltagi and Li (1995), we reject the possibility of 

systematic time effects in pesticide application for any chemical classes. 

 

There are various estimation methods for panel data, including pooled OLS (Wooldridge 

(2002) and Green, (2003) and generalized least squares Baltagi and Li (1995). Some 

textbooks on advanced econometrics (Wooldridge (2002) and Green (2003)) recommend 

maximum likelihood as the best model estimation, and that is used here. 
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3 Regression results 

The estimated impacts of marginal revenue, planted area, temperature, and precipitation 

on pesticide applications are displayed in Tables 3 to 8, where each table corresponds to a 

particular crop type. 

  

For all crop types and chemical classes, pesticide applications increase with planted area 

and marginal revenue as one would expect. The regression coefficients for these two 

variables are significant for almost all chemical classes and crop types. In some cases, 

pesticide application increases more than linearly with area, which indicates that nearby 

fields with the same crop pose a risk. In other cases, pesticide application increases less 

than linearly with area, which indicates that spraying provides protection to nearby fields 

as well. 

 

Heterogeneous coefficient signs are found for the two weather variables. Precipitation 

coefficients are mostly positive and significant at 5 percent level. Higher significance at 1 

percent level of precipitation coefficients are obtained for most of chemical classes 

applied to root crops (Table 6). Negative impacts of precipitation are most frequently 

found for pesticides applied to fruits. Particularly, negative coefficients are estimated for 

carbazate (-0.93), diphenyl ether (-1.03), guanidine (-1.75), neonicotinoids (-2.76), 

organotin (-0.46) and inorganic pesticide (-0.11) applied to fruits (Table 4) and 

halogenated organic pesticides (-0.05), and phenoxy (-1.60), applied to root crops (Table 

6). 
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The temperature shows mixed effects on pesticide applications in all crop type categories. 

However, in most cases, regression coefficients are positive and significant at the 5 

percent level. For most chemical classes, the regression coefficients are higher compared 

to those of precipitation. Particularly, high coefficients are estimated for sulfonyl urea 

applied to vegetables (8.37 Table 7) and fruits (6.76 Table 4)  

For the average temperature, results are similar. In most of the regression models the 

coefficients are significant at 5 or at 1 percent level. Across crop types classes, mixed 

effects on pesticides application are estimated. However, the regression coefficients are 

lower compared to the current temperature. The fact that climate as well as weather 

affects pesticide application suggests that either farmers habituate to pesticide use, or that 

different crop varieties (with different sensitivities to pests) are planted in different 

climates. The fact that the climate and weather variables tend to have the same sign 

suggests that habituation is the more likely explanation. 

 

The results indicate that pesticide applications are highly impacted by weather and 

climate variables but that these impacts substantially differ across crops. For some of 

common used chemical classes, we find opposite signs. Particularly, for triazine and 

pyretroid we find negative regression coefficients for cereals and positive for fruit and 

vegetables. A possible reason for these differences could be the different growing seasons 

for the different crops which imply different pest problems. As discussed by Pattersson et 

al. (1998), different pest have different temperature optima.  
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4 Climate change impacts on US pesticide applications 

 

The regression results are applied to investigate the potential change of pesticide use in 

response to climate change. We consider climate change scenarios from two models 

developed at the Canadian Centre for Climate and the Hadley Centre in the United 

Kingdom, following IPCC scenario "SRES A2". While the Canadian model projects a 

greater temperature increase, the Hadley model projects a wetter climate. The two models 

capture a plausible range of future climate conditions with one model being near the 

lower and the other near the upper end of projected temperature and precipitation changes 

over the US. 

 

The assessments of pesticide application demonstrate total effects from both climate 

variables. We compute impacts of Canadian and Hadley climate change scenarios for the 

years 2030, 2070 and 2100. For each time period, we used the 30-year average weather 

variables for the climate variables in our regression model, and the inserted the annual 

variables of the climate change scenarios into the regression model in order to compute 

the 30-year average of the model results. The results presented below focus on the 

changes in pesticide application by state, by crop type, and chemical class relative to the 

year 2000. We keep cropping patterns constant.  

Figure 5, displays the changes in pesticide application in each US state relative to the 

base period. Results show increased pesticides applications in all US states. The 

difference between the Canadian and Hadley scenarios is fairly small and ranges between 

one and three percent. In most states, pesticide applications increase up to 21 percent in 
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2100. The highest increases are found in Nebraska, New Jersey, Tennessee, Florida and 

Texas, where the increase of pesticides application at the end of the simulated period is 

up to 24 percent under both climate change models.  

 

Changes in pesticide applications to specific crop types are shown in Figure 6. All values 

represent percentage changes in pesticides application aggregated over chemical classes 

and states for the tree periods relative to the base values. Results show that the changes in 

pesticide application differ across crop types. The values across the two climate scenarios 

differ only moderately. We find the highest increase for cereals with 28 percent for 

Canadian and 26 for Hadley climate change model in 2100 (Figure 6). Both climate 

scenarios predict wetter conditions in 2100 and regression results suggest that cereals are 

more vulnerable to the precipitation. For all other crop types, we find increases up to 18 

percent by 2100 with root crops increasing the least. 

 

The impacts of climate change differ considerably across chemical classes. Figure 7 

displays the changes in pesticide applications by chemical class aggregated over US 

states and crops. The values represent changes to the base period. Again, the difference 

between the Canadian and Hadley scenarios is not substantial. Results indicate that 

climate projections will not only increase but also decrease the use of some pesticides 

(Figure 7). We find substantial changes for sulfonyl urea: 33 percent for the Canadian 

and 31 for the Hadley climate scenario in 2100. Other chemical classes with substantial 

changes in applications include xylylalanine, organophosphorous, phosphonoglycine and 

dinitroaniline (Figure 7). We find considerable decreases in pesticides use. That is the 
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case with triazine, neonicotinoid and inorganic pesticides, where we have decrease at the 

end of simulated period more than 18 percent for Hadley and Canadian climate models 

(Figure 7).  

5 Concluding comments 

 

This study quantifies the impacts of climate and weather on pesticide applications in the 

US agriculture. Pesticide application data for 14 years, 32 US states, 54 crops, and 339 

active ingredients are regressed on agricultural, weather, and climate variables. 

Temperature and precipitation variables are found to have significant –mostly positive- 

impacts on pesticide applications. While more rainfall increases the plant protection 

needs for cereals and root crops, higher temperatures are likely to increase pesticide doses 

to fruits, vegetables, and beans. Crop type and chemical class specific regression 

coefficients are used to project the impact of climate change scenarios on changes in 

pesticide application. For current crop area allocations, our results suggest that in most 

cases the pesticide application rates increase. Cereal treatments increase the most 

followed by fruits and vegetables. Note, however, that climate change also decreases the 

application for some chemical classes of pesticides. The change in pesticides application 

rates will affect the environment and human health. Such positive or negative impacts 

should be accounted for in environmental policy planning to achieve the socially optimal 

balance between mitigation and adaptation to global change. 

 

Several important limitations and uncertainties to this research should be noted. First, 

climate change data (temperature and precipitation) are based on models. Thus, the 
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certainty of the estimates presented here depends on the quality of these models. Second, 

the representation of agricultural products is limited to major food crops. Third, we do 

not consider land use change but keep crop area allocations constant. Fourth, due to lack 

of data, we ignore the variation of pesticide applications within US states. These issues 

should be addressed in future research. 
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Table 1 Summary statistics for regression variables 

Variable Unit Mean Std. Dev. Min Max 

      

Year  1996.9 4.18 1990 2004 

States  16.5 9.85 1 32 

Pesticide applications  Kg/ha 1.30 .38 0.5 4.5 

Chemical class  25.46 12.97 1 48 

Crop type 5 2.81 1.44 1 5 

Planted area ha 10993.87    33863.24  0 347200 

Marginal revenue $/ kg 3.02 2.82 0.23 15.5 

Temperature Co 31.2 3.21 -3.9 39.9 

Precipitation mm 542.6 272.1 39.11 1300.26 

 

Average 

Temperature 

Co 23.49 2.27 8.17 35.9 
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Table 2 Crop scope and aggregation 

Corn Grapefruit Cucumbers Beans Potatoes
Rice Lemons Eggplant Soybeans
Spring wheat Limes Melons Peas
Durum wheat Tangelos Peas
Winter wheat Tangerines Pecans

Temples Peppers
Oranges Pumkins
Blackberries Squash
Blueberries Tomatoes
Raspberries Asparagus
Strawberries Broccoli
Apricots Cabbage
Avocados Cauliflower
Cherries Collards
Grapes Greens
Nectarines Kale
Peaches Lettuce
Plums Spinach
Prunes
Apples
Pears

Cereals Fruits Vegetables Root 
cropsBeans
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Table 3 Regression results for cereals 

Chemical class

Amide 1.04 * 1.55 ** 0.05 ** 1.11 *
Anilide 0.01 * 1.10 * 1.79 ** 0.12 ** 0.49 ** 5.05 **
Azole 0.18 ** 1.25 ** 0.74 ** 0.41 ** 1.43 ** 2.23 *
Benzoic acid 0.91 ** 0.04 **
Bipyridylium 0.03 ** 1.09 ** 1.05 * 0.68 ** 6.90 **
Carbamate 0.02 * 0.15 ** -0.08 ** 0.14 ** 0.10 * 1.65 **
Carbazate 0.02 ** 0.36 ** 0.17 ** 3.12 **
Dinitroanilines 0.67 ** 1.34 ** 0.17 * 0.28 **
Diphenyl ether 0.32 ** 0.62 ** 0.87 ** 1.24 **
Halogenated organic 0.08 ** 0.71 ** 1.29 ** 2.12 ** 0.47 *
Imidazolinone 0.22 ** 5.70 ** 1.24 ** 1.04 ** 0.68 ** 8.13 **
Neonicotinoid -0.34 ** -1.39 ** 1.05 * 1.34 ** 1.48 **
Organophosphorus 0.10 ** 0.58 * 0.55 * 0.77 **
Organotin 0.01 * 1.32 * 1.27 ** 0.35 * 0.63 ** 2.97 *
Phenoxy 0.03 * 0.01 * 0.07 ** 0.15 * 0.32 ** 0.24 **
Phosphonoglycine 0.15 ** 0.06 ** 0.70 * 0.54 * 0.48 * -0.90 **
Pyrethroid -0.06 ** -0.82 ** 0.28 ** 0.35 ** 0.80 * 2.80 **
Pyridazinone 0.09 1.06 ** 4.67 * 5.31 *
Strobin 0.37 ** 1.30 ** 2.89 ** 2.39 ** 1.38 * 8.47 **
Sulfonyl urea 0.57 * 0.34 ** 2.33 **
Triazine -0.09 ** -0.45 ** 0.92 ** 1.85 ** 0.10 * 3.31 *
Triazolopyrimidine -0.04 * -0.55 * 0.36 ** 0.06 * 3.16 **
Urea -0.02 ** -2.31 ** 0.20 ** 0.74 ** 1.42 **

Total area ConstantAverage
 temperature Temperature Precipitation Marginal 

revenue

 

*   Significant at the 1 percent level 

** Significant at the 5 percent level  
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Table 4 Regression results for fruits 

Chemical class

Amide -0.01 ** 0.01 ** 0.27 ** 3.38 *
Anilide 0.12 * 0.90 * 1.68 ** 0.46 ** 0.16 ** 1.91 **
Azole 0.07 ** 0.66 ** 0.73 ** 0.14 ** 0.46 ** 2.09 **
Benzoic acid 1.28 ** 0.58 * 1.41 ** 3.66 **
Bipyridylium 0.04 ** 0.33 ** 0.02 0.30 ** 0.18 ** 6.55 **
Botanical 0.09 2.84 0.23 ** 0.23 **
Carbamate 0.06 ** -1.67 ** 0.04 ** 0.40 ** 0.17 * 0.28 *
Carbazate 0.06 ** 3.38 ** -0.93 * 2.43 * 2.32 *
Chloro-nicotinyl 0.06 * 4.58 * 1.60 * 1.49 * 0.33 **
Dicarboximides -0.02 ** -1.54 ** 0.35 * 0.15 * -1.58 **
Dinitroanilines 0.08 ** -3.61 ** 0.79 ** 1.25 ** 1.30 ** 1.60 **
Diphenyl ether 0.07 ** -0.81 ** -1.03 ** 0.21 ** 0.02 ** 2.55 **
Guanidine -1.75 ** 0.14 ** 0.16 ** 7.18 **
Halogenated organic 0.04 * 5.85 ** 0.58 ** 0.47 ** 0.08 ** 2.37 **
Inorganic -0.11 ** 0.50 ** 0.27 ** 2.88 **
Juvenile hormone analogue 3.05 ** 0.66 ** 1.71 **
Neonicotinoid -2.76 ** 4.12 ** 4.46 **
Organochlorine 0.06 ** 0.73 ** 0.70 ** 0.49 ** 2.16 **
Organophosphorus 0.10 ** 0.69 ** 0.49 ** 0.23 ** 0.39 ** 2.58 **
Organosulfur 0.54 * 0.03 * -1.56 **
Organotin 0.03 * 3.04 ** -0.46 ** 0.44 ** 0.39 ** 3.26 **
Petroleumderivative 0.01 ** 0.82 ** 0.11 ** 0.55 ** 0.78 ** -1.52 **
Phenoxy -0.06 ** -2.97 ** 1.20 ** 0.52 * 0.04 * 2.11 *
Phosphonoglycine -0.12 ** -0.51 ** 0.75 ** 0.42 ** 0.72 ** 2.60 **
Phthalates 0.77 ** 0.56 ** 0.56 **
Pyrethroid 0.04 ** 0.24 ** 0.17 ** 0.04 * 0.44 * 3.46 **
Pyridazinone 0.04 * 1.59 * 0.40 * 0.39 **
Strobin 0.08 * 3.48 * 0.25 * 0.23 **
Sulfonyl urea 0.04 ** 6.76 ** 0.96 ** 0.54 * 0.90 *
Triazines 0.23 ** 2.19 ** 2.06 ** 0.82 ** 1.52 ** 1.95 **
Urea -0.09 ** -0.14 ** 0.66 ** 0.03 ** 0.23 * -1.70 **
Xylylalanine -0.06 ** -1.51 ** 0.33 ** 0.48 * 0.48 **

Averge
 temperature Temperature Precipitation

Marginal 
revenue Total area Constant

  

*   Significant at the 1 percent level 

** Significant at the 5 percent level  
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Table 5 Regression results for beans 

Chemical class

Anilide 0.08 ** 0.27 ** 0.35 * 0.63 ** 0.75 *
Azole -0.06 * -0.10 * 0.66 ** 1.66 ** 3.02 **
Bipyridylium 0.08 ** 1.72 * 0.32 ** 0.06 ** 0.15 *
Carbamate 0.01 ** 4.30 ** 0.33 ** 0.28 ** 0.69 *
Cyclohexanedione 0.25 ** -3.12 ** 1.03 ** 0.33 ** 1.43 ** 1.57 **
Dicarboximides 0.05 * 1.76 * 0.00 ** 0.40 ** 5.80 **
Dinitroanilines 0.07 ** -1.49 ** 0.94 ** 0.75 ** 1.54 ** 8.36 **
Diphenyl ether 1.96 ** 1.20 ** 1.16 ** 2.42 ** 3.44 **
Halogenated organic 0.13 ** 1.64 * 0.42 ** 1.97 ** 2.22 ** 1.52 **
Imidazolinone 0.04 * 1.67 * 2.00 ** 0.15 ** 1.30 ** 1.77 **
Inorganic 0.13 * 2.48 * 0.99 ** 1.63 * 1.73 ** 4.58 **
Organochlorine 3.04 1.97 ** 2.36 **
Organophosphorus 0.04 ** 2.82 ** 0.21 ** 0.47 ** 1.27 ** 0.15 ***
Phenoxy 0.05 ** -1.82 * 0.92 ** 1.81 ** 1.54 **
Phosphonoglycine 0.01 ** -1.10 * -0.99 ** 0.56 ** 1.36 ** 5.73 *
Pyrethroid 0.04 ** 1.81 ** 2.23 ** 0.40 ** 1.22 **
Strobin 0.26 ** 2.95 ** 2.16 ** 6.52 ** 4.20 **
Substituted Benzene 0.01 * 1.11 ** 0.63 ** 1.92 **
Sulfonyl urea 0.07 * 0.47 * 0.90 ** 0.36 ** 0.14 * 0.99 *
Triazines -0.01 ** -3.35 ** 1.66 ** 0.22 ** 0.90 ** 3.83 **
Triazolopyrimidine -0.06 ** -0.22 ** 0.02 ** 0.17 * 0.06 **
Urea 0.04 ** 0.83 ** 0.03 * 1.34 * 1.53 **
Xylylalanine 0.23 ** 0.52 ** 0.70 ** 1.30 ** -1.07 **

Averge 
temperature Temperature Precipitation Marginal 

revenue Total area Constant

 

*   Significant at the 1 percent level 

** Significant at the 5 percent level  
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Table 6 Regression results for root crops 

Chemical class

Amide 0.01 ** 0.48 ** 0.41 * 0.60 * 0.97 ** 8.41
Anilide 0.72 ** 0.54 ** 0.55 ** 2.00 **
Azole 0.28 ** 3.52 ** 2.11 ** 2.87 ** 3.36 **
Bipyridylium 0.05 ** 0.18 ** 0.21 ** 0.04 ** -5.45 *
Carbamate 0.01 ** 1.11 ** 0.36 ** 0.07 ** 0.39 ** 1.34 **
Chloro-nicotinyl 0.41 ** 0.53 ** 0.68 ** -1.06 *
Cyclohexanedione 1.10 * 0.00 ** 0.56 * 4.94 **
Dicarboximides 0.05 * 0.82 ** 0.28 ** 0.15 ** 0.70 ** 4.44 **
Dinitroanilines 0.18 * 0.29 ** 0.02 ** 6.34 *
Diphenyl ether 0.06 ** 1.72 ** 0.07 * 0.16 ** 0.34 ** 3.88 **
Halogenated organic 0.01 ** 0.65 ** -0.05 ** 0.04 ** 0.07 * 1.73 **
Inorganic 0.04 * -1.77 ** 0.07 ** 0.44 ** 0.23 ** 2.06 **
Microbials 0.15 * 2.70 * 2.48 * 3.01 * 2.10 **
Neonicotinoid 0.17 ** 2.31 ** 2.33 ** 2.10 ** 0.44 **
Organochlorine 0.06 ** 1.67 ** 0.01 ** 0.12 * 1.95 **
Organophosphorus 0.03 ** 0.29 ** 0.02 * 0.03 ** 0.02 *
Organosulfurs 0.05 * 2.80 * 0.62 * 0.12 ** 0.11 * 3.53 **
Organotin 0.05 ** 3.47 ** 0.76 ** 1.21 ** 3.26 **
Phenoxy 0.02 ** 2.47 ** -1.59 ** 0.69 ** 2.01 **
Phosphonoglycine 0.11 ** 1.27 ** 0.95 0.27 ** 0.50 ** 4.58 **
Pyrethroid 0.05 ** 1.69 ** 1.03 * 0.77 ** 0.24 *
Strobin 4.95 ** 0.57 1.08 * 0.50 **
Sulfonyl urea 0.06 * 0.64 * 2.41 * 0.78 * 1.53 **
Triazine -0.02 ** 0.18 ** 0.11 * -2.41 **
Urea -0.01 ** -1.45 ** 1.86 ** 0.12 ** 0.15 ** 5.67 *
Xylylalanine 0.01 ** 0.15 ** 0.14 * 0.15 ** 0.20 ** 0.97 **

Averge
 temperature Temperature Precipitation Marginal 

revenue Total area Constant

 

*   Significant at the 1 percent level 

** Significant at the 5 percent level 

 

 

 

 

 

 

 

 

 24



Table 7 Regression results for vegetables 

Chemical class

Amide -0.08 ** -0.56 ** 0.11 ** 0.50 ** -0.69 *
Anilide 0.06 ** 0.48 * 0.74 ** 0.40 ** 0.32 ** 3.23 **
Avermectin 0.32 ** 1.73 ** -1.38 ** 7.36 ** 3.22 **
Azole 0.12 ** -2.72 ** 0.48 * 0.59 * 0.65 * 3.42 **
Benzoic acid 0.20 ** 0.50 ** 0.82 ** 1.44 ** 2.80 *
Bipyridylium 0.09 * 3.06 ** 0.19 ** 0.95 ** 1.36 ** -1.84 **
Botanical -2.29 ** 6.33 * 2.88 **
Carbamate 0.07 ** -0.23 ** 0.20 * 0.08 ** 5.83 **
Chloro-nicotinyl 3.70 ** 0.71 ** 1.48 ** 1.23 **
Cyclohexanedione -0.04 * -2.86 * 0.49 ** 1.48 ** 1.20 **
Dicarboximides 0.10 ** -3.37 ** 1.13 ** 1.03 ** 1.15 **
Dinitroanilines 0.09 ** 1.06 ** 0.11 ** 1.06 ** 2.59 *
Diphenyl ether 0.03 ** 0.27 * 0.03 ** 0.21 ** -3.28 **
Halogenated organic 0.20 ** -0.50 1.33 ** 1.24 ** 1.29 ** 0.88 **
Inorganic -0.04 ** -0.99 ** 0.31 ** 0.71 ** 0.88 ** 1.54 **
Isoxazolidinone 0.20 * 1.27 * 3.79 * 0.49 ** 0.15 **
Organochlorine -0.04 ** -0.39 ** 0.72 ** 0.10 ** 0.09 * 6.05 **
Organophosphorus 0.13 ** 1.34 ** 0.05 ** 0.44 * 7.82 **
Organotin 0.13 ** 3.39 ** 1.23 ** 1.09 ** 5.31 **
Phenoxy 0.05 ** 3.27 * 0.12 ** 0.54 ** 1.21 *
Phosphonoglycine 0.15 ** 1.70 ** 0.35 ** 0.30 *
Pyrethroid 0.05 * 1.23 * 0.04 ** 0.41 * 0.61 **
Pyridazinone -0.10 ** -3.34 ** 1.64 ** 0.46 ** 1.33 **
Strobin 0.91 ** 0.33 ** 0.17 * 1.88 **
Sulfonyl urea 1.80 ** 8.39 ** 2.33 ** 8.45 ** 8.04 **
Triazine 0.13 ** -4.02 ** 0.34 ** 0.60 * 1.16 ** 3.85 **
Urea 0.19 ** 5.67 ** 0.20 ** 0.76 ** 1.42 **
Xylylalanine 0.02 * 1.45 * 0.03 * 0.69 * 0.07 ** 1.67 **

Total area Constant
Averge 

temperature Temperature Precipitation
Marginal
 revenue

 

*   Significant at the 1 percent level 

** Significant at the 5 percent level 
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Figure 1 Data analysis: Total pesticide application by US state, 1990-2004 
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Figure 2 Data analysis: Treated to total planted area by US state, 2004 [in 

percent] 
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Figure 3 Data analysis: Quantity of pesticides applied to selected crops, 1964-

2004 [in thousand pounds active ingredients]  
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Figure 4 Data analysis: Treated to total planted area by chemical class, 2000-

2004 average [in percent] 
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Figure 5 Climate change scenario results: Impacts on pesticide application by region [in percent] 

 

 



 

Figure 6 Climate change scenario results: Impacts on pesticide application by 

crop type [in percent] 
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Figure 7 Climate change scenario results: Impacts on pesticide application by chemical class [in percent] 

 
 

 
  

 



Appendix 1 Pesticide occurrence by chemical class and US state  

 
Chemical class

Acetamiprid CA CO ID IN MI MN NC ND NE NY OR TX WA WI
Aldehyde CA OR
Amides AR AZ CA CO FL GA IA ID IL IN KS LA MI MN MO MS NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Antibiotics CA GA MI NC NJ NY OR PA SC WA
Avermectin AZ CA FL MI NC NJ NY OR PA TX WA
Azoles AR AZ CA CO FL GA IA IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Benzoic acids AR AZ CA CO FL IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Bipyridylium CA CO FL GA ID IL IN KY LA MI MN MO MS NC ND NE NJ NY OH OR PA SC TN TX WA WI
Botanical AZ CA FL GA MI NC NJ NY OR PA TX WA WI
Carbamates AR AZ CA CO FL GA IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Carbazate CA CO IA IL IN KS MI MN ND NE NY OH OR PA TX WA WI
Carboxylic acids IA ID IL IN KS MI MN MO MT ND NE OH SD WA WI
ChloroacetNitroanilines AR AZ CA CO FL GA IA ID IL IN KS KY LA MI MN MO MS NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
ChloroAmides CO IA IL IN KS KY MI MN MO ND NE OH OR PA SD TX WA WI
Chloronicotines AZ CA CO FL GA ID MI MN NC ND NJ NY OR PA TN TX WA WI
Cyclohexanedione AR AZ CA FL GA IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SD TN TX WA WI
Dicarboximides AR AZ CA CO FL GA ID LA MI MN NC ND NJ NY OR PA SC WA WI
Diphenylethers AR AZ CA FL GA IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Guanidine CA MI NC NJ NY OR PA SC WA
Halogenated organic AZ CA FL GA ID IN MI NC NJ OR SC TN TX WA
Imidazolinones AR FL GA IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ OH OR PA SC SD TN TX WA WI
Inorganics AR AZ CA CO FL GA IA ID IL IN KS MI MN MO NC ND NJ NY OH OR PA SC TN TX WA WI
Isoxazolidinone AR CO FL GA IA IL IN KS KY LA MI MN MO MS NC ND NE NJ NY OH PA SC SD TN TX WA WI
Juvenile hormone analoAZ CA FL MI NC NY OR PA TX WA
Microbials AZ CA FL GA LA MI NC ND NE NJ NY OH OR PA SC TN TX WA WI
Nitriles AR AZ CA CO FL GA IA ID IL IN KS KY LA MI MN MO MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Nitroanilines AR AZ CA CO FL GA IA ID IL IN KS KY LA MI MN MO MS NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Organochlorines AZ CA CO FL GA ID IN MI MN NC ND NJ NY OH OR PA SC TN TX WA WI
Organophosphates AR AZ CA CO FL GA IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Organosulfurs CA CO FL ID MI MN NC ND NY OR PA SC TX WA WI
Organotins AZ CA CO FL ID MI MN NC ND NJ NY OR PA SC TX WA WI
Petroleum derivative AZ CA FL GA MI NC NJ NY OR PA SC TX WA
Phenoxes AR CA CO FL GA IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Pheromone CA MI OR WA
Phosphonoglycine AR AZ CA CO FL GA IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Phthalates CA FL GA MI NC NJ NY OR PA SC TX WA WI
Piperazine GA MI NC NJ OR
Pyrethroids AR AZ CA CO FL GA IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Pyridazinone AR CA FL GA KS MI MN MT NC NJ NY OR PA SD TX WA WI
Quinoxalines AR FL LA MI MS NY OR PA TX WA
Strobin AR AZ CA CO FL GA ID IL LA MI MN MS NC ND NJ NY OH OR PA SC SD TN TX WA WI
Substituted Benzene AZ CA FL GA ID MS NC TX WA
SulfonylUreas AR CA CO FL GA IA ID IL IN KS KY LA MI MN MO MS MT NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Triazines AR AZ CA CO FL GA IA ID IL IN KS KY LA MI MN MO MS NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Triazolopyrimidine AR IA IL IN KS LA MI MN MO MS NC ND NE NY OH PA SD TN WI
Uracils AZ CA FL MI NC NJ NY OR PA SC TX WA WI
Ureas AR AZ CA CO FL GA ID IL IN KS KY LA MI MN MO MS NC ND NE NJ NY OH OR PA SC SD TN TX WA WI
Xylylalanine AZ CA CO FL GA ID IN MI MN NC ND NJ NY OH OR PA TX WA WI

STATE
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